High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations

•Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity of sandwich panels.•Front facesheet failed more easily due to stress concentration with the increase of core stiffness.•The increase of front...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 122; pp. 119 - 136
Main Authors Sun, Guangyong, Chen, Dongdong, Wang, Hongxu, Hazell, Paul J., Li, Qing
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity of sandwich panels.•Front facesheet failed more easily due to stress concentration with the increase of core stiffness.•The increase of front-to-back thickness ratio led to higher damage resistance.•A structural optimisation for maximising the specific energy absorption was presented. This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to high-velocity impact by a spherical steel projectile. Impact tests were performed in a velocity range from about 70 to 170 m/s to investigate the effects of facesheet thickness, core height, cell wall thickness and cell size of honeycomb on the impact behaviour of sandwich panels. These geometric parameters were found to influence the impact performance mainly by changing the deformation and failure mechanisms of both sandwich facesheets. Moreover, the ballistic limit velocity and critical perforation energy of each sandwich configuration were obtained by numerical simulation. It was found that increasing facesheet thickness and reducing honeycomb cell size were two weight-efficient ways to enhance the perforation resistance of sandwich panels when the areal density exceeded a certain value. The projectile's penetration process into the sandwich panel and the associated energy absorbing mechanisms were analysed, the results of which showed that facesheets contributed most to energy absorption. Further numerical simulation was conducted to explore the influences of core stiffness and the thickness ratio of front to back facesheet. It was found that core stiffness had a significant effect on the deformation and failure initiation of front facesheet; more specifically, the front facesheet failed more easily due to stress concentration with the increase of core stiffness. When the total thickness of front and back facesheets remained constant, increasing the front-to-back thickness ratio led to higher damage resistance but greater deformation area on the front facesheet. Finally, a discrete optimisation was conducted to generate an optimal design of sandwich structure for achieving the highest specific energy absorption without perforation under a certain impact energy. The optimised sandwich panel exhibited an increase of 23.7% in specific energy absorption compared with the initial design.
AbstractList •Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity of sandwich panels.•Front facesheet failed more easily due to stress concentration with the increase of core stiffness.•The increase of front-to-back thickness ratio led to higher damage resistance.•A structural optimisation for maximising the specific energy absorption was presented. This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to high-velocity impact by a spherical steel projectile. Impact tests were performed in a velocity range from about 70 to 170 m/s to investigate the effects of facesheet thickness, core height, cell wall thickness and cell size of honeycomb on the impact behaviour of sandwich panels. These geometric parameters were found to influence the impact performance mainly by changing the deformation and failure mechanisms of both sandwich facesheets. Moreover, the ballistic limit velocity and critical perforation energy of each sandwich configuration were obtained by numerical simulation. It was found that increasing facesheet thickness and reducing honeycomb cell size were two weight-efficient ways to enhance the perforation resistance of sandwich panels when the areal density exceeded a certain value. The projectile's penetration process into the sandwich panel and the associated energy absorbing mechanisms were analysed, the results of which showed that facesheets contributed most to energy absorption. Further numerical simulation was conducted to explore the influences of core stiffness and the thickness ratio of front to back facesheet. It was found that core stiffness had a significant effect on the deformation and failure initiation of front facesheet; more specifically, the front facesheet failed more easily due to stress concentration with the increase of core stiffness. When the total thickness of front and back facesheets remained constant, increasing the front-to-back thickness ratio led to higher damage resistance but greater deformation area on the front facesheet. Finally, a discrete optimisation was conducted to generate an optimal design of sandwich structure for achieving the highest specific energy absorption without perforation under a certain impact energy. The optimised sandwich panel exhibited an increase of 23.7% in specific energy absorption compared with the initial design.
This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to high-velocity impact by a spherical steel projectile. Impact tests were performed in a velocity range from about 70 to 170 m/s to investigate the effects of facesheet thickness, core height, cell wall thickness and cell size of honeycomb on the impact behaviour of sandwich panels. These geometric parameters were found to influence the impact performance mainly by changing the deformation and failure mechanisms of both sandwich facesheets. Moreover, the ballistic limit velocity and critical perforation energy of each sandwich configuration were obtained by numerical simulation. It was found that increasing facesheet thickness and reducing honeycomb cell size were two weight-efficient ways to enhance the perforation resistance of sandwich panels when the areal density exceeded a certain value. The projectile's penetration process into the sandwich panel and the associated energy absorbing mechanisms were analysed, the results of which showed that facesheets contributed most to energy absorption. Further numerical simulation was conducted to explore the influences of core stiffness and the thickness ratio of front to back facesheet. It was found that core stiffness had a significant effect on the deformation and failure initiation of front facesheet; more specifically, the front facesheet failed more easily due to stress concentration with the increase of core stiffness. When the total thickness of front and back facesheets remained constant, increasing the front-to-back thickness ratio led to higher damage resistance but greater deformation area on the front facesheet. Finally, a discrete optimisation was conducted to generate an optimal design of sandwich structure for achieving the highest specific energy absorption without perforation under a certain impact energy. The optimised sandwich panel exhibited an increase of 23.7% in specific energy absorption compared with the initial design.
Author Chen, Dongdong
Wang, Hongxu
Li, Qing
Hazell, Paul J.
Sun, Guangyong
Author_xml – sequence: 1
  givenname: Guangyong
  surname: Sun
  fullname: Sun, Guangyong
  organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 2
  givenname: Dongdong
  surname: Chen
  fullname: Chen, Dongdong
  organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 3
  givenname: Hongxu
  orcidid: 0000-0001-5248-4578
  surname: Wang
  fullname: Wang, Hongxu
  email: hongxu.wang@adfa.edu.au
  organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China
– sequence: 4
  givenname: Paul J.
  orcidid: 0000-0002-8302-3173
  surname: Hazell
  fullname: Hazell, Paul J.
  organization: School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT 2600, Australia
– sequence: 5
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
BookMark eNqFkEFr3DAQhUVJoZtt_0IR9OztSLLXFvTQEpomEOilhd6ELI_WMra0leQN---rdJtLL4GBmYF57zHfNbnywSMh7xnsGLD9x2nnJrcc0R92HFi3g1LQviIb1rWyEg3IK7KBVtRVW4tfb8h1ShMAa6GBDfF37jBWJ5yDcflMi482mfY46pMLa6TBUj2vi_NuXehYgs8mLD1N2g-Pzoz0qD3OiT66PNLBWYsRfaYpx9XkNeqZmuCtO5Qxu-DTW_La6jnhu399S37efv1xc1c9fP92f_PloTKihlzx2vJ9x21fC9DWYFllw-tmkFIb2xroetGhFdCzRrZ83wredYOsseklR5RiSz5cfI8x_F4xZTWVb3yJVJwJ1glooS5X-8uViSGliFYdo1t0PCsG6omtmtQzW_XEVkGpgnJLPv0nLPT-fpijdvPL8s8XeUGHJ4dRJePQGxxcRJPVENxLFn8Azc-fPA
CitedBy_id crossref_primary_10_1016_j_ijimpeng_2022_104201
crossref_primary_10_1016_j_compositesb_2022_110102
crossref_primary_10_1016_j_ijmecsci_2024_109359
crossref_primary_10_1016_j_ijimpeng_2021_104047
crossref_primary_10_1080_00405167_2024_2318182
crossref_primary_10_1007_s44150_025_00129_3
crossref_primary_10_1177_10996362251330154
crossref_primary_10_1016_j_tws_2019_03_056
crossref_primary_10_1016_j_engstruct_2024_119319
crossref_primary_10_1016_j_matdes_2019_108032
crossref_primary_10_1007_s40870_025_00466_w
crossref_primary_10_1080_15376494_2024_2369721
crossref_primary_10_1016_j_tws_2024_111597
crossref_primary_10_1002_pc_25593
crossref_primary_10_1016_j_matpr_2023_03_106
crossref_primary_10_1016_j_tws_2024_111874
crossref_primary_10_1177_1099636220975168
crossref_primary_10_1007_s00158_023_03629_2
crossref_primary_10_1016_j_compstruct_2022_116083
crossref_primary_10_1016_j_aej_2024_11_088
crossref_primary_10_1080_15376494_2025_2471956
crossref_primary_10_1016_j_ijmecsci_2021_106991
crossref_primary_10_1177_0954406219839081
crossref_primary_10_1016_j_tws_2021_108724
crossref_primary_10_1016_j_compositesb_2018_12_054
crossref_primary_10_1007_s11665_020_05181_2
crossref_primary_10_1016_j_compstruct_2019_04_007
crossref_primary_10_1177_10996362211020457
crossref_primary_10_1016_j_compositesb_2021_109485
crossref_primary_10_3390_ma16030935
crossref_primary_10_1016_j_compstruct_2024_118436
crossref_primary_10_1016_j_compstruct_2022_116645
crossref_primary_10_1016_j_ijimpeng_2020_103509
crossref_primary_10_1007_s12221_021_0236_2
crossref_primary_10_1016_j_compstruct_2019_111842
crossref_primary_10_1016_j_tws_2019_04_029
crossref_primary_10_1007_s12206_019_0610_9
crossref_primary_10_1016_j_conbuildmat_2021_125303
crossref_primary_10_1016_j_dt_2023_11_016
crossref_primary_10_1016_j_compstruct_2022_116092
crossref_primary_10_1016_j_ijimpeng_2024_104956
crossref_primary_10_1016_j_tws_2020_107229
crossref_primary_10_1016_j_ijimpeng_2021_104143
crossref_primary_10_1007_s40430_023_04507_0
crossref_primary_10_1007_s11665_022_07087_7
crossref_primary_10_1177_10996362241275473
crossref_primary_10_1016_j_ijnonlinmec_2025_105026
crossref_primary_10_1016_j_tws_2020_107188
crossref_primary_10_1016_j_compstruct_2020_112334
crossref_primary_10_1016_j_matpr_2022_11_367
crossref_primary_10_1016_j_tws_2020_107223
crossref_primary_10_1016_j_tws_2022_109446
crossref_primary_10_1177_10996362241302975
crossref_primary_10_1016_j_compositesb_2019_107410
crossref_primary_10_1016_j_compstruct_2022_115369
crossref_primary_10_1177_14644207221122963
crossref_primary_10_1016_j_ijimpeng_2019_103360
crossref_primary_10_1016_j_tws_2023_111257
crossref_primary_10_31202_ecjse_1014492
crossref_primary_10_1016_j_tws_2023_111256
crossref_primary_10_1016_j_compstruct_2020_113396
crossref_primary_10_1016_j_compositesb_2019_04_044
crossref_primary_10_1177_14644207221092581
crossref_primary_10_1016_j_ijmecsci_2023_108795
crossref_primary_10_3390_ma16155482
crossref_primary_10_1007_s40194_022_01361_x
crossref_primary_10_1016_j_ijimpeng_2024_104890
crossref_primary_10_1016_j_tws_2020_107079
crossref_primary_10_1016_j_tws_2022_108886
crossref_primary_10_1007_s10443_020_09806_6
crossref_primary_10_1016_j_compstruct_2023_116776
crossref_primary_10_1080_17452759_2022_2125879
crossref_primary_10_1016_j_tws_2023_110732
crossref_primary_10_1016_j_compstruct_2023_117064
crossref_primary_10_1007_s10443_023_10190_0
crossref_primary_10_1016_j_matdes_2022_110963
crossref_primary_10_1016_j_engfailanal_2021_105302
crossref_primary_10_1177_14644207221130361
crossref_primary_10_1016_j_ijmecsci_2020_105621
crossref_primary_10_1016_j_mtcomm_2022_104330
crossref_primary_10_1016_j_compstruct_2022_116048
crossref_primary_10_1134_S0025654424603550
crossref_primary_10_3390_pr13010189
crossref_primary_10_1016_j_mtcomm_2023_106750
crossref_primary_10_1177_10996362241297563
crossref_primary_10_1016_j_ijimpeng_2020_103556
crossref_primary_10_1080_15376494_2025_2451221
crossref_primary_10_1177_10996362241232082
crossref_primary_10_1016_j_istruc_2024_106361
crossref_primary_10_1038_s41598_024_80988_w
crossref_primary_10_1007_s12206_019_0508_6
crossref_primary_10_1007_s11665_023_07880_y
crossref_primary_10_1016_j_ijimpeng_2022_104236
crossref_primary_10_3390_polym15051137
crossref_primary_10_1016_j_compositesb_2023_110498
crossref_primary_10_1016_j_engstruct_2024_118955
crossref_primary_10_1016_j_tws_2021_108760
crossref_primary_10_1016_j_engstruct_2024_118439
crossref_primary_10_1016_j_tws_2022_109476
crossref_primary_10_1177_16878140211034102
crossref_primary_10_3390_biomimetics8010092
crossref_primary_10_1177_1099636220909743
crossref_primary_10_1016_j_compstruct_2018_10_051
crossref_primary_10_1016_j_addma_2022_103051
crossref_primary_10_1016_j_jmrt_2022_12_063
crossref_primary_10_1016_j_compstruct_2023_116791
crossref_primary_10_1016_j_dt_2023_07_011
crossref_primary_10_1016_j_compositesb_2018_12_139
crossref_primary_10_1016_j_dt_2022_03_011
crossref_primary_10_3390_jcs7030102
crossref_primary_10_1177_09544062251315017
crossref_primary_10_1016_j_ijimpeng_2021_104065
crossref_primary_10_3390_ma17102274
crossref_primary_10_1016_j_ast_2024_109733
crossref_primary_10_1016_j_compositesb_2021_108881
crossref_primary_10_1016_j_matpr_2022_10_283
crossref_primary_10_1016_j_engstruct_2023_117232
crossref_primary_10_1016_j_ast_2019_02_035
crossref_primary_10_1016_j_oceaneng_2023_116578
crossref_primary_10_1016_j_dt_2022_12_018
crossref_primary_10_1088_2053_1591_acfb60
crossref_primary_10_5937_fme2104969Y
crossref_primary_10_1016_j_tws_2023_111178
crossref_primary_10_1142_S0219455424500251
crossref_primary_10_1177_0021998321990734
crossref_primary_10_3390_met11010118
crossref_primary_10_1016_j_ijmecsci_2020_105681
crossref_primary_10_29109_gujsc_1598098
crossref_primary_10_1016_j_ijimpeng_2023_104548
crossref_primary_10_1016_j_ijmecsci_2025_110114
crossref_primary_10_1007_s40430_020_2196_7
crossref_primary_10_1016_j_tws_2020_106869
crossref_primary_10_3390_ma14164731
crossref_primary_10_1016_j_ijimpeng_2024_105143
crossref_primary_10_1016_j_tws_2019_106494
crossref_primary_10_1080_15376494_2020_1758256
crossref_primary_10_1016_j_compstruct_2020_112027
crossref_primary_10_3390_su15043437
crossref_primary_10_1177_16878132231175754
crossref_primary_10_1016_j_tws_2022_109921
crossref_primary_10_1007_s11831_022_09869_7
crossref_primary_10_1080_15397734_2023_2255253
crossref_primary_10_1016_j_compstruct_2020_113081
crossref_primary_10_1016_j_compstruct_2022_116390
crossref_primary_10_1016_j_compositesb_2021_108806
crossref_primary_10_1016_j_oceaneng_2023_114959
crossref_primary_10_1177_00219983221147383
crossref_primary_10_1177_00219983241246109
crossref_primary_10_1016_j_tws_2022_109808
Cites_doi 10.1016/j.compstruct.2017.09.015
10.1016/j.polymertesting.2017.04.026
10.1016/j.msea.2007.11.044
10.1016/j.tws.2009.07.008
10.1016/S0168-874X(03)00095-7
10.1016/j.compstruct.2016.09.009
10.1007/s00158-016-1579-y
10.1002/pc.22638
10.1016/j.compstruct.2009.10.013
10.1016/j.eswa.2014.12.054
10.1016/j.engstruct.2017.10.063
10.1016/j.matdes.2016.03.048
10.1016/j.compstruct.2013.02.010
10.1016/j.ijimpeng.2005.06.007
10.1007/s10853-017-1482-y
10.1115/1.2048626
10.1016/j.compstruct.2011.05.029
10.1016/j.ijimpeng.2013.10.004
10.1016/j.ijimpeng.2004.09.001
10.1016/j.matdes.2015.03.004
10.1177/0021998317695423
10.1177/1099636213501102
10.1016/j.compositesb.2011.11.028
10.1016/j.compstruct.2015.02.057
10.1016/j.ijimpeng.2011.12.002
10.1016/j.euromechsol.2005.08.001
10.1007/s00158-012-0845-x
10.1016/j.compstruct.2017.02.053
10.1016/0013-7944(85)90052-9
10.1016/j.compstruct.2017.09.025
10.1016/S1359-835X(00)00021-X
10.1016/j.ijimpeng.2008.02.004
10.1177/0731684414524465
10.1016/j.ijimpeng.2014.07.019
10.1016/j.ast.2013.12.005
10.4028/www.scientific.net/KEM.141-143.501
10.1016/j.ijimpeng.2016.04.009
10.1016/j.ijnonlinmec.2017.03.001
10.1016/j.msea.2016.11.030
10.1016/j.marstruc.2012.11.002
10.1016/j.compstruct.2013.07.025
10.1016/j.compositesb.2017.03.030
10.1016/j.compstruct.2014.07.058
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Dec 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2018
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2018.08.007
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 136
ExternalDocumentID 10_1016_j_ijimpeng_2018_08_007
S0734743X18301192
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c340t-24f2682fb430afce4f295245d99acf7c08b38ef30b15972673288d94e5b92ee93
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Wed Aug 13 08:36:17 EDT 2025
Tue Jul 01 03:54:27 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Fri Feb 23 02:45:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Failure mechanism
Impact behaviour
Projectile penetration
Sandwich panel
Discrete optimisation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-24f2682fb430afce4f295245d99acf7c08b38ef30b15972673288d94e5b92ee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5248-4578
0000-0002-8302-3173
PQID 2131830704
PQPubID 2045463
PageCount 18
ParticipantIDs proquest_journals_2131830704
crossref_primary_10_1016_j_ijimpeng_2018_08_007
crossref_citationtrail_10_1016_j_ijimpeng_2018_08_007
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2018_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lee, Yi, Park, Park (bib0050) 2003; 40
Fang, Sun, Qiu, Kim, Li (bib0046) 2016; 55
Gupta, Iqbal, Sekhon (bib0037) 2006; 32
Ghalami-Choobar, Sadighi (bib0020) 2014; 32
Schultz, Griese, Shankar, Summers, Ju, Thompson (bib0032) 2011
Wang, Hazell, Shankar, Morozov, Escobedo (bib0034) 2017; 61
Wu, Liu, Fu, Li, Hui (bib0001) 2017; 121
Yamashita, Gotoh (bib0042) 2005; 32
Nayak, Singh, Belegundu, Yen (bib0030) 2012; 47
Ashab, Ruan, Lu, Xu, Wen (bib0043) 2015; 74
Yahaya, Ruan, Lu, Dargusch (bib0017) 2015; 75
Xie, Meng, Ding, Jin, Du, Han, Wang, Xu, Scarpa, Chi (bib0021) 2017
Johnson, Cook (bib0039) 1983
Wu, Sun, Wu, Li, Li (bib0048) 2017; 92
Liaghat, Nia, Daghyani, Sadighi (bib0029) 2010; 48
Buitrago, Santiuste, Sánchez-Sáez, Barbero, Navarro (bib0024) 2010; 92
Kolopp, Alvarado, Rivallant, Bouvet (bib0022) 2013; 15
Zhang, Zhang, Lu, Ruan (bib0018) 2016
Castanié, Aminanda, Barrau, Thevenet (bib0045) 2013
Sun, Liu, Huang, Zhen, Li (bib0049) 2018; 155
Zhang, Fei, Zhang (bib0006) 2017; 168
Feli, Namdari Pour (bib0027) 2012; 43
Wang, Hazell, Shankar, Morozov, Escobedo, Wang (bib0033) 2017; 52
Wen, Reddy, Reid, Soden (bib0010) 1998; 141-143
Alavi Nia, Razavi, Majzoobi (bib0028) 2008; 488
Sun, Xu, Li, Li (bib0041) 2014; 64
Ivañez, Sanchez-Saez (bib0015) 2013; 106
Børvik, Forrestal, Hopperstad, Warren, Langseth (bib0038) 2009; 36
(bib0035) 2013
Sun, Chen, Huo, Zheng, Li (bib0007) 2018; 184
Ben-Dor, Dubinsky, Elperin (bib0025) 2005; 58
McShane, Radford, Deshpande, Fleck (bib0044) 2006; 25
Liu, Zhang, Li (bib0011) 2017; 182
He, Liu, Tao, Xie, Liu, Zhang (bib0040) 2016; 158
Wang, Ramakrishnan, Shankar (bib0013) 2016; 99
Arslan, Gunes, Apalak, Reddy (bib0019) 2017
Shen, Yang, Cantwell, Balawi, Li (bib0008) 2014; 33
Caserta, Iannucci, Galvanetto (bib0004) 2011; 93
Balcı, Çoban, Bora, Akagündüz, Yalçin (bib0003) 2017; 682
Catapano, Montemurro (bib0031) 2014; 118
Johnson, Cook (bib0036) 1985; 21
Crupi, Epasto, Guglielmino (bib0016) 2013; 30
Fatt, Park (bib0026) 2000; 31
Zhu, Chai (bib0014) 2013; 101
Sun, Fang, Tian, Li, Li (bib0047) 2015; 42
Chai, Zhu (bib0005) 2011; 225
Khan, Mahmood, Hassan, Sharif, Khushnod, Khan (bib0002) 2014; 35
Akatay, Bora, Çoban, Fidan, Tuna (bib0012) 2015; 125
Ebrahimi, Ghosh, Mahdi, Nayeb-Hashemi, Vaziri (bib0023) 2016; 95
Crupi, Epasto, Guglielmino (bib0009) 2012; 43
Sun (10.1016/j.ijimpeng.2018.08.007_bib0007) 2018; 184
Fang (10.1016/j.ijimpeng.2018.08.007_bib0046) 2016; 55
Feli (10.1016/j.ijimpeng.2018.08.007_bib0027) 2012; 43
Caserta (10.1016/j.ijimpeng.2018.08.007_bib0004) 2011; 93
Crupi (10.1016/j.ijimpeng.2018.08.007_bib0009) 2012; 43
Wang (10.1016/j.ijimpeng.2018.08.007_bib0033) 2017; 52
Yamashita (10.1016/j.ijimpeng.2018.08.007_bib0042) 2005; 32
Chai (10.1016/j.ijimpeng.2018.08.007_bib0005) 2011; 225
Zhang (10.1016/j.ijimpeng.2018.08.007_bib0018) 2016
Zhu (10.1016/j.ijimpeng.2018.08.007_bib0014) 2013; 101
Catapano (10.1016/j.ijimpeng.2018.08.007_bib0031) 2014; 118
Liaghat (10.1016/j.ijimpeng.2018.08.007_bib0029) 2010; 48
Yahaya (10.1016/j.ijimpeng.2018.08.007_bib0017) 2015; 75
Fatt (10.1016/j.ijimpeng.2018.08.007_bib0026) 2000; 31
Alavi Nia (10.1016/j.ijimpeng.2018.08.007_bib0028) 2008; 488
Wen (10.1016/j.ijimpeng.2018.08.007_bib0010) 1998; 141-143
Arslan (10.1016/j.ijimpeng.2018.08.007_bib0019) 2017
Sun (10.1016/j.ijimpeng.2018.08.007_bib0049) 2018; 155
Johnson (10.1016/j.ijimpeng.2018.08.007_bib0036) 1985; 21
Børvik (10.1016/j.ijimpeng.2018.08.007_bib0038) 2009; 36
Sun (10.1016/j.ijimpeng.2018.08.007_bib0041) 2014; 64
Lee (10.1016/j.ijimpeng.2018.08.007_bib0050) 2003; 40
Ben-Dor (10.1016/j.ijimpeng.2018.08.007_bib0025) 2005; 58
Schultz (10.1016/j.ijimpeng.2018.08.007_sbref0005a) 2011
Liu (10.1016/j.ijimpeng.2018.08.007_bib0011) 2017; 182
Shen (10.1016/j.ijimpeng.2018.08.007_bib0008) 2014; 33
Ivañez (10.1016/j.ijimpeng.2018.08.007_bib0015) 2013; 106
He (10.1016/j.ijimpeng.2018.08.007_bib0040) 2016; 158
Gupta (10.1016/j.ijimpeng.2018.08.007_bib0037) 2006; 32
Kolopp (10.1016/j.ijimpeng.2018.08.007_bib0022) 2013; 15
McShane (10.1016/j.ijimpeng.2018.08.007_bib0044) 2006; 25
Wang (10.1016/j.ijimpeng.2018.08.007_bib0034) 2017; 61
Crupi (10.1016/j.ijimpeng.2018.08.007_bib0016) 2013; 30
Xie (10.1016/j.ijimpeng.2018.08.007_bib0021) 2017
Johnson (10.1016/j.ijimpeng.2018.08.007_bib0039) 1983
Castanié (10.1016/j.ijimpeng.2018.08.007_bib0045) 2013
Ghalami-Choobar (10.1016/j.ijimpeng.2018.08.007_bib0020) 2014; 32
Buitrago (10.1016/j.ijimpeng.2018.08.007_bib0024) 2010; 92
Wu (10.1016/j.ijimpeng.2018.08.007_bib0048) 2017; 92
Wang (10.1016/j.ijimpeng.2018.08.007_bib0013) 2016; 99
Ebrahimi (10.1016/j.ijimpeng.2018.08.007_bib0023) 2016; 95
Balcı (10.1016/j.ijimpeng.2018.08.007_bib0003) 2017; 682
Ashab (10.1016/j.ijimpeng.2018.08.007_bib0043) 2015; 74
Nayak (10.1016/j.ijimpeng.2018.08.007_bib0030) 2012; 47
(10.1016/j.ijimpeng.2018.08.007_bib0035) 2013
Wu (10.1016/j.ijimpeng.2018.08.007_bib0001) 2017; 121
Khan (10.1016/j.ijimpeng.2018.08.007_bib0002) 2014; 35
Akatay (10.1016/j.ijimpeng.2018.08.007_bib0012) 2015; 125
Zhang (10.1016/j.ijimpeng.2018.08.007_bib0006) 2017; 168
Sun (10.1016/j.ijimpeng.2018.08.007_bib0047) 2015; 42
References_xml – volume: 43
  start-page: 2439
  year: 2012
  end-page: 2447
  ident: bib0027
  article-title: An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact
  publication-title: Compos Part B
– volume: 32
  start-page: 1921
  year: 2006
  end-page: 1944
  ident: bib0037
  article-title: Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles
  publication-title: Int J Impact Eng
– volume: 48
  start-page: 55
  year: 2010
  end-page: 61
  ident: bib0029
  article-title: Ballistic limit evaluation for impact of cylindrical projectiles on honeycomb panels
  publication-title: Thin Walled Struct
– start-page: 427
  year: 2013
  end-page: 489
  ident: bib0045
  article-title: Discrete modeling of the crushing of nomex honeycomb core and application to impact and post-impact behavior of sandwich structures
  publication-title: Dynamic failure of composite and sandwich structures
– volume: 47
  start-page: 749
  year: 2012
  end-page: 763
  ident: bib0030
  article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation
  publication-title: Struct Multidiscipl Optim
– volume: 106
  start-page: 716
  year: 2013
  end-page: 723
  ident: bib0015
  article-title: Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core
  publication-title: Compos Struct
– volume: 92
  start-page: 2090
  year: 2010
  end-page: 2096
  ident: bib0024
  article-title: Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact
  publication-title: Compos Struct
– volume: 64
  start-page: 62
  year: 2014
  end-page: 74
  ident: bib0041
  article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness
  publication-title: Int J Impact Eng
– volume: 32
  start-page: 142
  year: 2014
  end-page: 152
  ident: bib0020
  article-title: Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core
  publication-title: Aerosp Sci Technol
– volume: 40
  start-page: 121
  year: 2003
  end-page: 135
  ident: bib0050
  article-title: An optimization algorithm using orthogonal arrays in discrete design space for structures
  publication-title: Finite Elem Anal Des
– volume: 101
  start-page: 204
  year: 2013
  end-page: 214
  ident: bib0014
  article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact
  publication-title: Compos Struct
– volume: 35
  start-page: 97
  year: 2014
  end-page: 104
  ident: bib0002
  article-title: Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures
  publication-title: Polym Compos
– volume: 182
  start-page: 183
  year: 2017
  end-page: 190
  ident: bib0011
  article-title: Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core
  publication-title: Compos Struct
– start-page: 955
  year: 2011
  end-page: 965
  ident: bib0032
  article-title: Thompson, Optimization of honeycomb cellular meso-structures for high speed impact energy absorption
  publication-title: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
– volume: 225
  start-page: 207
  year: 2011
  end-page: 230
  ident: bib0005
  article-title: A review of low-velocity impact on sandwich structures
  publication-title: Proc Inst Mech Eng Part L
– volume: 32
  start-page: 618
  year: 2005
  end-page: 630
  ident: bib0042
  article-title: Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment
  publication-title: Int J Impact Eng
– volume: 158
  start-page: 30
  year: 2016
  end-page: 43
  ident: bib0040
  article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures
  publication-title: Compos Struct
– volume: 125
  start-page: 425
  year: 2015
  end-page: 433
  ident: bib0012
  article-title: The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures
  publication-title: Compos Struct
– year: 2016
  ident: bib0018
  article-title: Ballistic impact behaviors of aluminum alloy sandwich panels with honeycomb cores: an experimental study
  publication-title: J Sandwich Struct Mater
– volume: 55
  start-page: 1091
  year: 2016
  end-page: 1119
  ident: bib0046
  article-title: On design optimization for structural crashworthiness and its state of the art
  publication-title: Struct Multidiscipl Optim
– volume: 21
  start-page: 31
  year: 1985
  end-page: 48
  ident: bib0036
  article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures
  publication-title: Eng Fract Mech
– volume: 52
  start-page: 13977
  year: 2017
  end-page: 13991
  ident: bib0033
  article-title: Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics
  publication-title: J Mater Sci
– volume: 155
  start-page: 235
  year: 2018
  end-page: 250
  ident: bib0049
  article-title: Topological configuration analysis and design for foam filled multi-cell tubes
  publication-title: Eng Struct
– year: 2017
  ident: bib0019
  article-title: Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates
  publication-title: J Compos Mater
– volume: 75
  start-page: 100
  year: 2015
  end-page: 109
  ident: bib0017
  article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – an experimental study
  publication-title: Int J Impact Eng
– volume: 43
  start-page: 6
  year: 2012
  end-page: 15
  ident: bib0009
  article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading
  publication-title: Int J Impact Eng
– volume: 30
  start-page: 74
  year: 2013
  end-page: 96
  ident: bib0016
  article-title: Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam
  publication-title: Mar struct
– volume: 61
  start-page: 17
  year: 2017
  end-page: 26
  ident: bib0034
  article-title: Impact behaviour of Dyneema ® fabric-reinforced composites with different resin matrices
  publication-title: Polym Test
– volume: 141-143
  start-page: 501
  year: 1998
  end-page: 552
  ident: bib0010
  article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading
  publication-title: Key Eng Mater
– volume: 33
  start-page: 1148
  year: 2014
  end-page: 1157
  ident: bib0008
  article-title: Geometrical effects in the impact response of the aluminium honeycomb sandwich structures
  publication-title: J Reinf Plast Compos
– volume: 99
  start-page: 68
  year: 2016
  end-page: 82
  ident: bib0013
  article-title: Experimental study of the medium velocity impact response of sandwich panels with different cores
  publication-title: Mater Des
– volume: 15
  start-page: 733
  year: 2013
  end-page: 757
  ident: bib0022
  article-title: Modeling impact on aluminium sandwich including velocity effects in honeycomb core
  publication-title: J Sandwich Struct Mater
– volume: 31
  start-page: 889
  year: 2000
  end-page: 899
  ident: bib0026
  article-title: Perforation of honeycomb sandwich plates by projectiles
  publication-title: Compos Part A
– year: 2017
  ident: bib0021
  article-title: High-temperature high-velocity impact on honeycomb sandwich panels
  publication-title: Compos Part B
– volume: 488
  start-page: 273
  year: 2008
  end-page: 280
  ident: bib0028
  article-title: Ballistic limit determination of aluminum honeycombs—experimental study
  publication-title: Mater Sci Eng
– volume: 25
  start-page: 215
  year: 2006
  end-page: 229
  ident: bib0044
  article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading
  publication-title: Eur J Mech A Solids
– volume: 121
  start-page: 122
  year: 2017
  end-page: 133
  ident: bib0001
  article-title: Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels
  publication-title: Compos Part B
– volume: 168
  start-page: 633
  year: 2017
  end-page: 645
  ident: bib0006
  article-title: Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor
  publication-title: Compos Struct
– start-page: 541
  year: 1983
  end-page: 547
  ident: bib0039
  article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
  publication-title: Proceedings of the 7th international symposium on ballistics
– volume: 682
  start-page: 23
  year: 2017
  end-page: 30
  ident: bib0003
  article-title: Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures
  publication-title: Mater Sci Eng
– volume: 93
  start-page: 2748
  year: 2011
  end-page: 2759
  ident: bib0004
  article-title: Shock absorption performance of a motorbike helmet with honeycomb reinforced liner
  publication-title: Compos Struct
– volume: 95
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0023
  article-title: Honeycomb sandwich panels subjected to combined shock and projectile impact
  publication-title: Int J Impact Eng
– volume: 74
  start-page: 138
  year: 2015
  end-page: 149
  ident: bib0043
  article-title: Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation
  publication-title: Mater Des
– volume: 184
  start-page: 110
  year: 2018
  end-page: 124
  ident: bib0007
  article-title: Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels
  publication-title: Compos Struct
– volume: 118
  start-page: 677
  year: 2014
  end-page: 690
  ident: bib0031
  article-title: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy
  publication-title: Compos Struct
– volume: 36
  start-page: 426
  year: 2009
  end-page: 437
  ident: bib0038
  article-title: Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles – calculations
  publication-title: Int J Impact Eng
– volume: 42
  start-page: 4482
  year: 2015
  end-page: 4492
  ident: bib0047
  article-title: Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design
  publication-title: Expert Syst Appl
– volume: 92
  start-page: 41
  year: 2017
  end-page: 58
  ident: bib0048
  article-title: Crashworthiness analysis and optimization of fourier varying section tubes
  publication-title: Int J Non Linear Mech
– volume: 58
  start-page: 355
  year: 2005
  end-page: 371
  ident: bib0025
  article-title: Ballistic impact: recent advances in analytical modeling of plate penetration dynamics–a review
  publication-title: Appl Mech Rev
– year: 2013
  ident: bib0035
  article-title: Analysis User's Manual
– volume: 182
  start-page: 183
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0011
  article-title: Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.09.015
– volume: 61
  start-page: 17
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0034
  article-title: Impact behaviour of Dyneema ® fabric-reinforced composites with different resin matrices
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2017.04.026
– volume: 488
  start-page: 273
  year: 2008
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0028
  article-title: Ballistic limit determination of aluminum honeycombs—experimental study
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2007.11.044
– volume: 48
  start-page: 55
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0029
  article-title: Ballistic limit evaluation for impact of cylindrical projectiles on honeycomb panels
  publication-title: Thin Walled Struct
  doi: 10.1016/j.tws.2009.07.008
– start-page: 541
  year: 1983
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0039
  article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
– volume: 40
  start-page: 121
  year: 2003
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0050
  article-title: An optimization algorithm using orthogonal arrays in discrete design space for structures
  publication-title: Finite Elem Anal Des
  doi: 10.1016/S0168-874X(03)00095-7
– volume: 158
  start-page: 30
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0040
  article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.09.009
– volume: 55
  start-page: 1091
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0046
  article-title: On design optimization for structural crashworthiness and its state of the art
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-016-1579-y
– volume: 35
  start-page: 97
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0002
  article-title: Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures
  publication-title: Polym Compos
  doi: 10.1002/pc.22638
– volume: 92
  start-page: 2090
  year: 2010
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0024
  article-title: Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2009.10.013
– volume: 42
  start-page: 4482
  year: 2015
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0047
  article-title: Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.12.054
– volume: 155
  start-page: 235
  year: 2018
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0049
  article-title: Topological configuration analysis and design for foam filled multi-cell tubes
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.10.063
– volume: 99
  start-page: 68
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0013
  article-title: Experimental study of the medium velocity impact response of sandwich panels with different cores
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.03.048
– volume: 101
  start-page: 204
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0014
  article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.02.010
– year: 2013
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0035
– volume: 32
  start-page: 1921
  year: 2006
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0037
  article-title: Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2005.06.007
– volume: 52
  start-page: 13977
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0033
  article-title: Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics
  publication-title: J Mater Sci
  doi: 10.1007/s10853-017-1482-y
– volume: 58
  start-page: 355
  year: 2005
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0025
  article-title: Ballistic impact: recent advances in analytical modeling of plate penetration dynamics–a review
  publication-title: Appl Mech Rev
  doi: 10.1115/1.2048626
– volume: 93
  start-page: 2748
  year: 2011
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0004
  article-title: Shock absorption performance of a motorbike helmet with honeycomb reinforced liner
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2011.05.029
– volume: 64
  start-page: 62
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0041
  article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2013.10.004
– volume: 32
  start-page: 618
  year: 2005
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0042
  article-title: Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2004.09.001
– volume: 74
  start-page: 138
  year: 2015
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0043
  article-title: Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.03.004
– year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0019
  article-title: Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates
  publication-title: J Compos Mater
  doi: 10.1177/0021998317695423
– volume: 15
  start-page: 733
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0022
  article-title: Modeling impact on aluminium sandwich including velocity effects in honeycomb core
  publication-title: J Sandwich Struct Mater
  doi: 10.1177/1099636213501102
– volume: 43
  start-page: 2439
  year: 2012
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0027
  article-title: An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact
  publication-title: Compos Part B
  doi: 10.1016/j.compositesb.2011.11.028
– volume: 125
  start-page: 425
  year: 2015
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0012
  article-title: The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.02.057
– volume: 43
  start-page: 6
  year: 2012
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0009
  article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2011.12.002
– volume: 25
  start-page: 215
  year: 2006
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0044
  article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2005.08.001
– volume: 47
  start-page: 749
  year: 2012
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0030
  article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation
  publication-title: Struct Multidiscipl Optim
  doi: 10.1007/s00158-012-0845-x
– volume: 168
  start-page: 633
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0006
  article-title: Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.02.053
– volume: 21
  start-page: 31
  year: 1985
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0036
  article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(85)90052-9
– volume: 184
  start-page: 110
  year: 2018
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0007
  article-title: Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2017.09.025
– year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0021
  article-title: High-temperature high-velocity impact on honeycomb sandwich panels
  publication-title: Compos Part B
– start-page: 955
  year: 2011
  ident: 10.1016/j.ijimpeng.2018.08.007_sbref0005a
  article-title: Thompson, Optimization of honeycomb cellular meso-structures for high speed impact energy absorption
– volume: 31
  start-page: 889
  year: 2000
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0026
  article-title: Perforation of honeycomb sandwich plates by projectiles
  publication-title: Compos Part A
  doi: 10.1016/S1359-835X(00)00021-X
– volume: 36
  start-page: 426
  year: 2009
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0038
  article-title: Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles – calculations
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2008.02.004
– volume: 33
  start-page: 1148
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0008
  article-title: Geometrical effects in the impact response of the aluminium honeycomb sandwich structures
  publication-title: J Reinf Plast Compos
  doi: 10.1177/0731684414524465
– volume: 75
  start-page: 100
  year: 2015
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0017
  article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – an experimental study
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2014.07.019
– volume: 32
  start-page: 142
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0020
  article-title: Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2013.12.005
– volume: 141-143
  start-page: 501
  year: 1998
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0010
  article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.141-143.501
– volume: 95
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0023
  article-title: Honeycomb sandwich panels subjected to combined shock and projectile impact
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2016.04.009
– volume: 92
  start-page: 41
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0048
  article-title: Crashworthiness analysis and optimization of fourier varying section tubes
  publication-title: Int J Non Linear Mech
  doi: 10.1016/j.ijnonlinmec.2017.03.001
– volume: 225
  start-page: 207
  year: 2011
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0005
  article-title: A review of low-velocity impact on sandwich structures
  publication-title: Proc Inst Mech Eng Part L
– volume: 682
  start-page: 23
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0003
  article-title: Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures
  publication-title: Mater Sci Eng
  doi: 10.1016/j.msea.2016.11.030
– volume: 30
  start-page: 74
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0016
  article-title: Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam
  publication-title: Mar struct
  doi: 10.1016/j.marstruc.2012.11.002
– volume: 106
  start-page: 716
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0015
  article-title: Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2013.07.025
– year: 2016
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0018
  article-title: Ballistic impact behaviors of aluminum alloy sandwich panels with honeycomb cores: an experimental study
  publication-title: J Sandwich Struct Mater
– volume: 121
  start-page: 122
  year: 2017
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0001
  article-title: Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels
  publication-title: Compos Part B
  doi: 10.1016/j.compositesb.2017.03.030
– start-page: 427
  year: 2013
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0045
  article-title: Discrete modeling of the crushing of nomex honeycomb core and application to impact and post-impact behavior of sandwich structures
– volume: 118
  start-page: 677
  year: 2014
  ident: 10.1016/j.ijimpeng.2018.08.007_bib0031
  article-title: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.07.058
SSID ssj0017050
Score 2.5872114
Snippet •Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity...
This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Aluminum
Computer simulation
Configurations
Deformation effects
Deformation mechanisms
Deformation resistance
Discrete element method
Discrete optimisation
Dynamic response
Energy absorption
Failure mechanism
Failure mechanisms
Impact analysis
Impact behaviour
Impact tests
Materials durability
Mathematical models
Optimization
Perforation
Projectile penetration
Projectiles
Sandwich panel
Sandwich panels
Sandwich structures
Stiffness
Stress concentration
Terminal ballistics
Thickness ratio
Velocity
Wall thickness
Weight
Title High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations
URI https://dx.doi.org/10.1016/j.ijimpeng.2018.08.007
https://www.proquest.com/docview/2131830704
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6mcYED4inGSzlwLSup2yZHhEADxC6AtFvUpMnWCQpimxAXfjt2HwgQEgeOjZIqtd3PTmR_ZuwIEgHOmyiAGM-qkLs0MDZTATp7k9lIQu6pOPlmmAzu4WoUjzrsrK2FobTKBvtrTK_QuhnpN9LsPxdF_xaNE9D_jdAoibiMcBggJSs_fv9M8yC2mOqeBScHNPtLlfD0uJgWGJyWY0rxkhWVJ7WV_d1B_YDqyv9crLHVJnDkp_Xe1lnHlRts5Qud4CYrKWkjoCQgi7E1rwsgeVOIv3jhT55niEVFWSwe-eSpdG_41YbPsjJ_LeyEIzDgRjhdzfK2ccqc1wyzxM7B8ezsi_GiNprZFru_OL87GwRNP4XARhDOAwFeJFJ4A1GYeevwUcUC4lypzPrUhtJE0vkoNBjjpCIhHh-ZK3CxUcI5FW2zbomb22E8VtIZSQo9USDBmjxyCgcsoIIFZD0Wt0LUtiEbp54XD7rNKpvqVviahK-pGWaY9lj_c91zTbfx5wrV6kh_MxyNPuHPtfutUnXz6860OCGYQySE3X-8eo8t01Od-LLPuqgqd4Dhy9wcVvZ5yJZOL68Hww_qkvN-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIry9MAaGpxLa48IUZVHWQCpmxU7NqSCtKKtEAu_nbs8qoKQGBjj2JHjO393tu6-Y-wEWgKcN1EAMZ5VIXXtwNhEBWjsTWIjCamn5OTeXav7CNf9uL_ALupcGAqrrLC_xPQCrauWZrWazVGWNe9ROQHtXx-VkojLEIeXALcvlTE4_ZzFeRBdTHHRgr0D6j6XJjw4zQYZeqf5E8V4yYLLk-rK_m6hfmB1YYA662yt8hz5eTm5Dbbg8k22OscnuMVyitoIKArIonPNywxIXmXiT9_40PMEwSjLs-krfx7m7gN_2_BxkqfvmX3miAw4EU53s7yunDLhJcUs0XNwPDz77Glaas14mz12Lh8uukFVUCGwEYSTQIAXLSm8gShMvHX4qGIBcapUYn3bhtJE0vkoNOjktEWLiHxkqsDFRgnnVLTDFnOc3C7jsZLOSJLomQIJ1qSRU9hgASUsIGmwuF5EbSu2cSp68aLrsLKBrhdf0-JrqoYZthusORs3Kvk2_hyhahnpb5qj0Sj8OfagFqqu9u5YizPCOYRC2PvHp4_Zcvehd6tvr-5u9tkKvSmjYA7YIorNHaIvMzFHha5-AXmy9Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-velocity+impact+behaviour+of+aluminium+honeycomb+sandwich+panels+with+different+structural+configurations&rft.jtitle=International+journal+of+impact+engineering&rft.au=Sun%2C+Guangyong&rft.au=Chen%2C+Dongdong&rft.au=Wang%2C+Hongxu&rft.au=Hazell%2C+Paul+J&rft.date=2018-12-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=122&rft.spage=119&rft_id=info:doi/10.1016%2Fj.ijimpeng.2018.08.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon