Morphology, composition and selectivity of nickel/titanium oxide nanoflakes grown on a superelastic nickel/titanium alloy fiber substrate for highly efficient solid-phase microextraction of aromatic compounds

Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO 2 NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for solid-phase microextraction. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spect...

Full description

Saved in:
Bibliographic Details
Published inAnalytical methods Vol. 11; no. 9; pp. 1237 - 1247
Main Authors Du, Junliang, Wang, Feifei, Wang, Zhuo, Wang, Xuemei, Du, Xinzhen
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO 2 NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for solid-phase microextraction. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Control of the NaOH concentration was found to be an effective route to manipulate the morphology and composition of NiO-based nanoflakes grown on the NiTi fiber substrates via a hydrothermal reaction. At higher concentrations of NaOH, pristine NiO nanoflakes (NiONFs) were in situ grown on the NiTi fiber substrates for the first time. Their extraction performance was evaluated using typical aromatic compounds by high-performance liquid chromatography with UV detection. The results clearly demonstrate that the extraction selectivity is subject to the surface elemental composition of the nanoflake coatings and the extraction capability greatly depends on their surface morphology. In view of the good extraction selectivity of the NiONF coating for the selected polycyclic aromatic hydrocarbons (PAHs), the key experimental parameters were optimized. Under the optimum conditions, the calibration curves were linear in the range of 0.05-100 μg L −1 with correlation coefficients greater than 0.999. Limits of detection were 0.009-0.036 μg L −1 . Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 3.7% to 5.3% and from 5.4% to 5.8%, respectively. The fiber-to-fiber reproducibility ranged from 5.8% to 8.6%. The proposed method was suitable for selective enrichment and determination of target PAHs from real water samples. Moreover, the fabricated fibers showed precisely controllable growth of NiONFs and a long-term recyclability of 150 cycles. Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes was carried out on superelastic nickel/titanium alloy wires for solid-phase microextraction.
AbstractList Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO 2 NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for solid-phase microextraction. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Control of the NaOH concentration was found to be an effective route to manipulate the morphology and composition of NiO-based nanoflakes grown on the NiTi fiber substrates via a hydrothermal reaction. At higher concentrations of NaOH, pristine NiO nanoflakes (NiONFs) were in situ grown on the NiTi fiber substrates for the first time. Their extraction performance was evaluated using typical aromatic compounds by high-performance liquid chromatography with UV detection. The results clearly demonstrate that the extraction selectivity is subject to the surface elemental composition of the nanoflake coatings and the extraction capability greatly depends on their surface morphology. In view of the good extraction selectivity of the NiONF coating for the selected polycyclic aromatic hydrocarbons (PAHs), the key experimental parameters were optimized. Under the optimum conditions, the calibration curves were linear in the range of 0.05-100 μg L −1 with correlation coefficients greater than 0.999. Limits of detection were 0.009-0.036 μg L −1 . Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 3.7% to 5.3% and from 5.4% to 5.8%, respectively. The fiber-to-fiber reproducibility ranged from 5.8% to 8.6%. The proposed method was suitable for selective enrichment and determination of target PAHs from real water samples. Moreover, the fabricated fibers showed precisely controllable growth of NiONFs and a long-term recyclability of 150 cycles. Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes was carried out on superelastic nickel/titanium alloy wires for solid-phase microextraction.
Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO 2 NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for solid-phase microextraction. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Control of the NaOH concentration was found to be an effective route to manipulate the morphology and composition of NiO-based nanoflakes grown on the NiTi fiber substrates via a hydrothermal reaction. At higher concentrations of NaOH, pristine NiO nanoflakes (NiONFs) were in situ grown on the NiTi fiber substrates for the first time. Their extraction performance was evaluated using typical aromatic compounds by high-performance liquid chromatography with UV detection. The results clearly demonstrate that the extraction selectivity is subject to the surface elemental composition of the nanoflake coatings and the extraction capability greatly depends on their surface morphology. In view of the good extraction selectivity of the NiONF coating for the selected polycyclic aromatic hydrocarbons (PAHs), the key experimental parameters were optimized. Under the optimum conditions, the calibration curves were linear in the range of 0.05–100 μg L −1 with correlation coefficients greater than 0.999. Limits of detection were 0.009–0.036 μg L −1 . Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 3.7% to 5.3% and from 5.4% to 5.8%, respectively. The fiber-to-fiber reproducibility ranged from 5.8% to 8.6%. The proposed method was suitable for selective enrichment and determination of target PAHs from real water samples. Moreover, the fabricated fibers showed precisely controllable growth of NiONFs and a long-term recyclability of 150 cycles.
Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO2NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for solid-phase microextraction. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Control of the NaOH concentration was found to be an effective route to manipulate the morphology and composition of NiO-based nanoflakes grown on the NiTi fiber substrates via a hydrothermal reaction. At higher concentrations of NaOH, pristine NiO nanoflakes (NiONFs) were in situ grown on the NiTi fiber substrates for the first time. Their extraction performance was evaluated using typical aromatic compounds by high-performance liquid chromatography with UV detection. The results clearly demonstrate that the extraction selectivity is subject to the surface elemental composition of the nanoflake coatings and the extraction capability greatly depends on their surface morphology. In view of the good extraction selectivity of the NiONF coating for the selected polycyclic aromatic hydrocarbons (PAHs), the key experimental parameters were optimized. Under the optimum conditions, the calibration curves were linear in the range of 0.05–100 μg L−1 with correlation coefficients greater than 0.999. Limits of detection were 0.009–0.036 μg L−1. Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 3.7% to 5.3% and from 5.4% to 5.8%, respectively. The fiber-to-fiber reproducibility ranged from 5.8% to 8.6%. The proposed method was suitable for selective enrichment and determination of target PAHs from real water samples. Moreover, the fabricated fibers showed precisely controllable growth of NiONFs and a long-term recyclability of 150 cycles.
Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO₂NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for solid-phase microextraction. The resulting fiber coatings were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Control of the NaOH concentration was found to be an effective route to manipulate the morphology and composition of NiO-based nanoflakes grown on the NiTi fiber substrates via a hydrothermal reaction. At higher concentrations of NaOH, pristine NiO nanoflakes (NiONFs) were in situ grown on the NiTi fiber substrates for the first time. Their extraction performance was evaluated using typical aromatic compounds by high-performance liquid chromatography with UV detection. The results clearly demonstrate that the extraction selectivity is subject to the surface elemental composition of the nanoflake coatings and the extraction capability greatly depends on their surface morphology. In view of the good extraction selectivity of the NiONF coating for the selected polycyclic aromatic hydrocarbons (PAHs), the key experimental parameters were optimized. Under the optimum conditions, the calibration curves were linear in the range of 0.05–100 μg L⁻¹ with correlation coefficients greater than 0.999. Limits of detection were 0.009–0.036 μg L⁻¹. Furthermore, the intra-day and inter-day repeatability of the proposed method with the single fiber varied from 3.7% to 5.3% and from 5.4% to 5.8%, respectively. The fiber-to-fiber reproducibility ranged from 5.8% to 8.6%. The proposed method was suitable for selective enrichment and determination of target PAHs from real water samples. Moreover, the fabricated fibers showed precisely controllable growth of NiONFs and a long-term recyclability of 150 cycles.
Author Wang, Feifei
Du, Junliang
Wang, Xuemei
Wang, Zhuo
Du, Xinzhen
AuthorAffiliation College of Chemistry and Chemical Engineering
Northwest Normal University
Department of Chemistry and Chemical Engineering
Mianyang Normal University
AuthorAffiliation_xml – name: College of Chemistry and Chemical Engineering
– name: Department of Chemistry and Chemical Engineering
– name: Mianyang Normal University
– name: Northwest Normal University
Author_xml – sequence: 1
  givenname: Junliang
  surname: Du
  fullname: Du, Junliang
– sequence: 2
  givenname: Feifei
  surname: Wang
  fullname: Wang, Feifei
– sequence: 3
  givenname: Zhuo
  surname: Wang
  fullname: Wang, Zhuo
– sequence: 4
  givenname: Xuemei
  surname: Wang
  fullname: Wang, Xuemei
– sequence: 5
  givenname: Xinzhen
  surname: Du
  fullname: Du, Xinzhen
BookMark eNp9kk1v1DAQhiNUJNrChTuSEReECPVHk6yPZcWXVMSlF06RY4933TqeYDvQ_Et-Et5dVKSCkCzZh-edef3OnFRHAQNU1VNG3zAq5JmWaqGUdmx4UB2zrpG1bDt5dPdu6aPqJKVrSlspWnZc_fyMcdqix83ymmgcJ0wuOwxEBUMSeNDZfXd5IWhJcPoG_Fl2WQU3jwRvnQESVEDr1Q0kson4I5CdmKR5gghepez0X0LlPS7EugFiAYeUo8pALEaydZutXwhY67SDkElC70w9bVUCMjodEW4LrfcWiyUVcVS7FnvrczDpcfXQKp_gye_7tLp6_-5q_bG-_PLh0_ristbinOZaNIYaaJsBOquBci1aYEIPurFMCS4H3khmxKoxgwXWSQGy6bqBW96qDow4rV4eyk4Rv82Qcj-6pMF7FQDn1HPOGaXnvKEFfXEPvcY5hmKu52zVrlg5vFCvDlT5Y0oRbD9FN6q49Iz2u9n2a3nxdT_btwWm92Bdst2FUsJx_t-S5wdJTPqu9J916SdjC_Psf4z4BTPMxTA
CitedBy_id crossref_primary_10_1080_10934529_2022_2101340
crossref_primary_10_1016_j_aca_2024_342402
crossref_primary_10_1016_j_chroma_2021_462400
crossref_primary_10_1007_s10337_021_04032_z
Cites_doi 10.1016/j.chroma.2007.07.001
10.1016/j.aca.2008.09.038
10.1016/j.aca.2014.02.032
10.1002/jssc.201701156
10.1021/es9802347
10.1016/j.chroma.2010.10.089
10.1007/BF02491768
10.1016/j.aca.2014.01.005
10.1016/j.aca.2015.03.044
10.1016/j.chroma.2006.08.087
10.1016/j.aca.2017.05.035
10.1021/ac0100188
10.1016/j.chroma.2009.01.054
10.1016/j.chroma.2014.06.094
10.1016/S0021-9673(00)00453-2
10.1016/j.aca.2007.07.061
10.1016/j.microc.2012.03.024
10.1016/j.chroma.2013.10.040
10.1039/C8AY01158C
10.1002/jssc.201600260
10.1016/j.chroma.2016.09.038
10.1016/j.trac.2015.04.023
10.1021/ie200271d
10.1016/j.trac.2013.01.015
10.1016/j.actbio.2008.01.013
10.1016/j.trac.2016.02.027
10.1016/j.aca.2012.07.008
10.1016/j.aca.2006.08.022
10.1016/S0021-9673(00)00347-2
10.1016/j.aca.2014.07.034
10.1002/jssc.201500545
10.1016/j.talanta.2016.05.055
10.1021/ac900743s
10.1016/j.chroma.2010.01.080
10.1016/j.aca.2013.07.018
10.1007/s00604-014-1265-y
10.1016/j.proci.2008.06.101
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7S9
L.6
DOI 10.1039/c9ay00071b
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1759-9679
EndPage 1247
ExternalDocumentID 10_1039_C9AY00071B
c9ay00071b
GroupedDBID -JG
0-7
705
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
R7E
RCNCU
RPMJG
RRC
RSCEA
SLF
SMJ
0R~
23M
53G
6J9
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACPRK
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
CITATION
EBS
ECGLT
EJD
F5P
GGIMP
H13
HZ~
O-G
O9-
OK1
RAOCF
RNS
RVUXY
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7S9
L.6
ID FETCH-LOGICAL-c340t-35d0de65be7fce02c36e13cbc5f1a329b2591d385dbfe1793e9577b2f26a7ed3
ISSN 1759-9660
1759-9679
IngestDate Fri Jul 11 01:06:23 EDT 2025
Mon Jun 30 12:07:00 EDT 2025
Thu Apr 24 22:58:15 EDT 2025
Tue Jul 01 03:36:17 EDT 2025
Fri Mar 01 05:00:54 EST 2019
Thu May 30 17:40:47 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-35d0de65be7fce02c36e13cbc5f1a329b2591d385dbfe1793e9577b2f26a7ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9158-5814
0000-0002-0120-3534
PQID 2186816812
PQPubID 2047493
PageCount 11
ParticipantIDs proquest_journals_2186816812
crossref_primary_10_1039_C9AY00071B
proquest_miscellaneous_2221004250
rsc_primary_c9ay00071b
crossref_citationtrail_10_1039_C9AY00071B
ProviderPackageCode J3I
R7E
ACLDK
RRC
7~J
AEFDR
RCNCU
SLF
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
RPMJG
-JG
AGSTE
AUDPV
EF-
BSQNT
SMJ
ADSRN
ABGFH
705
AAEMU
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190228
PublicationDateYYYYMMDD 2019-02-28
PublicationDate_xml – month: 2
  year: 2019
  text: 20190228
  day: 28
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Analytical methods
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (C9AY00071B-(cit25)/*[position()=1]) 2016; 158
Sun (C9AY00071B-(cit36)/*[position()=1]) 2015; 38
Li (C9AY00071B-(cit12)/*[position()=1]) 2014; 1358
Nardini (C9AY00071B-(cit24)/*[position()=1]) 2013; 109
Djozan (C9AY00071B-(cit7)/*[position()=1]) 2003; 57
Budziak (C9AY00071B-(cit18)/*[position()=1]) 2008; 629
Li (C9AY00071B-(cit1)/*[position()=1]) 2015; 72
Mehdinia (C9AY00071B-(cit9)/*[position()=1]) 2006; 1134
Xu (C9AY00071B-(cit5)/*[position()=1]) 2016; 80
Xu (C9AY00071B-(cit27)/*[position()=1]) 2009; 81
Liu (C9AY00071B-(cit11)/*[position()=1]) 2010; 1217
Sposito (C9AY00071B-(cit29)/*[position()=1]) 1998; 32
Djozan (C9AY00071B-(cit6)/*[position()=1]) 2001; 73
Feng (C9AY00071B-(cit3)/*[position()=1]) 2013; 46
Wang (C9AY00071B-(cit26)/*[position()=1]) 2016; 1468
Azenha (C9AY00071B-(cit19)/*[position()=1]) 2009; 1216
Yang (C9AY00071B-(cit14)/*[position()=1]) 2018; 10
Budziak (C9AY00071B-(cit10)/*[position()=1]) 2007; 598
Tian (C9AY00071B-(cit32)/*[position()=1]) 2018; 41
Shabalovskaya (C9AY00071B-(cit16)/*[position()=1]) 2008; 4
Aziz-Zanjani (C9AY00071B-(cit15)/*[position()=1]) 2014; 181
Zeng (C9AY00071B-(cit8)/*[position()=1]) 2013; 1319
Zhen (C9AY00071B-(cit23)/*[position()=1]) 2016; 39
Feng (C9AY00071B-(cit33)/*[position()=1]) 2010; 1217
Piri-Moghadam (C9AY00071B-(cit4)/*[position()=1]) 2017; 984
Gholivand (C9AY00071B-(cit13)/*[position()=1]) 2014; 822
Poddar (C9AY00071B-(cit28)/*[position()=1]) 2009; 32
Setkova (C9AY00071B-(cit17)/*[position()=1]) 2007; 581
Zhang (C9AY00071B-(cit37)/*[position()=1]) 2015; 876
Budziak (C9AY00071B-(cit22)/*[position()=1]) 2007; 1164
Mahmood (C9AY00071B-(cit30)/*[position()=1]) 2011; 50
Doong (C9AY00071B-(cit31)/*[position()=1]) 2000; 879
Ho (C9AY00071B-(cit21)/*[position()=1]) 2014; 843
Chen (C9AY00071B-(cit34)/*[position()=1]) 2013; 792
Alpendurada (C9AY00071B-(cit2)/*[position()=1]) 2000; 889
Chen (C9AY00071B-(cit20)/*[position()=1]) 2012; 74
Es-haghi (C9AY00071B-(cit35)/*[position()=1]) 2014; 813
References_xml – volume: 1164
  start-page: 18
  year: 2007
  ident: C9AY00071B-(cit22)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2007.07.001
– volume: 629
  start-page: 92
  year: 2008
  ident: C9AY00071B-(cit18)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.09.038
– volume: 822
  start-page: 30
  year: 2014
  ident: C9AY00071B-(cit13)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.02.032
– volume: 41
  start-page: 1995
  year: 2018
  ident: C9AY00071B-(cit32)/*[position()=1]
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201701156
– volume: 32
  start-page: 2815
  year: 1998
  ident: C9AY00071B-(cit29)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9802347
– volume: 1217
  start-page: 8079
  year: 2010
  ident: C9AY00071B-(cit33)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.10.089
– volume: 57
  start-page: 799
  year: 2003
  ident: C9AY00071B-(cit7)/*[position()=1]
  publication-title: Chromatographia
  doi: 10.1007/BF02491768
– volume: 813
  start-page: 48
  year: 2014
  ident: C9AY00071B-(cit35)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.01.005
– volume: 876
  start-page: 55
  year: 2015
  ident: C9AY00071B-(cit37)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.03.044
– volume: 1134
  start-page: 24
  year: 2006
  ident: C9AY00071B-(cit9)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2006.08.087
– volume: 984
  start-page: 42
  year: 2017
  ident: C9AY00071B-(cit4)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.05.035
– volume: 73
  start-page: 4054
  year: 2001
  ident: C9AY00071B-(cit6)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0100188
– volume: 1216
  start-page: 2302
  year: 2009
  ident: C9AY00071B-(cit19)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.01.054
– volume: 1358
  start-page: 60
  year: 2014
  ident: C9AY00071B-(cit12)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.06.094
– volume: 889
  start-page: 3
  year: 2000
  ident: C9AY00071B-(cit2)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(00)00453-2
– volume: 598
  start-page: 254
  year: 2007
  ident: C9AY00071B-(cit10)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2007.07.061
– volume: 109
  start-page: 128
  year: 2013
  ident: C9AY00071B-(cit24)/*[position()=1]
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2012.03.024
– volume: 1319
  start-page: 21
  year: 2013
  ident: C9AY00071B-(cit8)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2013.10.040
– volume: 10
  start-page: 4044
  year: 2018
  ident: C9AY00071B-(cit14)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C8AY01158C
– volume: 39
  start-page: 3761
  year: 2016
  ident: C9AY00071B-(cit23)/*[position()=1]
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201600260
– volume: 1468
  start-page: 33
  year: 2016
  ident: C9AY00071B-(cit26)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.09.038
– volume: 72
  start-page: 141
  year: 2015
  ident: C9AY00071B-(cit1)/*[position()=1]
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2015.04.023
– volume: 50
  start-page: 10017
  year: 2011
  ident: C9AY00071B-(cit30)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200271d
– volume: 46
  start-page: 44
  year: 2013
  ident: C9AY00071B-(cit3)/*[position()=1]
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2013.01.015
– volume: 4
  start-page: 447
  year: 2008
  ident: C9AY00071B-(cit16)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.01.013
– volume: 80
  start-page: 41
  year: 2016
  ident: C9AY00071B-(cit5)/*[position()=1]
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2016.02.027
– volume: 74
  start-page: 61
  year: 2012
  ident: C9AY00071B-(cit20)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.07.008
– volume: 581
  start-page: 221
  year: 2007
  ident: C9AY00071B-(cit17)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2006.08.022
– volume: 879
  start-page: 177
  year: 2000
  ident: C9AY00071B-(cit31)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(00)00347-2
– volume: 843
  start-page: 18
  year: 2014
  ident: C9AY00071B-(cit21)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.07.034
– volume: 38
  start-page: 3239
  year: 2015
  ident: C9AY00071B-(cit36)/*[position()=1]
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201500545
– volume: 158
  start-page: 214
  year: 2016
  ident: C9AY00071B-(cit25)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.05.055
– volume: 81
  start-page: 4971
  year: 2009
  ident: C9AY00071B-(cit27)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac900743s
– volume: 1217
  start-page: 1898
  year: 2010
  ident: C9AY00071B-(cit11)/*[position()=1]
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2010.01.080
– volume: 792
  start-page: 45
  year: 2013
  ident: C9AY00071B-(cit34)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.07.018
– volume: 181
  start-page: 1169
  year: 2014
  ident: C9AY00071B-(cit15)/*[position()=1]
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-014-1265-y
– volume: 32
  start-page: 1847
  year: 2009
  ident: C9AY00071B-(cit28)/*[position()=1]
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2008.06.101
SSID ssj0069361
Score 2.184433
Snippet Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO 2 NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for...
Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO2NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for...
Direct in situ hydrothermal growth of nickel/titanium oxide nanoflakes (NiO/TiO₂NFs) was carried out on superelastic nickel/titanium alloy (NiTi) wires for...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1237
SubjectTerms alloys
Aromatic compounds
Chemical composition
Coatings
Composition
Correlation coefficient
Correlation coefficients
detection limit
elemental composition
Energy dispersive X ray spectroscopy
energy-dispersive X-ray analysis
Fiber coatings
Fibers
High performance liquid chromatography
Hydrothermal reactions
Intermetallic compounds
Liquid chromatography
Morphology
Nickel
Nickel base alloys
nickel oxide
Nickel oxides
Nickel titanides
Polycyclic aromatic hydrocarbons
Recyclability
Reproducibility
Scanning electron microscopy
Selectivity
Sodium hydroxide
Solid phase methods
solid phase microextraction
Solid phases
Stability
Substrates
Titanium
Titanium alloys
Titanium base alloys
titanium dioxide
Titanium oxide
Titanium oxides
Ultraviolet radiation
Water analysis
Water sampling
X-ray spectroscopy
Title Morphology, composition and selectivity of nickel/titanium oxide nanoflakes grown on a superelastic nickel/titanium alloy fiber substrate for highly efficient solid-phase microextraction of aromatic compounds
URI https://www.proquest.com/docview/2186816812
https://www.proquest.com/docview/2221004250
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7YULokBF2oIWwYHKuLW9fh7T0lBBWy6pCFws27tuLRI7SmKJ8Cv5Sczs-kWaQ-FiRetd2_J8mYd35htC3kaO8E3PZ7rrclu3Rcz1wGdC97mX-nZiBUJWuV5duxc39qexM-71ugzB5TI-Tn5trCv5H6nCGMgVq2T_QbLNRWEAfoN84QgShuODZHxVwFtqyk0wO7xKwZJbAgvZ4kY1h8B0jQz-sBO4GZaV5Vk51YqfGRdaHuVFOol-iIV2izE5bh9E2qKcCaxzQRrnDUtxu36lpZhuAlNjSb6r6MOR_3iywjyRTNZaavAKMq7P7sBcalNM_wNzMK86lGMSwrxQrLHy8cuq8LghxkXOFPW5XfW6bkKAD6UqKsnxO81tuy-gdNdQZKnI1ke_35XF-ti4FNNqZvXxA-utmmJypa89BwlGVT-aRqGbHeAG2uwYrLOngyPjdTQ1jnWsfn32nkUxGBKyJkG0ku5Y3NrNOlfg-ks4vLm8DEfn49EW2bEgXgGFuzP4fPrxa-0UuAFT1L3189ZMuSw4aa_9t2_UBjxb87objfR6Rk_I4ypcoQOFvV3SE_lTslsZhAV9V7GWHz0jv1swvqcdKFKAIu1AkRYpVXg6qdFEJRBpC0QqgUhxMe0C8d5CCUMqYUgbGFKAIVUwpA0MaQeGdA2G-Eg1DGkDw-dkNDwfnV3oVbsQPWG2sdSZww0uXCcWXpoIw0qYK0yWxImTmhGzghgifZMz3-FxKtAuicDxvNhKLTfyBGd7ZDsvcvGCUC81YKnLhIMBfQIxPXjZnuVzlyexY7t9clTLKUwqKn3s6DIJZUoHC8KzYPBNyvS0T940c2eKQGbjrMNa3GGlYBYhtovDtjim1Sevm9Og_nFPL8pFUcIcyzKl4TX6ZA9g0tyjRVWf7G8-Ec54uv-AKx-QR-1_75BsL-eleAmu-DJ-VcH8DybR7gU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Morphology%2C+composition+and+selectivity+of+nickel%2Ftitanium+oxide+nanoflakes+grown+on+a+superelastic+nickel%2Ftitanium+alloy+fiber+substrate+for+highly+efficient+solid-phase+microextraction+of+aromatic+compounds&rft.jtitle=Analytical+methods&rft.au=Du%2C+Junliang&rft.au=Wang%2C+Feifei&rft.au=Wang%2C+Zhuo&rft.au=Wang%2C+Xuemei&rft.date=2019-02-28&rft.issn=1759-9679&rft.volume=11&rft.issue=9+p.1237-1247&rft.spage=1237&rft.epage=1247&rft_id=info:doi/10.1039%2Fc9ay00071b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9660&client=summon