Innovations to Attribute Reduction of Covering Decision System Based on Conditional Information Entropy

Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attribu...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 8; no. 1; pp. 2103 - 2116
Main Authors Xia, Xiuyun, Tian, Hao, Wang, Ye
Format Journal Article
LanguageEnglish
Published Sciendo 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attributes of covering decision systems, which are databases incarnated in the form of covers. First, we define different covering decision systems and their attributes’ reductions. Further, we describe the necessity and sufficiency for reductions. Thereafter, we construct a discernible matrix to design algorithms that compute all the reductions of covering decision systems. Finally, the above methods are illustrated using a practical example and the obtained results are contrasted with other results.
AbstractList Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attributes of covering decision systems, which are databases incarnated in the form of covers. First, we define different covering decision systems and their attributes’ reductions. Further, we describe the necessity and sufficiency for reductions. Thereafter, we construct a discernible matrix to design algorithms that compute all the reductions of covering decision systems. Finally, the above methods are illustrated using a practical example and the obtained results are contrasted with other results.
Abstract Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the covering rough set theory, a generalisation of traditional rough set theory, covers. In this article, we posit a method to reduce the attributes of covering decision systems, which are databases incarnated in the form of covers. First, we define different covering decision systems and their attributes’ reductions. Further, we describe the necessity and sufficiency for reductions. Thereafter, we construct a discernible matrix to design algorithms that compute all the reductions of covering decision systems. Finally, the above methods are illustrated using a practical example and the obtained results are contrasted with other results.
Author Wang, Ye
Xia, Xiuyun
Tian, Hao
Author_xml – sequence: 1
  givenname: Xiuyun
  surname: Xia
  fullname: Xia, Xiuyun
  organization: School of General Education, Hunan University of Information Technology, Changsha 410005, China
– sequence: 2
  givenname: Hao
  surname: Tian
  fullname: Tian, Hao
  organization: Electronic Information College, Hunan University of Information Technology, Changsha 410005, China
– sequence: 3
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: School of Computer Science, Huaiyin Normal University, Huaian 223000, China
BookMark eNp1kNtKKzEUhoMoeHwA7_ICrTlNJnMlWt3bgiB4uA5rkjVlSptIkip9e2daEW-8ysqf_N-C75QchhiQkEvOpkLV5grWIU8FE3zKp4xxzg7IiVBKTYyu9OGv-Zhc5LxkjAnJpdbihCzmIcQPKH0MmZZIb0pJfbspSJ_Rb9yY09jRWfzA1IcFvUPX5zF82eaCa3oLGT0d7rMYfD9-hxWdhy6m9Q5K70NJ8X17To46WGW8-D7PyNu_-9fZw-Tx6f98dvM4cVKxMhHYNKJpWt5oU9dOtRXIqvIATgBoIYZHlA04JnSrfNO16DRCLUVXORS1k2dkvuf6CEv7nvo1pK2N0NtdENPCQiq9W6HlnmvZtcbUftitHRhjXNWaSimUrdIDi-9ZLsWcE3Y_PM7sKN6O4u0o3nK7Ez90rvedT1gVTB4XabMdBruMmzS4yX93DRcDQH4BpDqOvA
CitedBy_id crossref_primary_10_1140_epjp_s13360_023_04547_4
Cites_doi 10.1016/j.knosys.2019.04.014
10.1016/j.ins.2006.06.003
10.1016/0022-0000(93)90048-2
10.1016/j.ins.2006.06.006
10.1016/j.ins.2007.02.041
10.1016/j.ins.2008.12.025
10.1007/s41066-018-0108-3
10.2307/2348478
10.1007/978-3-7908-1840-6
10.1016/S0165-0114(00)00023-3
10.1007/BF01001956
10.1007/s10844-013-0254-7
10.1007/978-94-011-3534-4
10.1016/j.ijar.2013.03.018
10.1006/jmps.1999.1284
10.1016/S0020-0255(97)10046-9
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2478/amns.2021.1.00110
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
EndPage 2116
ExternalDocumentID oai_doaj_org_article_1d163fb887d3406ca888c5b8544e3b46
10_2478_amns_2021_1_00110
10_2478_amns_2021_1_00110812103
GroupedDBID 9WM
ABFKT
ADBLJ
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
EBS
GROUPED_DOAJ
M~E
OK1
QD8
AAYXX
CITATION
SLJYH
ID FETCH-LOGICAL-c340t-2e99299b196877c4b5a355daac2aa622929e39ac026b4d9fbec6ea732f5ce27c3
IEDL.DBID DOA
ISSN 2444-8656
IngestDate Tue Oct 22 15:15:19 EDT 2024
Fri Aug 23 03:37:47 EDT 2024
Sat Sep 09 02:20:13 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-2e99299b196877c4b5a355daac2aa622929e39ac026b4d9fbec6ea732f5ce27c3
OpenAccessLink https://doaj.org/article/1d163fb887d3406ca888c5b8544e3b46
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1d163fb887d3406ca888c5b8544e3b46
crossref_primary_10_2478_amns_2021_1_00110
walterdegruyter_journals_10_2478_amns_2021_1_00110812103
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2023
Publisher Sciendo
Publisher_xml – name: Sciendo
References 2024042713464344954_j_amns.2021.1.00110_ref_002
2024042713464344954_j_amns.2021.1.00110_ref_024
2024042713464344954_j_amns.2021.1.00110_ref_003
2024042713464344954_j_amns.2021.1.00110_ref_025
2024042713464344954_j_amns.2021.1.00110_ref_022
2024042713464344954_j_amns.2021.1.00110_ref_001
2024042713464344954_j_amns.2021.1.00110_ref_023
2024042713464344954_j_amns.2021.1.00110_ref_020
2024042713464344954_j_amns.2021.1.00110_ref_021
2024042713464344954_j_amns.2021.1.00110_ref_019
2024042713464344954_j_amns.2021.1.00110_ref_017
2024042713464344954_j_amns.2021.1.00110_ref_018
2024042713464344954_j_amns.2021.1.00110_ref_015
2024042713464344954_j_amns.2021.1.00110_ref_016
2024042713464344954_j_amns.2021.1.00110_ref_013
2024042713464344954_j_amns.2021.1.00110_ref_014
2024042713464344954_j_amns.2021.1.00110_ref_011
2024042713464344954_j_amns.2021.1.00110_ref_012
2024042713464344954_j_amns.2021.1.00110_ref_031
2024042713464344954_j_amns.2021.1.00110_ref_010
2024042713464344954_j_amns.2021.1.00110_ref_032
2024042713464344954_j_amns.2021.1.00110_ref_030
2024042713464344954_j_amns.2021.1.00110_ref_008
2024042713464344954_j_amns.2021.1.00110_ref_009
2024042713464344954_j_amns.2021.1.00110_ref_006
2024042713464344954_j_amns.2021.1.00110_ref_028
2024042713464344954_j_amns.2021.1.00110_ref_007
2024042713464344954_j_amns.2021.1.00110_ref_029
2024042713464344954_j_amns.2021.1.00110_ref_004
2024042713464344954_j_amns.2021.1.00110_ref_026
2024042713464344954_j_amns.2021.1.00110_ref_005
2024042713464344954_j_amns.2021.1.00110_ref_027
References_xml – ident: 2024042713464344954_j_amns.2021.1.00110_ref_030
  doi: 10.1016/j.knosys.2019.04.014
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_011
  doi: 10.1016/j.ins.2006.06.003
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_013
  doi: 10.1016/0022-0000(93)90048-2
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_012
  doi: 10.1016/j.ins.2006.06.006
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_016
  doi: 10.1016/j.ins.2007.02.041
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_019
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_021
  doi: 10.1016/j.ins.2008.12.025
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_020
  doi: 10.1007/s41066-018-0108-3
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_015
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_027
  doi: 10.2307/2348478
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_032
  doi: 10.1007/978-3-7908-1840-6
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_003
  doi: 10.1016/S0165-0114(00)00023-3
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_005
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_001
  doi: 10.1007/BF01001956
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_029
  doi: 10.1007/s10844-013-0254-7
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_009
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_022
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_007
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_024
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_014
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_018
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_031
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_023
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_010
  doi: 10.1007/978-94-011-3534-4
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_028
  doi: 10.1016/j.ijar.2013.03.018
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_004
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_002
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_006
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_025
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_026
  doi: 10.1006/jmps.1999.1284
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_008
– ident: 2024042713464344954_j_amns.2021.1.00110_ref_017
  doi: 10.1016/S0020-0255(97)10046-9
SSID ssj0002313662
Score 2.2657707
Snippet Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions, which the...
Abstract Traditional rough set theory is mainly used to reduce attributes and extract rules in databases in which attributes are characterised by partitions,...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 2103
SubjectTerms attribute
decision system
discernible matrix
information entropy
Title Innovations to Attribute Reduction of Covering Decision System Based on Conditional Information Entropy
URI http://www.degruyter.com/doi/10.2478/amns.2021.1.00110
https://doaj.org/article/1d163fb887d3406ca888c5b8544e3b46
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz34FuuLPXgSYpN95HFsq1KFehDF3sI-C4JJaSPiv3d2Ny0qiBeP2Tw2zGTyzezMfoPQObOaSACCCGIDEjFmRJRbziOaSkISK4nI3Abn8X06emJ3Ez750urL1YQFeuAguF6iwWOwEmxBUwAfJSBkU1zmHJ5LJQtk23HxJZh68SQuCU1TEtKYhGV5T7xWjp2bJJeJzz7E34DI8_VvoM13n6PWZjp_-2iWOVEPNTfbaLP1EXE_vNsOWjPVLtpq_UXcWuNiD01vVy1NF7ipcb8J7asMfnCErG4c1xYPXZUmIBS-avvp4EBTjgeAYBrD8bB2iWu_KIjb_Un-5mtXxj772EdPN9ePw1HUNk6IFMioiYgpwOspJFhXnmWKSS7ArdBCKCJESgicNLQQCuIvyXRhQY-pERkllitDMkUPUKeqK3OIsNFWsIxwyZRgTJIitjngXmp4bqVmtIsullIsZ4Efo4S4wom8dCIvncjLxJfOxV00cHJeXeiorf0AKLxsFV7-pfAuyn9oqWzNbvH7zLnjSaNH_zH_MVp3LefDMswJ6jTzN3MKjkkjz-D_-jw-81_iJ0-84ec
link.rule.ids 315,783,787,867,2109,27936,27937,76493,76494
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOEAPtLRULG3Bh54qBTZ-JTkuW2ChQKUWJG6Wn3tig3aDKv59x453paL20mOcWEnGj_nm4W8APvPgqEFFUKBtQAvOvS7qIETBpKG0DIbqKh5wvr6Rkzt-eS_u10Asz8Kkfd-laOVxll1KV-ZVfawfZpFgm5ZHZQogoKW-UUne4PTeGE3Of35fOVcQtDApaR_F_HvfP_RQout_Bdu_Uoja-en86blbhkSTpjl7A9sZIpJR_107sOZnb-F1hoskL8bFO5herCqaLkjXklHXV6_y5EfkY43tpA1kHJM0UUGRr7mcDulZyskJKjBH8Hrcxrh18gmSfDwpdT6NWeyPz7twd3Z6O54UuW5CYRkfdgX1DYKexuDiqqvKciM0ogqntaVaS0rxpmeNtmh-Ge6agMMova4YDcJ6Wln2HtZn7czvAfEuaF5RYbjVnBvaDEONak96UQfjOBvAl6UU1WNPj6HQrIgiV1HkKopclSlzbjiAkyjn1YOR2To1tPOpyoOtSocIMRjc-xz-jLQaTXQrTC1wHjHD5QDqF6Ok8qpb_PvNdaRJY_v_3_UQNie311fq6uLm2wfYijXnez_MR1jv5k_-EyKTzhzkefgbf2Pf6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VqVTBodACIrzqAyekpVm_dveYpk3TlhYEVOrN8jMnslGyFeq_Z-x1IoHgwnG9tlY79ni-8Yy_AXjPg6MGDUGBvgEtOPe6qIMQBZOG0jIYqqt4wfn6Rs5u-eWduNuBcnMXJu37LkUrj5cupFRlXtXH-scikmvT8mOZggfope9Wkjd8ALvj2fm3z9uDFQQsTEraRzD_PvY3G5So-h_D_s8UnnZ-vrp_6Dbh0GRlpk9hP8NDMu7n8wB2_OIQnmSoSLIirp_B_GJbzXRNupaMu75ylSdfIxdrbCdtIJOYoInGiZzmUjqkZygnJ2i8HMHnSRtj1uk8kOSrSWnwWcxgXz48h9vp2ffJrMg1EwrL-KgrqG8Q8DQGFauuKsuN0IgonNaWai0pxZeeNdqi62W4awJOofS6YjQI62ll2QsYLNqFfwnEu6B5RYXhVnNuaDMKNZo86UUdjONsCB82UlTLnhpDoUsRRa6iyFUUuSpT1txoCCdRztuOkdU6NbSrucpKokqH6DAY3Pcc_oy0Gt1zK0wtcA0xw-UQ6j9mSWWNW__7y3WkSGOv_n_oEex9OZ2qTxc3V6_hUSw33x_BvIFBt7r3bxGUdOZdXoa_AL4f3eI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovations+to+Attribute+Reduction+of+Covering+Decision+System+Based+on+Conditional+Information+Entropy&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Xia+Xiuyun&rft.au=Tian+Hao&rft.au=Wang+Ye&rft.date=2023-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=8&rft.issue=1&rft.spage=2103&rft.epage=2116&rft_id=info:doi/10.2478%2Famns.2021.1.00110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d163fb887d3406ca888c5b8544e3b46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon