The ablation of plastics by intense pulsed ion beam

With strong flash heating effects, intense pulsed ion beam (IPIB) may induce ablation on the solid surface and it is the basis of applications such as surface cleaning, nanopowder preparation and thin-film synthesis with IPIB. In this study, the ablation of polymethyl methacrylate (PMMA) by IPIB was...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 384; p. 125338
Main Authors Yu, Xiao, Zhang, Shijian, Zhang, Nan, Zhong, Haowen, Liang, Guoying, Xu, Mofei, Kuang, Shicheng, Ren, Jianhui, Shang, Xuying, Yan, Sha, Remnev, Gennady Efimovich, Le, Xiaoyun
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.02.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With strong flash heating effects, intense pulsed ion beam (IPIB) may induce ablation on the solid surface and it is the basis of applications such as surface cleaning, nanopowder preparation and thin-film synthesis with IPIB. In this study, the ablation of polymethyl methacrylate (PMMA) by IPIB was investigated with varied beam energy density on pulsed ion beam accelerator BIPPAB-450 to study the ablation of IPIB under strong ablation. With thermal imaging measurement, it is revealed that when energy reaches a certain threshold, the ablation plume generated on the target surface may impose a shielding effect on the ion beam energy from depositing in the target. It is verified by thermal field simulation that for the low evaporation temperature and high thermal resistance, intense ablation plume may be generated on the surface of plastics under low IPIB energy density or at the early stage of IPIB irradiation. Ablation mass measurement demonstrated that under irradiation of IPIB with a pulse length of 120 ns, ion energy up to 450 keV, energy density up to 3.8 J/cm2, the mass loss of the target increases with the rise of IPIB energy density. Under the irradiation of a series of pulses, the mass loss of PMMA increases proportionally. Unlike ablation on metals by direct beam energy deposition, the ablation of plastics by IPIB endures more stages and the ablation may be more achieved by the heated ablation plasma by beam irradiation. •Beam energy shielding effects under strong ablation by pulsed ion beam•Ablated plasma indirect ablation to the substrate under beam irradiation•Proportional mass loss with pulse number under strong ablation
AbstractList With strong flash heating effects, intense pulsed ion beam (IPIB) may induce ablation on the solid surface and it is the basis of applications such as surface cleaning, nanopowder preparation and thin-film synthesis with IPIB. In this study, the ablation of polymethyl methacrylate (PMMA) by IPIB was investigated with varied beam energy density on pulsed ion beam accelerator BIPPAB-450 to study the ablation of IPIB under strong ablation. With thermal imaging measurement, it is revealed that when energy reaches a certain threshold, the ablation plume generated on the target surface may impose a shielding effect on the ion beam energy from depositing in the target. It is verified by thermal field simulation that for the low evaporation temperature and high thermal resistance, intense ablation plume may be generated on the surface of plastics under low IPIB energy density or at the early stage of IPIB irradiation. Ablation mass measurement demonstrated that under irradiation of IPIB with a pulse length of 120 ns, ion energy up to 450 keV, energy density up to 3.8 J/cm2, the mass loss of the target increases with the rise of IPIB energy density. Under the irradiation of a series of pulses, the mass loss of PMMA increases proportionally. Unlike ablation on metals by direct beam energy deposition, the ablation of plastics by IPIB endures more stages and the ablation may be more achieved by the heated ablation plasma by beam irradiation. •Beam energy shielding effects under strong ablation by pulsed ion beam•Ablated plasma indirect ablation to the substrate under beam irradiation•Proportional mass loss with pulse number under strong ablation
With strong flash heating effects, intense pulsed ion beam (IPIB) may induce ablation on the solid surface and it is the basis of applications such as surface cleaning, nanopowder preparation and thin-film synthesis with IPIB. In this study, the ablation of polymethyl methacrylate (PMMA) by IPIB was investigated with varied beam energy density on pulsed ion beam accelerator BIPPAB-450 to study the ablation of IPIB under strong ablation. With thermal imaging measurement, it is revealed that when energy reaches a certain threshold, the ablation plume generated on the target surface may impose a shielding effect on the ion beam energy from depositing in the target. It is verified by thermal field simulation that for the low evaporation temperature and high thermal resistance, intense ablation plume may be generated on the surface of plastics under low IPIB energy density or at the early stage of IPIB irradiation. Ablation mass measurement demonstrated that under irradiation of IPIB with a pulse length of 120 ns, ion energy up to 450 keV, energy density up to 3.8 J/cm2, the mass loss of the target increases with the rise of IPIB energy density. Under the irradiation of a series of pulses, the mass loss of PMMA increases proportionally. Unlike ablation on metals by direct beam energy deposition, the ablation of plastics by IPIB endures more stages and the ablation may be more achieved by the heated ablation plasma by beam irradiation.
ArticleNumber 125338
Author Kuang, Shicheng
Zhang, Shijian
Le, Xiaoyun
Zhang, Nan
Zhong, Haowen
Yan, Sha
Xu, Mofei
Remnev, Gennady Efimovich
Shang, Xuying
Yu, Xiao
Liang, Guoying
Ren, Jianhui
Author_xml – sequence: 1
  givenname: Xiao
  surname: Yu
  fullname: Yu, Xiao
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 2
  givenname: Shijian
  surname: Zhang
  fullname: Zhang, Shijian
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 3
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 4
  givenname: Haowen
  surname: Zhong
  fullname: Zhong, Haowen
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 5
  givenname: Guoying
  surname: Liang
  fullname: Liang, Guoying
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 6
  givenname: Mofei
  surname: Xu
  fullname: Xu, Mofei
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 7
  givenname: Shicheng
  surname: Kuang
  fullname: Kuang, Shicheng
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 8
  givenname: Jianhui
  surname: Ren
  fullname: Ren, Jianhui
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 9
  givenname: Xuying
  surname: Shang
  fullname: Shang, Xuying
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 10
  givenname: Sha
  orcidid: 0000-0002-4380-9382
  surname: Yan
  fullname: Yan, Sha
  organization: Institute of Heavy Ion Physics, Peking University, Beijing 100871, PR China
– sequence: 11
  givenname: Gennady Efimovich
  surname: Remnev
  fullname: Remnev, Gennady Efimovich
  organization: School of Physics, Beihang University, Beijing 100191, PR China
– sequence: 12
  givenname: Xiaoyun
  surname: Le
  fullname: Le, Xiaoyun
  email: xyle@buaa.edu.cn
  organization: School of Physics, Beihang University, Beijing 100191, PR China
BookMark eNqFkN1LwzAUxYNMcJv-C1LwuTMfTZOCD8rwCwa-zOeQJreY0jU1yYT993ZWX3zZ0-UezjmX-1ugWe97QOia4BXBpLxtV3EfGuN1WlFMR5FyxuQZmhMpqpyxQszQHFMuclkJeoEWMbYYYyKqYo7Y9gMyXXc6Od9nvsmGTsfkTMzqQ-b6BH2EbNh3EWx2dNSgd5fovNGjcvU7l-j96XG7fsk3b8-v64dNbliBU05tU3NhikJSUfPa8mLcDLFQFlxTKwiw2lpRVpXkWGgpNMNaApe8qZioKrZEN1PvEPznHmJSrd-HfjypKBNcMsyZHF13k8sEH2OARhmXft5JQbtOEayOmFSr_jCpIyY1YRrj5b_4ENxOh8Pp4P0UhBHBl4OgonHQG7AugEnKeneq4hvs8obu
CitedBy_id crossref_primary_10_1016_j_nimb_2023_06_006
crossref_primary_10_1016_j_jallcom_2022_166411
crossref_primary_10_1016_j_vacuum_2021_110154
Cites_doi 10.1016/B978-0-12-780621-1.50005-8
10.1016/j.vacuum.2015.09.006
10.1017/S0263034617000398
10.1134/S102745101706012X
10.1134/S1063785016020103
10.1116/1.580435
10.1017/S0263034616000938
10.1109/27.901230
10.1016/S0168-583X(03)01124-8
10.1016/j.nimb.2008.06.030
10.1134/S1027451016020270
10.1016/S0257-8972(99)00058-4
10.1016/S0257-8972(02)00199-8
10.1016/j.apsusc.2018.04.093
10.1016/j.surfcoat.2006.07.201
10.1016/j.surfcoat.2006.10.040
10.1016/j.surfcoat.2006.07.085
10.1016/j.nimb.2015.08.039
10.1016/j.stam.2004.11.010
10.1016/j.vacuum.2014.12.003
10.1088/0029-5515/20/12/006
10.1016/S0042-207X(01)00472-9
10.1103/PhysRevLett.31.1174
10.1134/S1027451019040086
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Feb 25, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 25, 2020
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2020.125338
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
ExternalDocumentID 10_1016_j_surfcoat_2020_125338
S0257897220300074
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFRZQ
AFTJW
AGCQF
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSH
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
WUQ
7QQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c340t-2dfb57c44827b5bd5457cc1de645a2d71e3bdd76998507a87a30a8e585f937993
IEDL.DBID .~1
ISSN 0257-8972
IngestDate Fri Jul 25 06:41:16 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Tue Jul 01 03:07:50 EDT 2025
Sun May 18 06:24:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Energy shielding
Ablation
Intense pulsed ion beam
Polymethyl methacrylate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-2dfb57c44827b5bd5457cc1de645a2d71e3bdd76998507a87a30a8e585f937993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4380-9382
PQID 2375830538
PQPubID 2045394
ParticipantIDs proquest_journals_2375830538
crossref_citationtrail_10_1016_j_surfcoat_2020_125338
crossref_primary_10_1016_j_surfcoat_2020_125338
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2020_125338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Mei, Sun, Hao, Ma, Dong (bb0050) 2007; 201
Yu, Shen, Zhong, Qu, Zhang, Zhang, Zhang, Yan, Le (bb0115) 2015
Kovivchak (bb0105) 2019; 13
Kovivchak, Kryazhev, Zapevalova, Likholobov (bb0110) 2016; 10
Zhang, Zhong, Yu, Shen, Liang, Cui, Zhang, Zhang, Yan, Le (bb0080) 2017; 35
Rej, Davis, Olson, Remnev, Zakoutaev, Ryzhkov, Struts, Isakov, Shulov, Nochevnaya, Stinnett, Neau, Yatsui, Jiang (bb0020) 1997; 15
Wang, Lei, Zhang (bb0030) 2007; 201
Yu, Shen, Qu, Liu, Zhong, Zhang, Zhang, Yan, Zhang, Zhang, Le (bb0120) 2015; 113
Sudan, Lovelace (bb0010) 1973; 31
Li, Han, Xin, Zhu, Lei (bb0055) 2008; 266
Remnev, Isakov, Opekounov, Matvienko, Ryzhkov, Struts, Grushin, Zakoutayev, Potyomkin, Tarbokov, Pushkaryov, Kutuzov, Ovsyannikov (bb0015) 1999; 114
Zhang, Zhong, Ye, Shen, Liang, Cui, Yu, Zhang, Zhang, Yan, Remnev, Le (bb0085) 2017; 35
Ziegler (bb0130) 1988; 268
Kovivchak, Kryazhev, Zapevalova (bb0095) 2017; 11
Kovivchak, Kryazhev, Zapevalova (bb0100) 2016; 42
Le, Yan, Liu, Zhao (bb0040) 2007; 201
Humphries (bb0005) 1980; 20
Le, Zhao, Yan, Han, Xiang (bb0035) 2002; 158–159
Sasaki, Takeda, Yokoyama, Miura, Suzuki, Suematsu, Jiang, Yatsui (bb0070) 2005; 6
Yu, Shen, Isakova, Zhong, Zhang, Yan, Zhang, Zhang, Le (bb0125) 2015; 122
Stinnett, Buchheit, Neau, Crawford, Lamppa, Renk, Greenly, Boyd, Thompson, Rej (bb0025) 1995
Zhu, Lei, Ma (bb0135) 2003; 211
Zhang, Yu, Zhong, Wei, Qu, Shen, Zhang, Yan, Zhang, Zhang, Le (bb0075) 2015; 365
Kovivchak, Kryazhev, Trenikhin, Arbuzov, Zapevalova, Likholobov (bb0090) 2018; 448
Akamatsu, Tanaka, Yamanishi, Egawa, Yamasaki, Miki, Yatsuzuka (bb0045) 2002
Sonegawa, Ohtomo, Jiang, Yatsui (bb0060) 2000; 28
Jiang, Ohtomo, Igarashi, Yatsui (bb0065) 1998
Yu (10.1016/j.surfcoat.2020.125338_bb0115) 2015
Stinnett (10.1016/j.surfcoat.2020.125338_bb0025) 1995
Akamatsu (10.1016/j.surfcoat.2020.125338_bb0045) 2002
Zhang (10.1016/j.surfcoat.2020.125338_bb0080) 2017; 35
Kovivchak (10.1016/j.surfcoat.2020.125338_bb0110) 2016; 10
Humphries (10.1016/j.surfcoat.2020.125338_bb0005) 1980; 20
Rej (10.1016/j.surfcoat.2020.125338_bb0020) 1997; 15
Zhang (10.1016/j.surfcoat.2020.125338_bb0075) 2015; 365
Sonegawa (10.1016/j.surfcoat.2020.125338_bb0060) 2000; 28
Zhang (10.1016/j.surfcoat.2020.125338_bb0085) 2017; 35
Le (10.1016/j.surfcoat.2020.125338_bb0040) 2007; 201
Kovivchak (10.1016/j.surfcoat.2020.125338_bb0095) 2017; 11
Mei (10.1016/j.surfcoat.2020.125338_bb0050) 2007; 201
Remnev (10.1016/j.surfcoat.2020.125338_bb0015) 1999; 114
Yu (10.1016/j.surfcoat.2020.125338_bb0120) 2015; 113
Wang (10.1016/j.surfcoat.2020.125338_bb0030) 2007; 201
Jiang (10.1016/j.surfcoat.2020.125338_bb0065) 1998
Kovivchak (10.1016/j.surfcoat.2020.125338_bb0100) 2016; 42
Le (10.1016/j.surfcoat.2020.125338_bb0035) 2002; 158–159
Sasaki (10.1016/j.surfcoat.2020.125338_bb0070) 2005; 6
Zhu (10.1016/j.surfcoat.2020.125338_bb0135) 2003; 211
Li (10.1016/j.surfcoat.2020.125338_bb0055) 2008; 266
Ziegler (10.1016/j.surfcoat.2020.125338_bb0130) 1988; 268
Yu (10.1016/j.surfcoat.2020.125338_bb0125) 2015; 122
Sudan (10.1016/j.surfcoat.2020.125338_bb0010) 1973; 31
Kovivchak (10.1016/j.surfcoat.2020.125338_bb0090) 2018; 448
Kovivchak (10.1016/j.surfcoat.2020.125338_bb0105) 2019; 13
References_xml – volume: 122
  start-page: 12
  year: 2015
  end-page: 16
  ident: bb0125
  article-title: Study of energy deposition of intense pulsed ion beam in metal target
  publication-title: Vacuum
– volume: 448
  start-page: 642
  year: 2018
  end-page: 645
  ident: bb0090
  article-title: Ultrafast catalytic synthesis of carbon nanofibers on a surface of commercial chlorinated polymers under the action of a high power ion beam of nanosecond duration
  publication-title: Appl. Surf. Sci.
– volume: 113
  start-page: 36
  year: 2015
  end-page: 42
  ident: bb0120
  article-title: Characterization and analysis of infrared imaging diagnostics for intense pulsed ion and electron beams
  publication-title: Vacuum
– volume: 211
  start-page: 69
  year: 2003
  end-page: 79
  ident: bb0135
  article-title: Surface morphology of titanium irradiated by high-intensity pulsed ion beam
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.
– volume: 201
  start-page: 4991
  year: 2007
  end-page: 4994
  ident: bb0040
  article-title: Detection of shocks generated by intense pulsed ion beam irradiation
  publication-title: Surf. Coatings Technol.
– volume: 6
  start-page: 181
  year: 2005
  end-page: 184
  ident: bb0070
  article-title: Thermoelectric properties of boron-carbide thin film and thin film based thermoelectric device fabricated by intense-pulsed ion beam evaporation
  publication-title: Sci. Technol. Adv. Mater.
– volume: 31
  start-page: 1174
  year: 1973
  end-page: 1177
  ident: bb0010
  article-title: Generation of intense ion beams in pulsed diodes
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 1089
  year: 1997
  end-page: 1097
  ident: bb0020
  article-title: Materials processing with intense pulsed ion beams
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
– volume: 35
  start-page: 409
  year: 2017
  end-page: 414
  ident: bb0080
  article-title: Simulation analysis of zinc ablation process and mass by intense pulsed ion beam irradiation
  publication-title: Laser Part. Beams.
– volume: 13
  start-page: 624
  year: 2019
  end-page: 627
  ident: bb0105
  article-title: On the formation of nanostructured carbon layers on the surface of organic polymers under the action of a high-power ion beam
  publication-title: J. Surf. Investig.
– volume: 201
  start-page: 5072
  year: 2007
  end-page: 5076
  ident: bb0050
  article-title: Surface modification of high-speed steel by intense pulsed ion beam irradiation
  publication-title: Surf. Coatings Technol.
– volume: 268
  start-page: 3
  year: 1988
  end-page: 61
  ident: bb0130
  article-title: The stopping and range of ions in solids
  publication-title: Ion Implant. Sci. Technol.
– start-page: 46
  year: 1995
  end-page: 55
  ident: bb0025
  article-title: Ion beam surface treatment: a new technique for thermally modifying surfaces using intense, pulsed ion beams
  publication-title: Dig. Tech. Pap. Int. Pulsed Power Conf
– volume: 28
  start-page: 1545
  year: 2000
  end-page: 1548
  ident: bb0060
  article-title: Thin-film deposition of (BaxSr1-x)TiO3 by pulsed ion beam evaporation
  publication-title: IEEE Trans. Plasma Sci.
– volume: 11
  start-page: 1216
  year: 2017
  end-page: 1218
  ident: bb0095
  article-title: Formation of nanostructured carbon layers on the surface of chlorinated polymers under high-power ion beam irradiation
  publication-title: J. Surf. Investig.
– volume: 114
  start-page: 206
  year: 1999
  end-page: 212
  ident: bb0015
  article-title: High intensity pulsed ion beam sources and their industrial applications
  publication-title: Surf. Coatings Technol.
– volume: 266
  start-page: 3945
  year: 2008
  end-page: 3952
  ident: bb0055
  article-title: Wear and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.
– volume: 201
  start-page: 5884
  year: 2007
  end-page: 5890
  ident: bb0030
  article-title: Surface modification of 316L stainless steel with high-intensity pulsed ion beams
  publication-title: Surf. Coatings Technol.
– volume: 10
  start-page: 421
  year: 2016
  end-page: 424
  ident: bb0110
  article-title: On the influence of a high-power ion beam on thin polymer layers deposited onto dielectric substrates
  publication-title: J. Surf. Investig.
– volume: 20
  start-page: 1549
  year: 1980
  end-page: 1612
  ident: bb0005
  article-title: Intense pulsed ion beams for fusion applications
  publication-title: Nucl. Fusion.
– start-page: 121
  year: 1998
  end-page: 124
  ident: bb0065
  article-title: Thin film deposition by pulsed ion beam evaporation
  publication-title: BEAMS 1998 - Proc. 12th Int. Conf. High-Power Part. Beams
– start-page: 563
  year: 2002
  end-page: 569
  ident: bb0045
  article-title: Increase of Si solution rate into Al matrix by repeated irradiation of intense pulsed ion beam
  publication-title: Vacuum
– volume: 365
  start-page: 210
  year: 2015
  end-page: 213
  ident: bb0075
  article-title: The ablation mass of metals by intense pulsed ion beam irradiation
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.
– volume: 158–159
  start-page: 14
  year: 2002
  end-page: 20
  ident: bb0035
  article-title: The thermodynamical process in metal surface due to the irradiation of intense pulsed ion beam
  publication-title: Surf. Coatings Technol.
– start-page: 64
  year: 2015
  ident: bb0115
  article-title: Distribution and evolution of thermal field induced by intense pulsed ion beam on thin metal target
  publication-title: Wuli Xuebao/Acta Phys. Sin.
– volume: 42
  start-page: 153
  year: 2016
  end-page: 155
  ident: bb0100
  article-title: The formation of nanostructured carbon material on a ferrocene-containing polymer surface induced by a high-power ion beam
  publication-title: Tech. Phys. Lett.
– volume: 35
  start-page: 108
  year: 2017
  end-page: 113
  ident: bb0085
  article-title: Study on ablation products of zinc by intense pulsed ion beam irradiation
  publication-title: Laser Part. Beams.
– volume: 268
  start-page: 3
  year: 1988
  ident: 10.1016/j.surfcoat.2020.125338_bb0130
  article-title: The stopping and range of ions in solids
  publication-title: Ion Implant. Sci. Technol.
  doi: 10.1016/B978-0-12-780621-1.50005-8
– volume: 122
  start-page: 12
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125338_bb0125
  article-title: Study of energy deposition of intense pulsed ion beam in metal target
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2015.09.006
– start-page: 46
  year: 1995
  ident: 10.1016/j.surfcoat.2020.125338_bb0025
  article-title: Ion beam surface treatment: a new technique for thermally modifying surfaces using intense, pulsed ion beams
– volume: 35
  start-page: 409
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125338_bb0080
  article-title: Simulation analysis of zinc ablation process and mass by intense pulsed ion beam irradiation
  publication-title: Laser Part. Beams.
  doi: 10.1017/S0263034617000398
– volume: 11
  start-page: 1216
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125338_bb0095
  article-title: Formation of nanostructured carbon layers on the surface of chlorinated polymers under high-power ion beam irradiation
  publication-title: J. Surf. Investig.
  doi: 10.1134/S102745101706012X
– volume: 42
  start-page: 153
  year: 2016
  ident: 10.1016/j.surfcoat.2020.125338_bb0100
  article-title: The formation of nanostructured carbon material on a ferrocene-containing polymer surface induced by a high-power ion beam
  publication-title: Tech. Phys. Lett.
  doi: 10.1134/S1063785016020103
– volume: 15
  start-page: 1089
  year: 1997
  ident: 10.1016/j.surfcoat.2020.125338_bb0020
  article-title: Materials processing with intense pulsed ion beams
  publication-title: J. Vac. Sci. Technol. A Vacuum, Surfaces, Film.
  doi: 10.1116/1.580435
– start-page: 121
  year: 1998
  ident: 10.1016/j.surfcoat.2020.125338_bb0065
  article-title: Thin film deposition by pulsed ion beam evaporation
– volume: 35
  start-page: 108
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125338_bb0085
  article-title: Study on ablation products of zinc by intense pulsed ion beam irradiation
  publication-title: Laser Part. Beams.
  doi: 10.1017/S0263034616000938
– volume: 28
  start-page: 1545
  year: 2000
  ident: 10.1016/j.surfcoat.2020.125338_bb0060
  article-title: Thin-film deposition of (BaxSr1-x)TiO3 by pulsed ion beam evaporation
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/27.901230
– volume: 211
  start-page: 69
  year: 2003
  ident: 10.1016/j.surfcoat.2020.125338_bb0135
  article-title: Surface morphology of titanium irradiated by high-intensity pulsed ion beam
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.
  doi: 10.1016/S0168-583X(03)01124-8
– volume: 266
  start-page: 3945
  year: 2008
  ident: 10.1016/j.surfcoat.2020.125338_bb0055
  article-title: Wear and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.
  doi: 10.1016/j.nimb.2008.06.030
– volume: 10
  start-page: 421
  year: 2016
  ident: 10.1016/j.surfcoat.2020.125338_bb0110
  article-title: On the influence of a high-power ion beam on thin polymer layers deposited onto dielectric substrates
  publication-title: J. Surf. Investig.
  doi: 10.1134/S1027451016020270
– volume: 114
  start-page: 206
  year: 1999
  ident: 10.1016/j.surfcoat.2020.125338_bb0015
  article-title: High intensity pulsed ion beam sources and their industrial applications
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/S0257-8972(99)00058-4
– volume: 158–159
  start-page: 14
  year: 2002
  ident: 10.1016/j.surfcoat.2020.125338_bb0035
  article-title: The thermodynamical process in metal surface due to the irradiation of intense pulsed ion beam
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/S0257-8972(02)00199-8
– volume: 448
  start-page: 642
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125338_bb0090
  article-title: Ultrafast catalytic synthesis of carbon nanofibers on a surface of commercial chlorinated polymers under the action of a high power ion beam of nanosecond duration
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.093
– volume: 201
  start-page: 4991
  year: 2007
  ident: 10.1016/j.surfcoat.2020.125338_bb0040
  article-title: Detection of shocks generated by intense pulsed ion beam irradiation
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2006.07.201
– volume: 201
  start-page: 5884
  year: 2007
  ident: 10.1016/j.surfcoat.2020.125338_bb0030
  article-title: Surface modification of 316L stainless steel with high-intensity pulsed ion beams
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2006.10.040
– volume: 201
  start-page: 5072
  year: 2007
  ident: 10.1016/j.surfcoat.2020.125338_bb0050
  article-title: Surface modification of high-speed steel by intense pulsed ion beam irradiation
  publication-title: Surf. Coatings Technol.
  doi: 10.1016/j.surfcoat.2006.07.085
– volume: 365
  start-page: 210
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125338_bb0075
  article-title: The ablation mass of metals by intense pulsed ion beam irradiation
  publication-title: Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms.
  doi: 10.1016/j.nimb.2015.08.039
– start-page: 64
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125338_bb0115
  article-title: Distribution and evolution of thermal field induced by intense pulsed ion beam on thin metal target
  publication-title: Wuli Xuebao/Acta Phys. Sin.
– volume: 6
  start-page: 181
  year: 2005
  ident: 10.1016/j.surfcoat.2020.125338_bb0070
  article-title: Thermoelectric properties of boron-carbide thin film and thin film based thermoelectric device fabricated by intense-pulsed ion beam evaporation
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1016/j.stam.2004.11.010
– volume: 113
  start-page: 36
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125338_bb0120
  article-title: Characterization and analysis of infrared imaging diagnostics for intense pulsed ion and electron beams
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2014.12.003
– volume: 20
  start-page: 1549
  year: 1980
  ident: 10.1016/j.surfcoat.2020.125338_bb0005
  article-title: Intense pulsed ion beams for fusion applications
  publication-title: Nucl. Fusion.
  doi: 10.1088/0029-5515/20/12/006
– start-page: 563
  year: 2002
  ident: 10.1016/j.surfcoat.2020.125338_bb0045
  article-title: Increase of Si solution rate into Al matrix by repeated irradiation of intense pulsed ion beam
  publication-title: Vacuum
  doi: 10.1016/S0042-207X(01)00472-9
– volume: 31
  start-page: 1174
  year: 1973
  ident: 10.1016/j.surfcoat.2020.125338_bb0010
  article-title: Generation of intense ion beams in pulsed diodes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.31.1174
– volume: 13
  start-page: 624
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125338_bb0105
  article-title: On the formation of nanostructured carbon layers on the surface of organic polymers under the action of a high-power ion beam
  publication-title: J. Surf. Investig.
  doi: 10.1134/S1027451019040086
SSID ssj0001794
Score 2.3197384
Snippet With strong flash heating effects, intense pulsed ion beam (IPIB) may induce ablation on the solid surface and it is the basis of applications such as surface...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125338
SubjectTerms Ablation
Cleaning
Energy
Energy shielding
Flux density
High temperature effects
Intense pulsed ion beam
Ion beams
Irradiation
Polymers
Polymethyl methacrylate
Shielding
Solid surfaces
Thermal imaging
Thermal resistance
Thermal simulation
Thin films
Title The ablation of plastics by intense pulsed ion beam
URI https://dx.doi.org/10.1016/j.surfcoat.2020.125338
https://www.proquest.com/docview/2375830538
Volume 384
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgADggKiUCoPrCGNY8fOWFVUBUQXqNTN8itSK2ij0g4s_HbOefCSUAfGRL4k-nz-_F10d0boShgX2Si1gXGMBjQTJhCphphHO0V6wJrW-Xrnh3EymtC7KZs20KCuhfFplRX3l5xesHV1J6zQDPPZLHzseW9LOSHgp34n9BXslHsvv37_SvPwDlf8Z2HAxjD6W5XwHPhplZml8jmVxDdaAO0j_tqgflF1sf8MD9FBJRxxv_y2I9RwixbaHdTntbXQ_rfWgscohvnHSpeZbniZ4Rxksm_JjPUbnhV56w7nG3ivxX4EgPZygibDm6fBKKgOSAhMTHvrgNhMM26ob-WpmbaghrgxkXUJZYpYHrlYW8sTCKlA9inBVdxTwkGEkIEqAWVyipqL5cKdIeyc4pb41QoxU0aNsBlLE05UoiJFFGsjVqMiTdU93B9i8SzrNLG5rNGUHk1ZotlG4addXvbP2GqR1qDLH54ggeS32nbqWZLVWnyVJIaYCGgtFuf_ePQF2vNXRTU766DmerVxl6BH1rpbOFwX7fRv70fjD1aO3uI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsNAEB1FUAQKxCnCuQWUJvHa66OgQAGUkEADSOmWvSwlgiTKIUTDT_GDzPqAgIRSoLS217bejt_MWDNvAE4iZVztxtpRhvmOn0TKiWKJOY80gtaQNbWx_c63d0Hj0b_psE4JPopeGFtWmXN_xukpW-dHqjma1WG3W72vWWuLQ0rRTq0nzCsrW-btFfO28XnzEjf5lNLrq4d6w8lHCzjK82sTh-pEslD5VgRTMqkxjgiVcrUJfCaoDl3jSa3DAJMRDJhEFAqvJiKDsXWC_jy2CkzI-8s-0oUdm3D2_l1XYi08_bHDkP7x9WbakntIiKNEDYQt4qRW2QGDregvj_jLN6QO73od1vJIlVxkYGxAyfQ3oVwvBsRtwuqMluEWeGhwRMistI4MEjLEuNxqQBP5Rrppobwhwyk-VxN7Be7SyzY8LgS2HVjqD_pmF4gxItTU0gMmaYmvIp2wOAipCIQrqGAVYAUqXOVy5XZqxjMv6tJ6vECTWzR5hmYFql_rhplgx9wVcQE6_2F6HL3K3LUHxS7x_OMfc-phEoY86kV7_7j1MZQbD7dt3m7etfZhxZ5JW-nZASxNRlNziMHQRB6lxkfgadHW_gnAehnX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ablation+of+plastics+by+intense+pulsed+ion+beam&rft.jtitle=Surface+%26+coatings+technology&rft.au=Yu%2C+Xiao&rft.au=Zhang%2C+Shijian&rft.au=Zhang%2C+Nan&rft.au=Zhong%2C+Haowen&rft.date=2020-02-25&rft.pub=Elsevier+BV&rft.issn=0257-8972&rft.eissn=1879-3347&rft.volume=384&rft.spage=1&rft_id=info:doi/10.1016%2Fj.surfcoat.2020.125338&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon