A big data-driven root cause analysis system: Application of Machine Learning in quality problem solving
Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective conventional methods have been applied frequently in past decades. However, due to increasingly complex product and supply chain structures, di...
Saved in:
Published in | Computers & industrial engineering Vol. 160; p. 107580 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective conventional methods have been applied frequently in past decades. However, due to increasingly complex product and supply chain structures, diverse working conditions, and massive amounts of components, accuracy and efficiency of root cause analysis are progressively challenged in practice. Therefore, data-driven root cause analysis methods have attracted attention lately. In this paper, taking advantage of the availability of big operations data and the rapid development of data science, we design a big data-driven root cause analysis system utilizing Machine Learning techniques to improve the performance of root cause analysis. More specifically, we first propose a conceptual framework of the big data-driven root cause analysis system including three modules of Problem Identification, Root Cause Identification, and Permanent Corrective Action. Furthermore, in the Problem Identification Module, we construct a unified feature-based approach to describe multiple and different types of quality problems by applying a data mining method. In the Root Cause Identification Module, we use supervised Machine Learning (classification) methods to automatically predict the root causes of multiple quality problems. Finally, we illustrate the accuracy and efficiency of the proposed system and algorithms based on actual quality data from a case company. This study contributes to the literature from the following aspects: (i) the integrated system and algorithms can be used directly to develop a computer application to manage and solve quality problems with high concurrences and complexities in any manufacturing process; (ii) a general procedure and method are provided to formulate and describe a large quantity and different types of quality problems; (iii) compared with traditional methods, it is demonstrated using real case data that manufacturing companies can save significant time and cost with our proposed data-driven root cause analysis system; (iv) this study not only aims at improving the quality problem solving practices for a complex manufacturing process but also bridges a gap between the theoretical development of Machining Learning methods and their application in the operations management domain.
•Develop a big data-driven framework of root cause analysis for quality problems.•Consider the multiple types of quality data from multiple data sources.•Construct the feature libraries to describe quality problems by data mining.•Provide ML algorithms to automatically predict root causes of quality problems.•Test the system and algorithms successfully based on the real product quality data. |
---|---|
AbstractList | Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective conventional methods have been applied frequently in past decades. However, due to increasingly complex product and supply chain structures, diverse working conditions, and massive amounts of components, accuracy and efficiency of root cause analysis are progressively challenged in practice. Therefore, data-driven root cause analysis methods have attracted attention lately. In this paper, taking advantage of the availability of big operations data and the rapid development of data science, we design a big data-driven root cause analysis system utilizing Machine Learning techniques to improve the performance of root cause analysis. More specifically, we first propose a conceptual framework of the big data-driven root cause analysis system including three modules of Problem Identification, Root Cause Identification, and Permanent Corrective Action. Furthermore, in the Problem Identification Module, we construct a unified feature-based approach to describe multiple and different types of quality problems by applying a data mining method. In the Root Cause Identification Module, we use supervised Machine Learning (classification) methods to automatically predict the root causes of multiple quality problems. Finally, we illustrate the accuracy and efficiency of the proposed system and algorithms based on actual quality data from a case company. This study contributes to the literature from the following aspects: (i) the integrated system and algorithms can be used directly to develop a computer application to manage and solve quality problems with high concurrences and complexities in any manufacturing process; (ii) a general procedure and method are provided to formulate and describe a large quantity and different types of quality problems; (iii) compared with traditional methods, it is demonstrated using real case data that manufacturing companies can save significant time and cost with our proposed data-driven root cause analysis system; (iv) this study not only aims at improving the quality problem solving practices for a complex manufacturing process but also bridges a gap between the theoretical development of Machining Learning methods and their application in the operations management domain.
•Develop a big data-driven framework of root cause analysis for quality problems.•Consider the multiple types of quality data from multiple data sources.•Construct the feature libraries to describe quality problems by data mining.•Provide ML algorithms to automatically predict root causes of quality problems.•Test the system and algorithms successfully based on the real product quality data. |
ArticleNumber | 107580 |
Author | Thorstenson, Anders Ma, Qiuping Li, Hongyan |
Author_xml | – sequence: 1 givenname: Qiuping surname: Ma fullname: Ma, Qiuping email: qiuping.ma@econ.au.dk – sequence: 2 givenname: Hongyan surname: Li fullname: Li, Hongyan – sequence: 3 givenname: Anders surname: Thorstenson fullname: Thorstenson, Anders |
BookMark | eNp9kMtOwzAQRS0EEm3hA9j5B1Ls-JEEVlXFSypiA2vLcSatq9QOtlspf09KWbHoajQz94zu3Cm6dN4BQneUzCmh8n47NxbmOcnp2BeiJBdoQsuiyogQ5BJNCJMkK5nIr9E0xi0hhIuKTtBmgWu7xo1OOmuCPYDDwfuEjd5HwNrpbog24jjEBLsHvOj7zhqdrHfYt_hdm411gFegg7Nuja3D33vd2TTgPvi6gx2OvjuMqxt01eouwu1fnaGv56fP5Wu2-nh5Wy5WmWGcpIwVNc9bokVOTc0q3raFhFwa3vK8LEhtamCSghC5lGU7qhrGm0rywtSUcS7YDBWnuyb4GAO0ytj0azgFbTtFiToGprbjHNQxMHUKbCTpP7IPdqfDcJZ5PDEwvnSwEFQcJc5AYwOYpBpvz9A_55yFqQ |
CitedBy_id | crossref_primary_10_1016_j_asr_2023_07_054 crossref_primary_10_1109_ACCESS_2022_3190882 crossref_primary_10_1016_j_procir_2024_10_209 crossref_primary_10_1007_s10845_022_01914_3 crossref_primary_10_1016_j_aei_2023_102057 crossref_primary_10_1016_j_aei_2023_102333 crossref_primary_10_3389_fmtec_2022_972712 crossref_primary_10_3390_systems13030142 crossref_primary_10_1016_j_cie_2023_109796 crossref_primary_10_1109_TEM_2024_3359821 crossref_primary_10_1016_j_cie_2022_108502 crossref_primary_10_1016_j_cie_2024_109974 crossref_primary_10_1007_s10845_024_02376_5 crossref_primary_10_1108_JMTM_10_2023_0471 crossref_primary_10_1108_TQM_12_2022_0365 crossref_primary_10_1016_j_jmsy_2024_08_008 crossref_primary_10_1049_sfw2_12073 crossref_primary_10_1080_00207543_2022_2078748 crossref_primary_10_3390_su16156592 crossref_primary_10_1007_s00170_024_13719_0 crossref_primary_10_1007_s10845_024_02336_z crossref_primary_10_1016_j_cie_2024_110082 crossref_primary_10_1016_j_aei_2024_103007 crossref_primary_10_3390_math10152789 crossref_primary_10_1360_SSI_2023_0377 crossref_primary_10_1016_j_procir_2023_09_117 crossref_primary_10_1016_j_procir_2024_10_270 |
Cites_doi | 10.1016/S0925-7535(03)00047-X 10.1016/j.ijpe.2019.02.001 10.1016/j.aei.2018.08.013 10.1016/j.procir.2018.03.229 10.1016/j.scitotenv.2013.05.060 10.1016/j.ipm.2009.03.002 10.1016/j.cor.2017.07.004 10.1080/00207543.2020.1727043 10.1016/j.engfailanal.2016.04.001 10.1016/j.cie.2017.05.012 10.1016/j.cie.2018.09.011 10.1016/j.aei.2004.07.005 10.1016/j.ssci.2015.12.022 10.5539/ijbm.v5n10p178 10.1016/j.eswa.2017.06.037 10.7763/IJCTE.2011.V3.328 10.1016/j.rser.2015.11.050 10.21437/Interspeech.2014-432 10.1007/s10845-010-0498-9 10.1016/j.patrec.2005.10.010 10.1016/j.asoc.2012.12.009 10.1016/j.jclepro.2017.04.172 10.1016/j.chemolab.2017.12.004 10.1145/505282.505283 10.1016/j.ress.2019.106565 10.1016/j.infsof.2011.05.005 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cie.2021.107580 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-0550 |
ExternalDocumentID | 10_1016_j_cie_2021_107580 S0360835221004848 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c340t-37b42f0a521cb394ff76e26c4f42870bcbe361e552668f521d34d9647cb134453 |
IEDL.DBID | .~1 |
ISSN | 0360-8352 |
IngestDate | Tue Jul 01 02:59:52 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Fri Feb 23 02:43:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-class classification Neural Network Data mining Machine Learning Quality management |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-37b42f0a521cb394ff76e26c4f42870bcbe361e552668f521d34d9647cb134453 |
OpenAccessLink | https://pure.au.dk/ws/files/307682188/Ma_et_al_big_data_driven_root_cause_analysis_system_CIE_2021_AM.pdf |
ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2021_107580 crossref_primary_10_1016_j_cie_2021_107580 elsevier_sciencedirect_doi_10_1016_j_cie_2021_107580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Computers & industrial engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Scardapane, Wang (b36) 2017; 7 Choudhary, Gianey (b7) 2017 Nguyen, Zhou, Spiegler, Ieromonachou, Lin (b29) 2018; 98 Sokolova, Lapalme (b38) 2009; 45 Powers (b34) 2011; 2 WarrantyWeek (b42) 2016 Imandoust, Bolandraftar (b15) 2013; 3 Yuniarto, H. (2012). The shortcomings of existing root cause analysis tools. In Brown, Chui, Manyika (b4) 2011; 4 Fawcett (b10) 2006; 27 Djurdjanovic, Lee, Ni (b8) 2003; 17 Kuhn, Vaughan, RStudio (b17) 2020 Liang, Zhang (b22) 2010; 5 Medina-Oliva, G., Iung, B., Barberá, L., Viveros, P., & Ruin, T. (2012). Root cause analysis to identify physical causes. In James, Witten, Hastie, Tibshirani (b16) 2013; Vol. 103 Du, Lv, Xi (b9) 2012; 23 Aurisicchio, Bracewell, Hooey (b1) 2016; 85 . Mohammadnazar, Pulkkinen, Ghanbari (b27) 2019; 191 Mirsu (b26) 2013 Safarzadeh, Khansefid, Rasti-Barzoki (b35) 2018; 126 Ghatak (b11) 2019 Chemweno, Morag, Sheikhalishahi, Pintelon, Muchiri, Wakiru (b6) 2016; 66 Li, J., Zhao, R., Huang, J.-T., & Gong, Y. (2014). Learning small-size DNN with output-distribution-based criteria. In Latino, Latino, Latino (b18) 2019 Sebastiani (b37) 2002; 34 Leveson (b20) 2004; 42 Pizzo, Lombardo, Manganaro, Benfenati (b33) 2013; 463 Okes (b30) 2005; 134 He, Zhu, He, Gu, Cui (b13) 2017; 109 Lokrantz, Gustavsson, Jirstrand (b24) 2018; 72 Panchal, Ganatra, Kosta, Panchal (b32) 2011 Zhou, Fu, Yang (b49) 2016; 56 Lehtinen, Mäntylä, Vanhanen (b19) 2011; 53 Hou, Li, Xu, Zhang, Li (b14) 2018 Hanaysha, Hilman, Abdul-Ghani (b12) 2014; 4 Boehmke, Greenwell (b3) 2019 Lima-Junior, Carpinetti (b23) 2019; 212 York, Jin, Song, Li (b46) 2014 Verma, Kakkar, Mehan (b41) 2014; 3 Xu, Dang, Munro (b45) 2018; 38 Mueller, Greipel, Weber, Schmitt (b28) 2018; 18 Ballabio, Grisoni, Todeschini (b2) 2018; 174 Pamučar, Mihajlović, Obradović, Atanasković (b31) 2017; 88 Wieczerniak, Cyplik, Milczarek (b43) 2017; 17 Chang, Yeh, Chang (b5) 2013; 13 Zhang, Ren, Liu, Sakao, Huisingh (b48) 2017; 159 Xu, Dang (b44) 2020; 58 Solé, Muntés-Mulero, Rana, Estrada (b39) 2017 Van Asch (b40) 2013 James (10.1016/j.cie.2021.107580_b16) 2013; Vol. 103 Lima-Junior (10.1016/j.cie.2021.107580_b23) 2019; 212 Verma (10.1016/j.cie.2021.107580_b41) 2014; 3 Brown (10.1016/j.cie.2021.107580_b4) 2011; 4 WarrantyWeek (10.1016/j.cie.2021.107580_b42) 2016 Lehtinen (10.1016/j.cie.2021.107580_b19) 2011; 53 10.1016/j.cie.2021.107580_b47 Chemweno (10.1016/j.cie.2021.107580_b6) 2016; 66 Choudhary (10.1016/j.cie.2021.107580_b7) 2017 Zhou (10.1016/j.cie.2021.107580_b49) 2016; 56 Djurdjanovic (10.1016/j.cie.2021.107580_b8) 2003; 17 Chang (10.1016/j.cie.2021.107580_b5) 2013; 13 Xu (10.1016/j.cie.2021.107580_b44) 2020; 58 Mohammadnazar (10.1016/j.cie.2021.107580_b27) 2019; 191 Mueller (10.1016/j.cie.2021.107580_b28) 2018; 18 Pizzo (10.1016/j.cie.2021.107580_b33) 2013; 463 Boehmke (10.1016/j.cie.2021.107580_b3) 2019 Ghatak (10.1016/j.cie.2021.107580_b11) 2019 Leveson (10.1016/j.cie.2021.107580_b20) 2004; 42 Pamučar (10.1016/j.cie.2021.107580_b31) 2017; 88 Sokolova (10.1016/j.cie.2021.107580_b38) 2009; 45 Du (10.1016/j.cie.2021.107580_b9) 2012; 23 Aurisicchio (10.1016/j.cie.2021.107580_b1) 2016; 85 Hanaysha (10.1016/j.cie.2021.107580_b12) 2014; 4 Hou (10.1016/j.cie.2021.107580_b14) 2018 York (10.1016/j.cie.2021.107580_b46) 2014 Okes (10.1016/j.cie.2021.107580_b30) 2005; 134 Sebastiani (10.1016/j.cie.2021.107580_b37) 2002; 34 Liang (10.1016/j.cie.2021.107580_b22) 2010; 5 Mirsu (10.1016/j.cie.2021.107580_b26) 2013 10.1016/j.cie.2021.107580_b21 Van Asch (10.1016/j.cie.2021.107580_b40) 2013 10.1016/j.cie.2021.107580_b25 Scardapane (10.1016/j.cie.2021.107580_b36) 2017; 7 Xu (10.1016/j.cie.2021.107580_b45) 2018; 38 Latino (10.1016/j.cie.2021.107580_b18) 2019 Zhang (10.1016/j.cie.2021.107580_b48) 2017; 159 Lokrantz (10.1016/j.cie.2021.107580_b24) 2018; 72 Powers (10.1016/j.cie.2021.107580_b34) 2011; 2 Kuhn (10.1016/j.cie.2021.107580_b17) 2020 Safarzadeh (10.1016/j.cie.2021.107580_b35) 2018; 126 Panchal (10.1016/j.cie.2021.107580_b32) 2011 Nguyen (10.1016/j.cie.2021.107580_b29) 2018; 98 Wieczerniak (10.1016/j.cie.2021.107580_b43) 2017; 17 Imandoust (10.1016/j.cie.2021.107580_b15) 2013; 3 He (10.1016/j.cie.2021.107580_b13) 2017; 109 Solé (10.1016/j.cie.2021.107580_b39) 2017 Ballabio (10.1016/j.cie.2021.107580_b2) 2018; 174 Fawcett (10.1016/j.cie.2021.107580_b10) 2006; 27 |
References_xml | – volume: 58 start-page: 5359 year: 2020 end-page: 5379 ident: b44 article-title: Automated digital cause-and-effect diagrams to assist causal analysis in problem-solving: A data-driven approach publication-title: International Journal of Productions Research – year: 2017 ident: b39 article-title: Survey on models and techniques for root-cause analysis – volume: 212 start-page: 19 year: 2019 end-page: 38 ident: b23 article-title: Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks publication-title: International Journal of Production Economics – volume: 34 start-page: 1 year: 2002 end-page: 47 ident: b37 article-title: Machine learning in automated text categorization publication-title: ACM Computing Surveys – volume: 72 start-page: 1057 year: 2018 end-page: 1062 ident: b24 article-title: Root cause analysis of failures and quality deviations in manufacturing using machine learning publication-title: Procedia CIRP – year: 2016 ident: b42 article-title: US Automaker’s warranty expenses – volume: 23 start-page: 1833 year: 2012 end-page: 1847 ident: b9 article-title: A robust approach for root causes identification in machining processes using hybrid learning algorithm and engineering knowledge publication-title: Journal of Intelligent Manufacturing – volume: 42 start-page: 237 year: 2004 end-page: 270 ident: b20 article-title: A new accident model for engineering safer systems publication-title: Safety Science – start-page: 637 year: 2013 end-page: 647 ident: b26 article-title: Monitoring help desk process using KPI publication-title: Soft computing applications, Vol. 195 – volume: 18 start-page: 60 year: 2018 end-page: 72 ident: b28 article-title: Automated root cause analysis of non-conformities with machine learning algorithms – year: 2020 ident: b17 article-title: Tidy characterizations of model performance – start-page: 37 year: 2017 end-page: 43 ident: b7 article-title: Comprehensive review on supervised machine learning algorithms publication-title: 2017 international conference on machine learning and data science (MLDS) – volume: 191 year: 2019 ident: b27 article-title: A root cause analysis method for preventing erratic behavior in software development: PEBA publication-title: Reliability Engineering & System Safety – volume: 174 start-page: 33 year: 2018 end-page: 44 ident: b2 article-title: Multivariate comparison of classification performance measures publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 3 start-page: 605 year: 2013 end-page: 610 ident: b15 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background publication-title: International Journal of Engineering Research and Applications – reference: Medina-Oliva, G., Iung, B., Barberá, L., Viveros, P., & Ruin, T. (2012). Root cause analysis to identify physical causes. In – year: 2014 ident: b46 article-title: Practical root cause analysis using cause mapping publication-title: Proceedings of the international multiconference of engineers and computer scientists – volume: 4 start-page: 1 year: 2014 end-page: 7 ident: b12 article-title: Direct and indirect effects of product innovation and product quality on brand image: Empirical evidence from automotive industry publication-title: International Journal of Scientific and Research Publications – volume: 5 start-page: 178 year: 2010 end-page: 183 ident: b22 article-title: Study on the organizational structured problem solving on total quality management publication-title: International Journal of Business and Management – volume: 159 start-page: 229 year: 2017 end-page: 240 ident: b48 article-title: A framework for Big Data driven product lifecycle management publication-title: Journal of Cleaner Production – volume: 17 start-page: 109 year: 2003 end-page: 125 ident: b8 article-title: Watchdog agent—An infotronics-based prognostics approach for product performance degradation assessment and prediction publication-title: Advanced Engineering Informatics – volume: 109 start-page: 253 year: 2017 end-page: 265 ident: b13 article-title: Big data oriented root cause identification approach based on axiomatic domain mapping and weighted association rule mining for product infant failure publication-title: Computers & Industrial Engineering – volume: 66 start-page: 19 year: 2016 end-page: 34 ident: b6 article-title: Development of a novel methodology for root cause analysis and selection of maintenance strategy for a thermal power plant: A data exploration approach publication-title: Engineering Failure Analysis – volume: 17 start-page: 611 year: 2017 end-page: 627 ident: b43 article-title: Root cause analysis methods as a tool of effective change publication-title: Business Logistics in Modern Management – volume: 85 start-page: 241 year: 2016 end-page: 257 ident: b1 article-title: Rationale mapping and functional modelling enhanced root cause analysis publication-title: Safety Science – volume: 53 start-page: 1045 year: 2011 end-page: 1061 ident: b19 article-title: Development and evaluation of a lightweight root cause analysis method (ARCA method) – Field studies at four software companies publication-title: Information and Software Technology – reference: Li, J., Zhao, R., Huang, J.-T., & Gong, Y. (2014). Learning small-size DNN with output-distribution-based criteria. In – start-page: 902 year: 2018 end-page: 905 ident: b14 article-title: An advanced k nearest neighbor classification algorithm based on KD-tree publication-title: 2018 IEEE international conference of safety produce informatization (IICSPI) – start-page: 332 year: 2011 end-page: 337 ident: b32 article-title: Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers publication-title: International Journal of Computer Theory and Engineering – volume: 98 start-page: 254 year: 2018 end-page: 264 ident: b29 article-title: Big data analytics in supply chain management: A state-of-the-art literature review publication-title: Computers & Operations Research – volume: 3 start-page: 5291 year: 2014 end-page: 5294 ident: b41 article-title: Comparison of brute-force and KD tree algorithm publication-title: International Journal of Advanced Research in Computer and Communication Engineering – year: 2019 ident: b3 article-title: Hands-on machine learning with R – year: 2019 ident: b11 article-title: Deep learning with R – volume: 463 start-page: 161 year: 2013 end-page: 168 ident: b33 article-title: In silico models for predicting ready biodegradability under REACH: A comparative study publication-title: Science of the Total Environment – volume: 56 start-page: 215 year: 2016 end-page: 225 ident: b49 article-title: Big data driven smart energy management: From big data to big insights publication-title: Renewable and Sustainable Energy Reviews – volume: 7 year: 2017 ident: b36 article-title: Randomness in neural networks: An overview publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 38 start-page: 441 year: 2018 end-page: 457 ident: b45 article-title: Knowledge-driven intelligent quality problem-solving system in the automotive industry publication-title: Advanced Engineering Informatics – volume: 134 start-page: 171 year: 2005 end-page: 178 ident: b30 article-title: Improve your root cause analysis publication-title: Manufacturing Engineering – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b10 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters – volume: 126 start-page: 111 year: 2018 end-page: 121 ident: b35 article-title: A group multi-criteria decision-making based on best-worst method publication-title: Computers & Industrial Engineering – volume: 4 start-page: 24 year: 2011 end-page: 35 ident: b4 article-title: Are you ready for the era of ‘big data’ publication-title: McKinsey Quarterly – year: 2013 ident: b40 article-title: Macro-and micro-averaged evaluation measures [[basic draft]] – volume: 88 start-page: 58 year: 2017 end-page: 80 ident: b31 article-title: Novel approach to group multi-criteria decision making based on interval rough numbers: hybrid DEMATEL-ANP-MAIRCA model publication-title: Expert Systems with Applications – volume: Vol. 103 year: 2013 ident: b16 publication-title: An introduction to statistical learning – volume: 2 start-page: 37 year: 2011 end-page: 63 ident: b34 article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: Journal of Machine Learning Technologies – reference: . – reference: Yuniarto, H. (2012). The shortcomings of existing root cause analysis tools. In – year: 2019 ident: b18 article-title: Root cause analysis: Improving performance for bottom-line results – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: b38 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information Processing & Management – volume: 13 start-page: 2179 year: 2013 end-page: 2187 ident: b5 article-title: A new method selection approach for fuzzy group multicriteria decision making publication-title: Applied Soft Computing – volume: 3 start-page: 605 issue: 5 year: 2013 ident: 10.1016/j.cie.2021.107580_b15 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: Theoretical background publication-title: International Journal of Engineering Research and Applications – volume: 42 start-page: 237 issue: 4 year: 2004 ident: 10.1016/j.cie.2021.107580_b20 article-title: A new accident model for engineering safer systems publication-title: Safety Science doi: 10.1016/S0925-7535(03)00047-X – volume: 212 start-page: 19 year: 2019 ident: 10.1016/j.cie.2021.107580_b23 article-title: Predicting supply chain performance based on SCOR® metrics and multilayer perceptron neural networks publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2019.02.001 – year: 2017 ident: 10.1016/j.cie.2021.107580_b39 – volume: 38 start-page: 441 year: 2018 ident: 10.1016/j.cie.2021.107580_b45 article-title: Knowledge-driven intelligent quality problem-solving system in the automotive industry publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2018.08.013 – year: 2019 ident: 10.1016/j.cie.2021.107580_b3 – year: 2014 ident: 10.1016/j.cie.2021.107580_b46 article-title: Practical root cause analysis using cause mapping – volume: 2 start-page: 37 year: 2011 ident: 10.1016/j.cie.2021.107580_b34 article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: Journal of Machine Learning Technologies – volume: 72 start-page: 1057 year: 2018 ident: 10.1016/j.cie.2021.107580_b24 article-title: Root cause analysis of failures and quality deviations in manufacturing using machine learning publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.03.229 – year: 2016 ident: 10.1016/j.cie.2021.107580_b42 – start-page: 37 year: 2017 ident: 10.1016/j.cie.2021.107580_b7 article-title: Comprehensive review on supervised machine learning algorithms – volume: 3 start-page: 5291 issue: 1 year: 2014 ident: 10.1016/j.cie.2021.107580_b41 article-title: Comparison of brute-force and KD tree algorithm publication-title: International Journal of Advanced Research in Computer and Communication Engineering – volume: 463 start-page: 161 year: 2013 ident: 10.1016/j.cie.2021.107580_b33 article-title: In silico models for predicting ready biodegradability under REACH: A comparative study publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2013.05.060 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.cie.2021.107580_b38 article-title: A systematic analysis of performance measures for classification tasks publication-title: Information Processing & Management doi: 10.1016/j.ipm.2009.03.002 – volume: 98 start-page: 254 year: 2018 ident: 10.1016/j.cie.2021.107580_b29 article-title: Big data analytics in supply chain management: A state-of-the-art literature review publication-title: Computers & Operations Research doi: 10.1016/j.cor.2017.07.004 – volume: 58 start-page: 5359 issue: 17 year: 2020 ident: 10.1016/j.cie.2021.107580_b44 article-title: Automated digital cause-and-effect diagrams to assist causal analysis in problem-solving: A data-driven approach publication-title: International Journal of Productions Research doi: 10.1080/00207543.2020.1727043 – volume: 66 start-page: 19 year: 2016 ident: 10.1016/j.cie.2021.107580_b6 article-title: Development of a novel methodology for root cause analysis and selection of maintenance strategy for a thermal power plant: A data exploration approach publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2016.04.001 – volume: 18 start-page: 60 issue: 4 year: 2018 ident: 10.1016/j.cie.2021.107580_b28 article-title: Automated root cause analysis of non-conformities with machine learning algorithms – volume: 4 start-page: 1 issue: 11 year: 2014 ident: 10.1016/j.cie.2021.107580_b12 article-title: Direct and indirect effects of product innovation and product quality on brand image: Empirical evidence from automotive industry publication-title: International Journal of Scientific and Research Publications – year: 2019 ident: 10.1016/j.cie.2021.107580_b11 – start-page: 902 year: 2018 ident: 10.1016/j.cie.2021.107580_b14 article-title: An advanced k nearest neighbor classification algorithm based on KD-tree – volume: 134 start-page: 171 issue: 3 year: 2005 ident: 10.1016/j.cie.2021.107580_b30 article-title: Improve your root cause analysis publication-title: Manufacturing Engineering – volume: 109 start-page: 253 year: 2017 ident: 10.1016/j.cie.2021.107580_b13 article-title: Big data oriented root cause identification approach based on axiomatic domain mapping and weighted association rule mining for product infant failure publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2017.05.012 – ident: 10.1016/j.cie.2021.107580_b25 – start-page: 637 year: 2013 ident: 10.1016/j.cie.2021.107580_b26 article-title: Monitoring help desk process using KPI – volume: 126 start-page: 111 year: 2018 ident: 10.1016/j.cie.2021.107580_b35 article-title: A group multi-criteria decision-making based on best-worst method publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.09.011 – volume: 17 start-page: 109 issue: 3–4 year: 2003 ident: 10.1016/j.cie.2021.107580_b8 article-title: Watchdog agent—An infotronics-based prognostics approach for product performance degradation assessment and prediction publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2004.07.005 – volume: 85 start-page: 241 year: 2016 ident: 10.1016/j.cie.2021.107580_b1 article-title: Rationale mapping and functional modelling enhanced root cause analysis publication-title: Safety Science doi: 10.1016/j.ssci.2015.12.022 – volume: 5 start-page: 178 issue: 10 year: 2010 ident: 10.1016/j.cie.2021.107580_b22 article-title: Study on the organizational structured problem solving on total quality management publication-title: International Journal of Business and Management doi: 10.5539/ijbm.v5n10p178 – volume: 88 start-page: 58 year: 2017 ident: 10.1016/j.cie.2021.107580_b31 article-title: Novel approach to group multi-criteria decision making based on interval rough numbers: hybrid DEMATEL-ANP-MAIRCA model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.06.037 – start-page: 332 year: 2011 ident: 10.1016/j.cie.2021.107580_b32 article-title: Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers publication-title: International Journal of Computer Theory and Engineering doi: 10.7763/IJCTE.2011.V3.328 – volume: 56 start-page: 215 year: 2016 ident: 10.1016/j.cie.2021.107580_b49 article-title: Big data driven smart energy management: From big data to big insights publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2015.11.050 – volume: 4 start-page: 24 issue: 1 year: 2011 ident: 10.1016/j.cie.2021.107580_b4 article-title: Are you ready for the era of ‘big data’ publication-title: McKinsey Quarterly – ident: 10.1016/j.cie.2021.107580_b47 – ident: 10.1016/j.cie.2021.107580_b21 doi: 10.21437/Interspeech.2014-432 – volume: 23 start-page: 1833 issue: 5 year: 2012 ident: 10.1016/j.cie.2021.107580_b9 article-title: A robust approach for root causes identification in machining processes using hybrid learning algorithm and engineering knowledge publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-010-0498-9 – year: 2013 ident: 10.1016/j.cie.2021.107580_b40 – year: 2020 ident: 10.1016/j.cie.2021.107580_b17 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.cie.2021.107580_b10 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.10.010 – year: 2019 ident: 10.1016/j.cie.2021.107580_b18 – volume: 13 start-page: 2179 issue: 4 year: 2013 ident: 10.1016/j.cie.2021.107580_b5 article-title: A new method selection approach for fuzzy group multicriteria decision making publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.12.009 – volume: 159 start-page: 229 year: 2017 ident: 10.1016/j.cie.2021.107580_b48 article-title: A framework for Big Data driven product lifecycle management publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.04.172 – volume: 174 start-page: 33 year: 2018 ident: 10.1016/j.cie.2021.107580_b2 article-title: Multivariate comparison of classification performance measures publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2017.12.004 – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.cie.2021.107580_b37 article-title: Machine learning in automated text categorization publication-title: ACM Computing Surveys doi: 10.1145/505282.505283 – volume: 7 issue: 2 year: 2017 ident: 10.1016/j.cie.2021.107580_b36 article-title: Randomness in neural networks: An overview publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 191 year: 2019 ident: 10.1016/j.cie.2021.107580_b27 article-title: A root cause analysis method for preventing erratic behavior in software development: PEBA publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2019.106565 – volume: 17 start-page: 611 year: 2017 ident: 10.1016/j.cie.2021.107580_b43 article-title: Root cause analysis methods as a tool of effective change publication-title: Business Logistics in Modern Management – volume: Vol. 103 year: 2013 ident: 10.1016/j.cie.2021.107580_b16 – volume: 53 start-page: 1045 issue: 10 year: 2011 ident: 10.1016/j.cie.2021.107580_b19 article-title: Development and evaluation of a lightweight root cause analysis method (ARCA method) – Field studies at four software companies publication-title: Information and Software Technology doi: 10.1016/j.infsof.2011.05.005 |
SSID | ssj0004591 |
Score | 2.4950655 |
Snippet | Root cause analysis for quality problem solving is critical to improve product quality performance and reduce the quality risk for manufacturers. Subjective... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107580 |
SubjectTerms | Data mining Machine Learning Multi-class classification Neural Network Quality management |
Title | A big data-driven root cause analysis system: Application of Machine Learning in quality problem solving |
URI | https://dx.doi.org/10.1016/j.cie.2021.107580 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvTgAzXig8zBk8nKPmaB9UaIBDVwURJum7bbIsYA4XHw4m93uu0qJurBY5vpZjOdnfm6nfmGsctQcO0nOvMC5MLDIIs97qPyCNn6KHUzlLEpcO4PGr0h3o_iUYl1iloYk1bpfL_16bm3djN1p836fDKpP5LvtfjBkJ610BT8IjaNlV-_BxuM4bZrHgl7Rrq42cxzvOixdEQMAxoTbvZ_jk0b8aa7z3YdUIS2fZcDVlLTCttzoBHcJ7mssJ0NRsFD9twGMRmDyfv0soXxZEDQeAWSr5cKuGMgAcvffAPtr-trmGno55mVChzp6hgmU7BVl2_gOs8A2ar5B3HEht3bp07Pc80UPBmhvyJHIjDUPqdwLUWUoNbNhgobEnV-1ymkUFEjUHFMEbulSSqLMDNlqlIEEWIcHbPydDZVJwzIuSYqoL2PlEARJC0RckEHE8KWIedRUmV-ocZUOqZx0_DiNS1Syl5oXqVG86nVfJVdfS6ZW5qNv4Sx2Jv0m62kFAZ-X3b6v2VnbNuMbALfOSuvFmt1QUBkJWq5pdXYVvvuoTf4AFU-26g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADjwFiPH3ghFStj3RbuU2IabDHhSFxq5I0GUOom0Y58O9xlhSGBBw4No2rykntL7X9GeAiFFz7ic68gHHhsSCLPe4z5RGy9ZnUzVDGpsB5MGx0H9jdY_y4AtdlLYxJq3S239r0hbV2I3WnzfpsMqnfk-21-MGQnrVYaxXWDDtVXIG19m2vO1wiDbeN82i-ZwTK4OYizYueTKfEMKBrgs7-z-5pyeV0dmDLYUVs29fZhRWVV2Hb4UZ0X-VrFTaXSAX34KmNYjJGk_rpZXNjzJDQcYGSv70q5I6EBC2F8xW2vyLYONU4WCRXKnS8q2Oc5GgLL9_RNZ9B2q7mN8Q-PHRuRtddz_VT8GTE_IJsiWCh9jl5bCmihGndbKiwIZlehDuFFCpqBCqOyWm3NM3KIpaZSlUpgoixODqASj7N1SEg2ddEBbT8kRJMBElLhFzQ2YTgZch5lNTAL9WYSkc2bnpevKRlVtkzjavUaD61mq_B5afIzDJt_DWZlWuTftsuKXmC38WO_id2Duvd0aCf9m-HvWPYMHdsPt8JVIr5mzolXFKIM7fvPgDsj95Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+big+data-driven+root+cause+analysis+system%3A+Application+of+Machine+Learning+in+quality+problem+solving&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Ma%2C+Qiuping&rft.au=Li%2C+Hongyan&rft.au=Thorstenson%2C+Anders&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=160&rft_id=info:doi/10.1016%2Fj.cie.2021.107580&rft.externalDocID=S0360835221004848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |