Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application

The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating...

Full description

Saved in:
Bibliographic Details
Published inProgress in organic coatings Vol. 172; p. 107080
Main Authors Alshahrani, Hassan, Arun Prakash, V.R.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.11.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating material's properties and adopted as sustainable coating element. The thermo-chemical approach and an aqueous solution method were adopted to transform the rice husk ash into the biosilica and in silane treated form. The ultrasonicator was used to mix the biosilica particles with resin to create the composite coating material. The prepared coating material was then characterized using ASTM standards in order to evaluate the effects of biosilica addition. According to the results, the tensile and flexural properties were improved by the inclusion of silica particles up to 1 and 2 vol%. However the properties are reduced when the biosilica amount was increased up to 4 vol%. In contrast, the hardness and thermal conductivity of the 4 vol% of biosilica dispersed composite was 94 shore-D and 0.42 W/mK, respectively. In terms of mass loss stability, the 4 vol% biosilica dispersed composite outperformed. After the biosilica particle was added, the barrier behavior showed good resistance to oxygen penetration. However, the stability of water permeation was moderately affected. As a coating material for corrosion-prone metallic surfaces and other household coating applications, these mechanically enhanced, thermally strengthened, and barrier property strengthened biosilica-epoxy composites could be applied. •Silane treated rice husk ash biosilica epoxy coatings were successfully prepared.•Mechanical properties of coatings are improved with RHA Biosilica content.•Thermal stability of coatings are improved with RHA Biosilica content.•Highest hardness achieved was 94 Shore-D, which is highly preferred in coating.•Barrier properties were improved as biosilica content improved.
AbstractList The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating material's properties and adopted as sustainable coating element. The thermo-chemical approach and an aqueous solution method were adopted to transform the rice husk ash into the biosilica and in silane treated form. The ultrasonicator was used to mix the biosilica particles with resin to create the composite coating material. The prepared coating material was then characterized using ASTM standards in order to evaluate the effects of biosilica addition. According to the results, the tensile and flexural properties were improved by the inclusion of silica particles up to 1 and 2 vol%. However the properties are reduced when the biosilica amount was increased up to 4 vol%. In contrast, the hardness and thermal conductivity of the 4 vol% of biosilica dispersed composite was 94 shore-D and 0.42 W/mK, respectively. In terms of mass loss stability, the 4 vol% biosilica dispersed composite outperformed. After the biosilica particle was added, the barrier behavior showed good resistance to oxygen penetration. However, the stability of water permeation was moderately affected. As a coating material for corrosion-prone metallic surfaces and other household coating applications, these mechanically enhanced, thermally strengthened, and barrier property strengthened biosilica-epoxy composites could be applied.
The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study. The primary objective of this research was to find out whether and how adding biosilica from biomass rice husks improve the polymeric coating material's properties and adopted as sustainable coating element. The thermo-chemical approach and an aqueous solution method were adopted to transform the rice husk ash into the biosilica and in silane treated form. The ultrasonicator was used to mix the biosilica particles with resin to create the composite coating material. The prepared coating material was then characterized using ASTM standards in order to evaluate the effects of biosilica addition. According to the results, the tensile and flexural properties were improved by the inclusion of silica particles up to 1 and 2 vol%. However the properties are reduced when the biosilica amount was increased up to 4 vol%. In contrast, the hardness and thermal conductivity of the 4 vol% of biosilica dispersed composite was 94 shore-D and 0.42 W/mK, respectively. In terms of mass loss stability, the 4 vol% biosilica dispersed composite outperformed. After the biosilica particle was added, the barrier behavior showed good resistance to oxygen penetration. However, the stability of water permeation was moderately affected. As a coating material for corrosion-prone metallic surfaces and other household coating applications, these mechanically enhanced, thermally strengthened, and barrier property strengthened biosilica-epoxy composites could be applied. •Silane treated rice husk ash biosilica epoxy coatings were successfully prepared.•Mechanical properties of coatings are improved with RHA Biosilica content.•Thermal stability of coatings are improved with RHA Biosilica content.•Highest hardness achieved was 94 Shore-D, which is highly preferred in coating.•Barrier properties were improved as biosilica content improved.
ArticleNumber 107080
Author Alshahrani, Hassan
Arun Prakash, V.R.
Author_xml – sequence: 1
  givenname: Hassan
  surname: Alshahrani
  fullname: Alshahrani, Hassan
  organization: Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
– sequence: 2
  givenname: V.R.
  surname: Arun Prakash
  fullname: Arun Prakash, V.R.
  email: vinprakash101@gmail.com
  organization: Department of Mechanical Engineering, J.N.N Institute of Engineering, Chennai, India
BookMark eNqFkMFu1DAQQC3USmwLv4AscSXL2A5JVuIAqkpBqsSllbhZzmSy8ZKNw9hB9AP4b5wuXLhUc7A0M29m_C7E2RQmEuKVgq0CVb09bOfAewwubTVonZM1NPBMbFRTm8IY9e1MbMAAFLuyhOfiIsYDAFTG7Dbi991AfHTjG3kkHNzk0Y3STZ1sHbMnljOHmTh5ijL0kj2SHJb4Xbo4yNaH6MeMyBSW_UATdZLm8OthrWA4zrmcSK6n-Wkv-8AyJl4wLbxumeeVTT5ML8R578ZIL_--l-L-0_Xd1efi9uvNl6uPtwWaElKhu7o0hErrcldp6IBUTX2LyjRlo0ujsGnrdzugUnVtTartddsjUYMGtTKVuRSvT3Pzr34sFJM9hIWnvNLqOoeptILc9f7UhRxiZOot-vR4Z2LnR6vAruLtwf4Tb1fx9iQ-49V_-Mz-6PjhafDDCaSs4GeWbyN6mpA6z4TJdsE_NeIPpmmm9w
CitedBy_id crossref_primary_10_1007_s13399_023_04638_3
crossref_primary_10_1088_1402_4896_ad804e
crossref_primary_10_1007_s13399_022_03600_z
crossref_primary_10_1007_s13399_023_04112_0
crossref_primary_10_1007_s13399_022_03335_x
crossref_primary_10_1007_s13399_023_04905_3
crossref_primary_10_1007_s40033_024_00760_2
crossref_primary_10_1007_s13399_023_04158_0
crossref_primary_10_1007_s13399_023_04931_1
crossref_primary_10_1007_s12633_022_02245_x
crossref_primary_10_1007_s12633_022_02228_y
crossref_primary_10_1007_s13399_023_04491_4
crossref_primary_10_3390_polym15183756
crossref_primary_10_1007_s41779_025_01153_8
crossref_primary_10_1002_pc_27334
crossref_primary_10_1007_s12633_023_02320_x
crossref_primary_10_1007_s13399_022_03679_4
crossref_primary_10_1002_pc_27215
crossref_primary_10_1002_pc_27216
crossref_primary_10_1007_s13233_024_00277_3
crossref_primary_10_1007_s12633_022_02281_7
crossref_primary_10_1007_s13399_024_06012_3
crossref_primary_10_1007_s13399_022_03342_y
crossref_primary_10_1007_s13399_022_03409_w
crossref_primary_10_1080_01694243_2024_2389332
crossref_primary_10_1007_s13399_022_03555_1
crossref_primary_10_1007_s12649_024_02556_7
crossref_primary_10_1002_pc_27363
crossref_primary_10_1007_s13399_023_04502_4
crossref_primary_10_1007_s13399_024_05558_6
crossref_primary_10_1007_s13399_023_04656_1
crossref_primary_10_1142_S0218625X24501038
crossref_primary_10_1007_s13399_022_03549_z
crossref_primary_10_1007_s13399_022_03413_0
crossref_primary_10_1007_s13399_023_04273_y
crossref_primary_10_1007_s12633_024_03054_0
crossref_primary_10_1155_2023_2219460
crossref_primary_10_1007_s13399_022_03354_8
crossref_primary_10_1007_s13399_022_03529_3
crossref_primary_10_1007_s13399_024_05837_2
crossref_primary_10_3390_polym15102261
crossref_primary_10_1007_s13399_023_04303_9
crossref_primary_10_1007_s13399_023_04534_w
crossref_primary_10_1007_s13399_024_05349_z
crossref_primary_10_1007_s13399_023_04932_0
crossref_primary_10_1007_s13399_023_05082_z
crossref_primary_10_1007_s12633_022_02227_z
crossref_primary_10_1177_15280837221137382
crossref_primary_10_1007_s13399_022_03559_x
crossref_primary_10_1007_s12633_022_02135_2
crossref_primary_10_1080_15440478_2024_2317427
crossref_primary_10_1007_s12633_022_02284_4
crossref_primary_10_1007_s00289_024_05208_x
crossref_primary_10_1007_s13399_023_04643_6
crossref_primary_10_1007_s41779_024_01104_9
crossref_primary_10_1007_s13399_024_06269_8
crossref_primary_10_1007_s12633_024_03024_6
crossref_primary_10_1007_s13399_022_03469_y
crossref_primary_10_1007_s12221_024_00736_9
crossref_primary_10_1007_s12633_022_02262_w
crossref_primary_10_1007_s13399_023_04736_2
crossref_primary_10_4028_p_xB2bet
crossref_primary_10_1007_s11356_023_26365_y
crossref_primary_10_1007_s13399_022_03475_0
crossref_primary_10_1007_s13399_023_04804_7
crossref_primary_10_1142_S0218625X25500799
crossref_primary_10_1007_s12633_023_02370_1
crossref_primary_10_1002_pc_27228
crossref_primary_10_1007_s13399_024_05595_1
Cites_doi 10.1007/s00289-019-02878-w
10.1002/app.47901
10.1016/j.polymertesting.2018.07.008
10.3390/polym13020179
10.1007/s11223-017-9888-y
10.1007/s13399-022-02691-y
10.1007/s12633-020-00772-z
10.1139/tcsme-2017-0079
10.1016/j.polymertesting.2019.105987
10.1007/s12588-019-09251-6
10.1007/s12633-020-00569-0
10.1016/j.polymertesting.2020.106526
10.1002/mame.201970035
10.1007/s13369-020-04363-3
10.1002/pssb.202000609
10.1007/s13399-022-02801-w
10.1002/pc.25895
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Nov 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 2022
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.porgcoat.2022.107080
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-331X
ExternalDocumentID 10_1016_j_porgcoat_2022_107080
S0300944022003770
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSG
SSH
SSM
SSZ
T5K
UHS
WH7
WUQ
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c340t-2d743ec12249620d0e17efbc138482431c8b7590e41db7e1bf2bfcee8c3c21363
IEDL.DBID .~1
ISSN 0300-9440
IngestDate Fri Jul 25 06:37:53 EDT 2025
Tue Jul 01 02:27:57 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Sun Apr 06 06:54:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Barrier properties and thermal properties
Biosilica
Composite coating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-2d743ec12249620d0e17efbc138482431c8b7590e41db7e1bf2bfcee8c3c21363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2727236210
PQPubID 2045410
ParticipantIDs proquest_journals_2727236210
crossref_citationtrail_10_1016_j_porgcoat_2022_107080
crossref_primary_10_1016_j_porgcoat_2022_107080
elsevier_sciencedirect_doi_10_1016_j_porgcoat_2022_107080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Progress in organic coatings
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Balaji (bb0095) 2022
Thiyagu, Thendral, Gokilakrishnan, Uvaraja, Prakash (bb0155) 2022
Inbakumar, Ramesh (bb0130) 2018; 42
Prabhu (bb0150) 2022
Madueke, Bolasodun, Umunakwe, Nwonah (bb0075) 2014; 5
Arun Prakash, Francis Xavier, Ramesh, Maridurai, Siva Kumar, Raj (bb0010) 2020
Ariffin, Aung, Abdullah, Salleh (bb0065) 2020; 87
Syamimi, Islam, Sumdani (bb0055) 2020; 77
Onuegbu, Igwe (bb0080) 2011; 2
Rajadurai (bb0105) 2016; 384
Karthigairajan, Nagarajan, Raviraja Malarvannan, Ramesh Bapu, Jayabalakrishnan, Maridurai, Shanmuganathan (bb0140) 2021; 13
Parimalam, Islam, Yunus (bb0045) 2018; 70
Prakash, Viswanthan (bb0110) 2019; 118
Lian, Zhang, Wang, Congkang, Swart, Terblans (bb0165) 2021; 258
Arun Prakash, Viswanathan (bb0035) 2019; 23
Buketov, Dolgov, Sapronov, Nigalatii, Babich (bb0070) 2017; 49
Edoziuno, Nwaeju, Adediran, Odoni, Prakash (bb0085) 2021; 12
Anand, Venkateshwaran (bb0100) 2021
Zhang, Zhang, Wei, Liuyue, Jianping Liu, Liu, Fan, Ding, Guo (bb0025) 2019; 304
Alshahrani, VR (bb0125) 2022
Hani, Firouzi, Islam, Sumdani (bb0040) 2021; 42
Arun Prakash, Rajadurai (bb0135) 2016; 11
Mahalingam, Suresh Babu (bb0160) 2022
Parimalam, Islam, Yunus (bb0060) 2019; 136
Alshahrani, Prakash (bb0145) 2022
Jayabalakrishnan (bb0170) 2021; 43
Baig, Samad (bb0030) 2021; 13
Jaisingh, Selvam, Kumar, Thyagarajan (bb0090) 2014; 21
Ceritbinmez, Yapici (bb0120) 2020; 45
Hanny, Islam, Sumdani, Rashidi (bb0050) 2019; 78
Ben Samuel, Julyes Jaisingh, Sivakumar, Mayakannan, Arunprakash (bb0005) 2021; 13
Thiyagu, Sai Prasanna Kumar, Sathiyamoorthy, Arun Prakash (bb0015) 2021
Alshahrani, Arun Prakash (bb0020) 2022
Rajadurai (bb0115) 2017; 13
Zhang (10.1016/j.porgcoat.2022.107080_bb0025) 2019; 304
Parimalam (10.1016/j.porgcoat.2022.107080_bb0060) 2019; 136
Prakash (10.1016/j.porgcoat.2022.107080_bb0110) 2019; 118
Hani (10.1016/j.porgcoat.2022.107080_bb0040) 2021; 42
Hanny (10.1016/j.porgcoat.2022.107080_bb0050) 2019; 78
Thiyagu (10.1016/j.porgcoat.2022.107080_bb0155) 2022
Edoziuno (10.1016/j.porgcoat.2022.107080_bb0085) 2021; 12
Ceritbinmez (10.1016/j.porgcoat.2022.107080_bb0120) 2020; 45
Jaisingh (10.1016/j.porgcoat.2022.107080_bb0090) 2014; 21
Ariffin (10.1016/j.porgcoat.2022.107080_bb0065) 2020; 87
Inbakumar (10.1016/j.porgcoat.2022.107080_bb0130) 2018; 42
Thiyagu (10.1016/j.porgcoat.2022.107080_bb0015) 2021
Madueke (10.1016/j.porgcoat.2022.107080_bb0075) 2014; 5
Onuegbu (10.1016/j.porgcoat.2022.107080_bb0080) 2011; 2
Alshahrani (10.1016/j.porgcoat.2022.107080_bb0145) 2022
Ben Samuel (10.1016/j.porgcoat.2022.107080_bb0005) 2021; 13
Arun Prakash (10.1016/j.porgcoat.2022.107080_bb0135) 2016; 11
Alshahrani (10.1016/j.porgcoat.2022.107080_bb0125) 2022
Lian (10.1016/j.porgcoat.2022.107080_bb0165) 2021; 258
Alshahrani (10.1016/j.porgcoat.2022.107080_bb0020) 2022
Arun Prakash (10.1016/j.porgcoat.2022.107080_bb0035) 2019; 23
Rajadurai (10.1016/j.porgcoat.2022.107080_bb0115) 2017; 13
Jayabalakrishnan (10.1016/j.porgcoat.2022.107080_bb0170) 2021; 43
Anand (10.1016/j.porgcoat.2022.107080_bb0100) 2021
Karthigairajan (10.1016/j.porgcoat.2022.107080_bb0140) 2021; 13
Baig (10.1016/j.porgcoat.2022.107080_bb0030) 2021; 13
Mahalingam (10.1016/j.porgcoat.2022.107080_bb0160) 2022
Arun Prakash (10.1016/j.porgcoat.2022.107080_bb0010) 2020
Balaji (10.1016/j.porgcoat.2022.107080_bb0095) 2022
Buketov (10.1016/j.porgcoat.2022.107080_bb0070) 2017; 49
Syamimi (10.1016/j.porgcoat.2022.107080_bb0055) 2020; 77
Parimalam (10.1016/j.porgcoat.2022.107080_bb0045) 2018; 70
Rajadurai (10.1016/j.porgcoat.2022.107080_bb0105) 2016; 384
Prabhu (10.1016/j.porgcoat.2022.107080_bb0150) 2022
References_xml – start-page: 1
  year: 2021
  end-page: 11
  ident: bb0015
  article-title: Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films
  publication-title: Biomass Convers. Bioref.
– volume: 78
  year: 2019
  ident: bb0050
  article-title: The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites
  publication-title: Polym. Test.
– volume: 13
  start-page: 6
  year: 2021
  ident: bb0005
  article-title: Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite
  publication-title: SILICON
– volume: 42
  start-page: 1224
  year: 2021
  end-page: 1234
  ident: bb0040
  article-title: Mechanical and thermal properties of fishbone-based epoxy composites: the effects of thermal treatment
  publication-title: Polym. Compos.
– start-page: 1
  year: 2022
  end-page: 14
  ident: bb0155
  article-title: Effect of SiO2/TiO2 and ZnO nanoparticle on cardanol oil compatibilized PLA/PBAT biocomposite packaging film
  publication-title: SILICON
– volume: 136
  start-page: 47901
  year: 2019
  ident: bb0060
  article-title: Effects of nanosilica and titanium oxide on the performance of epoxy–amine nanocoatings
  publication-title: J. Appl. Polym. Sci.
– volume: 13
  start-page: 12
  year: 2021
  ident: bb0140
  article-title: Effect of silane-treated rice husk derived biosilica on visco-elastic, thermal conductivity and hydrophobicity behavior of epoxy biocomposite coating for air-duct application
  publication-title: SILICON
– volume: 2
  start-page: 07
  year: 2011
  ident: bb0080
  article-title: The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene
  publication-title: Mater. Sci. Appl.
– volume: 42
  start-page: 3
  year: 2018
  ident: bb0130
  article-title: Mechanical, wear and thermal behaviour of hemp fibre/egg shell particle reinforced epoxy resin bio composite
  publication-title: Trans. Can. Soc. Mech. Eng.
– start-page: 1
  year: 2022
  end-page: 8
  ident: bb0150
  article-title: Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite
  publication-title: Biomass Convers.Bioref.
– volume: 13
  start-page: 2
  year: 2021
  ident: bb0030
  article-title: Epoxy\epoxy composite\epoxy hybrid composite coatings for tribological applications—a review
  publication-title: Polymers
– volume: 45
  start-page: 7
  year: 2020
  ident: bb0120
  article-title: An investigation on cutting of the MWCNTs-doped composite plates by AWJ
  publication-title: Arab. J. Sci. Eng.
– volume: 43
  start-page: 493
  year: 2021
  end-page: 502
  ident: bb0170
  article-title: Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite
  publication-title: Polym. Compos.
– volume: 87
  year: 2020
  ident: bb0065
  article-title: Assessment of corrosion protection and performance of bio-based polyurethane acrylate incorporated with nano zinc oxide coating
  publication-title: Polym. Test.
– volume: 13
  start-page: 1
  year: 2017
  ident: bb0115
  article-title: Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process
  publication-title: Def. Technol.
– volume: 77
  start-page: 2573
  year: 2020
  end-page: 2589
  ident: bb0055
  article-title: Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites
  publication-title: Polym. Bull.
– volume: 21
  year: 2014
  ident: bb0090
  article-title: Thermo-mechanical properties of unsaturated polyester toughened epoxy siliconized iron (III) oxide nanocomposites
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 23
  start-page: 2
  year: 2019
  ident: bb0035
  article-title: Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite
  publication-title: Int. J. Plast. Technol.
– start-page: 1
  year: 2022
  end-page: 7
  ident: bb0095
  article-title: Investigation on DMA, fatigue and creep behaviour of rice husk ash biosilica-prickly pear short fibre-reinforced epoxy resin composite
  publication-title: SILICON
– start-page: 1
  year: 2022
  end-page: 11
  ident: bb0160
  article-title: Characterization of 3-aminopropyltriethoxysilane treated stacked silicate nanoclay and red Matta-RHA biosilica woven ramie fibre epoxy composite
  publication-title: SILICON
– start-page: 1
  year: 2021
  end-page: 13
  ident: bb0100
  article-title: Effect of heat treatment and biosilica on mechanical, wear, and fatigue behavior of Al-TiB2 in situ metal matrix composite
  publication-title: Biomass Convers. Bioref.
– year: 2022
  ident: bb0020
  article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite
  publication-title: Biomass Conv. Bioref.
– year: 2022
  ident: bb0125
  article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite
  publication-title: Biomass Convers. Bioref.
– volume: 384
  start-page: 30
  year: 2016
  ident: bb0105
  article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite
  publication-title: Appl. Surf. Sci.
– start-page: 1
  year: 2020
  end-page: 11
  ident: bb0010
  article-title: Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite
  publication-title: Biomass Convers. Bioref.
– year: 2022
  ident: bb0145
  article-title: Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites
  publication-title: Biomass Convers. Bioref.
– volume: 5
  start-page: 11
  year: 2014
  ident: bb0075
  article-title: Comparison of the mechanical properties of charcoal unsaturated polyester matrix composite and snail shell unsaturated polyester matrix composite
  publication-title: Int. J. Sci. Eng. Res.
– volume: 49
  start-page: 3
  year: 2017
  ident: bb0070
  article-title: Mechanical characteristics of epoxy nanocomposite coatings with ultradisperse diamond particles
  publication-title: Strength Mater.
– volume: 11
  start-page: 2
  year: 2016
  ident: bb0135
  article-title: Mechanical, thermal and dielectric characterization of iron oxide particles dispersed glass fiber epoxy resin hybrid composite
  publication-title: Dig. J. Nanomater. Biostruct.
– volume: 258
  start-page: 6
  year: 2021
  ident: bb0165
  article-title: A model for adsorption and diffusion in water vapor barrier films
  publication-title: Phys. Status Solidi B
– volume: 70
  start-page: 197
  year: 2018
  end-page: 207
  ident: bb0045
  article-title: Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex
  publication-title: Polym. Test.
– volume: 12
  year: 2021
  ident: bb0085
  article-title: Mechanical and microstructural characteristics of aluminium 6063 alloy/palm kernel shell composites for lightweight applications
  publication-title: Sci. Afr.
– volume: 304
  start-page: 12
  year: 2019
  ident: bb0025
  article-title: Alternating multilayer structural epoxy composite coating for corrosion protection of steel
  publication-title: Macromol. Mater. Eng.
– volume: 118
  year: 2019
  ident: bb0110
  article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 77
  start-page: 2573
  year: 2020
  ident: 10.1016/j.porgcoat.2022.107080_bb0055
  article-title: Mechanical and thermal properties of snail shell particles-reinforced bisphenol-A bio-composites
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-019-02878-w
– start-page: 1
  year: 2022
  ident: 10.1016/j.porgcoat.2022.107080_bb0155
  article-title: Effect of SiO2/TiO2 and ZnO nanoparticle on cardanol oil compatibilized PLA/PBAT biocomposite packaging film
  publication-title: SILICON
– volume: 5
  start-page: 11
  year: 2014
  ident: 10.1016/j.porgcoat.2022.107080_bb0075
  article-title: Comparison of the mechanical properties of charcoal unsaturated polyester matrix composite and snail shell unsaturated polyester matrix composite
  publication-title: Int. J. Sci. Eng. Res.
– volume: 136
  start-page: 47901
  year: 2019
  ident: 10.1016/j.porgcoat.2022.107080_bb0060
  article-title: Effects of nanosilica and titanium oxide on the performance of epoxy–amine nanocoatings
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.47901
– volume: 70
  start-page: 197
  year: 2018
  ident: 10.1016/j.porgcoat.2022.107080_bb0045
  article-title: Effects of nanosilica, zinc oxide, titatinum oxide on the performance of epoxy hybrid nanocoating in presence of rubber latex
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.07.008
– volume: 13
  start-page: 2
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0030
  article-title: Epoxy\epoxy composite\epoxy hybrid composite coatings for tribological applications—a review
  publication-title: Polymers
  doi: 10.3390/polym13020179
– volume: 49
  start-page: 3
  year: 2017
  ident: 10.1016/j.porgcoat.2022.107080_bb0070
  article-title: Mechanical characteristics of epoxy nanocomposite coatings with ultradisperse diamond particles
  publication-title: Strength Mater.
  doi: 10.1007/s11223-017-9888-y
– year: 2022
  ident: 10.1016/j.porgcoat.2022.107080_bb0125
  article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite
  publication-title: Biomass Convers. Bioref.
  doi: 10.1007/s13399-022-02691-y
– start-page: 1
  year: 2020
  ident: 10.1016/j.porgcoat.2022.107080_bb0010
  article-title: Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite
  publication-title: Biomass Convers. Bioref.
– volume: 12
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0085
  article-title: Mechanical and microstructural characteristics of aluminium 6063 alloy/palm kernel shell composites for lightweight applications
  publication-title: Sci. Afr.
– start-page: 1
  year: 2022
  ident: 10.1016/j.porgcoat.2022.107080_bb0150
  article-title: Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite
  publication-title: Biomass Convers.Bioref.
– volume: 13
  start-page: 12
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0140
  article-title: Effect of silane-treated rice husk derived biosilica on visco-elastic, thermal conductivity and hydrophobicity behavior of epoxy biocomposite coating for air-duct application
  publication-title: SILICON
  doi: 10.1007/s12633-020-00772-z
– volume: 2
  start-page: 07
  year: 2011
  ident: 10.1016/j.porgcoat.2022.107080_bb0080
  article-title: The effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene
  publication-title: Mater. Sci. Appl.
– year: 2022
  ident: 10.1016/j.porgcoat.2022.107080_bb0020
  article-title: Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite
  publication-title: Biomass Conv. Bioref.
  doi: 10.1007/s13399-022-02691-y
– volume: 11
  start-page: 2
  year: 2016
  ident: 10.1016/j.porgcoat.2022.107080_bb0135
  article-title: Mechanical, thermal and dielectric characterization of iron oxide particles dispersed glass fiber epoxy resin hybrid composite
  publication-title: Dig. J. Nanomater. Biostruct.
– volume: 42
  start-page: 3
  year: 2018
  ident: 10.1016/j.porgcoat.2022.107080_bb0130
  article-title: Mechanical, wear and thermal behaviour of hemp fibre/egg shell particle reinforced epoxy resin bio composite
  publication-title: Trans. Can. Soc. Mech. Eng.
  doi: 10.1139/tcsme-2017-0079
– start-page: 1
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0015
  article-title: Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films
  publication-title: Biomass Convers. Bioref.
– start-page: 1
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0100
  article-title: Effect of heat treatment and biosilica on mechanical, wear, and fatigue behavior of Al-TiB2 in situ metal matrix composite
  publication-title: Biomass Convers. Bioref.
– start-page: 1
  year: 2022
  ident: 10.1016/j.porgcoat.2022.107080_bb0160
  article-title: Characterization of 3-aminopropyltriethoxysilane treated stacked silicate nanoclay and red Matta-RHA biosilica woven ramie fibre epoxy composite
  publication-title: SILICON
– volume: 384
  start-page: 30
  year: 2016
  ident: 10.1016/j.porgcoat.2022.107080_bb0105
  article-title: Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite
  publication-title: Appl. Surf. Sci.
– volume: 78
  year: 2019
  ident: 10.1016/j.porgcoat.2022.107080_bb0050
  article-title: The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2019.105987
– volume: 23
  start-page: 2
  year: 2019
  ident: 10.1016/j.porgcoat.2022.107080_bb0035
  article-title: Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite
  publication-title: Int. J. Plast. Technol.
  doi: 10.1007/s12588-019-09251-6
– volume: 13
  start-page: 6
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0005
  article-title: Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite
  publication-title: SILICON
  doi: 10.1007/s12633-020-00569-0
– volume: 13
  start-page: 1
  year: 2017
  ident: 10.1016/j.porgcoat.2022.107080_bb0115
  article-title: Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process
  publication-title: Def. Technol.
– volume: 87
  year: 2020
  ident: 10.1016/j.porgcoat.2022.107080_bb0065
  article-title: Assessment of corrosion protection and performance of bio-based polyurethane acrylate incorporated with nano zinc oxide coating
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2020.106526
– start-page: 1
  year: 2022
  ident: 10.1016/j.porgcoat.2022.107080_bb0095
  article-title: Investigation on DMA, fatigue and creep behaviour of rice husk ash biosilica-prickly pear short fibre-reinforced epoxy resin composite
  publication-title: SILICON
– volume: 304
  start-page: 12
  year: 2019
  ident: 10.1016/j.porgcoat.2022.107080_bb0025
  article-title: Alternating multilayer structural epoxy composite coating for corrosion protection of steel
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201970035
– volume: 45
  start-page: 7
  year: 2020
  ident: 10.1016/j.porgcoat.2022.107080_bb0120
  article-title: An investigation on cutting of the MWCNTs-doped composite plates by AWJ
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04363-3
– volume: 21
  year: 2014
  ident: 10.1016/j.porgcoat.2022.107080_bb0090
  article-title: Thermo-mechanical properties of unsaturated polyester toughened epoxy siliconized iron (III) oxide nanocomposites
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 258
  start-page: 6
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0165
  article-title: A model for adsorption and diffusion in water vapor barrier films
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.202000609
– year: 2022
  ident: 10.1016/j.porgcoat.2022.107080_bb0145
  article-title: Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites
  publication-title: Biomass Convers. Bioref.
  doi: 10.1007/s13399-022-02801-w
– volume: 43
  start-page: 493
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0170
  article-title: Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite
  publication-title: Polym. Compos.
– volume: 42
  start-page: 1224
  year: 2021
  ident: 10.1016/j.porgcoat.2022.107080_bb0040
  article-title: Mechanical and thermal properties of fishbone-based epoxy composites: the effects of thermal treatment
  publication-title: Polym. Compos.
  doi: 10.1002/pc.25895
– volume: 118
  year: 2019
  ident: 10.1016/j.porgcoat.2022.107080_bb0110
  article-title: Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite
  publication-title: Compos. A Appl. Sci. Manuf.
SSID ssj0006339
Score 2.5879009
Snippet The mechanical, thermal, and barrier characteristics of an epoxy biocomposite coating made using rice husk biomass biosilica were investigated in this study....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107080
SubjectTerms Aqueous solutions
Ashes
Barrier properties and thermal properties
Biomass
Biomedical materials
Biosilica
Coating
Composite coating
Mechanical properties
Particulate composites
Penetration resistance
Polymer coatings
Protective coatings
Stability
Thermal conductivity
Title Thermal, mechanical and barrier properties of rice husk ash biosilica toughened epoxy biocomposite coating for structural application
URI https://dx.doi.org/10.1016/j.porgcoat.2022.107080
https://www.proquest.com/docview/2727236210
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcqAcKmiLKH1oDhxJN37GOVarVgsregCq9mbZjkO3Lbur7lYqF278b2bygAUh9cApimPn4ZnMw575hrE3UZehrkyZiSLW6KDUPrPG20wXInFe53mlKVH4w5kZnav3l_pyjQ37XBgKq-xkfyvTG2ndtQy62RzMJ5PBJ2RP9E0UpYrmsijIb1eqIC4_-v47zMPIppoYdc6o90qW8PURmrhf4sxTTKUQ2Fg08JD_VlB_iepG_5w-Z5ud4QjH7bu9YGtpusWeDvt6bVvs2Qq04Db7gfRHmXv7Fr4mSu4lWoCfVhD8HRWpgzmtwt8RnCrMaiBoIbi6X9yAX1xBmMwWE1rNgyUV8UFxWAEa6g_f6AoFoVOkVwL6JnwYoN0LLQ4tYXjAyp74Djs_Pfk8HGVdyYUsSpUvM1GhRZEibbeVRuRVnniR6hC5tMoKNDaiDYUu86Q44TLzUItQo561UUbBpZEv2fp0Nk2vGBhrlVfBmuTJaZOlTjKVuozcS8Oj3mW6n2cXOzxyKotx6_rAs2vX08cRfVxLn102-DVu3iJyPDqi7Mno_uAth2rj0bH7Pd1d93cvnKDda9T8PH_9H7feYxt01iY27rN1pFM6QAtnGQ4bFj5kT47fjUdndBx_vBj_BHR-_3o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V20PhgKCAKBSYA0fCxnbsOMdqRbWl7V5opd4s23HolrK76m6l8gP438xskmpBSD1wtTN5eCbzsGe-AfgQdRWa2lSZLGNDAUrjM2u8zXQpkxBNnteaC4VPJ2Z8Xny50BdbMOprYTitstP9rU5fa-tuZNit5nAxnQ6_knhSbFJwqWiuypLi9m1Gp9ID2D44Oh5P7hWyUeuGYnx9xgQbhcJXn8jL_RbnntMqpaTBco0Q-W8b9Ze2Xpugw6fwpPMd8aB9vWewlWa7sDPqW7btwuMNdMHn8ItEgNTu9Uf8kbi-l9mBflZj8Dfcpw4XvBF_w4iqOG-Q0YXw8nb5Hf3yEsN0vpzyhh6uuI8PacQayVe_-8kznIfOyV4J-ZvoYUiuL7ZQtAzjgRvH4i_g_PDz2WicdV0XsqiKfJXJmpyKFPnErTIyr_MkytSEKJQtrCR_I9pQ6ipPhWBoZhEaGRoytTaqKIUy6iUMZvNZegVorC18EaxJnuM2VemkUqWrKLwyIuo90P06u9hBknNnjGvX555duZ4_jvnjWv7swfCebtGCcjxIUfVsdH-IlyPL8SDtfs931_3gSyf5AJuMv8hf_8et38PO-Oz0xJ0cTY7fwCOeaesc92FAPEtvyeFZhXedQP8GKE0Alw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal%2C+mechanical+and+barrier+properties+of+rice+husk+ash+biosilica+toughened+epoxy+biocomposite+coating+for+structural+application&rft.jtitle=Progress+in+organic+coatings&rft.au=Alshahrani%2C+Hassan&rft.au=Prakash%2C+V+R+Arun&rft.date=2022-11-01&rft.pub=Elsevier+BV&rft.issn=0300-9440&rft.eissn=1873-331X&rft.volume=172&rft.spage=1&rft_id=info:doi/10.1016%2Fj.porgcoat.2022.107080&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9440&client=summon