Empirical loss weight optimization for PINN modeling laser bio-effects on human skin for the 1D heat equation

The application of deep neural networks towards solving problems in science and engineering has demonstrated encouraging results with the recent formulation of physics-informed neural networks (PINNs). Through the development of refined machine learning techniques, the high computational cost of obt...

Full description

Saved in:
Bibliographic Details
Published inMachine learning with applications Vol. 16; p. 100563
Main Authors Farmer, Jenny, Oian, Chad A., Bowman, Brett A., Khan, Taufiquar
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2666-8270
2666-8270
DOI10.1016/j.mlwa.2024.100563

Cover

Abstract The application of deep neural networks towards solving problems in science and engineering has demonstrated encouraging results with the recent formulation of physics-informed neural networks (PINNs). Through the development of refined machine learning techniques, the high computational cost of obtaining numerical solutions for partial differential equations governing complicated physical systems can be mitigated. However, solutions are not guaranteed to be unique, and are subject to uncertainty caused by the choice of network model parameters. For critical systems with significant consequences for errors, assessing and quantifying this model uncertainty is essential. In this paper, an application of PINN for laser bio-effects with limited training data is provided for uncertainty quantification analysis. Additionally, an efficacy study is performed to investigate the impact of the relative weights of the loss components of the PINN and how the uncertainty in the predictions depends on these weights. Network ensembles are constructed to empirically investigate the diversity of solutions across an extensive sweep of hyper-parameters to determine the model that consistently reproduces a high-fidelity numerical simulation. •A physics informed neural network is designed for solving the heat diffusion equation.•An ensemble method increases accuracy of predictions and quantifies uncertainty.•A weighting heuristic automatically normalizes individual components of loss function.•Equitable convergence amongst competing minimization objectives is enforced.•Network design parameters are optimized for both accuracy and reliability.
AbstractList The application of deep neural networks towards solving problems in science and engineering has demonstrated encouraging results with the recent formulation of physics-informed neural networks (PINNs). Through the development of refined machine learning techniques, the high computational cost of obtaining numerical solutions for partial differential equations governing complicated physical systems can be mitigated. However, solutions are not guaranteed to be unique, and are subject to uncertainty caused by the choice of network model parameters. For critical systems with significant consequences for errors, assessing and quantifying this model uncertainty is essential. In this paper, an application of PINN for laser bio-effects with limited training data is provided for uncertainty quantification analysis. Additionally, an efficacy study is performed to investigate the impact of the relative weights of the loss components of the PINN and how the uncertainty in the predictions depends on these weights. Network ensembles are constructed to empirically investigate the diversity of solutions across an extensive sweep of hyper-parameters to determine the model that consistently reproduces a high-fidelity numerical simulation.
The application of deep neural networks towards solving problems in science and engineering has demonstrated encouraging results with the recent formulation of physics-informed neural networks (PINNs). Through the development of refined machine learning techniques, the high computational cost of obtaining numerical solutions for partial differential equations governing complicated physical systems can be mitigated. However, solutions are not guaranteed to be unique, and are subject to uncertainty caused by the choice of network model parameters. For critical systems with significant consequences for errors, assessing and quantifying this model uncertainty is essential. In this paper, an application of PINN for laser bio-effects with limited training data is provided for uncertainty quantification analysis. Additionally, an efficacy study is performed to investigate the impact of the relative weights of the loss components of the PINN and how the uncertainty in the predictions depends on these weights. Network ensembles are constructed to empirically investigate the diversity of solutions across an extensive sweep of hyper-parameters to determine the model that consistently reproduces a high-fidelity numerical simulation. •A physics informed neural network is designed for solving the heat diffusion equation.•An ensemble method increases accuracy of predictions and quantifies uncertainty.•A weighting heuristic automatically normalizes individual components of loss function.•Equitable convergence amongst competing minimization objectives is enforced.•Network design parameters are optimized for both accuracy and reliability.
ArticleNumber 100563
Author Farmer, Jenny
Oian, Chad A.
Bowman, Brett A.
Khan, Taufiquar
Author_xml – sequence: 1
  givenname: Jenny
  orcidid: 0000-0002-7953-1044
  surname: Farmer
  fullname: Farmer, Jenny
  email: jfarmer6@charlotte.edu
  organization: 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX, USA
– sequence: 2
  givenname: Chad A.
  surname: Oian
  fullname: Oian, Chad A.
  email: chad.oian.1@us.af.mil
  organization: 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX, USA
– sequence: 3
  givenname: Brett A.
  surname: Bowman
  fullname: Bowman, Brett A.
  email: brett.bowman.4.ctr@us.af.mil
  organization: 711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, JBSA Fort Sam Houston, TX, USA
– sequence: 4
  givenname: Taufiquar
  surname: Khan
  fullname: Khan, Taufiquar
  email: taufiquar.khan@charlotte.edu
  organization: Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC, USA
BookMark eNp9kMtq3DAUQEVJIc8fyEo_4Ilelm3oJuTRDoS0i3QtFOl65k5tayIpCenXVzMuJXSRlS6Xew7oHJODKUxAyDlnC864vtgsxuHVLgQTqixYreUnciS01lUrGnbwbj4kZyltGGOi5VxKdUTGm3GLEZ0d6BBSoq-Aq3WmYZtxxN82Y5hoHyL9sby_p2PwMOC0ooNNEOkjhgr6HlxOtJytn0c70fQLZyKvgfJrugabKTw971Wn5HNvhwRnf98T8vP25uHqW3X3_evy6vKuclKxXEkh6q6znXr0um6lcMpL3fY1k6BtqzXTDTjWlSPhLQfpm9qKxmvl6s5zyeQJWc5eH-zGbCOONr6ZYNHsFyGujI0Z3QBGad5oBU43WijViNbqunHMSyc6JhUUl5hdLpZAEfp_Ps7Mrr_ZmF1_s-tv5v4Fav-DHOZ9ghwtDh-jX2YUSqAXhGiSQ5gceIwldfkBfoT_AUEHoQ8
CitedBy_id crossref_primary_10_1021_acs_energyfuels_4c02988
Cites_doi 10.1016/j.neucom.2019.12.099
10.1109/ACCESS.2020.3037258
10.1364/BOE.422618
10.1016/j.media.2022.102399
10.2351/7.0000367
10.1016/j.mlwa.2023.100464
10.3390/a16090428
10.1016/j.jcp.2022.111902
10.3390/app10175917
10.1109/TMI.2022.3161653
10.1016/j.engappai.2021.104232
10.1007/s11071-023-08654-w
10.1016/j.advwatres.2020.103610
10.1016/j.icheatmasstransfer.2023.106940
10.1007/s40304-018-0127-z
10.1016/j.ijheatfluidflow.2022.109002
10.1016/j.jelechem.2022.116918
10.1016/j.neucom.2018.06.056
10.1016/j.cma.2023.116401
10.1016/j.jbusres.2019.01.017
10.1016/j.heliyon.2023.e18820
10.1016/j.cam.2021.113887
10.1016/j.neucom.2022.05.015
10.1016/j.cma.2023.116395
10.1615/JMachLearnModelComput.2020033905
10.4208/cmr.2020-0051
10.3390/e24091254
10.1109/JSEN.2022.3208527
10.1371/journal.pone.0244317
10.1016/j.inffus.2021.05.008
10.1016/j.jcp.2018.10.045
10.1038/s42256-023-00718-1
10.1016/j.mlwa.2021.100029
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.mlwa.2024.100563
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2666-8270
ExternalDocumentID oai_doaj_org_article_461764ec676244728a657c0d3c29034e
10_1016_j_mlwa_2024_100563
S2666827024000392
GroupedDBID 0R~
0SF
6I.
AAEDW
AAFTH
AAXUO
AEXQZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c340t-322599a94bd65832c4d368f503e6a866067ec092592da1e3d75a27d64c59d1303
IEDL.DBID DOA
ISSN 2666-8270
IngestDate Wed Aug 27 01:21:24 EDT 2025
Tue Jul 01 02:33:45 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jun 26 17:52:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Loss weights
Uncertainty quantification
Heat diffusion equation
PINN
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-322599a94bd65832c4d368f503e6a866067ec092592da1e3d75a27d64c59d1303
ORCID 0000-0002-7953-1044
OpenAccessLink https://doaj.org/article/461764ec676244728a657c0d3c29034e
ParticipantIDs doaj_primary_oai_doaj_org_article_461764ec676244728a657c0d3c29034e
crossref_primary_10_1016_j_mlwa_2024_100563
crossref_citationtrail_10_1016_j_mlwa_2024_100563
elsevier_sciencedirect_doi_10_1016_j_mlwa_2024_100563
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Machine learning with applications
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Rasmussen, Williams (b38) 2005
Yao, Guo, Gu (b47) 2023; 417
Sahay, Stubbs, Brinton, Birch (b39) 2022; 22
van Herten, Chiribiri, Breeuwer, Veta, Scannell (b44) 2022; 78
Cai, Wang, Wang, Perdikaris, Karniadakis (b7) 2021; 143
Buhendwa, Adami, Adams (b6) 2021; 4
Chen, Wu (b10) 2020; 36
Chen, Batchelor-McAuley, Kätelhön, Elliott, Compton (b9) 2022; 925
Raissi, Perdikaris, Karniadakis (b36) 2019; 378
Lakshminarayanan, Pritzel, Blundell (b28) 2017
Rao (b37) 2017
DeLisi, Gamez, Clark, Kumru, Rockwell, Thomas (b12) 2021; 33
Das, Tesfamariam (b11) 2022
Deng, Chen, Yu, Liu, Heng (b13) 2023
.
Sarabian, Babaee, Laksari (b40) 2022; 41
Gopakumar, Pamela, Samaddar (b17) 2023; 12
Bowman, Oian, Kurz, Khan, Gil, Gamez (b5) 2023; 16
van der Meer, Oosterlee, Borovykh (b43) 2022; 405
Aliakbari, Mahmoudi, Vadasz, Arzani (b2) 2022; 96
Tezuka (b42) 2011
Zobeiry, Humfeld (b49) 2021; 101
Caprio, Dutta, Jang, Lin, Ivanov, Sokolsky, Lee (b8) 2024
Golan, Siegelman, Kriegeskorte, Baldassano (b16) 2023; 5
Li, Feng (b31) 2022; 24
Laurell, Sandström, Berthold, Larsson (b29) 2019; 100
Zhong, Bai, Dong, Li (b48) 2021; 2037
LeVeque (b30) 2007
Berg, Nyström (b3) 2018; 317
Jean, Schulmeister (b25) 2021; 12
Hou, Li, Ying (b22) 2023; 111
Jagtap, Karniadakis (b24) 2020; 28
He, Barajas-Solano, Tartakovsky, Tartakovsky (b20) 2020; 141
Guo, Cao, Liu, Gao (b19) 2020; 10
Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya, Makarenkov, Nahavandi (b1) 2021; 76
Grossmann, Komorowska, Latz, Schönlieb (b18) 2023
Hüllermeier, Waegeman (b23) 2020
Psaros, Meng, Zou, Guo, Karniadakis (b35) 2023; 477
Sirignano, Spiliopoulos (b41) 2017
Xiang, Peng, Liu, Yao (b46) 2022; 496
Li, Wang, Hu, Xiong, Du, Li (b32) 2020; 8
Ovadia, Y., Fertig, E., Ren, J. J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Lakshminarayanan, B., & Snoek, J. Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift. In
Weinan, Yu (b45) 2018; 6
Berrone, Canuto, Pintore, Sukumar (b4) 2023; 9
Fuks, Tchelepi (b15) 2020; 1
Jiang, Wang, Wen, Li, Wang (b27) 2023; 147
Dwivedi, Srinivasan (b14) 2020; 391
Hoffmann, Fortmeier, Elster (b21) 2021; 2
Jeong, Batuwatta-Gamage, Bai, Xie, Rathnayaka, Zhou, Gu (b26) 2023; 417
Milusheva, Marty, Bedoya, Williams, Resor, Legovini (b33) 2021; 16
Aliakbari (10.1016/j.mlwa.2024.100563_b2) 2022; 96
Bowman (10.1016/j.mlwa.2024.100563_b5) 2023; 16
Caprio (10.1016/j.mlwa.2024.100563_b8) 2024
Xiang (10.1016/j.mlwa.2024.100563_b46) 2022; 496
10.1016/j.mlwa.2024.100563_b34
Das (10.1016/j.mlwa.2024.100563_b11) 2022
Sahay (10.1016/j.mlwa.2024.100563_b39) 2022; 22
Dwivedi (10.1016/j.mlwa.2024.100563_b14) 2020; 391
Weinan (10.1016/j.mlwa.2024.100563_b45) 2018; 6
LeVeque (10.1016/j.mlwa.2024.100563_b30) 2007
DeLisi (10.1016/j.mlwa.2024.100563_b12) 2021; 33
Berg (10.1016/j.mlwa.2024.100563_b3) 2018; 317
Jiang (10.1016/j.mlwa.2024.100563_b27) 2023; 147
Chen (10.1016/j.mlwa.2024.100563_b9) 2022; 925
Jeong (10.1016/j.mlwa.2024.100563_b26) 2023; 417
Buhendwa (10.1016/j.mlwa.2024.100563_b6) 2021; 4
Fuks (10.1016/j.mlwa.2024.100563_b15) 2020; 1
Grossmann (10.1016/j.mlwa.2024.100563_b18) 2023
Berrone (10.1016/j.mlwa.2024.100563_b4) 2023; 9
Milusheva (10.1016/j.mlwa.2024.100563_b33) 2021; 16
Yao (10.1016/j.mlwa.2024.100563_b47) 2023; 417
Lakshminarayanan (10.1016/j.mlwa.2024.100563_b28) 2017
He (10.1016/j.mlwa.2024.100563_b20) 2020; 141
Raissi (10.1016/j.mlwa.2024.100563_b36) 2019; 378
Li (10.1016/j.mlwa.2024.100563_b32) 2020; 8
Guo (10.1016/j.mlwa.2024.100563_b19) 2020; 10
Zobeiry (10.1016/j.mlwa.2024.100563_b49) 2021; 101
van der Meer (10.1016/j.mlwa.2024.100563_b43) 2022; 405
Sirignano (10.1016/j.mlwa.2024.100563_b41) 2017
Laurell (10.1016/j.mlwa.2024.100563_b29) 2019; 100
Hou (10.1016/j.mlwa.2024.100563_b22) 2023; 111
Rasmussen (10.1016/j.mlwa.2024.100563_b38) 2005
Hüllermeier (10.1016/j.mlwa.2024.100563_b23) 2020
Chen (10.1016/j.mlwa.2024.100563_b10) 2020; 36
Rao (10.1016/j.mlwa.2024.100563_b37) 2017
Hoffmann (10.1016/j.mlwa.2024.100563_b21) 2021; 2
Tezuka (10.1016/j.mlwa.2024.100563_b42) 2011
Li (10.1016/j.mlwa.2024.100563_b31) 2022; 24
Psaros (10.1016/j.mlwa.2024.100563_b35) 2023; 477
Jagtap (10.1016/j.mlwa.2024.100563_b24) 2020; 28
Cai (10.1016/j.mlwa.2024.100563_b7) 2021; 143
van Herten (10.1016/j.mlwa.2024.100563_b44) 2022; 78
Golan (10.1016/j.mlwa.2024.100563_b16) 2023; 5
Sarabian (10.1016/j.mlwa.2024.100563_b40) 2022; 41
Deng (10.1016/j.mlwa.2024.100563_b13) 2023
Jean (10.1016/j.mlwa.2024.100563_b25) 2021; 12
Zhong (10.1016/j.mlwa.2024.100563_b48) 2021; 2037
Gopakumar (10.1016/j.mlwa.2024.100563_b17) 2023; 12
Abdar (10.1016/j.mlwa.2024.100563_b1) 2021; 76
References_xml – volume: 10
  start-page: 5917
  year: 2020
  ident: b19
  article-title: Solving partial differential equations using deep learning and physical constraints
  publication-title: Applied Sciences
– volume: 41
  start-page: 2285
  year: 2022
  end-page: 2303
  ident: b40
  article-title: Physics-informed neural networks for brain hemodynamic predictions using medical imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 405
  year: 2022
  ident: b43
  article-title: Optimally weighted loss functions for solving PDEs with neural networks
  publication-title: Journal of Computational and Applied Mathematics
– volume: 100
  start-page: 469
  year: 2019
  end-page: 474
  ident: b29
  article-title: Exploring barriers to adoption of virtual reality through social media analytics and machine learning – an assessment of technology, network, price and trialability
  publication-title: Journal of Business Research
– volume: 78
  year: 2022
  ident: b44
  article-title: Physics-informed neural networks for myocardial perfusion MRI quantification
  publication-title: Medical Image Analysis
– volume: 28
  year: 2020
  ident: b24
  article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
– volume: 22
  start-page: 20896
  year: 2022
  end-page: 20909
  ident: b39
  article-title: An uncertainty quantification framework for counter unmanned aircraft systems using deep ensembles
  publication-title: IEEE Sensors Journal
– year: 2017
  ident: b41
  article-title: DGM: A deep learning algorithm for solving partial differential equations
– volume: 4
  year: 2021
  ident: b6
  article-title: Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks
  publication-title: Machine Learning with Applications
– volume: 101
  year: 2021
  ident: b49
  article-title: A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 2
  start-page: 35030
  year: 2021
  ident: b21
  article-title: Uncertainty quantification by ensemble learning for computational optical form measurements
  publication-title: Machine Learning: Science and Technology
– volume: 96
  year: 2022
  ident: b2
  article-title: Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
  publication-title: International Journal of Heat and Fluid Flow
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b36
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
– volume: 141
  year: 2020
  ident: b20
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Advances in Water Resources
– year: 2007
  ident: b30
  article-title: Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems
– volume: 5
  start-page: 952
  year: 2023
  end-page: 964
  ident: b16
  article-title: Testing the limits of natural language models for predicting human language judgements
  publication-title: Nature Machine Intelligence
– volume: 496
  start-page: 11
  year: 2022
  end-page: 34
  ident: b46
  article-title: Self-adaptive loss balanced physics-informed neural networks
  publication-title: Neurocomputing
– volume: 143
  year: 2021
  ident: b7
  article-title: Physics-informed neural networks for heat transfer problems
  publication-title: ournal of Heat Transfer
– year: 2022
  ident: b11
  article-title: State-of-the-art review of design of experiments for physics-informed deep learning
– reference: Ovadia, Y., Fertig, E., Ren, J. J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Lakshminarayanan, B., & Snoek, J. Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift. In
– volume: 9
  year: 2023
  ident: b4
  article-title: Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
  publication-title: Heliyon
– start-page: 6405
  year: 2017
  end-page: 6416
  ident: b28
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– volume: 2037
  year: 2021
  ident: b48
  article-title: Image extraction based on machine learning and image recognition and analysis technology
  publication-title: Journal of Physics: Conference Series
– volume: 16
  start-page: 428
  year: 2023
  ident: b5
  article-title: Physics-informed neural networks for the heat equation with source term under various boundary conditions
  publication-title: Algorithms
– volume: 36
  start-page: 354
  year: 2020
  end-page: 376
  ident: b10
  article-title: A comparison study of deep Galerkin method and deep ritz method for elliptic problems with different boundary conditions
  publication-title: Communications in Mathematical Research
– volume: 12
  start-page: 2586
  year: 2021
  end-page: 2603
  ident: b25
  article-title: Laser-induced injury of the skin: validation of a computer model to predict thresholds
  publication-title: Biomedical Optics Express
– volume: 925
  year: 2022
  ident: b9
  article-title: A critical evaluation of using physics-informed neural networks for simulating voltammetry: Strengths, weaknesses and best practices
  publication-title: Journal of Electroanalytical Chemistry
– year: 2023
  ident: b18
  article-title: Can physics-informed neural networks beat the finite element method?
– year: 2017
  ident: b37
  article-title: The finite element method in engineering
– volume: 477
  year: 2023
  ident: b35
  article-title: Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons
  publication-title: Journal of Computational Physics
– volume: 417
  year: 2023
  ident: b26
  article-title: A complete physics-informed neural network-based framework for structural topology optimization
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 8
  start-page: 208264
  year: 2020
  end-page: 208280
  ident: b32
  article-title: Deep learning in skin disease image recognition: A review
  publication-title: IEEE Access
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: b45
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Communications in Mathematics and Statistics
– volume: 1
  start-page: 19
  year: 2020
  end-page: 37
  ident: b15
  article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
  publication-title: Journal of Machine Learning for Modeling and Computing
– volume: 111
  start-page: 15233
  year: 2023
  end-page: 15261
  ident: b22
  article-title: Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting
  publication-title: Nonlinear Dynamics
– volume: 417
  year: 2023
  ident: b47
  article-title: A deep learning method for multi-material diffusion problems based on physics-informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 33
  year: 2021
  ident: b12
  article-title: Computational modeling and damage threshold prediction of continuous-wave and multiple-pulse porcine skin laser exposures at 1070 nm
  publication-title: Journal of Laser Applications
– year: 2005
  ident: b38
  article-title: Gaussian processes for machine learning
– volume: 16
  year: 2021
  ident: b33
  article-title: Applying machine learning and geolocation techniques to social media data (Twitter) to develop a resource for urban planning
  publication-title: PLoS One
– year: 2023
  ident: b13
  article-title: Uncertainty estimation by Fisher information-based evidential deep learning
– volume: 391
  start-page: 96
  year: 2020
  end-page: 118
  ident: b14
  article-title: Physics informed extreme learning machine (PIELM)–a rapid method for the numerical solution of partial differential equations
  publication-title: Neurocomputing
– start-page: 1033
  year: 2011
  end-page: 1060
  ident: b42
  article-title: Finite element and finite difference methods
  publication-title: Springer handbook of metrology and testing
– reference: .
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b3
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 24
  start-page: 1254
  year: 2022
  ident: b31
  article-title: Dynamic weight strategy of physics-informed neural networks for the 2D Navier-Stokes equations
  publication-title: Entropy
– year: 2024
  ident: b8
  article-title: Credal Bayesian deep learning
– year: 2020
  ident: b23
  article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods
– volume: 147
  year: 2023
  ident: b27
  article-title: Practical uncertainty quantification for space-dependent inverse heat conduction problem via ensemble physics-informed neural networks
  publication-title: International Communications in Heat and Mass Transfer
– volume: 12
  year: 2023
  ident: b17
  article-title: Loss landscape engineering via data regulation on PINNs
  publication-title: Machine Learning with Applications
– volume: 76
  start-page: 243
  year: 2021
  end-page: 297
  ident: b1
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Information Fusion
– year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b18
– volume: 391
  start-page: 96
  year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b14
  article-title: Physics informed extreme learning machine (PIELM)–a rapid method for the numerical solution of partial differential equations
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.099
– year: 2007
  ident: 10.1016/j.mlwa.2024.100563_b30
– year: 2024
  ident: 10.1016/j.mlwa.2024.100563_b8
– volume: 2037
  issue: 1
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b48
  article-title: Image extraction based on machine learning and image recognition and analysis technology
  publication-title: Journal of Physics: Conference Series
– year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b13
– volume: 8
  start-page: 208264
  year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b32
  article-title: Deep learning in skin disease image recognition: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037258
– start-page: 1033
  year: 2011
  ident: 10.1016/j.mlwa.2024.100563_b42
  article-title: Finite element and finite difference methods
– volume: 12
  start-page: 2586
  issue: 5
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b25
  article-title: Laser-induced injury of the skin: validation of a computer model to predict thresholds
  publication-title: Biomedical Optics Express
  doi: 10.1364/BOE.422618
– volume: 143
  issue: 6
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b7
  article-title: Physics-informed neural networks for heat transfer problems
  publication-title: ournal of Heat Transfer
– volume: 78
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b44
  article-title: Physics-informed neural networks for myocardial perfusion MRI quantification
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2022.102399
– volume: 33
  issue: 2
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b12
  article-title: Computational modeling and damage threshold prediction of continuous-wave and multiple-pulse porcine skin laser exposures at 1070 nm
  publication-title: Journal of Laser Applications
  doi: 10.2351/7.0000367
– year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b23
– volume: 12
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b17
  article-title: Loss landscape engineering via data regulation on PINNs
  publication-title: Machine Learning with Applications
  doi: 10.1016/j.mlwa.2023.100464
– volume: 16
  start-page: 428
  issue: 9
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b5
  article-title: Physics-informed neural networks for the heat equation with source term under various boundary conditions
  publication-title: Algorithms
  doi: 10.3390/a16090428
– volume: 477
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b35
  article-title: Uncertainty quantification in scientific machine learning: Methods, metrics, and comparisons
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2022.111902
– volume: 10
  start-page: 5917
  issue: 17
  year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b19
  article-title: Solving partial differential equations using deep learning and physical constraints
  publication-title: Applied Sciences
  doi: 10.3390/app10175917
– volume: 28
  issue: 5
  year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b24
  article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Communications in Computational Physics
– volume: 41
  start-page: 2285
  issue: 9
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b40
  article-title: Physics-informed neural networks for brain hemodynamic predictions using medical imaging
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3161653
– volume: 101
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b49
  article-title: A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2021.104232
– volume: 111
  start-page: 15233
  issue: 16
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b22
  article-title: Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-023-08654-w
– volume: 141
  year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b20
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2020.103610
– volume: 147
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b27
  article-title: Practical uncertainty quantification for space-dependent inverse heat conduction problem via ensemble physics-informed neural networks
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2023.106940
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.mlwa.2024.100563_b45
  article-title: The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Communications in Mathematics and Statistics
  doi: 10.1007/s40304-018-0127-z
– volume: 96
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b2
  article-title: Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2022.109002
– volume: 925
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b9
  article-title: A critical evaluation of using physics-informed neural networks for simulating voltammetry: Strengths, weaknesses and best practices
  publication-title: Journal of Electroanalytical Chemistry
  doi: 10.1016/j.jelechem.2022.116918
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.mlwa.2024.100563_b3
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– volume: 417
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b26
  article-title: A complete physics-informed neural network-based framework for structural topology optimization
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2023.116401
– volume: 100
  start-page: 469
  year: 2019
  ident: 10.1016/j.mlwa.2024.100563_b29
  article-title: Exploring barriers to adoption of virtual reality through social media analytics and machine learning – an assessment of technology, network, price and trialability
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2019.01.017
– volume: 9
  issue: 8
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b4
  article-title: Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e18820
– volume: 405
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b43
  article-title: Optimally weighted loss functions for solving PDEs with neural networks
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2021.113887
– volume: 496
  start-page: 11
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b46
  article-title: Self-adaptive loss balanced physics-informed neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.05.015
– year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b11
– volume: 417
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b47
  article-title: A deep learning method for multi-material diffusion problems based on physics-informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2023.116395
– volume: 1
  start-page: 19
  issue: 1
  year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b15
  article-title: Limitations of physics informed machine learning for nonlinear two-phase transport in porous media
  publication-title: Journal of Machine Learning for Modeling and Computing
  doi: 10.1615/JMachLearnModelComput.2020033905
– ident: 10.1016/j.mlwa.2024.100563_b34
– volume: 36
  start-page: 354
  issue: 3
  year: 2020
  ident: 10.1016/j.mlwa.2024.100563_b10
  article-title: A comparison study of deep Galerkin method and deep ritz method for elliptic problems with different boundary conditions
  publication-title: Communications in Mathematical Research
  doi: 10.4208/cmr.2020-0051
– year: 2017
  ident: 10.1016/j.mlwa.2024.100563_b41
– volume: 24
  start-page: 1254
  issue: 9
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b31
  article-title: Dynamic weight strategy of physics-informed neural networks for the 2D Navier-Stokes equations
  publication-title: Entropy
  doi: 10.3390/e24091254
– volume: 22
  start-page: 20896
  issue: 21
  year: 2022
  ident: 10.1016/j.mlwa.2024.100563_b39
  article-title: An uncertainty quantification framework for counter unmanned aircraft systems using deep ensembles
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2022.3208527
– volume: 16
  issue: 2
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b33
  article-title: Applying machine learning and geolocation techniques to social media data (Twitter) to develop a resource for urban planning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0244317
– volume: 76
  start-page: 243
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b1
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.05.008
– volume: 2
  start-page: 35030
  issue: 3
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b21
  article-title: Uncertainty quantification by ensemble learning for computational optical form measurements
  publication-title: Machine Learning: Science and Technology
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.mlwa.2024.100563_b36
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.10.045
– volume: 5
  start-page: 952
  issue: 9
  year: 2023
  ident: 10.1016/j.mlwa.2024.100563_b16
  article-title: Testing the limits of natural language models for predicting human language judgements
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-023-00718-1
– year: 2005
  ident: 10.1016/j.mlwa.2024.100563_b38
– year: 2017
  ident: 10.1016/j.mlwa.2024.100563_b37
– volume: 4
  year: 2021
  ident: 10.1016/j.mlwa.2024.100563_b6
  article-title: Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks
  publication-title: Machine Learning with Applications
  doi: 10.1016/j.mlwa.2021.100029
– start-page: 6405
  year: 2017
  ident: 10.1016/j.mlwa.2024.100563_b28
SSID ssj0002811334
Score 2.2712612
Snippet The application of deep neural networks towards solving problems in science and engineering has demonstrated encouraging results with the recent formulation of...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100563
SubjectTerms Heat diffusion equation
Loss weights
Machine learning
PINN
Uncertainty quantification
Title Empirical loss weight optimization for PINN modeling laser bio-effects on human skin for the 1D heat equation
URI https://dx.doi.org/10.1016/j.mlwa.2024.100563
https://doaj.org/article/461764ec676244728a657c0d3c29034e
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCAaK85IENWTixY8cjj1YVEp2o1M1KHFdKadpSirrx2zk_WoWlLCyJFJ3t6M729511vkPotgRMBVSlhBopwEGRnCgrGRFgYmMSq6Tx0RYD0R_yl1E2apX6cjFhIT1wUNw9B4gV3BoBq5ZzmeaFyKB9xUyqKOPW7b5U0ZYzNfFHRgk4XzzekgkBXc107RINpdxFBmSC_UIin7C_BUgtkOkdocPIDvFD-KtjtGdnJ6jpNovaZ_LAU-gIr_1pJp7DYm_iLUoM1BODgz7AvrINwBEGVmyXuKznJIZsYBDzFfnw53sdWgD5w8kzdvsxth8h6fcpGva6b099EqskEMM4XRG3IpUqFC8rYBMsNbxiIh9nlFlR5AIcFGkNVSCUVkViWSWzIpWV4CZTlUOwM7Q_m8_sOcLMypKPndXgDQougVuMlSiLnJkkt7KDko3GtIkpxF0li6nexIpNtNOydlrWQcsddLdtswgJNHZKPzpDbCVd8mv_AaaEjlNC_zUlOijbmFFHHhH4AXRV7xj84j8Gv0QHrssQTXaF9lfLL3sNvGVV3vgpCs_X7-4PpNbniQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+loss+weight+optimization+for+PINN+modeling+laser+bio-effects+on+human+skin+for+the+1D+heat+equation&rft.jtitle=Machine+learning+with+applications&rft.au=Farmer%2C+Jenny&rft.au=Oian%2C+Chad+A.&rft.au=Bowman%2C+Brett+A.&rft.au=Khan%2C+Taufiquar&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=2666-8270&rft.eissn=2666-8270&rft.volume=16&rft_id=info:doi/10.1016%2Fj.mlwa.2024.100563&rft.externalDocID=S2666827024000392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-8270&client=summon