Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application
The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating...
Saved in:
Published in | Progress in organic coatings Vol. 172; p. 107080 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.11.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating material's properties and adopted as sustainable coating element. The thermo-chemical approach and an aqueous solution method were adopted to transform the rice husk ash into the biosilica and in silane treated form. The ultrasonicator was used to mix the biosilica particles with resin to create the composite coating material. The prepared coating material was then characterized using ASTM standards in order to evaluate the effects of biosilica addition. According to the results, the tensile and flexural properties were improved by the inclusion of silica particles up to 1 and 2 vol%. However the properties are reduced when the biosilica amount was increased up to 4 vol%. In contrast, the hardness and thermal conductivity of the 4 vol% of biosilica dispersed composite was 94 shore-D and 0.42 W/mK, respectively. In terms of mass loss stability, the 4 vol% biosilica dispersed composite outperformed. After the biosilica particle was added, the barrier behavior showed good resistance to oxygen penetration. However, the stability of water permeation was moderately affected. As a coating material for corrosion-prone metallic surfaces and other household coating applications, these mechanically enhanced, thermally strengthened, and barrier property strengthened biosilica-epoxy composites could be applied.
•Silane treated rice husk ash biosilica epoxy coatings were successfully prepared.•Mechanical properties of coatings are improved with RHA Biosilica content.•Thermal stability of coatings are improved with RHA Biosilica content.•Highest hardness achieved was 94 Shore-D, which is highly preferred in coating.•Barrier properties were improved as biosilica content improved. |
---|---|
AbstractList | The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating material's properties and adopted as sustainable coating element. The thermo-chemical approach and an aqueous solution method were adopted to transform the rice husk ash into the biosilica and in silane treated form. The ultrasonicator was used to mix the biosilica particles with resin to create the composite coating material. The prepared coating material was then characterized using ASTM standards in order to evaluate the effects of biosilica addition. According to the results, the tensile and flexural properties were improved by the inclusion of silica particles up to 1 and 2 vol%. However the properties are reduced when the biosilica amount was increased up to 4 vol%. In contrast, the hardness and thermal conductivity of the 4 vol% of biosilica dispersed composite was 94 shore-D and 0.42 W/mK, respectively. In terms of mass loss stability, the 4 vol% biosilica dispersed composite outperformed. After the biosilica particle was added, the barrier behavior showed good resistance to oxygen penetration. However, the stability of water permeation was moderately affected. As a coating material for corrosion-prone metallic surfaces and other household coating applications, these mechanically enhanced, thermally strengthened, and barrier property strengthened biosilica-epoxy composites could be applied. The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating material's properties and adopted as sustainable coating element. The thermo-chemical approach and an aqueous solution method were adopted to transform the rice husk ash into the biosilica and in silane treated form. The ultrasonicator was used to mix the biosilica particles with resin to create the composite coating material. The prepared coating material was then characterized using ASTM standards in order to evaluate the effects of biosilica addition. According to the results, the tensile and flexural properties were improved by the inclusion of silica particles up to 1 and 2 vol%. However the properties are reduced when the biosilica amount was increased up to 4 vol%. In contrast, the hardness and thermal conductivity of the 4 vol% of biosilica dispersed composite was 94 shore-D and 0.42 W/mK, respectively. In terms of mass loss stability, the 4 vol% biosilica dispersed composite outperformed. After the biosilica particle was added, the barrier behavior showed good resistance to oxygen penetration. However, the stability of water permeation was moderately affected. As a coating material for corrosion-prone metallic surfaces and other household coating applications, these mechanically enhanced, thermally strengthened, and barrier property strengthened biosilica-epoxy composites could be applied. •Silane treated rice husk ash biosilica epoxy coatings were successfully prepared.•Mechanical properties of coatings are improved with RHA Biosilica content.•Thermal stability of coatings are improved with RHA Biosilica content.•Highest hardness achieved was 94 Shore-D, which is highly preferred in coating.•Barrier properties were improved as biosilica content improved. |
ArticleNumber | 107080 |
Author | Alshahrani, Hassan Arun Prakash, V.R. |
Author_xml | – sequence: 1 givenname: Hassan surname: Alshahrani fullname: Alshahrani, Hassan organization: Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia – sequence: 2 givenname: V.R. surname: Arun Prakash fullname: Arun Prakash, V.R. email: vinprakash101@gmail.com organization: Department of Mechanical Engineering, J.N.N Institute of Engineering, Chennai, India |
BookMark | eNqFkMFu1DAQQC3USmwLv4AscSXL2A5JVuIAqkpBqsSllbhZzmSy8ZKNw9hB9AP4b5wuXLhUc7A0M29m_C7E2RQmEuKVgq0CVb09bOfAewwubTVonZM1NPBMbFRTm8IY9e1MbMAAFLuyhOfiIsYDAFTG7Dbi991AfHTjG3kkHNzk0Y3STZ1sHbMnljOHmTh5ijL0kj2SHJb4Xbo4yNaH6MeMyBSW_UATdZLm8OthrWA4zrmcSK6n-Wkv-8AyJl4wLbxumeeVTT5ML8R578ZIL_--l-L-0_Xd1efi9uvNl6uPtwWaElKhu7o0hErrcldp6IBUTX2LyjRlo0ujsGnrdzugUnVtTartddsjUYMGtTKVuRSvT3Pzr34sFJM9hIWnvNLqOoeptILc9f7UhRxiZOot-vR4Z2LnR6vAruLtwf4Tb1fx9iQ-49V_-Mz-6PjhafDDCaSs4GeWbyN6mpA6z4TJdsE_NeIPpmmm9w |
CitedBy_id | crossref_primary_10_1007_s13399_023_04638_3 crossref_primary_10_1088_1402_4896_ad804e crossref_primary_10_1007_s13399_022_03600_z crossref_primary_10_1007_s13399_023_04112_0 crossref_primary_10_1007_s13399_022_03335_x crossref_primary_10_1007_s13399_023_04905_3 crossref_primary_10_1007_s40033_024_00760_2 crossref_primary_10_1007_s13399_023_04158_0 crossref_primary_10_1007_s13399_023_04931_1 crossref_primary_10_1007_s12633_022_02245_x crossref_primary_10_1007_s12633_022_02228_y crossref_primary_10_1007_s13399_023_04491_4 crossref_primary_10_3390_polym15183756 crossref_primary_10_1007_s41779_025_01153_8 crossref_primary_10_1002_pc_27334 crossref_primary_10_1007_s12633_023_02320_x crossref_primary_10_1007_s13399_022_03679_4 crossref_primary_10_1002_pc_27215 crossref_primary_10_1002_pc_27216 crossref_primary_10_1007_s13233_024_00277_3 crossref_primary_10_1007_s12633_022_02281_7 crossref_primary_10_1007_s13399_024_06012_3 crossref_primary_10_1007_s13399_022_03342_y crossref_primary_10_1007_s13399_022_03409_w crossref_primary_10_1080_01694243_2024_2389332 crossref_primary_10_1007_s13399_022_03555_1 crossref_primary_10_1007_s12649_024_02556_7 crossref_primary_10_1002_pc_27363 crossref_primary_10_1007_s13399_023_04502_4 crossref_primary_10_1007_s13399_024_05558_6 crossref_primary_10_1007_s13399_023_04656_1 crossref_primary_10_1142_S0218625X24501038 crossref_primary_10_1007_s13399_022_03549_z crossref_primary_10_1007_s13399_022_03413_0 crossref_primary_10_1007_s13399_023_04273_y crossref_primary_10_1007_s12633_024_03054_0 crossref_primary_10_1155_2023_2219460 crossref_primary_10_1007_s13399_022_03354_8 crossref_primary_10_1007_s13399_022_03529_3 crossref_primary_10_1007_s13399_024_05837_2 crossref_primary_10_3390_polym15102261 crossref_primary_10_1007_s13399_023_04303_9 crossref_primary_10_1007_s13399_023_04534_w crossref_primary_10_1007_s13399_024_05349_z crossref_primary_10_1007_s13399_023_04932_0 crossref_primary_10_1007_s13399_023_05082_z crossref_primary_10_1007_s12633_022_02227_z crossref_primary_10_1177_15280837221137382 crossref_primary_10_1007_s13399_022_03559_x crossref_primary_10_1007_s12633_022_02135_2 crossref_primary_10_1080_15440478_2024_2317427 crossref_primary_10_1007_s12633_022_02284_4 crossref_primary_10_1007_s00289_024_05208_x crossref_primary_10_1007_s13399_023_04643_6 crossref_primary_10_1007_s41779_024_01104_9 crossref_primary_10_1007_s13399_024_06269_8 crossref_primary_10_1007_s12633_024_03024_6 crossref_primary_10_1007_s13399_022_03469_y crossref_primary_10_1007_s12221_024_00736_9 crossref_primary_10_1007_s12633_022_02262_w crossref_primary_10_1007_s13399_023_04736_2 crossref_primary_10_4028_p_xB2bet crossref_primary_10_1007_s11356_023_26365_y crossref_primary_10_1007_s13399_022_03475_0 crossref_primary_10_1007_s13399_023_04804_7 crossref_primary_10_1142_S0218625X25500799 crossref_primary_10_1007_s12633_023_02370_1 crossref_primary_10_1002_pc_27228 crossref_primary_10_1007_s13399_024_05595_1 |
Cites_doi | 10.1007/s00289-019-02878-w 10.1002/app.47901 10.1016/j.polymertesting.2018.07.008 10.3390/polym13020179 10.1007/s11223-017-9888-y 10.1007/s13399-022-02691-y 10.1007/s12633-020-00772-z 10.1139/tcsme-2017-0079 10.1016/j.polymertesting.2019.105987 10.1007/s12588-019-09251-6 10.1007/s12633-020-00569-0 10.1016/j.polymertesting.2020.106526 10.1002/mame.201970035 10.1007/s13369-020-04363-3 10.1002/pssb.202000609 10.1007/s13399-022-02801-w 10.1002/pc.25895 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Nov 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Nov 2022 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.porgcoat.2022.107080 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-331X |
ExternalDocumentID | 10_1016_j_porgcoat_2022_107080 S0300944022003770 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCE SDF SDG SES SEW SMS SPC SPCBC SSG SSH SSM SSZ T5K UHS WH7 WUQ ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c340t-2d743ec12249620d0e17efbc138482431c8b7590e41db7e1bf2bfcee8c3c21363 |
IEDL.DBID | .~1 |
ISSN | 0300-9440 |
IngestDate | Fri Jul 25 06:37:53 EDT 2025 Tue Jul 01 02:27:57 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Sun Apr 06 06:54:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Barrier properties and thermal properties Biosilica Composite coating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-2d743ec12249620d0e17efbc138482431c8b7590e41db7e1bf2bfcee8c3c21363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2727236210 |
PQPubID | 2045410 |
ParticipantIDs | proquest_journals_2727236210 crossref_citationtrail_10_1016_j_porgcoat_2022_107080 crossref_primary_10_1016_j_porgcoat_2022_107080 elsevier_sciencedirect_doi_10_1016_j_porgcoat_2022_107080 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Progress in organic coatings |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Balaji (bb0095) 2022 Thiyagu, Thendral, Gokilakrishnan, Uvaraja, Prakash (bb0155) 2022 Inbakumar, Ramesh (bb0130) 2018; 42 Prabhu (bb0150) 2022 Madueke, Bolasodun, Umunakwe, Nwonah (bb0075) 2014; 5 Arun Prakash, Francis Xavier, Ramesh, Maridurai, Siva Kumar, Raj (bb0010) 2020 Ariffin, Aung, Abdullah, Salleh (bb0065) 2020; 87 Syamimi, Islam, Sumdani (bb0055) 2020; 77 Onuegbu, Igwe (bb0080) 2011; 2 Rajadurai (bb0105) 2016; 384 Karthigairajan, Nagarajan, Raviraja Malarvannan, Ramesh Bapu, Jayabalakrishnan, Maridurai, Shanmuganathan (bb0140) 2021; 13 Parimalam, Islam, Yunus (bb0045) 2018; 70 Prakash, Viswanthan (bb0110) 2019; 118 Lian, Zhang, Wang, Congkang, Swart, Terblans (bb0165) 2021; 258 Arun Prakash, Viswanathan (bb0035) 2019; 23 Buketov, Dolgov, Sapronov, Nigalatii, Babich (bb0070) 2017; 49 Edoziuno, Nwaeju, Adediran, Odoni, Prakash (bb0085) 2021; 12 Anand, Venkateshwaran (bb0100) 2021 Zhang, Zhang, Wei, Liuyue, Jianping Liu, Liu, Fan, Ding, Guo (bb0025) 2019; 304 Alshahrani, VR (bb0125) 2022 Hani, Firouzi, Islam, Sumdani (bb0040) 2021; 42 Arun Prakash, Rajadurai (bb0135) 2016; 11 Mahalingam, Suresh Babu (bb0160) 2022 Parimalam, Islam, Yunus (bb0060) 2019; 136 Alshahrani, Prakash (bb0145) 2022 Jayabalakrishnan (bb0170) 2021; 43 Baig, Samad (bb0030) 2021; 13 Jaisingh, Selvam, Kumar, Thyagarajan (bb0090) 2014; 21 Ceritbinmez, Yapici (bb0120) 2020; 45 Hanny, Islam, Sumdani, Rashidi (bb0050) 2019; 78 Ben Samuel, Julyes Jaisingh, Sivakumar, Mayakannan, Arunprakash (bb0005) 2021; 13 Thiyagu, Sai Prasanna Kumar, Sathiyamoorthy, Arun Prakash (bb0015) 2021 Alshahrani, Arun Prakash (bb0020) 2022 Rajadurai (bb0115) 2017; 13 Zhang (10.1016/j.porgcoat.2022.107080_bb0025) 2019; 304 Parimalam (10.1016/j.porgcoat.2022.107080_bb0060) 2019; 136 Prakash (10.1016/j.porgcoat.2022.107080_bb0110) 2019; 118 Hani (10.1016/j.porgcoat.2022.107080_bb0040) 2021; 42 Hanny (10.1016/j.porgcoat.2022.107080_bb0050) 2019; 78 Thiyagu (10.1016/j.porgcoat.2022.107080_bb0155) 2022 Edoziuno (10.1016/j.porgcoat.2022.107080_bb0085) 2021; 12 Ceritbinmez (10.1016/j.porgcoat.2022.107080_bb0120) 2020; 45 Jaisingh (10.1016/j.porgcoat.2022.107080_bb0090) 2014; 21 Ariffin (10.1016/j.porgcoat.2022.107080_bb0065) 2020; 87 Inbakumar (10.1016/j.porgcoat.2022.107080_bb0130) 2018; 42 Thiyagu (10.1016/j.porgcoat.2022.107080_bb0015) 2021 Madueke (10.1016/j.porgcoat.2022.107080_bb0075) 2014; 5 Onuegbu (10.1016/j.porgcoat.2022.107080_bb0080) 2011; 2 Alshahrani (10.1016/j.porgcoat.2022.107080_bb0145) 2022 Ben Samuel (10.1016/j.porgcoat.2022.107080_bb0005) 2021; 13 Arun Prakash (10.1016/j.porgcoat.2022.107080_bb0135) 2016; 11 Alshahrani (10.1016/j.porgcoat.2022.107080_bb0125) 2022 Lian (10.1016/j.porgcoat.2022.107080_bb0165) 2021; 258 Alshahrani (10.1016/j.porgcoat.2022.107080_bb0020) 2022 Arun Prakash (10.1016/j.porgcoat.2022.107080_bb0035) 2019; 23 Rajadurai (10.1016/j.porgcoat.2022.107080_bb0115) 2017; 13 Jayabalakrishnan (10.1016/j.porgcoat.2022.107080_bb0170) 2021; 43 Anand (10.1016/j.porgcoat.2022.107080_bb0100) 2021 Karthigairajan (10.1016/j.porgcoat.2022.107080_bb0140) 2021; 13 Baig (10.1016/j.porgcoat.2022.107080_bb0030) 2021; 13 Mahalingam (10.1016/j.porgcoat.2022.107080_bb0160) 2022 Arun Prakash (10.1016/j.porgcoat.2022.107080_bb0010) 2020 Balaji (10.1016/j.porgcoat.2022.107080_bb0095) 2022 Buketov (10.1016/j.porgcoat.2022.107080_bb0070) 2017; 49 Syamimi (10.1016/j.porgcoat.2022.107080_bb0055) 2020; 77 Parimalam (10.1016/j.porgcoat.2022.107080_bb0045) 2018; 70 Rajadurai (10.1016/j.porgcoat.2022.107080_bb0105) 2016; 384 Prabhu (10.1016/j.porgcoat.2022.107080_bb0150) 2022 |
References_xml | – start-page: 1 year: 2021 end-page: 11 ident: bb0015 article-title: Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films publication-title: Biomass Convers. Bioref. – volume: 78 year: 2019 ident: bb0050 article-title: The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites publication-title: Polym. Test. – volume: 13 start-page: 6 year: 2021 ident: bb0005 article-title: Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite publication-title: SILICON – volume: 42 start-page: 1224 year: 2021 end-page: 1234 ident: bb0040 article-title: Mechanical and thermal properties of fishbone-based epoxy composites: the effects of thermal treatment publication-title: Polym. Compos. – start-page: 1 year: 2022 end-page: 14 ident: bb0155 article-title: Effect of SiO2/TiO2 and ZnO nanoparticle on cardanol oil compatibilized PLA/PBAT biocomposite packaging film publication-title: SILICON – volume: 136 start-page: 47901 year: 2019 ident: bb0060 article-title: Effects of nanosilica and titanium oxide on the performance of epoxy–amine nanocoatings publication-title: J. Appl. Polym. Sci. – volume: 13 start-page: 12 year: 2021 ident: bb0140 article-title: Effect of silane-treated rice husk derived biosilica on visco-elastic, thermal conductivity and hydrophobicity behavior of epoxy biocomposite coating for air-duct application publication-title: SILICON – volume: 2 start-page: 07 year: 2011 ident: bb0080 article-title: The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene publication-title: Mater. Sci. Appl. – volume: 42 start-page: 3 year: 2018 ident: bb0130 article-title: Mechanical, wear and thermal behaviour of hemp fibre/egg shell particle reinforced epoxy resin bio composite publication-title: Trans. Can. Soc. Mech. Eng. – start-page: 1 year: 2022 end-page: 8 ident: bb0150 article-title: Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite publication-title: Biomass Convers.Bioref. – volume: 13 start-page: 2 year: 2021 ident: bb0030 article-title: Epoxy\epoxy composite\epoxy hybrid composite coatings for tribological applications—a review publication-title: Polymers – volume: 45 start-page: 7 year: 2020 ident: bb0120 article-title: An investigation on cutting of the MWCNTs-doped composite plates by AWJ publication-title: Arab. J. Sci. Eng. – volume: 43 start-page: 493 year: 2021 end-page: 502 ident: bb0170 article-title: Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite publication-title: Polym. Compos. – volume: 87 year: 2020 ident: bb0065 article-title: Assessment of corrosion protection and performance of bio-based polyurethane acrylate incorporated with nano zinc oxide coating publication-title: Polym. Test. – volume: 13 start-page: 1 year: 2017 ident: bb0115 article-title: Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process publication-title: Def. Technol. – volume: 77 start-page: 2573 year: 2020 end-page: 2589 ident: bb0055 article-title: Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites publication-title: Polym. Bull. – volume: 21 year: 2014 ident: bb0090 article-title: Thermo-mechanical properties of unsaturated polyester toughened epoxy siliconized iron (III) oxide nanocomposites publication-title: Indian J. Eng. Mater. Sci. – volume: 23 start-page: 2 year: 2019 ident: bb0035 article-title: Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite publication-title: Int. J. Plast. Technol. – start-page: 1 year: 2022 end-page: 7 ident: bb0095 article-title: Investigation on DMA, fatigue and creep behaviour of rice husk ash biosilica-prickly pear short fibre-reinforced epoxy resin composite publication-title: SILICON – start-page: 1 year: 2022 end-page: 11 ident: bb0160 article-title: Characterization of 3-aminopropyltriethoxysilane treated stacked silicate nanoclay and red Matta-RHA biosilica woven ramie fibre epoxy composite publication-title: SILICON – start-page: 1 year: 2021 end-page: 13 ident: bb0100 article-title: Effect of heat treatment and biosilica on mechanical, wear, and fatigue behavior of Al-TiB2 in situ metal matrix composite publication-title: Biomass Convers. Bioref. – year: 2022 ident: bb0020 article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite publication-title: Biomass Conv. Bioref. – year: 2022 ident: bb0125 article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite publication-title: Biomass Convers. Bioref. – volume: 384 start-page: 30 year: 2016 ident: bb0105 article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite publication-title: Appl. Surf. Sci. – start-page: 1 year: 2020 end-page: 11 ident: bb0010 article-title: Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite publication-title: Biomass Convers. Bioref. – year: 2022 ident: bb0145 article-title: Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites publication-title: Biomass Convers. Bioref. – volume: 5 start-page: 11 year: 2014 ident: bb0075 article-title: Comparison of the mechanical properties of charcoal unsaturated polyester matrix composite and snail shell unsaturated polyester matrix composite publication-title: Int. J. Sci. Eng. Res. – volume: 49 start-page: 3 year: 2017 ident: bb0070 article-title: Mechanical characteristics of epoxy nanocomposite coatings with ultradisperse diamond particles publication-title: Strength Mater. – volume: 11 start-page: 2 year: 2016 ident: bb0135 article-title: Mechanical, thermal and dielectric characterization of iron oxide particles dispersed glass fiber epoxy resin hybrid composite publication-title: Dig. J. Nanomater. Biostruct. – volume: 258 start-page: 6 year: 2021 ident: bb0165 article-title: A model for adsorption and diffusion in water vapor barrier films publication-title: Phys. Status Solidi B – volume: 70 start-page: 197 year: 2018 end-page: 207 ident: bb0045 article-title: Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex publication-title: Polym. Test. – volume: 12 year: 2021 ident: bb0085 article-title: Mechanical and microstructural characteristics of aluminium 6063 alloy/palm kernel shell composites for lightweight applications publication-title: Sci. Afr. – volume: 304 start-page: 12 year: 2019 ident: bb0025 article-title: Alternating multilayer structural epoxy composite coating for corrosion protection of steel publication-title: Macromol. Mater. Eng. – volume: 118 year: 2019 ident: bb0110 article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite publication-title: Compos. A Appl. Sci. Manuf. – volume: 77 start-page: 2573 year: 2020 ident: 10.1016/j.porgcoat.2022.107080_bb0055 article-title: Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites publication-title: Polym. Bull. doi: 10.1007/s00289-019-02878-w – start-page: 1 year: 2022 ident: 10.1016/j.porgcoat.2022.107080_bb0155 article-title: Effect of SiO2/TiO2 and ZnO nanoparticle on cardanol oil compatibilized PLA/PBAT biocomposite packaging film publication-title: SILICON – volume: 5 start-page: 11 year: 2014 ident: 10.1016/j.porgcoat.2022.107080_bb0075 article-title: Comparison of the mechanical properties of charcoal unsaturated polyester matrix composite and snail shell unsaturated polyester matrix composite publication-title: Int. J. Sci. Eng. Res. – volume: 136 start-page: 47901 year: 2019 ident: 10.1016/j.porgcoat.2022.107080_bb0060 article-title: Effects of nanosilica and titanium oxide on the performance of epoxy–amine nanocoatings publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.47901 – volume: 70 start-page: 197 year: 2018 ident: 10.1016/j.porgcoat.2022.107080_bb0045 article-title: Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.07.008 – volume: 13 start-page: 2 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0030 article-title: Epoxy\epoxy composite\epoxy hybrid composite coatings for tribological applications—a review publication-title: Polymers doi: 10.3390/polym13020179 – volume: 49 start-page: 3 year: 2017 ident: 10.1016/j.porgcoat.2022.107080_bb0070 article-title: Mechanical characteristics of epoxy nanocomposite coatings with ultradisperse diamond particles publication-title: Strength Mater. doi: 10.1007/s11223-017-9888-y – year: 2022 ident: 10.1016/j.porgcoat.2022.107080_bb0125 article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite publication-title: Biomass Convers. Bioref. doi: 10.1007/s13399-022-02691-y – start-page: 1 year: 2020 ident: 10.1016/j.porgcoat.2022.107080_bb0010 article-title: Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite publication-title: Biomass Convers. Bioref. – volume: 12 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0085 article-title: Mechanical and microstructural characteristics of aluminium 6063 alloy/palm kernel shell composites for lightweight applications publication-title: Sci. Afr. – start-page: 1 year: 2022 ident: 10.1016/j.porgcoat.2022.107080_bb0150 article-title: Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite publication-title: Biomass Convers.Bioref. – volume: 13 start-page: 12 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0140 article-title: Effect of silane-treated rice husk derived biosilica on visco-elastic, thermal conductivity and hydrophobicity behavior of epoxy biocomposite coating for air-duct application publication-title: SILICON doi: 10.1007/s12633-020-00772-z – volume: 2 start-page: 07 year: 2011 ident: 10.1016/j.porgcoat.2022.107080_bb0080 article-title: The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene publication-title: Mater. Sci. Appl. – year: 2022 ident: 10.1016/j.porgcoat.2022.107080_bb0020 article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite publication-title: Biomass Conv. Bioref. doi: 10.1007/s13399-022-02691-y – volume: 11 start-page: 2 year: 2016 ident: 10.1016/j.porgcoat.2022.107080_bb0135 article-title: Mechanical, thermal and dielectric characterization of iron oxide particles dispersed glass fiber epoxy resin hybrid composite publication-title: Dig. J. Nanomater. Biostruct. – volume: 42 start-page: 3 year: 2018 ident: 10.1016/j.porgcoat.2022.107080_bb0130 article-title: Mechanical, wear and thermal behaviour of hemp fibre/egg shell particle reinforced epoxy resin bio composite publication-title: Trans. Can. Soc. Mech. Eng. doi: 10.1139/tcsme-2017-0079 – start-page: 1 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0015 article-title: Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films publication-title: Biomass Convers. Bioref. – start-page: 1 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0100 article-title: Effect of heat treatment and biosilica on mechanical, wear, and fatigue behavior of Al-TiB2 in situ metal matrix composite publication-title: Biomass Convers. Bioref. – start-page: 1 year: 2022 ident: 10.1016/j.porgcoat.2022.107080_bb0160 article-title: Characterization of 3-aminopropyltriethoxysilane treated stacked silicate nanoclay and red Matta-RHA biosilica woven ramie fibre epoxy composite publication-title: SILICON – volume: 384 start-page: 30 year: 2016 ident: 10.1016/j.porgcoat.2022.107080_bb0105 article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite publication-title: Appl. Surf. Sci. – volume: 78 year: 2019 ident: 10.1016/j.porgcoat.2022.107080_bb0050 article-title: The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2019.105987 – volume: 23 start-page: 2 year: 2019 ident: 10.1016/j.porgcoat.2022.107080_bb0035 article-title: Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite publication-title: Int. J. Plast. Technol. doi: 10.1007/s12588-019-09251-6 – volume: 13 start-page: 6 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0005 article-title: Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite publication-title: SILICON doi: 10.1007/s12633-020-00569-0 – volume: 13 start-page: 1 year: 2017 ident: 10.1016/j.porgcoat.2022.107080_bb0115 article-title: Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process publication-title: Def. Technol. – volume: 87 year: 2020 ident: 10.1016/j.porgcoat.2022.107080_bb0065 article-title: Assessment of corrosion protection and performance of bio-based polyurethane acrylate incorporated with nano zinc oxide coating publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2020.106526 – start-page: 1 year: 2022 ident: 10.1016/j.porgcoat.2022.107080_bb0095 article-title: Investigation on DMA, fatigue and creep behaviour of rice husk ash biosilica-prickly pear short fibre-reinforced epoxy resin composite publication-title: SILICON – volume: 304 start-page: 12 year: 2019 ident: 10.1016/j.porgcoat.2022.107080_bb0025 article-title: Alternating multilayer structural epoxy composite coating for corrosion protection of steel publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201970035 – volume: 45 start-page: 7 year: 2020 ident: 10.1016/j.porgcoat.2022.107080_bb0120 article-title: An investigation on cutting of the MWCNTs-doped composite plates by AWJ publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04363-3 – volume: 21 year: 2014 ident: 10.1016/j.porgcoat.2022.107080_bb0090 article-title: Thermo-mechanical properties of unsaturated polyester toughened epoxy siliconized iron (III) oxide nanocomposites publication-title: Indian J. Eng. Mater. Sci. – volume: 258 start-page: 6 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0165 article-title: A model for adsorption and diffusion in water vapor barrier films publication-title: Phys. Status Solidi B doi: 10.1002/pssb.202000609 – year: 2022 ident: 10.1016/j.porgcoat.2022.107080_bb0145 article-title: Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites publication-title: Biomass Convers. Bioref. doi: 10.1007/s13399-022-02801-w – volume: 43 start-page: 493 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0170 article-title: Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite publication-title: Polym. Compos. – volume: 42 start-page: 1224 year: 2021 ident: 10.1016/j.porgcoat.2022.107080_bb0040 article-title: Mechanical and thermal properties of fishbone-based epoxy composites: the effects of thermal treatment publication-title: Polym. Compos. doi: 10.1002/pc.25895 – volume: 118 year: 2019 ident: 10.1016/j.porgcoat.2022.107080_bb0110 article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite publication-title: Compos. A Appl. Sci. Manuf. |
SSID | ssj0006339 |
Score | 2.5879009 |
Snippet | The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107080 |
SubjectTerms | Aqueous solutions Ashes Barrier properties and thermal properties Biomass Biomedical materials Biosilica Coating Composite coating Mechanical properties Particulate composites Penetration resistance Polymer coatings Protective coatings Stability Thermal conductivity |
Title | Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application |
URI | https://dx.doi.org/10.1016/j.porgcoat.2022.107080 https://www.proquest.com/docview/2727236210 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcqAcKmiLKH1oDhxJN37GOVarVgsregCq9mbZjkO3Lbur7lYqF278b2bygAUh9cApimPn4ZnMw575hrE3UZehrkyZiSLW6KDUPrPG20wXInFe53mlKVH4w5kZnav3l_pyjQ37XBgKq-xkfyvTG2ndtQy62RzMJ5PBJ2RP9E0UpYrmsijIb1eqIC4_-v47zMPIppoYdc6o90qW8PURmrhf4sxTTKUQ2Fg08JD_VlB_iepG_5w-Z5ud4QjH7bu9YGtpusWeDvt6bVvs2Qq04Db7gfRHmXv7Fr4mSu4lWoCfVhD8HRWpgzmtwt8RnCrMaiBoIbi6X9yAX1xBmMwWE1rNgyUV8UFxWAEa6g_f6AoFoVOkVwL6JnwYoN0LLQ4tYXjAyp74Djs_Pfk8HGVdyYUsSpUvM1GhRZEibbeVRuRVnniR6hC5tMoKNDaiDYUu86Q44TLzUItQo561UUbBpZEv2fp0Nk2vGBhrlVfBmuTJaZOlTjKVuozcS8Oj3mW6n2cXOzxyKotx6_rAs2vX08cRfVxLn102-DVu3iJyPDqi7Mno_uAth2rj0bH7Pd1d93cvnKDda9T8PH_9H7feYxt01iY27rN1pFM6QAtnGQ4bFj5kT47fjUdndBx_vBj_BHR-_3o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V20PhgKCAKBSYA0fCxnbsOMdqRbWl7V5opd4s23HolrK76m6l8gP438xskmpBSD1wtTN5eCbzsGe-AfgQdRWa2lSZLGNDAUrjM2u8zXQpkxBNnteaC4VPJ2Z8Xny50BdbMOprYTitstP9rU5fa-tuZNit5nAxnQ6_knhSbFJwqWiuypLi9m1Gp9ID2D44Oh5P7hWyUeuGYnx9xgQbhcJXn8jL_RbnntMqpaTBco0Q-W8b9Ze2Xpugw6fwpPMd8aB9vWewlWa7sDPqW7btwuMNdMHn8ItEgNTu9Uf8kbi-l9mBflZj8Dfcpw4XvBF_w4iqOG-Q0YXw8nb5Hf3yEsN0vpzyhh6uuI8PacQayVe_-8kznIfOyV4J-ZvoYUiuL7ZQtAzjgRvH4i_g_PDz2WicdV0XsqiKfJXJmpyKFPnErTIyr_MkytSEKJQtrCR_I9pQ6ipPhWBoZhEaGRoytTaqKIUy6iUMZvNZegVorC18EaxJnuM2VemkUqWrKLwyIuo90P06u9hBknNnjGvX555duZ4_jvnjWv7swfCebtGCcjxIUfVsdH-IlyPL8SDtfs931_3gSyf5AJuMv8hf_8et38PO-Oz0xJ0cTY7fwCOeaesc92FAPEtvyeFZhXedQP8GKE0Alw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal%2C+mechanical+and+barrier+properties+of+rice+husk+ash+biosilica+toughened+epoxy+biocomposite+coating+for+structural+application&rft.jtitle=Progress+in+organic+coatings&rft.au=Alshahrani%2C+Hassan&rft.au=Prakash%2C+V+R+Arun&rft.date=2022-11-01&rft.pub=Elsevier+BV&rft.issn=0300-9440&rft.eissn=1873-331X&rft.volume=172&rft.spage=1&rft_id=info:doi/10.1016%2Fj.porgcoat.2022.107080&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9440&client=summon |