Improved Performances of Acoustic Energy Harvester Fabricated Using Sol/Gel Lead Zirconate Titanate Thin Film

Energy harvesters integrable on smart sensor systems have been strongly demanded. Microelectromechanical system (MEMS) acoustic energy harvesters using the first resonance vibration of a lead zirconate titanate (PZT) thin film as a diaphragm have recently been reported. Similar acoustic energy harve...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Applied Physics Vol. 50; no. 6; pp. 06GM14 - 06GM14-5
Main Authors Kimura, Shu, Tomioka, Syungo, Iizumi, Satoshi, Tsujimoto, Kyohei, Sugou, Tomohisa, Nishioka, Yasushiro
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.06.2011
Online AccessGet full text

Cover

Loading…
Abstract Energy harvesters integrable on smart sensor systems have been strongly demanded. Microelectromechanical system (MEMS) acoustic energy harvesters using the first resonance vibration of a lead zirconate titanate (PZT) thin film as a diaphragm have recently been reported. Similar acoustic energy harvesters using the third resonance of a PZT diaphragm fabricated by sol/gel PZT thin film processes exhibited improved generated power density, and it was suggested that the PZT acoustic energy harvester might be suitable for use as a possible power source for silicon integrated circuits. We present further improved power generation performances of PZT MEMS acoustic energy harvesters fabricated by improved PZT capacitor fabrication processes. The PZT acoustic energy harvester with the diaphragm diameter of 1.2 mm fabricated by a sol/gel process generated an even higher energy density of 98 μW/m 2 under the sound pressure level of 100 dB (0.01 W/m 2 ) at 16.7 kHz.
AbstractList Energy harvesters integrable on smart sensor systems have been strongly demanded. Microelectromechanical system (MEMS) acoustic energy harvesters using the first resonance vibration of a lead zirconate titanate (PZT) thin film as a diaphragm have recently been reported. Similar acoustic energy harvesters using the third resonance of a PZT diaphragm fabricated by sol/gel PZT thin film processes exhibited improved generated power density, and it was suggested that the PZT acoustic energy harvester might be suitable for use as a possible power source for silicon integrated circuits. We present further improved power generation performances of PZT MEMS acoustic energy harvesters fabricated by improved PZT capacitor fabrication processes. The PZT acoustic energy harvester with the diaphragm diameter of 1.2 mm fabricated by a sol/gel process generated an even higher energy density of 98 µW/m 2 under the sound pressure level of 100 dB (0.01 W/m 2 ) at 16.7 kHz.
Energy harvesters integrable on smart sensor systems have been strongly demanded. Microelectromechanical system (MEMS) acoustic energy harvesters using the first resonance vibration of a lead zirconate titanate (PZT) thin film as a diaphragm have recently been reported. Similar acoustic energy harvesters using the third resonance of a PZT diaphragm fabricated by sol/gel PZT thin film processes exhibited improved generated power density, and it was suggested that the PZT acoustic energy harvester might be suitable for use as a possible power source for silicon integrated circuits. We present further improved power generation performances of PZT MEMS acoustic energy harvesters fabricated by improved PZT capacitor fabrication processes. The PZT acoustic energy harvester with the diaphragm diameter of 1.2 mm fabricated by a sol/gel process generated an even higher energy density of 98 μW/m 2 under the sound pressure level of 100 dB (0.01 W/m 2 ) at 16.7 kHz.
Author Nishioka, Yasushiro
Kimura, Shu
Tsujimoto, Kyohei
Iizumi, Satoshi
Tomioka, Syungo
Sugou, Tomohisa
Author_xml – sequence: 1
  givenname: Shu
  surname: Kimura
  fullname: Kimura, Shu
  organization: Department of Precision Machinery, College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
– sequence: 2
  givenname: Syungo
  surname: Tomioka
  fullname: Tomioka, Syungo
  organization: Department of Precision Machinery, College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
– sequence: 3
  givenname: Satoshi
  surname: Iizumi
  fullname: Iizumi, Satoshi
  organization: Department of Precision Machinery, College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
– sequence: 4
  givenname: Kyohei
  surname: Tsujimoto
  fullname: Tsujimoto, Kyohei
  organization: Department of Precision Machinery, College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
– sequence: 5
  givenname: Tomohisa
  surname: Sugou
  fullname: Sugou, Tomohisa
  organization: Department of Precision Machinery, College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
– sequence: 6
  givenname: Yasushiro
  surname: Nishioka
  fullname: Nishioka, Yasushiro
  organization: Department of Precision Machinery, College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
BookMark eNqFkD1rwzAQhkVJoUnatbPmgh3Jlq14DCFfJaWBJksXI8mnVMWWjOQG8u_r4O6d7j3unnd4JmhknQWEnimJKWXp7PV1cYgzEpN880bZHRrTlPGIkTwboTEhCY1YkSQPaBLCd7_mGaNj1Oya1rsLVPgAXjvfCKsgYKfxQrmf0BmFVxb8-Yq3wl8gdODxWkhvlOh66BSMPeMPV882UOM9iAp_Gq-c7a_4aDoxhC9j8drUzSO616IO8PQ3p-i0Xh2X22j_vtktF_tIpYx0UUpZnihGNTCe5FLPc1bIFOZQMa6I0KCkkHmlNZcFpTzhWlYEuJxrSgqZZekUxUOv8i4ED7psvWmEv5aUlDdZ5U1WmZFykNUDLwNgWtH-9_wL8khtew
CitedBy_id crossref_primary_10_1143_JJAP_51_09LA13
crossref_primary_10_7567_JJAP_51_09LA13
crossref_primary_10_1016_j_coco_2022_101342
crossref_primary_10_1016_j_physe_2015_02_006
crossref_primary_10_1088_0964_1726_22_11_115025
crossref_primary_10_1016_j_enconman_2022_116635
crossref_primary_10_1007_s00542_012_1721_8
crossref_primary_10_1063_1_4826257
crossref_primary_10_12720_ijmse_1_2_72_78
crossref_primary_10_1063_1_4962027
crossref_primary_10_1007_s10544_017_0176_1
crossref_primary_10_1016_j_apenergy_2018_02_093
crossref_primary_10_1109_TUFFC_2013_2802
crossref_primary_10_1143_JJAP_50_09ND16
crossref_primary_10_3233_JAE_210076
crossref_primary_10_1002_er_5643
crossref_primary_10_1109_TUFFC_2013_6604543
crossref_primary_10_3390_s20247275
crossref_primary_10_7567_JJAP_50_09ND16
Cites_doi 10.1088/0964-1726/15/6/001
10.1143/JJAP.37.7116
10.1143/JJAP.48.091406
10.1016/j.sna.2007.11.005
10.1088/0960-1317/17/7/004
10.1016/S0924-4247(02)00037-7
10.1007/s10832-006-6287-3
10.1063/1.3406253
10.1088/0957-0233/17/12/R01
10.1016/j.sna.2010.06.028
10.1016/j.tsf.2005.05.004
10.1016/j.sna.2010.08.028
10.1088/0256-307X/23/3/057
10.1143/JJAP.49.04DL21
10.1143/JJAP.38.5342
10.1109/JMEMS.2010.2067431
10.1088/0960-1317/16/9/S02
10.1143/JJAP.46.2781
10.1111/j.1475-1305.2004.00120.x
10.1143/APEX.1.098002
10.1088/0960-1317/18/5/055017
10.1051/jp4:2005128028
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1143/JJAP.50.06GM14
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1347-4065
EndPage 06GM14-5
ExternalDocumentID 10_1143_JJAP_50_06GM14
GroupedDBID 4.4
AALHV
ACGFS
ACNCT
AEFHF
ALMA_UNASSIGNED_HOLDINGS
ATQHT
F5P
IOP
MC8
N5L
QTG
RNS
ROL
RW3
SJN
VH1
AAYXX
AI.
CITATION
IZVLO
KOT
ID FETCH-LOGICAL-c340t-31462c41fe4726bf8649b3e8ed47c0afecbab6dff7b911727fbd0e7b8f109b553
ISSN 0021-4922
IngestDate Fri Aug 23 02:32:06 EDT 2024
Mon Jan 18 10:57:01 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-31462c41fe4726bf8649b3e8ed47c0afecbab6dff7b911727fbd0e7b8f109b553
Notes (a) Top view and (b) crosssection of the structure of energy harvester with PZT diaphragm. (c) Third-resonance mode and (d) First-resonance mode investigated in this research. Experimental setup for measuring the resonance frequencies and the generated power. Fabrication processes of PZT energy harvesters using microfabrication techniques: (a) Pt/Ti sputtering, (b) PZT spin coating, (c) Al mask deposition, (c$'$) Al wet etching, (d) Patterning of cavity, and (e) ICP dry etching of Si. Photographs of PZT energy harvester (a) after Al top electrode definition process by wet etching and (b) after mask deposition of Al top electrode. (c) Conceptual description of PZT capacitor damage by Al wet etching. Equivalent circuit for energy harvester consisting of ac-voltage source, $E$, and internal resistance, $r$, and load resistance, $R$. Load resistance, $R$, dependence of generated power for energy harvester with diaphragm diameters of (a) 1.2 mm (Al mask deposition), (b) 2.0 mm (Al mask deposition), and (c) 2.0 mm (Al wet process). The sound pressure was 100 dB at the resonance frequencies for each device. Frequency dependences of generated voltage, $E$, of PZT energy harvester with different diaphragm diameters from 1.2 to 2.0 mm. The frequency at each allow corresponds to first resonance. Measured relationships between power delivered to load and load resistance for PZT acoustic energy harvesters with different diaphragm diameters.
ParticipantIDs crossref_primary_10_1143_JJAP_50_06GM14
ipap_primary_10_1143_JJAP_50_06GM14
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Japanese Journal of Applied Physics
PublicationYear 2011
Publisher The Japan Society of Applied Physics
Publisher_xml – name: The Japan Society of Applied Physics
References T. Harigai, H. Adachi, and E. Fujii: J. Appl. Phys. 107 (2010) 096101.
P. Rakbamrung, M. Lallart, D. Guyomar, N. Muensit, C. Thanachayanont, C. Lucat, Be. Guiffard, L. Petit, and P. Sukwisut: Sens. Actuators A 163 (2010) 493.
D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, and H. C. Wikle III: J. Micromech. Microeng. 18 (2008) 055017.
S. B. Horowitz, M. Sheplak, N. Cattafesta, and T. Nishida: J. Micromech. Microeng. 16 (2006) S174.
K. Yamashita, H. Katata, M. Okuyama, H. Miyoshi, G. Kato, S. Aoyagi, and Y. Suzuki: Sens. Actuators A 97--98 (2002) 302.
S. P. Beeby, M. J. Tudor, and N. M. White: Meas. Sci. Technol. 17 (2006) R175.
S. Priya: J. Electroceram. 19 (2007) 165.
H.-B. Fang, J.-Q. Liu, Z.-Y. Xu, L. Dong, D. Chen, B.-C. Cai, and Y. Liu: Chin. Phys. Lett. 23 (2006) 732.
M. Ericka, D. Vasic, F. Costa, G. Poulin, and S. Tliba: J. Phys. IV 128 (2005) 187.
D. Shen, H. C. Wikle III, S.-Y. Choe, and D. J. Kim: Appl. Phys. Express 1 (2008) 098002.
K. Morimoto, I. Kanno, K. Wada, and H. Kotera: Sens. Actuators A 163 (2010) 428.
S. Shinoda, T. Tai, H. Itoh, T. Sugou, H. Ichioka, S. Kimura, and Y. Nishioka: Jpn. J. Appl. Phys. 49 (2010) 04DL21.
J.-C. Park, J.-Y. Park, and Y.-P. Lee: J. Microelectromech. Syst. 19 (2010) 1215.
Z.-J. Wang, R. Maeda, and K. Kikuchi: Jpn. J. Appl. Phys. 38 (1999) 5342.
T. Kobayashi and R. Maeda: Jpn. J. Appl. Phys. 46 (2007) 2781.
H. A. Sodano, G. Park, and D. J. Inman: Strain 40 (2004) 49.
Y. C. Shu and I. C. Lien: Smart Mater. Struct. 15 (2006) 1499.
W. J. Choi, Y. Jeon, J.-H. Jeong, R. Sood, and S. G. Kim: J. Electroceram. 17 (2006) 543.
R. Maeda, Z. Wang, J. Chu, J. Akedo, M. Ichiki, and S. Yonekubo: Jpn. J. Appl. Phys. 37 (1998) 7116.
M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, and R. Puers: Sens. Actuators A 145--146 (2008) 380.
T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda: Thin Solid Films 489 (2005) 74.
V. Bedekar, J. Oliver, S. Zhang, and S. Priya: Jpn. J. Appl. Phys. 48 (2009) 091406.
T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura, and R. Maeda: J. Micromech. Microeng. 17 (2007) 1238.
(crKey-10.1143/JJAP.50.06GM14-BIB7) 2010; 107
(crKey-10.1143/JJAP.50.06GM14-BIB5) 2005; 128
(crKey-10.1143/JJAP.50.06GM14-BIB17) 2010; 49
(crKey-10.1143/JJAP.50.06GM14-BIB10) 2008; 18
(crKey-10.1143/JJAP.50.06GM14-BIB2) 2006; 17
(crKey-10.1143/JJAP.50.06GM14-BIB14) 2008; 145–146
(crKey-10.1143/JJAP.50.06GM14-BIB4) 2004; 40
(crKey-10.1143/JJAP.50.06GM14-BIB15) 2010; 19
(crKey-10.1143/JJAP.50.06GM14-BIB6) 2008; 1
(crKey-10.1143/JJAP.50.06GM14-BIB18) 2002; 97–98
(crKey-10.1143/JJAP.50.06GM14-BIB19) 1998; 37
(crKey-10.1143/JJAP.50.06GM14-BIB9) 2010; 163
(crKey-10.1143/JJAP.50.06GM14-BIB21) 2005; 489
(crKey-10.1143/JJAP.50.06GM14-BIB11) 2009; 48
(crKey-10.1143/JJAP.50.06GM14-BIB13) 2006; 17
(crKey-10.1143/JJAP.50.06GM14-BIB16) 2006; 16
(crKey-10.1143/JJAP.50.06GM14-BIB23) 2007; 17
(crKey-10.1143/JJAP.50.06GM14-BIB20) 1999; 38
(crKey-10.1143/JJAP.50.06GM14-BIB1) 2006; 15
(crKey-10.1143/JJAP.50.06GM14-BIB3) 2007; 19
(crKey-10.1143/JJAP.50.06GM14-BIB8) 2010; 163
(crKey-10.1143/JJAP.50.06GM14-BIB12) 2006; 23
(crKey-10.1143/JJAP.50.06GM14-BIB22) 2007; 46
References_xml – volume: 15
  start-page: 1499
  year: 2006
  ident: crKey-10.1143/JJAP.50.06GM14-BIB1
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/6/001
– volume: 37
  start-page: 7116
  year: 1998
  ident: crKey-10.1143/JJAP.50.06GM14-BIB19
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.37.7116
– volume: 48
  start-page: 091406
  year: 2009
  ident: crKey-10.1143/JJAP.50.06GM14-BIB11
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.48.091406
– volume: 145–146
  start-page: 380
  year: 2008
  ident: crKey-10.1143/JJAP.50.06GM14-BIB14
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2007.11.005
– volume: 17
  start-page: 1238
  year: 2007
  ident: crKey-10.1143/JJAP.50.06GM14-BIB23
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/7/004
– volume: 97–98
  start-page: 302
  year: 2002
  ident: crKey-10.1143/JJAP.50.06GM14-BIB18
  publication-title: Sens. Actuators A
  doi: 10.1016/S0924-4247(02)00037-7
– volume: 17
  start-page: 543
  year: 2006
  ident: crKey-10.1143/JJAP.50.06GM14-BIB13
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-006-6287-3
– volume: 107
  start-page: 096101
  year: 2010
  ident: crKey-10.1143/JJAP.50.06GM14-BIB7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3406253
– volume: 17
  start-page: R175
  year: 2006
  ident: crKey-10.1143/JJAP.50.06GM14-BIB2
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/12/R01
– volume: 163
  start-page: 428
  year: 2010
  ident: crKey-10.1143/JJAP.50.06GM14-BIB8
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2010.06.028
– volume: 489
  start-page: 74
  year: 2005
  ident: crKey-10.1143/JJAP.50.06GM14-BIB21
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.05.004
– volume: 163
  start-page: 493
  year: 2010
  ident: crKey-10.1143/JJAP.50.06GM14-BIB9
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2010.08.028
– volume: 23
  start-page: 732
  year: 2006
  ident: crKey-10.1143/JJAP.50.06GM14-BIB12
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/23/3/057
– volume: 49
  start-page: 04DL21
  year: 2010
  ident: crKey-10.1143/JJAP.50.06GM14-BIB17
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.49.04DL21
– volume: 19
  start-page: 165
  year: 2007
  ident: crKey-10.1143/JJAP.50.06GM14-BIB3
  publication-title: J. Electroceram.
– volume: 38
  start-page: 5342
  year: 1999
  ident: crKey-10.1143/JJAP.50.06GM14-BIB20
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.38.5342
– volume: 19
  start-page: 1215
  year: 2010
  ident: crKey-10.1143/JJAP.50.06GM14-BIB15
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2010.2067431
– volume: 16
  start-page: S174
  year: 2006
  ident: crKey-10.1143/JJAP.50.06GM14-BIB16
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/9/S02
– volume: 46
  start-page: 2781
  year: 2007
  ident: crKey-10.1143/JJAP.50.06GM14-BIB22
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.2781
– volume: 40
  start-page: 49
  year: 2004
  ident: crKey-10.1143/JJAP.50.06GM14-BIB4
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2004.00120.x
– volume: 1
  start-page: 098002
  year: 2008
  ident: crKey-10.1143/JJAP.50.06GM14-BIB6
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.1.098002
– volume: 18
  start-page: 055017
  year: 2008
  ident: crKey-10.1143/JJAP.50.06GM14-BIB10
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/18/5/055017
– volume: 128
  start-page: 187
  year: 2005
  ident: crKey-10.1143/JJAP.50.06GM14-BIB5
  publication-title: J. Phys. IV
  doi: 10.1051/jp4:2005128028
SSID ssj0026541
ssj0026590
ssj0026540
ssj0064762
Score 2.1321304
Snippet Energy harvesters integrable on smart sensor systems have been strongly demanded. Microelectromechanical system (MEMS) acoustic energy harvesters using the...
SourceID crossref
ipap
SourceType Aggregation Database
Publisher
StartPage 06GM14
Title Improved Performances of Acoustic Energy Harvester Fabricated Using Sol/Gel Lead Zirconate Titanate Thin Film
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZxmB7GFu30e6GYIM9GKdOLMnOYxhNu4xugbZQ9mIsWSLeaju09kP7t_YHdyQ5tgKBdXsxtiI5ts4XnU8n54LQR1DbUgBN9RlTFDYoVPk8pMRnJA5EGqYqSrUd8vQbO7kgi0t6ORj8dryWmpqPxN3OuJL_kSq0gVx1lOw_SLa7KTTAOcgXjiBhON5LxtYiAJRx2bv_G9eMmahMlS7vyIb26QpAJiWCN0-5KQwEg6y3wJkusTU_llc61Wrm_civhTao64o_wBvNySovvXl-VWwR2XXpLQyHNeVz-r_yi8ZULvLOVk1vwS7y6pdtvYXFperwmN81RW4N03V1s8q7ETfNTw0iY8f9elutZO6aJ8aOG9WoC3ADtV92XqgOwTZOrsI1SmqHETK1kcojaZfkEJAEtIO6a7ZNVtti012AA3Z8aqNSW3VuG3y6W10QnbZisZgtRzQYuWO3UnDb4O0w0R0TGiS24wP0cBJNqfYj_fJ92e3yGdXZc_qLsXMx7T5hJGJtJnv7xm1CUfiaw-3n2SJMw3ydrh0CdP4MPW13LnhmYfgcDWS5h544-Sz30KN2ql-gYgNN7EITVwpvoIktNHEHTdxDExtoYoDmIQATa2DiDph4A0ysgYk1MF-ii_nR-ecTv63s4YuQBDUofsImgoyVJNGEcRUzMuWhjGVGIhGkSgqecpYpFXFQxkCxFc8CGfFYjYMppzR8hYZlVcp9hIkuxchZPGYyIBlJYyJDUFphGkQTOZHqAH3aTF-ytglckt3yPEAf9Oz-pdfre_V6gx73P4a3aFhfN_IdsNeavzdo-QMOC5N7
link.rule.ids 315,786,790,27955,27956
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Performances+of+Acoustic+Energy+Harvester+Fabricated+Using+Sol%2FGel+Lead+Zirconate+Titanate+Thin+Film&rft.jtitle=Jpn+J+Appl+Phys&rft.au=Kimura%2C+Shu&rft.au=Tomioka%2C+Syungo&rft.au=Iizumi%2C+Satoshi&rft.au=Tsujimoto%2C+Kyohei&rft.date=2011-06-01&rft.pub=The+Japan+Society+of+Applied+Physics&rft.issn=0021-4922&rft.eissn=1347-4065&rft.volume=50&rft.issue=6&rft.spage=06GM14&rft.epage=06GM14-5&rft_id=info:doi/10.1143%2FJJAP.50.06GM14&rft.externalDocID=10_1143_JJAP_50_06GM14
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-4922&client=summon