Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study
Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic sam...
Saved in:
Published in | Scientific reports Vol. 5; no. 1; p. 8871 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.03.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non–magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides. |
---|---|
AbstractList | Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non-magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides.Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non-magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides. Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in spintronic devices. Contrary to early predictions, doping ZnO with uniformly distributed magnetic ions is not essential to obtain ferromagnetic samples. Instead, the nanostructure seems to play the key role, as room temperature ferromagnetism was also found in nanograined, undoped ZnO. However, the origin of room temperature ferromagnetism in primarily non–magnetic oxides like ZnO is still unexplained and a controversial subject within the scientific community. Using low energy muon spin relaxation in combination with SQUID and TEM techniques, we demonstrate that the magnetic volume fraction is strongly related to the sample volume fraction occupied by grain boundaries. With molecular dynamics and density functional theory we find ferromagnetic coupled electron states in ZnO grain boundaries. Our results provide evidence and a microscopic model for room temperature ferromagnetism in oxides. |
ArticleNumber | 8871 |
Author | Luetkens, Hubertus Mazilkin, Andrey A. Schütz, Gisela Prokscha, Thomas Fink, Karin Chen, Yu–Chun Straumal, Boris B. Suter, Andreas Wenzel, Wolfgang Audehm, Patrick Straumal, Petr B. Goering, Eberhard Protasova, Svetlana G. Salman, Zaher Baretzky, Brigitte Danilov, Denis Tietze, Thomas |
Author_xml | – sequence: 1 givenname: Thomas surname: Tietze fullname: Tietze, Thomas organization: Max-Planck-Institute for Intelligent Systems – sequence: 2 givenname: Patrick surname: Audehm fullname: Audehm, Patrick organization: Max-Planck-Institute for Intelligent Systems – sequence: 3 givenname: Yu–Chun surname: Chen fullname: Chen, Yu–Chun organization: Max-Planck-Institute for Intelligent Systems – sequence: 4 givenname: Gisela surname: Schütz fullname: Schütz, Gisela organization: Max-Planck-Institute for Intelligent Systems – sequence: 5 givenname: Boris B. surname: Straumal fullname: Straumal, Boris B. organization: Moscow Institute of Physics and Technology (State University), Institute of Solid State Physics, Russian Academy of Sciences, National Research Technological University “MISiS”, Karlsruhe Institute of Technology, Institute of Nanotechnology – sequence: 6 givenname: Svetlana G. surname: Protasova fullname: Protasova, Svetlana G. organization: Institute of Solid State Physics, Russian Academy of Sciences – sequence: 7 givenname: Andrey A. surname: Mazilkin fullname: Mazilkin, Andrey A. organization: Institute of Solid State Physics, Russian Academy of Sciences, Karlsruhe Institute of Technology, Institute of Nanotechnology – sequence: 8 givenname: Petr B. surname: Straumal fullname: Straumal, Petr B. organization: National Research Technological University “MISiS”, A.A. Baikov Institute of Metallurgy and Materials Science RAS – sequence: 9 givenname: Thomas surname: Prokscha fullname: Prokscha, Thomas organization: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut – sequence: 10 givenname: Hubertus surname: Luetkens fullname: Luetkens, Hubertus organization: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut – sequence: 11 givenname: Zaher surname: Salman fullname: Salman, Zaher organization: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut – sequence: 12 givenname: Andreas surname: Suter fullname: Suter, Andreas organization: Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut – sequence: 13 givenname: Brigitte surname: Baretzky fullname: Baretzky, Brigitte organization: Karlsruhe Institute of Technology, Institute of Nanotechnology – sequence: 14 givenname: Karin surname: Fink fullname: Fink, Karin organization: Karlsruhe Institute of Technology, Institute of Nanotechnology – sequence: 15 givenname: Wolfgang surname: Wenzel fullname: Wenzel, Wolfgang organization: Karlsruhe Institute of Technology, Institute of Nanotechnology – sequence: 16 givenname: Denis surname: Danilov fullname: Danilov, Denis organization: Karlsruhe Institute of Technology, Institute of Nanotechnology – sequence: 17 givenname: Eberhard surname: Goering fullname: Goering, Eberhard organization: Max-Planck-Institute for Intelligent Systems |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25747456$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdFKHDEUhkOxVF33oi8guWyFrUkmM5n0olDWrhUUQdeb3oSzk8wamUnWJFPYd_MZ-kxmWRUr5uYEznf-H_5_H-047wxCnyn5RklRH8dgVqSuBf2A9hjh5YQVjO28-u-icYx3JL-SSU7lJ7TLSsEFL6s9dHHmkgktNBY6rH1vHSSjcWtC8D0snUk29tg67MD5ZQDr8vaPu_yOAf97uL7C4DQ-mc1xTINeH6CPLXTRjJ_mCN3Mfs2nvyfnl6dn05_nk6bgJE1YTYnhpK4WZakbSWVTECb4QkgjgbdQAOWFpkK0UhDSEip0aSoKelFCBZwVI_Rjq7saFr3RjXEpQKdWwfYQ1sqDVf9vnL1VS_9X8SJnQGQW-PIkEPz9YGJSvY2N6Tpwxg9R0aqishakEhk9fO31YvKcYQaOt0ATfMxttKqxCZL1G2vbKUrUpij1UlS--Prm4ln0PfZoy8bMuKUJ6s4PweV034EfAbVIoko |
CitedBy_id | crossref_primary_10_1002_pssb_201900623 crossref_primary_10_1016_j_matlet_2015_12_101 crossref_primary_10_1016_j_matlet_2016_04_105 crossref_primary_10_1016_j_jallcom_2016_01_208 crossref_primary_10_1039_C9MH00983C crossref_primary_10_1016_j_matlet_2015_11_035 crossref_primary_10_1016_j_nimb_2016_02_063 crossref_primary_10_1088_2053_1591_ab8c71 crossref_primary_10_1103_PhysRevMaterials_2_054405 crossref_primary_10_1134_S1063782618160121 crossref_primary_10_1016_j_matlet_2016_05_020 crossref_primary_10_1016_j_matlet_2015_07_153 crossref_primary_10_1016_j_matlet_2016_05_140 crossref_primary_10_1016_j_apsusc_2017_01_115 crossref_primary_10_1016_j_matlet_2016_01_086 crossref_primary_10_1016_j_matlet_2015_12_073 crossref_primary_10_1016_j_matlet_2016_01_122 crossref_primary_10_1016_j_matlet_2016_02_161 crossref_primary_10_1039_D0TA02136A crossref_primary_10_1016_j_jallcom_2016_09_020 crossref_primary_10_1016_j_matlet_2016_03_004 crossref_primary_10_1021_acs_nanolett_9b02581 crossref_primary_10_1016_j_matlet_2016_03_120 crossref_primary_10_1134_S1063782617020154 crossref_primary_10_1039_C5NJ02245B crossref_primary_10_3390_ma17061401 crossref_primary_10_1007_s11665_015_1872_8 crossref_primary_10_1002_adv_21642 crossref_primary_10_1021_acsami_6b15071 crossref_primary_10_1016_j_actamat_2023_119258 crossref_primary_10_1021_acs_jpcc_1c06959 crossref_primary_10_1016_j_physe_2016_10_029 crossref_primary_10_1016_j_jallcom_2016_10_084 crossref_primary_10_1016_j_jallcom_2016_02_088 crossref_primary_10_3390_nano11123199 crossref_primary_10_3762_bjnano_7_185 crossref_primary_10_1016_j_vacuum_2020_109849 crossref_primary_10_1088_1361_6641_ab0aa2 crossref_primary_10_1016_j_matlet_2015_11_055 crossref_primary_10_1155_2016_5184542 crossref_primary_10_1039_C5RA13846A crossref_primary_10_1088_1361_6463_aa801f crossref_primary_10_1016_j_matlet_2015_10_147 crossref_primary_10_1016_j_matlet_2015_10_148 crossref_primary_10_1039_C6RA11021E crossref_primary_10_3390_nano7090264 crossref_primary_10_1016_j_matlet_2015_08_135 crossref_primary_10_56646_jjapcp_9_0_011101 crossref_primary_10_1016_j_jmmm_2015_10_012 crossref_primary_10_1039_C6TC00653A crossref_primary_10_1039_C6CP08012J crossref_primary_10_1134_S1064226917040106 crossref_primary_10_1016_j_jallcom_2017_01_251 crossref_primary_10_1016_j_actamat_2015_07_029 crossref_primary_10_1063_1_4945729 crossref_primary_10_1016_j_mtadv_2020_100080 crossref_primary_10_1016_j_physb_2016_02_001 crossref_primary_10_1016_j_jallcom_2016_10_200 crossref_primary_10_1088_2053_1591_aba14a crossref_primary_10_1002_adfm_201706309 crossref_primary_10_1016_j_mssp_2017_06_045 crossref_primary_10_1039_C7RA02521A crossref_primary_10_1103_PhysRevB_96_104423 crossref_primary_10_1016_j_cossms_2016_05_006 crossref_primary_10_1016_j_spmi_2016_11_069 crossref_primary_10_1063_1_4938069 crossref_primary_10_1088_1361_6463_ab2495 crossref_primary_10_1016_j_matchemphys_2018_12_069 crossref_primary_10_1134_S1063783417070083 crossref_primary_10_1016_j_matlet_2015_12_156 crossref_primary_10_1016_j_matlet_2015_12_157 crossref_primary_10_1039_D5RA00146C crossref_primary_10_1016_j_matlet_2015_08_151 crossref_primary_10_1016_j_ssc_2019_01_021 crossref_primary_10_1016_j_pmatsci_2017_07_002 crossref_primary_10_1002_pssb_202200607 crossref_primary_10_1039_C8TC05929B crossref_primary_10_1016_j_jallcom_2015_09_144 crossref_primary_10_1016_j_sna_2015_09_018 crossref_primary_10_1007_s10854_017_8012_1 crossref_primary_10_1039_C5RA27154A crossref_primary_10_1038_srep18927 crossref_primary_10_1007_s10854_018_8735_7 crossref_primary_10_1016_j_matlet_2016_02_030 crossref_primary_10_1016_j_jallcom_2016_02_166 crossref_primary_10_1557_jmr_2018_105 crossref_primary_10_1016_j_ceramint_2015_12_049 crossref_primary_10_4028_www_scientific_net_MSF_966_476 crossref_primary_10_1016_j_matlet_2015_10_070 crossref_primary_10_1021_acs_jpcc_6b00743 crossref_primary_10_1016_j_matlet_2015_10_069 crossref_primary_10_3390_nano12020184 crossref_primary_10_1016_j_matlet_2016_04_138 crossref_primary_10_1038_srep15128 crossref_primary_10_1063_1_4919702 crossref_primary_10_1111_jace_14110 crossref_primary_10_1016_j_matlet_2016_04_095 |
Cites_doi | 10.1088/1367-2630/12/5/053025 10.1007/s002140050331 10.1021/nl1001444 10.1504/IJNM.2008.018948 10.1103/PhysRevB.79.205206 10.1088/0953-8984/9/43/002 10.1016/j.jeurceramsoc.2009.01.005 10.1134/s0031918x12130030 10.1103/PhysRevB.31.546 10.1080/01418619508243791 10.1080/14786435.2012.736693 10.1016/j.matlet.2011.11.082 10.1016/j.phpro.2012.04.042 10.1103/Physrevb.75.205206 10.1063/1.3601107 10.1038/Nmat1310 10.1016/j.actamat.2008.08.032 10.1080/001075199181521 10.1126/science.287.5455.1019 10.1088/1367-2630/10/5/055009 10.1002/pssb.201001182 10.1088/0953-8984/16/40/010 10.1063/1.3486044 10.1103/PhysRevB.64.075205 10.3762/bjnano.4.42 10.1063/1.4825268 10.1088/0953-8984/9/5/018 10.1103/PhysRevLett.86.2601 10.1134/S0021364010180074 10.1016/j.solidstatesciences.2004.11.012 10.1016/j.nima.2008.07.081 10.1088/1367-2630/13/10/103001 10.1103/Physrevb.76.125201 10.1063/1.3143103 10.1016/j.ssc.2010.11.019 10.1088/0022-3727/41/13/134012 10.1111/j.1151-2916.1993.tb07779.x 10.1088/1742-6596/200/9/092007 10.1002/9780470386323 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1038/srep08871 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC4352909 25747456 10_1038_srep08871 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7X8 PPXIY PQGLB 5PM PJZUB |
ID | FETCH-LOGICAL-c340t-2810e4086b55dc919c30274b79e9a4fa3a143d177f9700f017d5e61adb5a6a423 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 13:55:42 EDT 2025 Fri Jul 11 16:19:52 EDT 2025 Thu Apr 03 07:09:08 EDT 2025 Tue Jul 01 03:14:42 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Fri Feb 21 02:39:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-2810e4086b55dc919c30274b79e9a4fa3a143d177f9700f017d5e61adb5a6a423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep08871 |
PMID | 25747456 |
PQID | 1661987067 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4352909 proquest_miscellaneous_1661987067 pubmed_primary_25747456 crossref_citationtrail_10_1038_srep08871 crossref_primary_10_1038_srep08871 springer_journals_10_1038_srep08871 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150309 2015-03-09 2015-Mar-09 |
PublicationDateYYYYMMDD | 2015-03-09 |
PublicationDate_xml | – month: 3 year: 2015 text: 20150309 day: 9 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Blundell (CR29) 1999; 40 Prokscha (CR39) 2008; 595 Morenzoni, Prokscha, Suter, Luetkens, Khasanov (CR38) 2004; 16 CR16 Schautz, Flad, Dolg (CR42) 1998; 99 CR35 Gao (CR11) 2009; 105 Straumal (CR24) 2012; 71 CR34 Cox (CR36) 2001; 86 Coey (CR7) 2005; 7 Dietl, Ohno, Matsukura, Cibert, Ferrand (CR1) 2000; 287 CR31 Straumal (CR23) 2011; 248 Straumal (CR22) 2010; 92 Straumal (CR25) 2012; 113 Grimes, Binks, Lidiard (CR40) 1995; 72 Suter, Wojek (CR30) 2012; 30 Straumal (CR14) 2009; 79 Straumal (CR21) 2010; 108 Straumal (CR18) 2008; 56 Tietze (CR4) 2008; 10 Crook, Cywinski (CR33) 1997; 9 Escudero, Escamilla (CR13) 2011; 151 Straumal (CR15) 2012; 93 Gil (CR37) 2001; 64 Liu, Li, Hu, Tang, Tang (CR10) 2011; 110 CR8 Coey, Stamenov, Gunning, Venkatesan, Paul (CR28) 2010; 12 CR9 Straumal, Mazilkin, Straumal, Myatiev (CR19) 2008; 2 Uemura, Yamazaki, Harshman, Senba, Ansaldo (CR32) 1985; 31 Podila (CR12) 2010; 10 Gacic (CR3) 2007; 75 CR41 Chen (CR27) 2013; 103 Ney (CR6) 2011; 13 Barla (CR5) 2007; 76 Straumal (CR20) 2009; 29 Réotier (CR17) 1997; 9 Straumal (CR26) 2013; 4 Coey, Venkatesan, Fitzgerald (CR2) 2005; 4 A Ney (BFsrep08871_CR6) 2011; 13 R Escudero (BFsrep08871_CR13) 2011; 151 BB Straumal (BFsrep08871_CR22) 2010; 92 BB Straumal (BFsrep08871_CR25) 2012; 113 A Suter (BFsrep08871_CR30) 2012; 30 T Dietl (BFsrep08871_CR1) 2000; 287 F Schautz (BFsrep08871_CR42) 1998; 99 BFsrep08871_CR8 W Liu (BFsrep08871_CR10) 2011; 110 BFsrep08871_CR16 BFsrep08871_CR9 D Gao (BFsrep08871_CR11) 2009; 105 PD Réotier (BFsrep08871_CR17) 1997; 9 A Barla (BFsrep08871_CR5) 2007; 76 BFsrep08871_CR35 BFsrep08871_CR34 BFsrep08871_CR31 T Prokscha (BFsrep08871_CR39) 2008; 595 JMD Coey (BFsrep08871_CR28) 2010; 12 R Podila (BFsrep08871_CR12) 2010; 10 RW Grimes (BFsrep08871_CR40) 1995; 72 T Tietze (BFsrep08871_CR4) 2008; 10 BB Straumal (BFsrep08871_CR24) 2012; 71 JM Gil (BFsrep08871_CR37) 2001; 64 SJ Blundell (BFsrep08871_CR29) 1999; 40 YJ Uemura (BFsrep08871_CR32) 1985; 31 JMD Coey (BFsrep08871_CR7) 2005; 7 B Straumal (BFsrep08871_CR19) 2008; 2 BFsrep08871_CR41 BB Straumal (BFsrep08871_CR21) 2010; 108 B Straumal (BFsrep08871_CR20) 2009; 29 B Straumal (BFsrep08871_CR23) 2011; 248 BB Straumal (BFsrep08871_CR15) 2012; 93 BB Straumal (BFsrep08871_CR26) 2013; 4 MR Crook (BFsrep08871_CR33) 1997; 9 JMD Coey (BFsrep08871_CR2) 2005; 4 M Gacic (BFsrep08871_CR3) 2007; 75 E Morenzoni (BFsrep08871_CR38) 2004; 16 BB Straumal (BFsrep08871_CR18) 2008; 56 BB Straumal (BFsrep08871_CR14) 2009; 79 Y-C Chen (BFsrep08871_CR27) 2013; 103 SFJ Cox (BFsrep08871_CR36) 2001; 86 20196539 - Nano Lett. 2010 Apr 14;10(4):1383-6 15654343 - Nat Mater. 2005 Feb;4(2):173-9 23844341 - Beilstein J Nanotechnol. 2013 Jun 13;4:361-9 26148449 - Sci Rep. 2015;5:10769 10669409 - Science. 2000 Feb 11;287(5455):1019-22 9935458 - Phys Rev B Condens Matter. 1985 Jan 1;31(1):546-563 11289990 - Phys Rev Lett. 2001 Mar 19;86(12):2601-4 |
References_xml | – volume: 12 start-page: 053025 year: 2010 ident: CR28 article-title: Ferromagnetism in defect-ridden oxides and related materials publication-title: New J Phys doi: 10.1088/1367-2630/12/5/053025 – volume: 99 start-page: 231 year: 1998 end-page: 240 ident: CR42 article-title: Quantum Monte Carlo study of Be2 and group 12 dimers M2 (M = Zn, Cd, Hg) publication-title: Theor Chem Acc doi: 10.1007/s002140050331 – volume: 10 start-page: 1383 year: 2010 end-page: 1386 ident: CR12 article-title: Origin of FM Ordering in Pristine Micro- and Nanostructured ZnO publication-title: Nano Lett doi: 10.1021/nl1001444 – ident: CR16 – volume: 2 start-page: 253 year: 2008 end-page: 270 ident: CR19 article-title: Distribution of impurities and minor components in nanostructured conducting oxides publication-title: Int. J. of Nanomanufacturing doi: 10.1504/IJNM.2008.018948 – volume: 79 start-page: 205206 year: 2009 ident: CR14 article-title: Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.205206 – volume: 9 start-page: 9113 year: 1997 ident: CR17 article-title: d. & Yaouanc, A. Muon spin rotation and relaxation in magnetic materials publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/9/43/002 – volume: 29 start-page: 1963 year: 2009 end-page: 1970 ident: CR20 article-title: Increase of Mn solubility with decreasing grain size in ZnO publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2009.01.005 – ident: CR35 – ident: CR8 – volume: 113 start-page: 1244 year: 2012 end-page: 1256 ident: CR25 article-title: Ferromagnetism of nanostructured zinc oxide films publication-title: Phys. Metals Metallogr. doi: 10.1134/s0031918x12130030 – volume: 31 start-page: 546 year: 1985 end-page: 563 ident: CR32 article-title: Muon Spin Relaxation in Aufe and Cumn Spin-Glasses publication-title: Phys Rev B doi: 10.1103/PhysRevB.31.546 – volume: 72 start-page: 651 year: 1995 end-page: 668 ident: CR40 article-title: The extent of zinc oxide solution in zinc chromate spinel publication-title: Philosophical Magazine A doi: 10.1080/01418619508243791 – volume: 93 start-page: 1371 year: 2012 end-page: 1383 ident: CR15 article-title: Grain boundaries as the controlling factor for the ferromagnetic behaviour of Co-doped ZnO publication-title: Philos Mag doi: 10.1080/14786435.2012.736693 – volume: 71 start-page: 21 year: 2012 end-page: 24 ident: CR24 article-title: Amorphous interlayers between crystalline grains in ferromagnetic ZnO films publication-title: Mater Lett doi: 10.1016/j.matlet.2011.11.082 – volume: 30 start-page: 69 year: 2012 end-page: 73 ident: CR30 article-title: Musrfit: A Free Platform-Independent Framework for μSR Data Analysis publication-title: Physics Procedia doi: 10.1016/j.phpro.2012.04.042 – volume: 75 start-page: 205206 year: 2007 ident: CR3 article-title: Magnetism of Co-doped ZnO thin films publication-title: Phys Rev B doi: 10.1103/Physrevb.75.205206 – volume: 110 start-page: 013901 year: 2011 ident: CR10 article-title: Effect of oxygen defects on ferromagnetic of undoped ZnO publication-title: J Appl Phys doi: 10.1063/1.3601107 – volume: 4 start-page: 173 year: 2005 end-page: 179 ident: CR2 article-title: Donor impurity band exchange in dilute ferromagnetic oxides publication-title: Nat Mater doi: 10.1038/Nmat1310 – volume: 56 start-page: 6246 year: 2008 end-page: 6256 ident: CR18 article-title: Increase of Co solubility with decreasing grain size in ZnO publication-title: Acta Mater doi: 10.1016/j.actamat.2008.08.032 – volume: 40 start-page: 175 year: 1999 end-page: 192 ident: CR29 article-title: Spin-polarized muons in condensed matter physics publication-title: Contemporary Physics doi: 10.1080/001075199181521 – volume: 287 start-page: 1019 year: 2000 end-page: 1022 ident: CR1 article-title: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors publication-title: Science doi: 10.1126/science.287.5455.1019 – volume: 10 start-page: 055009 year: 2008 ident: CR4 article-title: XMCD studies on Co and Li doped ZnO magnetic semiconductors publication-title: New J Phys doi: 10.1088/1367-2630/10/5/055009 – ident: CR31 – volume: 248 start-page: 1581 year: 2011 end-page: 1586 ident: CR23 article-title: Influence of texture on the ferromagnetic properties of nanograined ZnO films publication-title: Phys Status Solidi B doi: 10.1002/pssb.201001182 – volume: 16 start-page: S4583 year: 2004 ident: CR38 article-title: Nano-scale thin film investigations with slow polarized muons publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/16/40/010 – ident: CR9 – volume: 108 start-page: 073923 year: 2010 ident: CR21 article-title: Ferromagnetic properties of the Mn-doped nanograined ZnO films publication-title: J Appl Phys doi: 10.1063/1.3486044 – volume: 64 start-page: 075205 year: 2001 ident: CR37 article-title: Shallow donor muonium states in II–VI semiconductor compounds publication-title: Phys Rev B doi: 10.1103/PhysRevB.64.075205 – volume: 4 start-page: 361 year: 2013 end-page: 369 ident: CR26 article-title: Ferromagnetic behaviour of Fe-doped ZnO nanograined films publication-title: Beilstein Journal of Nanotechnology doi: 10.3762/bjnano.4.42 – volume: 103 start-page: 162405 year: 2013 ident: CR27 article-title: Unexpected room-temperature ferromagnetism in bulk ZnO publication-title: Appl Phys Lett doi: 10.1063/1.4825268 – ident: CR34 – volume: 9 start-page: 1149 year: 1997 ident: CR33 article-title: Voigtian-Kubo-Toyabe muon spin relaxation publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/9/5/018 – volume: 86 start-page: 2601 year: 2001 ident: CR36 article-title: Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.2601 – volume: 92 start-page: 396 year: 2010 end-page: 400 ident: CR22 article-title: Grain boundary layers in nanocrystalline ferromagnetic zinc oxide publication-title: Jetp Lett+ doi: 10.1134/S0021364010180074 – ident: CR41 – volume: 7 start-page: 660 year: 2005 end-page: 667 ident: CR7 article-title: d(0) ferromagnetism publication-title: Solid State Sci doi: 10.1016/j.solidstatesciences.2004.11.012 – volume: 595 start-page: 317 year: 2008 end-page: 331 ident: CR39 article-title: The new beam at PSI: A hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2008.07.081 – volume: 13 start-page: 103001 year: 2011 ident: CR6 article-title: Structural, chemical and magnetic properties of secondary phases in Co-doped ZnO publication-title: New J Phys doi: 10.1088/1367-2630/13/10/103001 – volume: 76 start-page: 125201 year: 2007 ident: CR5 article-title: Paramagnetism of the Co sublattice in ferromagnetic Zn1-xCoxO films publication-title: Phys Rev B doi: 10.1103/Physrevb.76.125201 – volume: 105 start-page: 113928 year: 2009 ident: CR11 article-title: Room temperature ferromagnetism of pure ZnO nanoparticles publication-title: J Appl Phys doi: 10.1063/1.3143103 – volume: 151 start-page: 97 year: 2011 end-page: 101 ident: CR13 article-title: Ferromagnetic behavior of high-purity ZnO nanoparticles publication-title: Solid State Commun doi: 10.1016/j.ssc.2010.11.019 – volume: 72 start-page: 651 year: 1995 ident: BFsrep08871_CR40 publication-title: Philosophical Magazine A doi: 10.1080/01418619508243791 – volume: 9 start-page: 1149 year: 1997 ident: BFsrep08871_CR33 publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/9/5/018 – volume: 86 start-page: 2601 year: 2001 ident: BFsrep08871_CR36 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.2601 – volume: 13 start-page: 103001 year: 2011 ident: BFsrep08871_CR6 publication-title: New J Phys doi: 10.1088/1367-2630/13/10/103001 – volume: 151 start-page: 97 year: 2011 ident: BFsrep08871_CR13 publication-title: Solid State Commun doi: 10.1016/j.ssc.2010.11.019 – volume: 40 start-page: 175 year: 1999 ident: BFsrep08871_CR29 publication-title: Contemporary Physics doi: 10.1080/001075199181521 – volume: 93 start-page: 1371 year: 2012 ident: BFsrep08871_CR15 publication-title: Philos Mag doi: 10.1080/14786435.2012.736693 – volume: 92 start-page: 396 year: 2010 ident: BFsrep08871_CR22 publication-title: Jetp Lett+ doi: 10.1134/S0021364010180074 – volume: 10 start-page: 055009 year: 2008 ident: BFsrep08871_CR4 publication-title: New J Phys doi: 10.1088/1367-2630/10/5/055009 – ident: BFsrep08871_CR8 doi: 10.1088/0022-3727/41/13/134012 – volume: 10 start-page: 1383 year: 2010 ident: BFsrep08871_CR12 publication-title: Nano Lett doi: 10.1021/nl1001444 – ident: BFsrep08871_CR31 – volume: 2 start-page: 253 year: 2008 ident: BFsrep08871_CR19 publication-title: Int. J. of Nanomanufacturing doi: 10.1504/IJNM.2008.018948 – ident: BFsrep08871_CR41 doi: 10.1111/j.1151-2916.1993.tb07779.x – volume: 7 start-page: 660 year: 2005 ident: BFsrep08871_CR7 publication-title: Solid State Sci doi: 10.1016/j.solidstatesciences.2004.11.012 – volume: 110 start-page: 013901 year: 2011 ident: BFsrep08871_CR10 publication-title: J Appl Phys doi: 10.1063/1.3601107 – ident: BFsrep08871_CR16 – volume: 30 start-page: 69 year: 2012 ident: BFsrep08871_CR30 publication-title: Physics Procedia doi: 10.1016/j.phpro.2012.04.042 – volume: 595 start-page: 317 year: 2008 ident: BFsrep08871_CR39 publication-title: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment doi: 10.1016/j.nima.2008.07.081 – volume: 71 start-page: 21 year: 2012 ident: BFsrep08871_CR24 publication-title: Mater Lett doi: 10.1016/j.matlet.2011.11.082 – volume: 56 start-page: 6246 year: 2008 ident: BFsrep08871_CR18 publication-title: Acta Mater doi: 10.1016/j.actamat.2008.08.032 – volume: 79 start-page: 205206 year: 2009 ident: BFsrep08871_CR14 publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.205206 – volume: 4 start-page: 361 year: 2013 ident: BFsrep08871_CR26 publication-title: Beilstein Journal of Nanotechnology doi: 10.3762/bjnano.4.42 – volume: 29 start-page: 1963 year: 2009 ident: BFsrep08871_CR20 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2009.01.005 – ident: BFsrep08871_CR9 doi: 10.1088/1742-6596/200/9/092007 – volume: 113 start-page: 1244 year: 2012 ident: BFsrep08871_CR25 publication-title: Phys. Metals Metallogr. doi: 10.1134/s0031918x12130030 – volume: 108 start-page: 073923 year: 2010 ident: BFsrep08871_CR21 publication-title: J Appl Phys doi: 10.1063/1.3486044 – volume: 16 start-page: S4583 year: 2004 ident: BFsrep08871_CR38 publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/16/40/010 – volume: 4 start-page: 173 year: 2005 ident: BFsrep08871_CR2 publication-title: Nat Mater doi: 10.1038/Nmat1310 – volume: 75 start-page: 205206 year: 2007 ident: BFsrep08871_CR3 publication-title: Phys Rev B doi: 10.1103/Physrevb.75.205206 – volume: 248 start-page: 1581 year: 2011 ident: BFsrep08871_CR23 publication-title: Phys Status Solidi B doi: 10.1002/pssb.201001182 – volume: 9 start-page: 9113 year: 1997 ident: BFsrep08871_CR17 publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/9/43/002 – ident: BFsrep08871_CR34 – ident: BFsrep08871_CR35 doi: 10.1002/9780470386323 – volume: 105 start-page: 113928 year: 2009 ident: BFsrep08871_CR11 publication-title: J Appl Phys doi: 10.1063/1.3143103 – volume: 103 start-page: 162405 year: 2013 ident: BFsrep08871_CR27 publication-title: Appl Phys Lett doi: 10.1063/1.4825268 – volume: 31 start-page: 546 year: 1985 ident: BFsrep08871_CR32 publication-title: Phys Rev B doi: 10.1103/PhysRevB.31.546 – volume: 12 start-page: 053025 year: 2010 ident: BFsrep08871_CR28 publication-title: New J Phys doi: 10.1088/1367-2630/12/5/053025 – volume: 99 start-page: 231 year: 1998 ident: BFsrep08871_CR42 publication-title: Theor Chem Acc doi: 10.1007/s002140050331 – volume: 76 start-page: 125201 year: 2007 ident: BFsrep08871_CR5 publication-title: Phys Rev B doi: 10.1103/Physrevb.76.125201 – volume: 64 start-page: 075205 year: 2001 ident: BFsrep08871_CR37 publication-title: Phys Rev B doi: 10.1103/PhysRevB.64.075205 – volume: 287 start-page: 1019 year: 2000 ident: BFsrep08871_CR1 publication-title: Science doi: 10.1126/science.287.5455.1019 – reference: 15654343 - Nat Mater. 2005 Feb;4(2):173-9 – reference: 10669409 - Science. 2000 Feb 11;287(5455):1019-22 – reference: 20196539 - Nano Lett. 2010 Apr 14;10(4):1383-6 – reference: 23844341 - Beilstein J Nanotechnol. 2013 Jun 13;4:361-9 – reference: 11289990 - Phys Rev Lett. 2001 Mar 19;86(12):2601-4 – reference: 9935458 - Phys Rev B Condens Matter. 1985 Jan 1;31(1):546-563 – reference: 26148449 - Sci Rep. 2015;5:10769 |
SSID | ssj0000529419 |
Score | 2.4527338 |
Snippet | Diamagnetic oxides can, under certain conditions, become ferromagnetic at room temperature and therefore are promising candidates for future material in... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8871 |
SubjectTerms | 147/143 639/301/357/354 639/301/357/997 639/925/357/995 639/925/357/997 Humanities and Social Sciences multidisciplinary Science |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JSgQxEA2iCF7E3XYjLgcvjZ3p9HTHm4wOIqjgAuKlqSytA5qRmfHgv_kNfpOV9CLjePDc1SGklrxUFa8IORCZbmUaPQ3aoEIOTIcgeRQWXGEklJIpn7q4vGqf3_OLh-ShIoseVm2VJaWlD9N1d9gR3hdvziHwoTPjGNudMXfanSad4gpWnImaOyjOfv4Yv3EmYORkN-Svkqi_aboLZL6CiPSk3NQimTJ2icyWQyM_lsmlT-IV4HLdVPddKwuiRlqYwaD_Ck_WjHrDV9qz1IJ1vVcIIzV9tNfHFOjX5-0NBavpafeOembZFXLfPbvrnIfVUIRQxTwaha2MRYbjQ0QmiVaCCeUqj1ymwgjgBcSACEizNC1EGkUFOpxOTJuBlgmqA8HTKpm2fWvWCZWqlepYqCwTjGtQWcIBpB-ZWSilISCH9cHlqmIMd4MrXnJfuY6zvDnjgOw1om8lTcZfQrv16edoxK4yAdb034c5Q5QgXMU1DchaqY1mGYwpPEWYF5B0TE-NgCPIHv9ie8-eKBuhYEtEIiD7tUbzykOHk7vb-JfUJplDyJT4LjSxRaZHg3ezjbBkJHe8QX4DZKblTQ priority: 102 providerName: Springer Nature |
Title | Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study |
URI | https://link.springer.com/article/10.1038/srep08871 https://www.ncbi.nlm.nih.gov/pubmed/25747456 https://www.proquest.com/docview/1661987067 https://pubmed.ncbi.nlm.nih.gov/PMC4352909 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTUi8IP6TAZX588BLIE6dOkZCqJRVU6UOtK1SxUt0thOotLlb20nsu_EZ-EycnaTa6J54ipQ4VnTny_18d_4dwBuV2zS3ZGnYQxML5DZGLZK4Eob-hFpzE0IX44Pe_kSMptl0C9oem40Alzdu7Xw_qcni5N2v88tPZPAf6yPj-XvyJWfeWGgTtEMOSXr7HDcov6b4TpXgquUVuvqG5wLOCFEL38D6qmPaQJubRZP_ZE6DQxreg7sNkmT9WvX3Yat0D-B23Vvy8iGMQ6yvQh8SZ3buK14IXLKqXCzmp_jDlavZ8pTNHHPofIkWoU3LvruvHxiyP7-PDhk6y74Mj1kgoH0Ek-He8WA_bnonxKYrklWc5jwpBe1XdJZZo7gyPkEptFSlQlFhFwkoWS5lpWSSVGSXNit7HK3OSGuEsR7Dtpu78ikwbVJpu8rkueLCoskzgahDZ83KGIsRvG0FV5iGWNz3tzgpQoK7mxdrcUfwaj30rGbTuGnQy1b6Ba11n8BAV84vlgUnMKF8YlZG8KTWxnqaVo0RyGt6Wg_wPNrXn7jZz8CnTYgxVYmK4HWr0aJdh5tft_vf8z-DO4S2slDApp7D9mpxUb4gRLPSHbglp7IDO_3-6GhE1897B98O6e6gN-iEKEEnrOi_O5L_kw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5VrSq4VJTnQgvmceCyYp31PswNBaIUmiJBKlVcVuPH0kjUqZL00P_Gb-hvYux9oBAOPe-sZXk89ueZT98AvJGlGZSGIg1z1LFAbmJUIolroekkVIrrkLqYnOTjU_H5LDtrxaKXLa2ykbQMx3THDntH98WlDwh66OwQxM49e2uYD_t0ii9YCS477aC0_PvH-o2zASM32ZD_lETDTTO6B3stRGQfmkntw5Z192G3aRp5_QAmIYlXo891MzP3VBZCjay2i8X8An86u5otL9jMMYfOc68IRhr2w319z5Dd_P7-jaEz7ONoyoKy7EM4HX2aDsdx2xQh1qlIVvGg5IkV9BBRWWa05FL7yqNQhbQSRY0pEgIyvChqWSRJTQFnMptzNCojdxB4egTbbu7sE2BKDwqTSl2WkguDuswEogotM2utDUbwtlu4SreK4b5xxa8qVK7TsurXOIJXvellI5PxP6OX3epXtIl9ZQKdnV8tK04oQfqKaxHB48Yb_TB0poiCYF4ExZqfegMvkL3-xc3Og1A2QcGBTGQErzuPVm2ELjdn9_RWVi_gzng6Oa6Oj06-PIO7BJ-ywEiTB7C9WlzZQ4IoK_U8bM4_VEHoPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVkVcUB9Aw6M1jwOXiHjjbGJu1ZZV3yBopYpLNH6krES91e72wH_rb-A3dew80HY59JxJZHk8M59nJt8AfJCF6RWGLA37qGOB3MSoRBJXQpMnVIrrkLo4Oe3vn4vDi-yi-Vl92rRV1pSWwU233WGfKF5ce4Mgx2KqR7BCMDvxd61Bf9ClVHzRSnDZ8gelxb-35qPOApRc7Ii8VxYN0Wa4Bk8bmMh264Wtw5J1G7BaD478swknIZFXoc93MzP27SyEHFllJ5PxFV46OxtNr9jIMYfO918RlDTsp_v6mSH7e_vjO0Nn2N7wjAV22WdwPvxyNtiPm8EIsU5FMot7BU-soMuIyjKjJZfaVx-FyqWVKCpMkVCQ4XleyTxJKjI6k9k-R6MyUgkBqOew7MbObgFTupebVOqikFwY1EUmEFUYm1lpbTCCj-3GlbphDffDK36XoXqdFmW3xxG860Sva6qM_wm9bXe_pIPsqxPo7PhmWnJCCtJXXfMIXtTa6D5DfkXkBPUiyOf01Al4kuz5J270K5BlExzsyURG8L7VaNlY6XRxdS8fJLUDj7_tDcvjg9OjV_CEEFQWmtLka1ieTW7sG0IpM7UdzuYdkN7pRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+dominated+ferromagnetism+in+nanograined+ZnO%3A+a+%CE%BCSR+and+DFT+study&rft.jtitle=Scientific+reports&rft.au=Tietze%2C+Thomas&rft.au=Audehm%2C+Patrick&rft.au=Chen%2C+Yu%E2%80%93Chun&rft.au=Sch%C3%BCtz%2C+Gisela&rft.date=2015-03-09&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=5&rft_id=info:doi/10.1038%2Fsrep08871&rft_id=info%3Apmid%2F25747456&rft.externalDocID=PMC4352909 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |