Innovations to Attribute Reduction of Covering Decision System Based on Conditional Information Entropy
Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attribu...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 8; no. 1; pp. 2103 - 2116 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Sciendo
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attributes of covering decision systems, which are databases incarnated in the form of covers. First, we define different covering decision systems and their attributes’ reductions. Further, we describe the necessity and sufficiency for reductions. Thereafter, we construct a discernible matrix to design algorithms that compute all the reductions of covering decision systems. Finally, the above methods are illustrated using a practical example and the obtained results are contrasted with other results. |
---|---|
AbstractList | Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attributes of covering decision systems, which are databases incarnated in the form of covers. First, we define different covering decision systems and their attributes’ reductions. Further, we describe the necessity and sufficiency for reductions. Thereafter, we construct a discernible matrix to design algorithms that compute all the reductions of covering decision systems. Finally, the above methods are illustrated using a practical example and the obtained results are contrasted with other results. Abstract Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attributes of covering decision systems, which are databases incarnated in the form of covers. First, we define different covering decision systems and their attributes’ reductions. Further, we describe the necessity and sufficiency for reductions. Thereafter, we construct a discernible matrix to design algorithms that compute all the reductions of covering decision systems. Finally, the above methods are illustrated using a practical example and the obtained results are contrasted with other results. |
Author | Wang, Ye Xia, Xiuyun Tian, Hao |
Author_xml | – sequence: 1 givenname: Xiuyun surname: Xia fullname: Xia, Xiuyun organization: School of General Education, Hunan University of Information Technology, Changsha 410005, China – sequence: 2 givenname: Hao surname: Tian fullname: Tian, Hao organization: Electronic Information College, Hunan University of Information Technology, Changsha 410005, China – sequence: 3 givenname: Ye surname: Wang fullname: Wang, Ye organization: School of Computer Science, Huaiyin Normal University, Huaian 223000, China |
BookMark | eNp1kNtKKzEUhoMoeHwA7_ICrTlNJnMlWt3bgiB4uA5rkjVlSptIkip9e2daEW-8ysqf_N-C75QchhiQkEvOpkLV5grWIU8FE3zKp4xxzg7IiVBKTYyu9OGv-Zhc5LxkjAnJpdbihCzmIcQPKH0MmZZIb0pJfbspSJ_Rb9yY09jRWfzA1IcFvUPX5zF82eaCa3oLGT0d7rMYfD9-hxWdhy6m9Q5K70NJ8X17To46WGW8-D7PyNu_-9fZw-Tx6f98dvM4cVKxMhHYNKJpWt5oU9dOtRXIqvIATgBoIYZHlA04JnSrfNO16DRCLUVXORS1k2dkvuf6CEv7nvo1pK2N0NtdENPCQiq9W6HlnmvZtcbUftitHRhjXNWaSimUrdIDi-9ZLsWcE3Y_PM7sKN6O4u0o3nK7Ez90rvedT1gVTB4XabMdBruMmzS4yX93DRcDQH4BpDqOvA |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_023_04547_4 |
Cites_doi | 10.1016/j.knosys.2019.04.014 10.1016/j.ins.2006.06.003 10.1016/0022-0000(93)90048-2 10.1016/j.ins.2006.06.006 10.1016/j.ins.2007.02.041 10.1016/j.ins.2008.12.025 10.1007/s41066-018-0108-3 10.2307/2348478 10.1007/978-3-7908-1840-6 10.1016/S0165-0114(00)00023-3 10.1007/BF01001956 10.1007/s10844-013-0254-7 10.1007/978-94-011-3534-4 10.1016/j.ijar.2013.03.018 10.1006/jmps.1999.1284 10.1016/S0020-0255(97)10046-9 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.2478/amns.2021.1.00110 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2444-8656 |
EndPage | 2116 |
ExternalDocumentID | oai_doaj_org_article_1d163fb887d3406ca888c5b8544e3b46 10_2478_amns_2021_1_00110 10_2478_amns_2021_1_00110812103 |
GroupedDBID | 9WM ABFKT ADBLJ AHGSO ALMA_UNASSIGNED_HOLDINGS ARCSS EBS GROUPED_DOAJ M~E OK1 QD8 AAYXX CITATION SLJYH |
ID | FETCH-LOGICAL-c340t-2e99299b196877c4b5a355daac2aa622929e39ac026b4d9fbec6ea732f5ce27c3 |
IEDL.DBID | DOA |
ISSN | 2444-8656 |
IngestDate | Tue Oct 22 15:15:19 EDT 2024 Fri Aug 23 03:37:47 EDT 2024 Sat Sep 09 02:20:13 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-2e99299b196877c4b5a355daac2aa622929e39ac026b4d9fbec6ea732f5ce27c3 |
OpenAccessLink | https://doaj.org/article/1d163fb887d3406ca888c5b8544e3b46 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d163fb887d3406ca888c5b8544e3b46 crossref_primary_10_2478_amns_2021_1_00110 walterdegruyter_journals_10_2478_amns_2021_1_00110812103 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2023 |
Publisher | Sciendo |
Publisher_xml | – name: Sciendo |
References | 2024042713464344954_j_amns.2021.1.00110_ref_002 2024042713464344954_j_amns.2021.1.00110_ref_024 2024042713464344954_j_amns.2021.1.00110_ref_003 2024042713464344954_j_amns.2021.1.00110_ref_025 2024042713464344954_j_amns.2021.1.00110_ref_022 2024042713464344954_j_amns.2021.1.00110_ref_001 2024042713464344954_j_amns.2021.1.00110_ref_023 2024042713464344954_j_amns.2021.1.00110_ref_020 2024042713464344954_j_amns.2021.1.00110_ref_021 2024042713464344954_j_amns.2021.1.00110_ref_019 2024042713464344954_j_amns.2021.1.00110_ref_017 2024042713464344954_j_amns.2021.1.00110_ref_018 2024042713464344954_j_amns.2021.1.00110_ref_015 2024042713464344954_j_amns.2021.1.00110_ref_016 2024042713464344954_j_amns.2021.1.00110_ref_013 2024042713464344954_j_amns.2021.1.00110_ref_014 2024042713464344954_j_amns.2021.1.00110_ref_011 2024042713464344954_j_amns.2021.1.00110_ref_012 2024042713464344954_j_amns.2021.1.00110_ref_031 2024042713464344954_j_amns.2021.1.00110_ref_010 2024042713464344954_j_amns.2021.1.00110_ref_032 2024042713464344954_j_amns.2021.1.00110_ref_030 2024042713464344954_j_amns.2021.1.00110_ref_008 2024042713464344954_j_amns.2021.1.00110_ref_009 2024042713464344954_j_amns.2021.1.00110_ref_006 2024042713464344954_j_amns.2021.1.00110_ref_028 2024042713464344954_j_amns.2021.1.00110_ref_007 2024042713464344954_j_amns.2021.1.00110_ref_029 2024042713464344954_j_amns.2021.1.00110_ref_004 2024042713464344954_j_amns.2021.1.00110_ref_026 2024042713464344954_j_amns.2021.1.00110_ref_005 2024042713464344954_j_amns.2021.1.00110_ref_027 |
References_xml | – ident: 2024042713464344954_j_amns.2021.1.00110_ref_030 doi: 10.1016/j.knosys.2019.04.014 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_011 doi: 10.1016/j.ins.2006.06.003 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_013 doi: 10.1016/0022-0000(93)90048-2 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_012 doi: 10.1016/j.ins.2006.06.006 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_016 doi: 10.1016/j.ins.2007.02.041 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_019 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_021 doi: 10.1016/j.ins.2008.12.025 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_020 doi: 10.1007/s41066-018-0108-3 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_015 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_027 doi: 10.2307/2348478 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_032 doi: 10.1007/978-3-7908-1840-6 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_003 doi: 10.1016/S0165-0114(00)00023-3 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_005 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_001 doi: 10.1007/BF01001956 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_029 doi: 10.1007/s10844-013-0254-7 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_009 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_022 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_007 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_024 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_014 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_018 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_031 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_023 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_010 doi: 10.1007/978-94-011-3534-4 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_028 doi: 10.1016/j.ijar.2013.03.018 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_004 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_002 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_006 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_025 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_026 doi: 10.1006/jmps.1999.1284 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_008 – ident: 2024042713464344954_j_amns.2021.1.00110_ref_017 doi: 10.1016/S0020-0255(97)10046-9 |
SSID | ssj0002313662 |
Score | 2.2657707 |
Snippet | Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the... Abstract Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions,... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 2103 |
SubjectTerms | attribute decision system discernible matrix information entropy |
Title | Innovations to Attribute Reduction of Covering Decision System Based on Conditional Information Entropy |
URI | http://www.degruyter.com/doi/10.2478/amns.2021.1.00110 https://doaj.org/article/1d163fb887d3406ca888c5b8544e3b46 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz34FuuLPXgSYpN95HFsq1KFehDF3sI-C4JJaSPiv3d2Ny0qiBeP2Tw2zGTyzezMfoPQObOaSACCCGIDEjFmRJRbziOaSkISK4nI3Abn8X06emJ3Ez750urL1YQFeuAguF6iwWOwEmxBUwAfJSBkU1zmHJ5LJQtk23HxJZh68SQuCU1TEtKYhGV5T7xWjp2bJJeJzz7E34DI8_VvoM13n6PWZjp_-2iWOVEPNTfbaLP1EXE_vNsOWjPVLtpq_UXcWuNiD01vVy1NF7ipcb8J7asMfnCErG4c1xYPXZUmIBS-avvp4EBTjgeAYBrD8bB2iWu_KIjb_Un-5mtXxj772EdPN9ePw1HUNk6IFMioiYgpwOspJFhXnmWKSS7ArdBCKCJESgicNLQQCuIvyXRhQY-pERkllitDMkUPUKeqK3OIsNFWsIxwyZRgTJIitjngXmp4bqVmtIsullIsZ4Efo4S4wom8dCIvncjLxJfOxV00cHJeXeiorf0AKLxsFV7-pfAuyn9oqWzNbvH7zLnjSaNH_zH_MVp3LefDMswJ6jTzN3MKjkkjz-D_-jw-81_iJ0-84ec |
link.rule.ids | 315,783,787,867,2109,27936,27937,76493,76494 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOEAPtLRULG3Bh54qBTZ-JTkuW2ChQKUWJG6Wn3tig3aDKv59x453paL20mOcWEnGj_nm4W8APvPgqEFFUKBtQAvOvS7qIETBpKG0DIbqKh5wvr6Rkzt-eS_u10Asz8Kkfd-laOVxll1KV-ZVfawfZpFgm5ZHZQogoKW-UUne4PTeGE3Of35fOVcQtDApaR_F_HvfP_RQout_Bdu_Uoja-en86blbhkSTpjl7A9sZIpJR_107sOZnb-F1hoskL8bFO5herCqaLkjXklHXV6_y5EfkY43tpA1kHJM0UUGRr7mcDulZyskJKjBH8Hrcxrh18gmSfDwpdT6NWeyPz7twd3Z6O54UuW5CYRkfdgX1DYKexuDiqqvKciM0ogqntaVaS0rxpmeNtmh-Ge6agMMova4YDcJ6Wln2HtZn7czvAfEuaF5RYbjVnBvaDEONak96UQfjOBvAl6UU1WNPj6HQrIgiV1HkKopclSlzbjiAkyjn1YOR2To1tPOpyoOtSocIMRjc-xz-jLQaTXQrTC1wHjHD5QDqF6Ok8qpb_PvNdaRJY_v_3_UQNie311fq6uLm2wfYijXnez_MR1jv5k_-EyKTzhzkefgbf2Pf6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VqVTBodACIrzqAyekpVm_dveYpk3TlhYEVOrN8jMnslGyFeq_Z-x1IoHgwnG9tlY79ni-8Yy_AXjPg6MGDUGBvgEtOPe6qIMQBZOG0jIYqqt4wfn6Rs5u-eWduNuBcnMXJu37LkUrj5cupFRlXtXH-scikmvT8mOZggfope9Wkjd8ALvj2fm3z9uDFQQsTEraRzD_PvY3G5So-h_D_s8UnnZ-vrp_6Dbh0GRlpk9hP8NDMu7n8wB2_OIQnmSoSLIirp_B_GJbzXRNupaMu75ylSdfIxdrbCdtIJOYoInGiZzmUjqkZygnJ2i8HMHnSRtj1uk8kOSrSWnwWcxgXz48h9vp2ffJrMg1EwrL-KgrqG8Q8DQGFauuKsuN0IgonNaWai0pxZeeNdqi62W4awJOofS6YjQI62ll2QsYLNqFfwnEu6B5RYXhVnNuaDMKNZo86UUdjONsCB82UlTLnhpDoUsRRa6iyFUUuSpT1txoCCdRztuOkdU6NbSrucpKokqH6DAY3Pcc_oy0Gt1zK0wtcA0xw-UQ6j9mSWWNW__7y3WkSGOv_n_oEex9OZ2qTxc3V6_hUSw33x_BvIFBt7r3bxGUdOZdXoa_AL4f3eI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovations+to+Attribute+Reduction+of+Covering+Decision+System+Based+on+Conditional+Information+Entropy&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Xia+Xiuyun&rft.au=Tian+Hao&rft.au=Wang+Ye&rft.date=2023-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=8&rft.issue=1&rft.spage=2103&rft.epage=2116&rft_id=info:doi/10.2478%2Famns.2021.1.00110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d163fb887d3406ca888c5b8544e3b46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |