A big data-driven root cause analysis system: Application of Machine Learning in quality problem solving

Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective conventional methods have been applied frequently in past decades. However, due to increasingly complex product and supply chain structures, di...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 160; p. 107580
Main Authors Ma, Qiuping, Li, Hongyan, Thorstenson, Anders
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective conventional methods have been applied frequently in past decades. However, due to increasingly complex product and supply chain structures, diverse working conditions, and massive amounts of components, accuracy and efficiency of root cause analysis are progressively challenged in practice. Therefore, data-driven root cause analysis methods have attracted attention lately. In this paper, taking advantage of the availability of big operations data and the rapid development of data science, we design a big data-driven root cause analysis system utilizing Machine Learning techniques to improve the performance of root cause analysis. More specifically, we first propose a conceptual framework of the big data-driven root cause analysis system including three modules of Problem Identification, Root Cause Identification, and Permanent Corrective Action. Furthermore, in the Problem Identification Module, we construct a unified feature-based approach to describe multiple and different types of quality problems by applying a data mining method. In the Root Cause Identification Module, we use supervised Machine Learning (classification) methods to automatically predict the root causes of multiple quality problems. Finally, we illustrate the accuracy and efficiency of the proposed system and algorithms based on actual quality data from a case company. This study contributes to the literature from the following aspects: (i) the integrated system and algorithms can be used directly to develop a computer application to manage and solve quality problems with high concurrences and complexities in any manufacturing process; (ii) a general procedure and method are provided to formulate and describe a large quantity and different types of quality problems; (iii) compared with traditional methods, it is demonstrated using real case data that manufacturing companies can save significant time and cost with our proposed data-driven root cause analysis system; (iv) this study not only aims at improving the quality problem solving practices for a complex manufacturing process but also bridges a gap between the theoretical development of Machining Learning methods and their application in the operations management domain. •Develop a big data-driven framework of root cause analysis for quality problems.•Consider the multiple types of quality data from multiple data sources.•Construct the feature libraries to describe quality problems by data mining.•Provide ML algorithms to automatically predict root causes of quality problems.•Test the system and algorithms successfully based on the real product quality data.
AbstractList Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective conventional methods have been applied frequently in past decades. However, due to increasingly complex product and supply chain structures, diverse working conditions, and massive amounts of components, accuracy and efficiency of root cause analysis are progressively challenged in practice. Therefore, data-driven root cause analysis methods have attracted attention lately. In this paper, taking advantage of the availability of big operations data and the rapid development of data science, we design a big data-driven root cause analysis system utilizing Machine Learning techniques to improve the performance of root cause analysis. More specifically, we first propose a conceptual framework of the big data-driven root cause analysis system including three modules of Problem Identification, Root Cause Identification, and Permanent Corrective Action. Furthermore, in the Problem Identification Module, we construct a unified feature-based approach to describe multiple and different types of quality problems by applying a data mining method. In the Root Cause Identification Module, we use supervised Machine Learning (classification) methods to automatically predict the root causes of multiple quality problems. Finally, we illustrate the accuracy and efficiency of the proposed system and algorithms based on actual quality data from a case company. This study contributes to the literature from the following aspects: (i) the integrated system and algorithms can be used directly to develop a computer application to manage and solve quality problems with high concurrences and complexities in any manufacturing process; (ii) a general procedure and method are provided to formulate and describe a large quantity and different types of quality problems; (iii) compared with traditional methods, it is demonstrated using real case data that manufacturing companies can save significant time and cost with our proposed data-driven root cause analysis system; (iv) this study not only aims at improving the quality problem solving practices for a complex manufacturing process but also bridges a gap between the theoretical development of Machining Learning methods and their application in the operations management domain. •Develop a big data-driven framework of root cause analysis for quality problems.•Consider the multiple types of quality data from multiple data sources.•Construct the feature libraries to describe quality problems by data mining.•Provide ML algorithms to automatically predict root causes of quality problems.•Test the system and algorithms successfully based on the real product quality data.
ArticleNumber 107580
Author Thorstenson, Anders
Ma, Qiuping
Li, Hongyan
Author_xml – sequence: 1
  givenname: Qiuping
  surname: Ma
  fullname: Ma, Qiuping
  email: qiuping.ma@econ.au.dk
– sequence: 2
  givenname: Hongyan
  surname: Li
  fullname: Li, Hongyan
– sequence: 3
  givenname: Anders
  surname: Thorstenson
  fullname: Thorstenson, Anders
BookMark eNp9kMtOwzAQRS0EEm3hA9j5B1Ls-JEEVlXFSypiA2vLcSatq9QOtlspf09KWbHoajQz94zu3Cm6dN4BQneUzCmh8n47NxbmOcnp2BeiJBdoQsuiyogQ5BJNCJMkK5nIr9E0xi0hhIuKTtBmgWu7xo1OOmuCPYDDwfuEjd5HwNrpbog24jjEBLsHvOj7zhqdrHfYt_hdm411gFegg7Nuja3D33vd2TTgPvi6gx2OvjuMqxt01eouwu1fnaGv56fP5Wu2-nh5Wy5WmWGcpIwVNc9bokVOTc0q3raFhFwa3vK8LEhtamCSghC5lGU7qhrGm0rywtSUcS7YDBWnuyb4GAO0ytj0azgFbTtFiToGprbjHNQxMHUKbCTpP7IPdqfDcJZ5PDEwvnSwEFQcJc5AYwOYpBpvz9A_55yFqQ
CitedBy_id crossref_primary_10_1016_j_asr_2023_07_054
crossref_primary_10_1109_ACCESS_2022_3190882
crossref_primary_10_1016_j_procir_2024_10_209
crossref_primary_10_1007_s10845_022_01914_3
crossref_primary_10_1016_j_aei_2023_102057
crossref_primary_10_1016_j_aei_2023_102333
crossref_primary_10_3389_fmtec_2022_972712
crossref_primary_10_3390_systems13030142
crossref_primary_10_1016_j_cie_2023_109796
crossref_primary_10_1109_TEM_2024_3359821
crossref_primary_10_1016_j_cie_2022_108502
crossref_primary_10_1016_j_cie_2024_109974
crossref_primary_10_1007_s10845_024_02376_5
crossref_primary_10_1108_JMTM_10_2023_0471
crossref_primary_10_1108_TQM_12_2022_0365
crossref_primary_10_1016_j_jmsy_2024_08_008
crossref_primary_10_1049_sfw2_12073
crossref_primary_10_1080_00207543_2022_2078748
crossref_primary_10_3390_su16156592
crossref_primary_10_1007_s00170_024_13719_0
crossref_primary_10_1007_s10845_024_02336_z
crossref_primary_10_1016_j_cie_2024_110082
crossref_primary_10_1016_j_aei_2024_103007
crossref_primary_10_3390_math10152789
crossref_primary_10_1360_SSI_2023_0377
crossref_primary_10_1016_j_procir_2023_09_117
crossref_primary_10_1016_j_procir_2024_10_270
Cites_doi 10.1016/S0925-7535(03)00047-X
10.1016/j.ijpe.2019.02.001
10.1016/j.aei.2018.08.013
10.1016/j.procir.2018.03.229
10.1016/j.scitotenv.2013.05.060
10.1016/j.ipm.2009.03.002
10.1016/j.cor.2017.07.004
10.1080/00207543.2020.1727043
10.1016/j.engfailanal.2016.04.001
10.1016/j.cie.2017.05.012
10.1016/j.cie.2018.09.011
10.1016/j.aei.2004.07.005
10.1016/j.ssci.2015.12.022
10.5539/ijbm.v5n10p178
10.1016/j.eswa.2017.06.037
10.7763/IJCTE.2011.V3.328
10.1016/j.rser.2015.11.050
10.21437/Interspeech.2014-432
10.1007/s10845-010-0498-9
10.1016/j.patrec.2005.10.010
10.1016/j.asoc.2012.12.009
10.1016/j.jclepro.2017.04.172
10.1016/j.chemolab.2017.12.004
10.1145/505282.505283
10.1016/j.ress.2019.106565
10.1016/j.infsof.2011.05.005
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2021.107580
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2021_107580
S0360835221004848
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c340t-37b42f0a521cb394ff76e26c4f42870bcbe361e552668f521d34d9647cb134453
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Tue Jul 01 02:59:52 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Fri Feb 23 02:43:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-class classification
Neural Network
Data mining
Machine Learning
Quality management
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-37b42f0a521cb394ff76e26c4f42870bcbe361e552668f521d34d9647cb134453
OpenAccessLink https://pure.au.dk/ws/files/307682188/Ma_et_al_big_data_driven_root_cause_analysis_system_CIE_2021_AM.pdf
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2021_107580
crossref_primary_10_1016_j_cie_2021_107580
elsevier_sciencedirect_doi_10_1016_j_cie_2021_107580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Scardapane, Wang (b36) 2017; 7
Choudhary, Gianey (b7) 2017
Nguyen, Zhou, Spiegler, Ieromonachou, Lin (b29) 2018; 98
Sokolova, Lapalme (b38) 2009; 45
Powers (b34) 2011; 2
WarrantyWeek (b42) 2016
Imandoust, Bolandraftar (b15) 2013; 3
Yuniarto, H. (2012). The shortcomings of existing root cause analysis tools. In
Brown, Chui, Manyika (b4) 2011; 4
Fawcett (b10) 2006; 27
Djurdjanovic, Lee, Ni (b8) 2003; 17
Kuhn, Vaughan, RStudio (b17) 2020
Liang, Zhang (b22) 2010; 5
Medina-Oliva, G., Iung, B., Barberá, L., Viveros, P., & Ruin, T. (2012). Root cause analysis to identify physical causes. In
James, Witten, Hastie, Tibshirani (b16) 2013; Vol. 103
Du, Lv, Xi (b9) 2012; 23
Aurisicchio, Bracewell, Hooey (b1) 2016; 85
.
Mohammadnazar, Pulkkinen, Ghanbari (b27) 2019; 191
Mirsu (b26) 2013
Safarzadeh, Khansefid, Rasti-Barzoki (b35) 2018; 126
Ghatak (b11) 2019
Chemweno, Morag, Sheikhalishahi, Pintelon, Muchiri, Wakiru (b6) 2016; 66
Li, J., Zhao, R., Huang, J.-T., & Gong, Y. (2014). Learning small-size DNN with output-distribution-based criteria. In
Latino, Latino, Latino (b18) 2019
Sebastiani (b37) 2002; 34
Leveson (b20) 2004; 42
Pizzo, Lombardo, Manganaro, Benfenati (b33) 2013; 463
Okes (b30) 2005; 134
He, Zhu, He, Gu, Cui (b13) 2017; 109
Lokrantz, Gustavsson, Jirstrand (b24) 2018; 72
Panchal, Ganatra, Kosta, Panchal (b32) 2011
Zhou, Fu, Yang (b49) 2016; 56
Lehtinen, Mäntylä, Vanhanen (b19) 2011; 53
Hou, Li, Xu, Zhang, Li (b14) 2018
Hanaysha, Hilman, Abdul-Ghani (b12) 2014; 4
Boehmke, Greenwell (b3) 2019
Lima-Junior, Carpinetti (b23) 2019; 212
York, Jin, Song, Li (b46) 2014
Verma, Kakkar, Mehan (b41) 2014; 3
Xu, Dang, Munro (b45) 2018; 38
Mueller, Greipel, Weber, Schmitt (b28) 2018; 18
Ballabio, Grisoni, Todeschini (b2) 2018; 174
Pamučar, Mihajlović, Obradović, Atanasković (b31) 2017; 88
Wieczerniak, Cyplik, Milczarek (b43) 2017; 17
Chang, Yeh, Chang (b5) 2013; 13
Zhang, Ren, Liu, Sakao, Huisingh (b48) 2017; 159
Xu, Dang (b44) 2020; 58
Solé, Muntés-Mulero, Rana, Estrada (b39) 2017
Van Asch (b40) 2013
James (10.1016/j.cie.2021.107580_b16) 2013; Vol. 103
Lima-Junior (10.1016/j.cie.2021.107580_b23) 2019; 212
Verma (10.1016/j.cie.2021.107580_b41) 2014; 3
Brown (10.1016/j.cie.2021.107580_b4) 2011; 4
WarrantyWeek (10.1016/j.cie.2021.107580_b42) 2016
Lehtinen (10.1016/j.cie.2021.107580_b19) 2011; 53
10.1016/j.cie.2021.107580_b47
Chemweno (10.1016/j.cie.2021.107580_b6) 2016; 66
Choudhary (10.1016/j.cie.2021.107580_b7) 2017
Zhou (10.1016/j.cie.2021.107580_b49) 2016; 56
Djurdjanovic (10.1016/j.cie.2021.107580_b8) 2003; 17
Chang (10.1016/j.cie.2021.107580_b5) 2013; 13
Xu (10.1016/j.cie.2021.107580_b44) 2020; 58
Mohammadnazar (10.1016/j.cie.2021.107580_b27) 2019; 191
Mueller (10.1016/j.cie.2021.107580_b28) 2018; 18
Pizzo (10.1016/j.cie.2021.107580_b33) 2013; 463
Boehmke (10.1016/j.cie.2021.107580_b3) 2019
Ghatak (10.1016/j.cie.2021.107580_b11) 2019
Leveson (10.1016/j.cie.2021.107580_b20) 2004; 42
Pamučar (10.1016/j.cie.2021.107580_b31) 2017; 88
Sokolova (10.1016/j.cie.2021.107580_b38) 2009; 45
Du (10.1016/j.cie.2021.107580_b9) 2012; 23
Aurisicchio (10.1016/j.cie.2021.107580_b1) 2016; 85
Hanaysha (10.1016/j.cie.2021.107580_b12) 2014; 4
Hou (10.1016/j.cie.2021.107580_b14) 2018
York (10.1016/j.cie.2021.107580_b46) 2014
Okes (10.1016/j.cie.2021.107580_b30) 2005; 134
Sebastiani (10.1016/j.cie.2021.107580_b37) 2002; 34
Liang (10.1016/j.cie.2021.107580_b22) 2010; 5
Mirsu (10.1016/j.cie.2021.107580_b26) 2013
10.1016/j.cie.2021.107580_b21
Van Asch (10.1016/j.cie.2021.107580_b40) 2013
10.1016/j.cie.2021.107580_b25
Scardapane (10.1016/j.cie.2021.107580_b36) 2017; 7
Xu (10.1016/j.cie.2021.107580_b45) 2018; 38
Latino (10.1016/j.cie.2021.107580_b18) 2019
Zhang (10.1016/j.cie.2021.107580_b48) 2017; 159
Lokrantz (10.1016/j.cie.2021.107580_b24) 2018; 72
Powers (10.1016/j.cie.2021.107580_b34) 2011; 2
Kuhn (10.1016/j.cie.2021.107580_b17) 2020
Safarzadeh (10.1016/j.cie.2021.107580_b35) 2018; 126
Panchal (10.1016/j.cie.2021.107580_b32) 2011
Nguyen (10.1016/j.cie.2021.107580_b29) 2018; 98
Wieczerniak (10.1016/j.cie.2021.107580_b43) 2017; 17
Imandoust (10.1016/j.cie.2021.107580_b15) 2013; 3
He (10.1016/j.cie.2021.107580_b13) 2017; 109
Solé (10.1016/j.cie.2021.107580_b39) 2017
Ballabio (10.1016/j.cie.2021.107580_b2) 2018; 174
Fawcett (10.1016/j.cie.2021.107580_b10) 2006; 27
References_xml – volume: 58
  start-page: 5359
  year: 2020
  end-page: 5379
  ident: b44
  article-title: Automated digital cause-and-effect diagrams to assist causal analysis in problem-solving: A data-driven approach
  publication-title: International Journal of Productions Research
– year: 2017
  ident: b39
  article-title: Survey on models and techniques for root-cause analysis
– volume: 212
  start-page: 19
  year: 2019
  end-page: 38
  ident: b23
  article-title: Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks
  publication-title: International Journal of Production Economics
– volume: 34
  start-page: 1
  year: 2002
  end-page: 47
  ident: b37
  article-title: Machine learning in automated text categorization
  publication-title: ACM Computing Surveys
– volume: 72
  start-page: 1057
  year: 2018
  end-page: 1062
  ident: b24
  article-title: Root cause analysis of failures and quality deviations in manufacturing using machine learning
  publication-title: Procedia CIRP
– year: 2016
  ident: b42
  article-title: US Automaker’s warranty expenses
– volume: 23
  start-page: 1833
  year: 2012
  end-page: 1847
  ident: b9
  article-title: A robust approach for root causes identification in machining processes using hybrid learning algorithm and engineering knowledge
  publication-title: Journal of Intelligent Manufacturing
– volume: 42
  start-page: 237
  year: 2004
  end-page: 270
  ident: b20
  article-title: A new accident model for engineering safer systems
  publication-title: Safety Science
– start-page: 637
  year: 2013
  end-page: 647
  ident: b26
  article-title: Monitoring help desk process using KPI
  publication-title: Soft computing applications, Vol. 195
– volume: 18
  start-page: 60
  year: 2018
  end-page: 72
  ident: b28
  article-title: Automated root cause analysis of non-conformities with machine learning algorithms
– year: 2020
  ident: b17
  article-title: Tidy characterizations of model performance
– start-page: 37
  year: 2017
  end-page: 43
  ident: b7
  article-title: Comprehensive review on supervised machine learning algorithms
  publication-title: 2017 international conference on machine learning and data science (MLDS)
– volume: 191
  year: 2019
  ident: b27
  article-title: A root cause analysis method for preventing erratic behavior in software development: PEBA
  publication-title: Reliability Engineering & System Safety
– volume: 174
  start-page: 33
  year: 2018
  end-page: 44
  ident: b2
  article-title: Multivariate comparison of classification performance measures
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 3
  start-page: 605
  year: 2013
  end-page: 610
  ident: b15
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background
  publication-title: International Journal of Engineering Research and Applications
– reference: Medina-Oliva, G., Iung, B., Barberá, L., Viveros, P., & Ruin, T. (2012). Root cause analysis to identify physical causes. In
– year: 2014
  ident: b46
  article-title: Practical root cause analysis using cause mapping
  publication-title: Proceedings of the international multiconference of engineers and computer scientists
– volume: 4
  start-page: 1
  year: 2014
  end-page: 7
  ident: b12
  article-title: Direct and indirect effects of product innovation and product quality on brand image: Empirical evidence from automotive industry
  publication-title: International Journal of Scientific and Research Publications
– volume: 5
  start-page: 178
  year: 2010
  end-page: 183
  ident: b22
  article-title: Study on the organizational structured problem solving on total quality management
  publication-title: International Journal of Business and Management
– volume: 159
  start-page: 229
  year: 2017
  end-page: 240
  ident: b48
  article-title: A framework for Big Data driven product lifecycle management
  publication-title: Journal of Cleaner Production
– volume: 17
  start-page: 109
  year: 2003
  end-page: 125
  ident: b8
  article-title: Watchdog agent—An infotronics-based prognostics approach for product performance degradation assessment and prediction
  publication-title: Advanced Engineering Informatics
– volume: 109
  start-page: 253
  year: 2017
  end-page: 265
  ident: b13
  article-title: Big data oriented root cause identification approach based on axiomatic domain mapping and weighted association rule mining for product infant failure
  publication-title: Computers & Industrial Engineering
– volume: 66
  start-page: 19
  year: 2016
  end-page: 34
  ident: b6
  article-title: Development of a novel methodology for root cause analysis and selection of maintenance strategy for a thermal power plant: A data exploration approach
  publication-title: Engineering Failure Analysis
– volume: 17
  start-page: 611
  year: 2017
  end-page: 627
  ident: b43
  article-title: Root cause analysis methods as a tool of effective change
  publication-title: Business Logistics in Modern Management
– volume: 85
  start-page: 241
  year: 2016
  end-page: 257
  ident: b1
  article-title: Rationale mapping and functional modelling enhanced root cause analysis
  publication-title: Safety Science
– volume: 53
  start-page: 1045
  year: 2011
  end-page: 1061
  ident: b19
  article-title: Development and evaluation of a lightweight root cause analysis method (ARCA method) – Field studies at four software companies
  publication-title: Information and Software Technology
– reference: Li, J., Zhao, R., Huang, J.-T., & Gong, Y. (2014). Learning small-size DNN with output-distribution-based criteria. In
– start-page: 902
  year: 2018
  end-page: 905
  ident: b14
  article-title: An advanced k nearest neighbor classification algorithm based on KD-tree
  publication-title: 2018 IEEE international conference of safety produce informatization (IICSPI)
– start-page: 332
  year: 2011
  end-page: 337
  ident: b32
  article-title: Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers
  publication-title: International Journal of Computer Theory and Engineering
– volume: 98
  start-page: 254
  year: 2018
  end-page: 264
  ident: b29
  article-title: Big data analytics in supply chain management: A state-of-the-art literature review
  publication-title: Computers & Operations Research
– volume: 3
  start-page: 5291
  year: 2014
  end-page: 5294
  ident: b41
  article-title: Comparison of brute-force and KD tree algorithm
  publication-title: International Journal of Advanced Research in Computer and Communication Engineering
– year: 2019
  ident: b3
  article-title: Hands-on machine learning with R
– year: 2019
  ident: b11
  article-title: Deep learning with R
– volume: 463
  start-page: 161
  year: 2013
  end-page: 168
  ident: b33
  article-title: In silico models for predicting ready biodegradability under REACH: A comparative study
  publication-title: Science of the Total Environment
– volume: 56
  start-page: 215
  year: 2016
  end-page: 225
  ident: b49
  article-title: Big data driven smart energy management: From big data to big insights
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 7
  year: 2017
  ident: b36
  article-title: Randomness in neural networks: An overview
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 38
  start-page: 441
  year: 2018
  end-page: 457
  ident: b45
  article-title: Knowledge-driven intelligent quality problem-solving system in the automotive industry
  publication-title: Advanced Engineering Informatics
– volume: 134
  start-page: 171
  year: 2005
  end-page: 178
  ident: b30
  article-title: Improve your root cause analysis
  publication-title: Manufacturing Engineering
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b10
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
– volume: 126
  start-page: 111
  year: 2018
  end-page: 121
  ident: b35
  article-title: A group multi-criteria decision-making based on best-worst method
  publication-title: Computers & Industrial Engineering
– volume: 4
  start-page: 24
  year: 2011
  end-page: 35
  ident: b4
  article-title: Are you ready for the era of ‘big data’
  publication-title: McKinsey Quarterly
– year: 2013
  ident: b40
  article-title: Macro-and micro-averaged evaluation measures [[basic draft]]
– volume: 88
  start-page: 58
  year: 2017
  end-page: 80
  ident: b31
  article-title: Novel approach to group multi-criteria decision making based on interval rough numbers: hybrid DEMATEL-ANP-MAIRCA model
  publication-title: Expert Systems with Applications
– volume: Vol. 103
  year: 2013
  ident: b16
  publication-title: An introduction to statistical learning
– volume: 2
  start-page: 37
  year: 2011
  end-page: 63
  ident: b34
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: Journal of Machine Learning Technologies
– reference: .
– reference: Yuniarto, H. (2012). The shortcomings of existing root cause analysis tools. In
– year: 2019
  ident: b18
  article-title: Root cause analysis: Improving performance for bottom-line results
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: b38
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Information Processing & Management
– volume: 13
  start-page: 2179
  year: 2013
  end-page: 2187
  ident: b5
  article-title: A new method selection approach for fuzzy group multicriteria decision making
  publication-title: Applied Soft Computing
– volume: 3
  start-page: 605
  issue: 5
  year: 2013
  ident: 10.1016/j.cie.2021.107580_b15
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background
  publication-title: International Journal of Engineering Research and Applications
– volume: 42
  start-page: 237
  issue: 4
  year: 2004
  ident: 10.1016/j.cie.2021.107580_b20
  article-title: A new accident model for engineering safer systems
  publication-title: Safety Science
  doi: 10.1016/S0925-7535(03)00047-X
– volume: 212
  start-page: 19
  year: 2019
  ident: 10.1016/j.cie.2021.107580_b23
  article-title: Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2019.02.001
– year: 2017
  ident: 10.1016/j.cie.2021.107580_b39
– volume: 38
  start-page: 441
  year: 2018
  ident: 10.1016/j.cie.2021.107580_b45
  article-title: Knowledge-driven intelligent quality problem-solving system in the automotive industry
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2018.08.013
– year: 2019
  ident: 10.1016/j.cie.2021.107580_b3
– year: 2014
  ident: 10.1016/j.cie.2021.107580_b46
  article-title: Practical root cause analysis using cause mapping
– volume: 2
  start-page: 37
  year: 2011
  ident: 10.1016/j.cie.2021.107580_b34
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: Journal of Machine Learning Technologies
– volume: 72
  start-page: 1057
  year: 2018
  ident: 10.1016/j.cie.2021.107580_b24
  article-title: Root cause analysis of failures and quality deviations in manufacturing using machine learning
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.03.229
– year: 2016
  ident: 10.1016/j.cie.2021.107580_b42
– start-page: 37
  year: 2017
  ident: 10.1016/j.cie.2021.107580_b7
  article-title: Comprehensive review on supervised machine learning algorithms
– volume: 3
  start-page: 5291
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2021.107580_b41
  article-title: Comparison of brute-force and KD tree algorithm
  publication-title: International Journal of Advanced Research in Computer and Communication Engineering
– volume: 463
  start-page: 161
  year: 2013
  ident: 10.1016/j.cie.2021.107580_b33
  article-title: In silico models for predicting ready biodegradability under REACH: A comparative study
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2013.05.060
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.cie.2021.107580_b38
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2009.03.002
– volume: 98
  start-page: 254
  year: 2018
  ident: 10.1016/j.cie.2021.107580_b29
  article-title: Big data analytics in supply chain management: A state-of-the-art literature review
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2017.07.004
– volume: 58
  start-page: 5359
  issue: 17
  year: 2020
  ident: 10.1016/j.cie.2021.107580_b44
  article-title: Automated digital cause-and-effect diagrams to assist causal analysis in problem-solving: A data-driven approach
  publication-title: International Journal of Productions Research
  doi: 10.1080/00207543.2020.1727043
– volume: 66
  start-page: 19
  year: 2016
  ident: 10.1016/j.cie.2021.107580_b6
  article-title: Development of a novel methodology for root cause analysis and selection of maintenance strategy for a thermal power plant: A data exploration approach
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2016.04.001
– volume: 18
  start-page: 60
  issue: 4
  year: 2018
  ident: 10.1016/j.cie.2021.107580_b28
  article-title: Automated root cause analysis of non-conformities with machine learning algorithms
– volume: 4
  start-page: 1
  issue: 11
  year: 2014
  ident: 10.1016/j.cie.2021.107580_b12
  article-title: Direct and indirect effects of product innovation and product quality on brand image: Empirical evidence from automotive industry
  publication-title: International Journal of Scientific and Research Publications
– year: 2019
  ident: 10.1016/j.cie.2021.107580_b11
– start-page: 902
  year: 2018
  ident: 10.1016/j.cie.2021.107580_b14
  article-title: An advanced k nearest neighbor classification algorithm based on KD-tree
– volume: 134
  start-page: 171
  issue: 3
  year: 2005
  ident: 10.1016/j.cie.2021.107580_b30
  article-title: Improve your root cause analysis
  publication-title: Manufacturing Engineering
– volume: 109
  start-page: 253
  year: 2017
  ident: 10.1016/j.cie.2021.107580_b13
  article-title: Big data oriented root cause identification approach based on axiomatic domain mapping and weighted association rule mining for product infant failure
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.05.012
– ident: 10.1016/j.cie.2021.107580_b25
– start-page: 637
  year: 2013
  ident: 10.1016/j.cie.2021.107580_b26
  article-title: Monitoring help desk process using KPI
– volume: 126
  start-page: 111
  year: 2018
  ident: 10.1016/j.cie.2021.107580_b35
  article-title: A group multi-criteria decision-making based on best-worst method
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.09.011
– volume: 17
  start-page: 109
  issue: 3–4
  year: 2003
  ident: 10.1016/j.cie.2021.107580_b8
  article-title: Watchdog agent—An infotronics-based prognostics approach for product performance degradation assessment and prediction
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2004.07.005
– volume: 85
  start-page: 241
  year: 2016
  ident: 10.1016/j.cie.2021.107580_b1
  article-title: Rationale mapping and functional modelling enhanced root cause analysis
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2015.12.022
– volume: 5
  start-page: 178
  issue: 10
  year: 2010
  ident: 10.1016/j.cie.2021.107580_b22
  article-title: Study on the organizational structured problem solving on total quality management
  publication-title: International Journal of Business and Management
  doi: 10.5539/ijbm.v5n10p178
– volume: 88
  start-page: 58
  year: 2017
  ident: 10.1016/j.cie.2021.107580_b31
  article-title: Novel approach to group multi-criteria decision making based on interval rough numbers: hybrid DEMATEL-ANP-MAIRCA model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.037
– start-page: 332
  year: 2011
  ident: 10.1016/j.cie.2021.107580_b32
  article-title: Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers
  publication-title: International Journal of Computer Theory and Engineering
  doi: 10.7763/IJCTE.2011.V3.328
– volume: 56
  start-page: 215
  year: 2016
  ident: 10.1016/j.cie.2021.107580_b49
  article-title: Big data driven smart energy management: From big data to big insights
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2015.11.050
– volume: 4
  start-page: 24
  issue: 1
  year: 2011
  ident: 10.1016/j.cie.2021.107580_b4
  article-title: Are you ready for the era of ‘big data’
  publication-title: McKinsey Quarterly
– ident: 10.1016/j.cie.2021.107580_b47
– ident: 10.1016/j.cie.2021.107580_b21
  doi: 10.21437/Interspeech.2014-432
– volume: 23
  start-page: 1833
  issue: 5
  year: 2012
  ident: 10.1016/j.cie.2021.107580_b9
  article-title: A robust approach for root causes identification in machining processes using hybrid learning algorithm and engineering knowledge
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-010-0498-9
– year: 2013
  ident: 10.1016/j.cie.2021.107580_b40
– year: 2020
  ident: 10.1016/j.cie.2021.107580_b17
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.cie.2021.107580_b10
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.10.010
– year: 2019
  ident: 10.1016/j.cie.2021.107580_b18
– volume: 13
  start-page: 2179
  issue: 4
  year: 2013
  ident: 10.1016/j.cie.2021.107580_b5
  article-title: A new method selection approach for fuzzy group multicriteria decision making
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.12.009
– volume: 159
  start-page: 229
  year: 2017
  ident: 10.1016/j.cie.2021.107580_b48
  article-title: A framework for Big Data driven product lifecycle management
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.04.172
– volume: 174
  start-page: 33
  year: 2018
  ident: 10.1016/j.cie.2021.107580_b2
  article-title: Multivariate comparison of classification performance measures
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2017.12.004
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.cie.2021.107580_b37
  article-title: Machine learning in automated text categorization
  publication-title: ACM Computing Surveys
  doi: 10.1145/505282.505283
– volume: 7
  issue: 2
  year: 2017
  ident: 10.1016/j.cie.2021.107580_b36
  article-title: Randomness in neural networks: An overview
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 191
  year: 2019
  ident: 10.1016/j.cie.2021.107580_b27
  article-title: A root cause analysis method for preventing erratic behavior in software development: PEBA
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2019.106565
– volume: 17
  start-page: 611
  year: 2017
  ident: 10.1016/j.cie.2021.107580_b43
  article-title: Root cause analysis methods as a tool of effective change
  publication-title: Business Logistics in Modern Management
– volume: Vol. 103
  year: 2013
  ident: 10.1016/j.cie.2021.107580_b16
– volume: 53
  start-page: 1045
  issue: 10
  year: 2011
  ident: 10.1016/j.cie.2021.107580_b19
  article-title: Development and evaluation of a lightweight root cause analysis method (ARCA method) – Field studies at four software companies
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2011.05.005
SSID ssj0004591
Score 2.4950655
Snippet Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107580
SubjectTerms Data mining
Machine Learning
Multi-class classification
Neural Network
Quality management
Title A big data-driven root cause analysis system: Application of Machine Learning in quality problem solving
URI https://dx.doi.org/10.1016/j.cie.2021.107580
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvTgAzXig8zBk8nKPmaB9UaIBDVwURJum7bbIsYA4XHw4m93uu0qJurBY5vpZjOdnfm6nfmGsctQcO0nOvMC5MLDIIs97qPyCNn6KHUzlLEpcO4PGr0h3o_iUYl1iloYk1bpfL_16bm3djN1p836fDKpP5LvtfjBkJ610BT8IjaNlV-_BxuM4bZrHgl7Rrq42cxzvOixdEQMAxoTbvZ_jk0b8aa7z3YdUIS2fZcDVlLTCttzoBHcJ7mssJ0NRsFD9twGMRmDyfv0soXxZEDQeAWSr5cKuGMgAcvffAPtr-trmGno55mVChzp6hgmU7BVl2_gOs8A2ar5B3HEht3bp07Pc80UPBmhvyJHIjDUPqdwLUWUoNbNhgobEnV-1ymkUFEjUHFMEbulSSqLMDNlqlIEEWIcHbPydDZVJwzIuSYqoL2PlEARJC0RckEHE8KWIedRUmV-ocZUOqZx0_DiNS1Syl5oXqVG86nVfJVdfS6ZW5qNv4Sx2Jv0m62kFAZ-X3b6v2VnbNuMbALfOSuvFmt1QUBkJWq5pdXYVvvuoTf4AFU-26g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADjwFiPH3ghFStj3RbuU2IabDHhSFxq5I0GUOom0Y58O9xlhSGBBw4No2rykntL7X9GeAiFFz7ic68gHHhsSCLPe4z5RGy9ZnUzVDGpsB5MGx0H9jdY_y4AtdlLYxJq3S239r0hbV2I3WnzfpsMqnfk-21-MGQnrVYaxXWDDtVXIG19m2vO1wiDbeN82i-ZwTK4OYizYueTKfEMKBrgs7-z-5pyeV0dmDLYUVs29fZhRWVV2Hb4UZ0X-VrFTaXSAX34KmNYjJGk_rpZXNjzJDQcYGSv70q5I6EBC2F8xW2vyLYONU4WCRXKnS8q2Oc5GgLL9_RNZ9B2q7mN8Q-PHRuRtddz_VT8GTE_IJsiWCh9jl5bCmihGndbKiwIZlehDuFFCpqBCqOyWm3NM3KIpaZSlUpgoixODqASj7N1SEg2ddEBbT8kRJMBElLhFzQ2YTgZch5lNTAL9WYSkc2bnpevKRlVtkzjavUaD61mq_B5afIzDJt_DWZlWuTftsuKXmC38WO_id2Duvd0aCf9m-HvWPYMHdsPt8JVIr5mzolXFKIM7fvPgDsj95Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+big+data-driven+root+cause+analysis+system%3A+Application+of+Machine+Learning+in+quality+problem+solving&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Ma%2C+Qiuping&rft.au=Li%2C+Hongyan&rft.au=Thorstenson%2C+Anders&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=160&rft_id=info:doi/10.1016%2Fj.cie.2021.107580&rft.externalDocID=S0360835221004848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon