High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations
•Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity of sandwich panels.•Front facesheet failed more easily due to stress concentration with the increase of core stiffness.•The increase of front...
Saved in:
Published in | International journal of impact engineering Vol. 122; pp. 119 - 136 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.12.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity of sandwich panels.•Front facesheet failed more easily due to stress concentration with the increase of core stiffness.•The increase of front-to-back thickness ratio led to higher damage resistance.•A structural optimisation for maximising the specific energy absorption was presented.
This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to high-velocity impact by a spherical steel projectile. Impact tests were performed in a velocity range from about 70 to 170 m/s to investigate the effects of facesheet thickness, core height, cell wall thickness and cell size of honeycomb on the impact behaviour of sandwich panels. These geometric parameters were found to influence the impact performance mainly by changing the deformation and failure mechanisms of both sandwich facesheets. Moreover, the ballistic limit velocity and critical perforation energy of each sandwich configuration were obtained by numerical simulation. It was found that increasing facesheet thickness and reducing honeycomb cell size were two weight-efficient ways to enhance the perforation resistance of sandwich panels when the areal density exceeded a certain value. The projectile's penetration process into the sandwich panel and the associated energy absorbing mechanisms were analysed, the results of which showed that facesheets contributed most to energy absorption. Further numerical simulation was conducted to explore the influences of core stiffness and the thickness ratio of front to back facesheet. It was found that core stiffness had a significant effect on the deformation and failure initiation of front facesheet; more specifically, the front facesheet failed more easily due to stress concentration with the increase of core stiffness. When the total thickness of front and back facesheets remained constant, increasing the front-to-back thickness ratio led to higher damage resistance but greater deformation area on the front facesheet. Finally, a discrete optimisation was conducted to generate an optimal design of sandwich structure for achieving the highest specific energy absorption without perforation under a certain impact energy. The optimised sandwich panel exhibited an increase of 23.7% in specific energy absorption compared with the initial design. |
---|---|
AbstractList | •Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity of sandwich panels.•Front facesheet failed more easily due to stress concentration with the increase of core stiffness.•The increase of front-to-back thickness ratio led to higher damage resistance.•A structural optimisation for maximising the specific energy absorption was presented.
This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to high-velocity impact by a spherical steel projectile. Impact tests were performed in a velocity range from about 70 to 170 m/s to investigate the effects of facesheet thickness, core height, cell wall thickness and cell size of honeycomb on the impact behaviour of sandwich panels. These geometric parameters were found to influence the impact performance mainly by changing the deformation and failure mechanisms of both sandwich facesheets. Moreover, the ballistic limit velocity and critical perforation energy of each sandwich configuration were obtained by numerical simulation. It was found that increasing facesheet thickness and reducing honeycomb cell size were two weight-efficient ways to enhance the perforation resistance of sandwich panels when the areal density exceeded a certain value. The projectile's penetration process into the sandwich panel and the associated energy absorbing mechanisms were analysed, the results of which showed that facesheets contributed most to energy absorption. Further numerical simulation was conducted to explore the influences of core stiffness and the thickness ratio of front to back facesheet. It was found that core stiffness had a significant effect on the deformation and failure initiation of front facesheet; more specifically, the front facesheet failed more easily due to stress concentration with the increase of core stiffness. When the total thickness of front and back facesheets remained constant, increasing the front-to-back thickness ratio led to higher damage resistance but greater deformation area on the front facesheet. Finally, a discrete optimisation was conducted to generate an optimal design of sandwich structure for achieving the highest specific energy absorption without perforation under a certain impact energy. The optimised sandwich panel exhibited an increase of 23.7% in specific energy absorption compared with the initial design. This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to high-velocity impact by a spherical steel projectile. Impact tests were performed in a velocity range from about 70 to 170 m/s to investigate the effects of facesheet thickness, core height, cell wall thickness and cell size of honeycomb on the impact behaviour of sandwich panels. These geometric parameters were found to influence the impact performance mainly by changing the deformation and failure mechanisms of both sandwich facesheets. Moreover, the ballistic limit velocity and critical perforation energy of each sandwich configuration were obtained by numerical simulation. It was found that increasing facesheet thickness and reducing honeycomb cell size were two weight-efficient ways to enhance the perforation resistance of sandwich panels when the areal density exceeded a certain value. The projectile's penetration process into the sandwich panel and the associated energy absorbing mechanisms were analysed, the results of which showed that facesheets contributed most to energy absorption. Further numerical simulation was conducted to explore the influences of core stiffness and the thickness ratio of front to back facesheet. It was found that core stiffness had a significant effect on the deformation and failure initiation of front facesheet; more specifically, the front facesheet failed more easily due to stress concentration with the increase of core stiffness. When the total thickness of front and back facesheets remained constant, increasing the front-to-back thickness ratio led to higher damage resistance but greater deformation area on the front facesheet. Finally, a discrete optimisation was conducted to generate an optimal design of sandwich structure for achieving the highest specific energy absorption without perforation under a certain impact energy. The optimised sandwich panel exhibited an increase of 23.7% in specific energy absorption compared with the initial design. |
Author | Chen, Dongdong Wang, Hongxu Li, Qing Hazell, Paul J. Sun, Guangyong |
Author_xml | – sequence: 1 givenname: Guangyong surname: Sun fullname: Sun, Guangyong organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China – sequence: 2 givenname: Dongdong surname: Chen fullname: Chen, Dongdong organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China – sequence: 3 givenname: Hongxu orcidid: 0000-0001-5248-4578 surname: Wang fullname: Wang, Hongxu email: hongxu.wang@adfa.edu.au organization: State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China – sequence: 4 givenname: Paul J. orcidid: 0000-0002-8302-3173 surname: Hazell fullname: Hazell, Paul J. organization: School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT 2600, Australia – sequence: 5 givenname: Qing surname: Li fullname: Li, Qing organization: School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia |
BookMark | eNqFkEFr3DAQhUVJoZtt_0IR9OztSLLXFvTQEpomEOilhd6ELI_WMra0leQN---rdJtLL4GBmYF57zHfNbnywSMh7xnsGLD9x2nnJrcc0R92HFi3g1LQviIb1rWyEg3IK7KBVtRVW4tfb8h1ShMAa6GBDfF37jBWJ5yDcflMi482mfY46pMLa6TBUj2vi_NuXehYgs8mLD1N2g-Pzoz0qD3OiT66PNLBWYsRfaYpx9XkNeqZmuCtO5Qxu-DTW_La6jnhu399S37efv1xc1c9fP92f_PloTKihlzx2vJ9x21fC9DWYFllw-tmkFIb2xroetGhFdCzRrZ83wredYOsseklR5RiSz5cfI8x_F4xZTWVb3yJVJwJ1glooS5X-8uViSGliFYdo1t0PCsG6omtmtQzW_XEVkGpgnJLPv0nLPT-fpijdvPL8s8XeUGHJ4dRJePQGxxcRJPVENxLFn8Azc-fPA |
CitedBy_id | crossref_primary_10_1016_j_ijimpeng_2022_104201 crossref_primary_10_1016_j_compositesb_2022_110102 crossref_primary_10_1016_j_ijmecsci_2024_109359 crossref_primary_10_1016_j_ijimpeng_2021_104047 crossref_primary_10_1080_00405167_2024_2318182 crossref_primary_10_1007_s44150_025_00129_3 crossref_primary_10_1177_10996362251330154 crossref_primary_10_1016_j_tws_2019_03_056 crossref_primary_10_1016_j_engstruct_2024_119319 crossref_primary_10_1016_j_matdes_2019_108032 crossref_primary_10_1007_s40870_025_00466_w crossref_primary_10_1080_15376494_2024_2369721 crossref_primary_10_1016_j_tws_2024_111597 crossref_primary_10_1002_pc_25593 crossref_primary_10_1016_j_matpr_2023_03_106 crossref_primary_10_1016_j_tws_2024_111874 crossref_primary_10_1177_1099636220975168 crossref_primary_10_1007_s00158_023_03629_2 crossref_primary_10_1016_j_compstruct_2022_116083 crossref_primary_10_1016_j_aej_2024_11_088 crossref_primary_10_1080_15376494_2025_2471956 crossref_primary_10_1016_j_ijmecsci_2021_106991 crossref_primary_10_1177_0954406219839081 crossref_primary_10_1016_j_tws_2021_108724 crossref_primary_10_1016_j_compositesb_2018_12_054 crossref_primary_10_1007_s11665_020_05181_2 crossref_primary_10_1016_j_compstruct_2019_04_007 crossref_primary_10_1177_10996362211020457 crossref_primary_10_1016_j_compositesb_2021_109485 crossref_primary_10_3390_ma16030935 crossref_primary_10_1016_j_compstruct_2024_118436 crossref_primary_10_1016_j_compstruct_2022_116645 crossref_primary_10_1016_j_ijimpeng_2020_103509 crossref_primary_10_1007_s12221_021_0236_2 crossref_primary_10_1016_j_compstruct_2019_111842 crossref_primary_10_1016_j_tws_2019_04_029 crossref_primary_10_1007_s12206_019_0610_9 crossref_primary_10_1016_j_conbuildmat_2021_125303 crossref_primary_10_1016_j_dt_2023_11_016 crossref_primary_10_1016_j_compstruct_2022_116092 crossref_primary_10_1016_j_ijimpeng_2024_104956 crossref_primary_10_1016_j_tws_2020_107229 crossref_primary_10_1016_j_ijimpeng_2021_104143 crossref_primary_10_1007_s40430_023_04507_0 crossref_primary_10_1007_s11665_022_07087_7 crossref_primary_10_1177_10996362241275473 crossref_primary_10_1016_j_ijnonlinmec_2025_105026 crossref_primary_10_1016_j_tws_2020_107188 crossref_primary_10_1016_j_compstruct_2020_112334 crossref_primary_10_1016_j_matpr_2022_11_367 crossref_primary_10_1016_j_tws_2020_107223 crossref_primary_10_1016_j_tws_2022_109446 crossref_primary_10_1177_10996362241302975 crossref_primary_10_1016_j_compositesb_2019_107410 crossref_primary_10_1016_j_compstruct_2022_115369 crossref_primary_10_1177_14644207221122963 crossref_primary_10_1016_j_ijimpeng_2019_103360 crossref_primary_10_1016_j_tws_2023_111257 crossref_primary_10_31202_ecjse_1014492 crossref_primary_10_1016_j_tws_2023_111256 crossref_primary_10_1016_j_compstruct_2020_113396 crossref_primary_10_1016_j_compositesb_2019_04_044 crossref_primary_10_1177_14644207221092581 crossref_primary_10_1016_j_ijmecsci_2023_108795 crossref_primary_10_3390_ma16155482 crossref_primary_10_1007_s40194_022_01361_x crossref_primary_10_1016_j_ijimpeng_2024_104890 crossref_primary_10_1016_j_tws_2020_107079 crossref_primary_10_1016_j_tws_2022_108886 crossref_primary_10_1007_s10443_020_09806_6 crossref_primary_10_1016_j_compstruct_2023_116776 crossref_primary_10_1080_17452759_2022_2125879 crossref_primary_10_1016_j_tws_2023_110732 crossref_primary_10_1016_j_compstruct_2023_117064 crossref_primary_10_1007_s10443_023_10190_0 crossref_primary_10_1016_j_matdes_2022_110963 crossref_primary_10_1016_j_engfailanal_2021_105302 crossref_primary_10_1177_14644207221130361 crossref_primary_10_1016_j_ijmecsci_2020_105621 crossref_primary_10_1016_j_mtcomm_2022_104330 crossref_primary_10_1016_j_compstruct_2022_116048 crossref_primary_10_1134_S0025654424603550 crossref_primary_10_3390_pr13010189 crossref_primary_10_1016_j_mtcomm_2023_106750 crossref_primary_10_1177_10996362241297563 crossref_primary_10_1016_j_ijimpeng_2020_103556 crossref_primary_10_1080_15376494_2025_2451221 crossref_primary_10_1177_10996362241232082 crossref_primary_10_1016_j_istruc_2024_106361 crossref_primary_10_1038_s41598_024_80988_w crossref_primary_10_1007_s12206_019_0508_6 crossref_primary_10_1007_s11665_023_07880_y crossref_primary_10_1016_j_ijimpeng_2022_104236 crossref_primary_10_3390_polym15051137 crossref_primary_10_1016_j_compositesb_2023_110498 crossref_primary_10_1016_j_engstruct_2024_118955 crossref_primary_10_1016_j_tws_2021_108760 crossref_primary_10_1016_j_engstruct_2024_118439 crossref_primary_10_1016_j_tws_2022_109476 crossref_primary_10_1177_16878140211034102 crossref_primary_10_3390_biomimetics8010092 crossref_primary_10_1177_1099636220909743 crossref_primary_10_1016_j_compstruct_2018_10_051 crossref_primary_10_1016_j_addma_2022_103051 crossref_primary_10_1016_j_jmrt_2022_12_063 crossref_primary_10_1016_j_compstruct_2023_116791 crossref_primary_10_1016_j_dt_2023_07_011 crossref_primary_10_1016_j_compositesb_2018_12_139 crossref_primary_10_1016_j_dt_2022_03_011 crossref_primary_10_3390_jcs7030102 crossref_primary_10_1177_09544062251315017 crossref_primary_10_1016_j_ijimpeng_2021_104065 crossref_primary_10_3390_ma17102274 crossref_primary_10_1016_j_ast_2024_109733 crossref_primary_10_1016_j_compositesb_2021_108881 crossref_primary_10_1016_j_matpr_2022_10_283 crossref_primary_10_1016_j_engstruct_2023_117232 crossref_primary_10_1016_j_ast_2019_02_035 crossref_primary_10_1016_j_oceaneng_2023_116578 crossref_primary_10_1016_j_dt_2022_12_018 crossref_primary_10_1088_2053_1591_acfb60 crossref_primary_10_5937_fme2104969Y crossref_primary_10_1016_j_tws_2023_111178 crossref_primary_10_1142_S0219455424500251 crossref_primary_10_1177_0021998321990734 crossref_primary_10_3390_met11010118 crossref_primary_10_1016_j_ijmecsci_2020_105681 crossref_primary_10_29109_gujsc_1598098 crossref_primary_10_1016_j_ijimpeng_2023_104548 crossref_primary_10_1016_j_ijmecsci_2025_110114 crossref_primary_10_1007_s40430_020_2196_7 crossref_primary_10_1016_j_tws_2020_106869 crossref_primary_10_3390_ma14164731 crossref_primary_10_1016_j_ijimpeng_2024_105143 crossref_primary_10_1016_j_tws_2019_106494 crossref_primary_10_1080_15376494_2020_1758256 crossref_primary_10_1016_j_compstruct_2020_112027 crossref_primary_10_3390_su15043437 crossref_primary_10_1177_16878132231175754 crossref_primary_10_1016_j_tws_2022_109921 crossref_primary_10_1007_s11831_022_09869_7 crossref_primary_10_1080_15397734_2023_2255253 crossref_primary_10_1016_j_compstruct_2020_113081 crossref_primary_10_1016_j_compstruct_2022_116390 crossref_primary_10_1016_j_compositesb_2021_108806 crossref_primary_10_1016_j_oceaneng_2023_114959 crossref_primary_10_1177_00219983221147383 crossref_primary_10_1177_00219983241246109 crossref_primary_10_1016_j_tws_2022_109808 |
Cites_doi | 10.1016/j.compstruct.2017.09.015 10.1016/j.polymertesting.2017.04.026 10.1016/j.msea.2007.11.044 10.1016/j.tws.2009.07.008 10.1016/S0168-874X(03)00095-7 10.1016/j.compstruct.2016.09.009 10.1007/s00158-016-1579-y 10.1002/pc.22638 10.1016/j.compstruct.2009.10.013 10.1016/j.eswa.2014.12.054 10.1016/j.engstruct.2017.10.063 10.1016/j.matdes.2016.03.048 10.1016/j.compstruct.2013.02.010 10.1016/j.ijimpeng.2005.06.007 10.1007/s10853-017-1482-y 10.1115/1.2048626 10.1016/j.compstruct.2011.05.029 10.1016/j.ijimpeng.2013.10.004 10.1016/j.ijimpeng.2004.09.001 10.1016/j.matdes.2015.03.004 10.1177/0021998317695423 10.1177/1099636213501102 10.1016/j.compositesb.2011.11.028 10.1016/j.compstruct.2015.02.057 10.1016/j.ijimpeng.2011.12.002 10.1016/j.euromechsol.2005.08.001 10.1007/s00158-012-0845-x 10.1016/j.compstruct.2017.02.053 10.1016/0013-7944(85)90052-9 10.1016/j.compstruct.2017.09.025 10.1016/S1359-835X(00)00021-X 10.1016/j.ijimpeng.2008.02.004 10.1177/0731684414524465 10.1016/j.ijimpeng.2014.07.019 10.1016/j.ast.2013.12.005 10.4028/www.scientific.net/KEM.141-143.501 10.1016/j.ijimpeng.2016.04.009 10.1016/j.ijnonlinmec.2017.03.001 10.1016/j.msea.2016.11.030 10.1016/j.marstruc.2012.11.002 10.1016/j.compstruct.2013.07.025 10.1016/j.compositesb.2017.03.030 10.1016/j.compstruct.2014.07.058 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Dec 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2018 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2018.08.007 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 136 |
ExternalDocumentID | 10_1016_j_ijimpeng_2018_08_007 S0734743X18301192 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-24f2682fb430afce4f295245d99acf7c08b38ef30b15972673288d94e5b92ee93 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Wed Aug 13 08:36:17 EDT 2025 Tue Jul 01 03:54:27 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 Fri Feb 23 02:45:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Failure mechanism Impact behaviour Projectile penetration Sandwich panel Discrete optimisation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-24f2682fb430afce4f295245d99acf7c08b38ef30b15972673288d94e5b92ee93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5248-4578 0000-0002-8302-3173 |
PQID | 2131830704 |
PQPubID | 2045463 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2131830704 crossref_primary_10_1016_j_ijimpeng_2018_08_007 crossref_citationtrail_10_1016_j_ijimpeng_2018_08_007 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2018_08_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Lee, Yi, Park, Park (bib0050) 2003; 40 Fang, Sun, Qiu, Kim, Li (bib0046) 2016; 55 Gupta, Iqbal, Sekhon (bib0037) 2006; 32 Ghalami-Choobar, Sadighi (bib0020) 2014; 32 Schultz, Griese, Shankar, Summers, Ju, Thompson (bib0032) 2011 Wang, Hazell, Shankar, Morozov, Escobedo (bib0034) 2017; 61 Wu, Liu, Fu, Li, Hui (bib0001) 2017; 121 Yamashita, Gotoh (bib0042) 2005; 32 Nayak, Singh, Belegundu, Yen (bib0030) 2012; 47 Ashab, Ruan, Lu, Xu, Wen (bib0043) 2015; 74 Yahaya, Ruan, Lu, Dargusch (bib0017) 2015; 75 Xie, Meng, Ding, Jin, Du, Han, Wang, Xu, Scarpa, Chi (bib0021) 2017 Johnson, Cook (bib0039) 1983 Wu, Sun, Wu, Li, Li (bib0048) 2017; 92 Liaghat, Nia, Daghyani, Sadighi (bib0029) 2010; 48 Buitrago, Santiuste, Sánchez-Sáez, Barbero, Navarro (bib0024) 2010; 92 Kolopp, Alvarado, Rivallant, Bouvet (bib0022) 2013; 15 Zhang, Zhang, Lu, Ruan (bib0018) 2016 Castanié, Aminanda, Barrau, Thevenet (bib0045) 2013 Sun, Liu, Huang, Zhen, Li (bib0049) 2018; 155 Zhang, Fei, Zhang (bib0006) 2017; 168 Feli, Namdari Pour (bib0027) 2012; 43 Wang, Hazell, Shankar, Morozov, Escobedo, Wang (bib0033) 2017; 52 Wen, Reddy, Reid, Soden (bib0010) 1998; 141-143 Alavi Nia, Razavi, Majzoobi (bib0028) 2008; 488 Sun, Xu, Li, Li (bib0041) 2014; 64 Ivañez, Sanchez-Saez (bib0015) 2013; 106 Børvik, Forrestal, Hopperstad, Warren, Langseth (bib0038) 2009; 36 (bib0035) 2013 Sun, Chen, Huo, Zheng, Li (bib0007) 2018; 184 Ben-Dor, Dubinsky, Elperin (bib0025) 2005; 58 McShane, Radford, Deshpande, Fleck (bib0044) 2006; 25 Liu, Zhang, Li (bib0011) 2017; 182 He, Liu, Tao, Xie, Liu, Zhang (bib0040) 2016; 158 Wang, Ramakrishnan, Shankar (bib0013) 2016; 99 Arslan, Gunes, Apalak, Reddy (bib0019) 2017 Shen, Yang, Cantwell, Balawi, Li (bib0008) 2014; 33 Caserta, Iannucci, Galvanetto (bib0004) 2011; 93 Balcı, Çoban, Bora, Akagündüz, Yalçin (bib0003) 2017; 682 Catapano, Montemurro (bib0031) 2014; 118 Johnson, Cook (bib0036) 1985; 21 Crupi, Epasto, Guglielmino (bib0016) 2013; 30 Fatt, Park (bib0026) 2000; 31 Zhu, Chai (bib0014) 2013; 101 Sun, Fang, Tian, Li, Li (bib0047) 2015; 42 Chai, Zhu (bib0005) 2011; 225 Khan, Mahmood, Hassan, Sharif, Khushnod, Khan (bib0002) 2014; 35 Akatay, Bora, Çoban, Fidan, Tuna (bib0012) 2015; 125 Ebrahimi, Ghosh, Mahdi, Nayeb-Hashemi, Vaziri (bib0023) 2016; 95 Crupi, Epasto, Guglielmino (bib0009) 2012; 43 Sun (10.1016/j.ijimpeng.2018.08.007_bib0007) 2018; 184 Fang (10.1016/j.ijimpeng.2018.08.007_bib0046) 2016; 55 Feli (10.1016/j.ijimpeng.2018.08.007_bib0027) 2012; 43 Caserta (10.1016/j.ijimpeng.2018.08.007_bib0004) 2011; 93 Crupi (10.1016/j.ijimpeng.2018.08.007_bib0009) 2012; 43 Wang (10.1016/j.ijimpeng.2018.08.007_bib0033) 2017; 52 Yamashita (10.1016/j.ijimpeng.2018.08.007_bib0042) 2005; 32 Chai (10.1016/j.ijimpeng.2018.08.007_bib0005) 2011; 225 Zhang (10.1016/j.ijimpeng.2018.08.007_bib0018) 2016 Zhu (10.1016/j.ijimpeng.2018.08.007_bib0014) 2013; 101 Catapano (10.1016/j.ijimpeng.2018.08.007_bib0031) 2014; 118 Liaghat (10.1016/j.ijimpeng.2018.08.007_bib0029) 2010; 48 Yahaya (10.1016/j.ijimpeng.2018.08.007_bib0017) 2015; 75 Fatt (10.1016/j.ijimpeng.2018.08.007_bib0026) 2000; 31 Alavi Nia (10.1016/j.ijimpeng.2018.08.007_bib0028) 2008; 488 Wen (10.1016/j.ijimpeng.2018.08.007_bib0010) 1998; 141-143 Arslan (10.1016/j.ijimpeng.2018.08.007_bib0019) 2017 Sun (10.1016/j.ijimpeng.2018.08.007_bib0049) 2018; 155 Johnson (10.1016/j.ijimpeng.2018.08.007_bib0036) 1985; 21 Børvik (10.1016/j.ijimpeng.2018.08.007_bib0038) 2009; 36 Sun (10.1016/j.ijimpeng.2018.08.007_bib0041) 2014; 64 Lee (10.1016/j.ijimpeng.2018.08.007_bib0050) 2003; 40 Ben-Dor (10.1016/j.ijimpeng.2018.08.007_bib0025) 2005; 58 Schultz (10.1016/j.ijimpeng.2018.08.007_sbref0005a) 2011 Liu (10.1016/j.ijimpeng.2018.08.007_bib0011) 2017; 182 Shen (10.1016/j.ijimpeng.2018.08.007_bib0008) 2014; 33 Ivañez (10.1016/j.ijimpeng.2018.08.007_bib0015) 2013; 106 He (10.1016/j.ijimpeng.2018.08.007_bib0040) 2016; 158 Gupta (10.1016/j.ijimpeng.2018.08.007_bib0037) 2006; 32 Kolopp (10.1016/j.ijimpeng.2018.08.007_bib0022) 2013; 15 McShane (10.1016/j.ijimpeng.2018.08.007_bib0044) 2006; 25 Wang (10.1016/j.ijimpeng.2018.08.007_bib0034) 2017; 61 Crupi (10.1016/j.ijimpeng.2018.08.007_bib0016) 2013; 30 Xie (10.1016/j.ijimpeng.2018.08.007_bib0021) 2017 Johnson (10.1016/j.ijimpeng.2018.08.007_bib0039) 1983 Castanié (10.1016/j.ijimpeng.2018.08.007_bib0045) 2013 Ghalami-Choobar (10.1016/j.ijimpeng.2018.08.007_bib0020) 2014; 32 Buitrago (10.1016/j.ijimpeng.2018.08.007_bib0024) 2010; 92 Wu (10.1016/j.ijimpeng.2018.08.007_bib0048) 2017; 92 Wang (10.1016/j.ijimpeng.2018.08.007_bib0013) 2016; 99 Ebrahimi (10.1016/j.ijimpeng.2018.08.007_bib0023) 2016; 95 Balcı (10.1016/j.ijimpeng.2018.08.007_bib0003) 2017; 682 Ashab (10.1016/j.ijimpeng.2018.08.007_bib0043) 2015; 74 Nayak (10.1016/j.ijimpeng.2018.08.007_bib0030) 2012; 47 (10.1016/j.ijimpeng.2018.08.007_bib0035) 2013 Wu (10.1016/j.ijimpeng.2018.08.007_bib0001) 2017; 121 Khan (10.1016/j.ijimpeng.2018.08.007_bib0002) 2014; 35 Akatay (10.1016/j.ijimpeng.2018.08.007_bib0012) 2015; 125 Zhang (10.1016/j.ijimpeng.2018.08.007_bib0006) 2017; 168 Sun (10.1016/j.ijimpeng.2018.08.007_bib0047) 2015; 42 |
References_xml | – volume: 43 start-page: 2439 year: 2012 end-page: 2447 ident: bib0027 article-title: An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact publication-title: Compos Part B – volume: 32 start-page: 1921 year: 2006 end-page: 1944 ident: bib0037 article-title: Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles publication-title: Int J Impact Eng – volume: 48 start-page: 55 year: 2010 end-page: 61 ident: bib0029 article-title: Ballistic limit evaluation for impact of cylindrical projectiles on honeycomb panels publication-title: Thin Walled Struct – start-page: 427 year: 2013 end-page: 489 ident: bib0045 article-title: Discrete modeling of the crushing of nomex honeycomb core and application to impact and post-impact behavior of sandwich structures publication-title: Dynamic failure of composite and sandwich structures – volume: 47 start-page: 749 year: 2012 end-page: 763 ident: bib0030 article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation publication-title: Struct Multidiscipl Optim – volume: 106 start-page: 716 year: 2013 end-page: 723 ident: bib0015 article-title: Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core publication-title: Compos Struct – volume: 92 start-page: 2090 year: 2010 end-page: 2096 ident: bib0024 article-title: Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact publication-title: Compos Struct – volume: 64 start-page: 62 year: 2014 end-page: 74 ident: bib0041 article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness publication-title: Int J Impact Eng – volume: 32 start-page: 142 year: 2014 end-page: 152 ident: bib0020 article-title: Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core publication-title: Aerosp Sci Technol – volume: 40 start-page: 121 year: 2003 end-page: 135 ident: bib0050 article-title: An optimization algorithm using orthogonal arrays in discrete design space for structures publication-title: Finite Elem Anal Des – volume: 101 start-page: 204 year: 2013 end-page: 214 ident: bib0014 article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact publication-title: Compos Struct – volume: 35 start-page: 97 year: 2014 end-page: 104 ident: bib0002 article-title: Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures publication-title: Polym Compos – volume: 182 start-page: 183 year: 2017 end-page: 190 ident: bib0011 article-title: Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core publication-title: Compos Struct – start-page: 955 year: 2011 end-page: 965 ident: bib0032 article-title: Thompson, Optimization of honeycomb cellular meso-structures for high speed impact energy absorption publication-title: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference – volume: 225 start-page: 207 year: 2011 end-page: 230 ident: bib0005 article-title: A review of low-velocity impact on sandwich structures publication-title: Proc Inst Mech Eng Part L – volume: 32 start-page: 618 year: 2005 end-page: 630 ident: bib0042 article-title: Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment publication-title: Int J Impact Eng – volume: 158 start-page: 30 year: 2016 end-page: 43 ident: bib0040 article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures publication-title: Compos Struct – volume: 125 start-page: 425 year: 2015 end-page: 433 ident: bib0012 article-title: The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures publication-title: Compos Struct – year: 2016 ident: bib0018 article-title: Ballistic impact behaviors of aluminum alloy sandwich panels with honeycomb cores: an experimental study publication-title: J Sandwich Struct Mater – volume: 55 start-page: 1091 year: 2016 end-page: 1119 ident: bib0046 article-title: On design optimization for structural crashworthiness and its state of the art publication-title: Struct Multidiscipl Optim – volume: 21 start-page: 31 year: 1985 end-page: 48 ident: bib0036 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech – volume: 52 start-page: 13977 year: 2017 end-page: 13991 ident: bib0033 article-title: Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics publication-title: J Mater Sci – volume: 155 start-page: 235 year: 2018 end-page: 250 ident: bib0049 article-title: Topological configuration analysis and design for foam filled multi-cell tubes publication-title: Eng Struct – year: 2017 ident: bib0019 article-title: Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates publication-title: J Compos Mater – volume: 75 start-page: 100 year: 2015 end-page: 109 ident: bib0017 article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – an experimental study publication-title: Int J Impact Eng – volume: 43 start-page: 6 year: 2012 end-page: 15 ident: bib0009 article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading publication-title: Int J Impact Eng – volume: 30 start-page: 74 year: 2013 end-page: 96 ident: bib0016 article-title: Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam publication-title: Mar struct – volume: 61 start-page: 17 year: 2017 end-page: 26 ident: bib0034 article-title: Impact behaviour of Dyneema ® fabric-reinforced composites with different resin matrices publication-title: Polym Test – volume: 141-143 start-page: 501 year: 1998 end-page: 552 ident: bib0010 article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading publication-title: Key Eng Mater – volume: 33 start-page: 1148 year: 2014 end-page: 1157 ident: bib0008 article-title: Geometrical effects in the impact response of the aluminium honeycomb sandwich structures publication-title: J Reinf Plast Compos – volume: 99 start-page: 68 year: 2016 end-page: 82 ident: bib0013 article-title: Experimental study of the medium velocity impact response of sandwich panels with different cores publication-title: Mater Des – volume: 15 start-page: 733 year: 2013 end-page: 757 ident: bib0022 article-title: Modeling impact on aluminium sandwich including velocity effects in honeycomb core publication-title: J Sandwich Struct Mater – volume: 31 start-page: 889 year: 2000 end-page: 899 ident: bib0026 article-title: Perforation of honeycomb sandwich plates by projectiles publication-title: Compos Part A – year: 2017 ident: bib0021 article-title: High-temperature high-velocity impact on honeycomb sandwich panels publication-title: Compos Part B – volume: 488 start-page: 273 year: 2008 end-page: 280 ident: bib0028 article-title: Ballistic limit determination of aluminum honeycombs—experimental study publication-title: Mater Sci Eng – volume: 25 start-page: 215 year: 2006 end-page: 229 ident: bib0044 article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading publication-title: Eur J Mech A Solids – volume: 121 start-page: 122 year: 2017 end-page: 133 ident: bib0001 article-title: Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels publication-title: Compos Part B – volume: 168 start-page: 633 year: 2017 end-page: 645 ident: bib0006 article-title: Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor publication-title: Compos Struct – start-page: 541 year: 1983 end-page: 547 ident: bib0039 article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures publication-title: Proceedings of the 7th international symposium on ballistics – volume: 682 start-page: 23 year: 2017 end-page: 30 ident: bib0003 article-title: Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures publication-title: Mater Sci Eng – volume: 93 start-page: 2748 year: 2011 end-page: 2759 ident: bib0004 article-title: Shock absorption performance of a motorbike helmet with honeycomb reinforced liner publication-title: Compos Struct – volume: 95 start-page: 1 year: 2016 end-page: 11 ident: bib0023 article-title: Honeycomb sandwich panels subjected to combined shock and projectile impact publication-title: Int J Impact Eng – volume: 74 start-page: 138 year: 2015 end-page: 149 ident: bib0043 article-title: Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation publication-title: Mater Des – volume: 184 start-page: 110 year: 2018 end-page: 124 ident: bib0007 article-title: Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels publication-title: Compos Struct – volume: 118 start-page: 677 year: 2014 end-page: 690 ident: bib0031 article-title: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy publication-title: Compos Struct – volume: 36 start-page: 426 year: 2009 end-page: 437 ident: bib0038 article-title: Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles – calculations publication-title: Int J Impact Eng – volume: 42 start-page: 4482 year: 2015 end-page: 4492 ident: bib0047 article-title: Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design publication-title: Expert Syst Appl – volume: 92 start-page: 41 year: 2017 end-page: 58 ident: bib0048 article-title: Crashworthiness analysis and optimization of fourier varying section tubes publication-title: Int J Non Linear Mech – volume: 58 start-page: 355 year: 2005 end-page: 371 ident: bib0025 article-title: Ballistic impact: recent advances in analytical modeling of plate penetration dynamics–a review publication-title: Appl Mech Rev – year: 2013 ident: bib0035 article-title: Analysis User's Manual – volume: 182 start-page: 183 year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0011 article-title: Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.09.015 – volume: 61 start-page: 17 year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0034 article-title: Impact behaviour of Dyneema ® fabric-reinforced composites with different resin matrices publication-title: Polym Test doi: 10.1016/j.polymertesting.2017.04.026 – volume: 488 start-page: 273 year: 2008 ident: 10.1016/j.ijimpeng.2018.08.007_bib0028 article-title: Ballistic limit determination of aluminum honeycombs—experimental study publication-title: Mater Sci Eng doi: 10.1016/j.msea.2007.11.044 – volume: 48 start-page: 55 year: 2010 ident: 10.1016/j.ijimpeng.2018.08.007_bib0029 article-title: Ballistic limit evaluation for impact of cylindrical projectiles on honeycomb panels publication-title: Thin Walled Struct doi: 10.1016/j.tws.2009.07.008 – start-page: 541 year: 1983 ident: 10.1016/j.ijimpeng.2018.08.007_bib0039 article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures – volume: 40 start-page: 121 year: 2003 ident: 10.1016/j.ijimpeng.2018.08.007_bib0050 article-title: An optimization algorithm using orthogonal arrays in discrete design space for structures publication-title: Finite Elem Anal Des doi: 10.1016/S0168-874X(03)00095-7 – volume: 158 start-page: 30 year: 2016 ident: 10.1016/j.ijimpeng.2018.08.007_bib0040 article-title: Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.09.009 – volume: 55 start-page: 1091 year: 2016 ident: 10.1016/j.ijimpeng.2018.08.007_bib0046 article-title: On design optimization for structural crashworthiness and its state of the art publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-016-1579-y – volume: 35 start-page: 97 year: 2014 ident: 10.1016/j.ijimpeng.2018.08.007_bib0002 article-title: Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures publication-title: Polym Compos doi: 10.1002/pc.22638 – volume: 92 start-page: 2090 year: 2010 ident: 10.1016/j.ijimpeng.2018.08.007_bib0024 article-title: Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2009.10.013 – volume: 42 start-page: 4482 year: 2015 ident: 10.1016/j.ijimpeng.2018.08.007_bib0047 article-title: Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.12.054 – volume: 155 start-page: 235 year: 2018 ident: 10.1016/j.ijimpeng.2018.08.007_bib0049 article-title: Topological configuration analysis and design for foam filled multi-cell tubes publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.10.063 – volume: 99 start-page: 68 year: 2016 ident: 10.1016/j.ijimpeng.2018.08.007_bib0013 article-title: Experimental study of the medium velocity impact response of sandwich panels with different cores publication-title: Mater Des doi: 10.1016/j.matdes.2016.03.048 – volume: 101 start-page: 204 year: 2013 ident: 10.1016/j.ijimpeng.2018.08.007_bib0014 article-title: Damage and failure mode maps of composite sandwich panel subjected to quasi-static indentation and low velocity impact publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.02.010 – year: 2013 ident: 10.1016/j.ijimpeng.2018.08.007_bib0035 – volume: 32 start-page: 1921 year: 2006 ident: 10.1016/j.ijimpeng.2018.08.007_bib0037 article-title: Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.06.007 – volume: 52 start-page: 13977 year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0033 article-title: Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics publication-title: J Mater Sci doi: 10.1007/s10853-017-1482-y – volume: 58 start-page: 355 year: 2005 ident: 10.1016/j.ijimpeng.2018.08.007_bib0025 article-title: Ballistic impact: recent advances in analytical modeling of plate penetration dynamics–a review publication-title: Appl Mech Rev doi: 10.1115/1.2048626 – volume: 93 start-page: 2748 year: 2011 ident: 10.1016/j.ijimpeng.2018.08.007_bib0004 article-title: Shock absorption performance of a motorbike helmet with honeycomb reinforced liner publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.05.029 – volume: 64 start-page: 62 year: 2014 ident: 10.1016/j.ijimpeng.2018.08.007_bib0041 article-title: Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2013.10.004 – volume: 32 start-page: 618 year: 2005 ident: 10.1016/j.ijimpeng.2018.08.007_bib0042 article-title: Impact behavior of honeycomb structures with various cell specifications-numerical simulation and experiment publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2004.09.001 – volume: 74 start-page: 138 year: 2015 ident: 10.1016/j.ijimpeng.2018.08.007_bib0043 article-title: Experimental investigation of the mechanical behavior of aluminum honeycombs under quasi-static and dynamic indentation publication-title: Mater Des doi: 10.1016/j.matdes.2015.03.004 – year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0019 article-title: Experimental tests and numerical modeling of ballistic impact on honeycomb sandwich structures reinforced by functionally graded plates publication-title: J Compos Mater doi: 10.1177/0021998317695423 – volume: 15 start-page: 733 year: 2013 ident: 10.1016/j.ijimpeng.2018.08.007_bib0022 article-title: Modeling impact on aluminium sandwich including velocity effects in honeycomb core publication-title: J Sandwich Struct Mater doi: 10.1177/1099636213501102 – volume: 43 start-page: 2439 year: 2012 ident: 10.1016/j.ijimpeng.2018.08.007_bib0027 article-title: An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact publication-title: Compos Part B doi: 10.1016/j.compositesb.2011.11.028 – volume: 125 start-page: 425 year: 2015 ident: 10.1016/j.ijimpeng.2018.08.007_bib0012 article-title: The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.02.057 – volume: 43 start-page: 6 year: 2012 ident: 10.1016/j.ijimpeng.2018.08.007_bib0009 article-title: Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2011.12.002 – volume: 25 start-page: 215 year: 2006 ident: 10.1016/j.ijimpeng.2018.08.007_bib0044 article-title: The response of clamped sandwich plates with lattice cores subjected to shock loading publication-title: Eur J Mech A Solids doi: 10.1016/j.euromechsol.2005.08.001 – volume: 47 start-page: 749 year: 2012 ident: 10.1016/j.ijimpeng.2018.08.007_bib0030 article-title: Process for design optimization of honeycomb core sandwich panels for blast load mitigation publication-title: Struct Multidiscipl Optim doi: 10.1007/s00158-012-0845-x – volume: 168 start-page: 633 year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0006 article-title: Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.02.053 – volume: 21 start-page: 31 year: 1985 ident: 10.1016/j.ijimpeng.2018.08.007_bib0036 article-title: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90052-9 – volume: 184 start-page: 110 year: 2018 ident: 10.1016/j.ijimpeng.2018.08.007_bib0007 article-title: Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels publication-title: Compos Struct doi: 10.1016/j.compstruct.2017.09.025 – year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0021 article-title: High-temperature high-velocity impact on honeycomb sandwich panels publication-title: Compos Part B – start-page: 955 year: 2011 ident: 10.1016/j.ijimpeng.2018.08.007_sbref0005a article-title: Thompson, Optimization of honeycomb cellular meso-structures for high speed impact energy absorption – volume: 31 start-page: 889 year: 2000 ident: 10.1016/j.ijimpeng.2018.08.007_bib0026 article-title: Perforation of honeycomb sandwich plates by projectiles publication-title: Compos Part A doi: 10.1016/S1359-835X(00)00021-X – volume: 36 start-page: 426 year: 2009 ident: 10.1016/j.ijimpeng.2018.08.007_bib0038 article-title: Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles – calculations publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.02.004 – volume: 33 start-page: 1148 year: 2014 ident: 10.1016/j.ijimpeng.2018.08.007_bib0008 article-title: Geometrical effects in the impact response of the aluminium honeycomb sandwich structures publication-title: J Reinf Plast Compos doi: 10.1177/0731684414524465 – volume: 75 start-page: 100 year: 2015 ident: 10.1016/j.ijimpeng.2018.08.007_bib0017 article-title: Response of aluminium honeycomb sandwich panels subjected to foam projectile impact – an experimental study publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2014.07.019 – volume: 32 start-page: 142 year: 2014 ident: 10.1016/j.ijimpeng.2018.08.007_bib0020 article-title: Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2013.12.005 – volume: 141-143 start-page: 501 year: 1998 ident: 10.1016/j.ijimpeng.2018.08.007_bib0010 article-title: Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.141-143.501 – volume: 95 start-page: 1 year: 2016 ident: 10.1016/j.ijimpeng.2018.08.007_bib0023 article-title: Honeycomb sandwich panels subjected to combined shock and projectile impact publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2016.04.009 – volume: 92 start-page: 41 year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0048 article-title: Crashworthiness analysis and optimization of fourier varying section tubes publication-title: Int J Non Linear Mech doi: 10.1016/j.ijnonlinmec.2017.03.001 – volume: 225 start-page: 207 year: 2011 ident: 10.1016/j.ijimpeng.2018.08.007_bib0005 article-title: A review of low-velocity impact on sandwich structures publication-title: Proc Inst Mech Eng Part L – volume: 682 start-page: 23 year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0003 article-title: Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures publication-title: Mater Sci Eng doi: 10.1016/j.msea.2016.11.030 – volume: 30 start-page: 74 year: 2013 ident: 10.1016/j.ijimpeng.2018.08.007_bib0016 article-title: Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam publication-title: Mar struct doi: 10.1016/j.marstruc.2012.11.002 – volume: 106 start-page: 716 year: 2013 ident: 10.1016/j.ijimpeng.2018.08.007_bib0015 article-title: Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core publication-title: Compos Struct doi: 10.1016/j.compstruct.2013.07.025 – year: 2016 ident: 10.1016/j.ijimpeng.2018.08.007_bib0018 article-title: Ballistic impact behaviors of aluminum alloy sandwich panels with honeycomb cores: an experimental study publication-title: J Sandwich Struct Mater – volume: 121 start-page: 122 year: 2017 ident: 10.1016/j.ijimpeng.2018.08.007_bib0001 article-title: Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels publication-title: Compos Part B doi: 10.1016/j.compositesb.2017.03.030 – start-page: 427 year: 2013 ident: 10.1016/j.ijimpeng.2018.08.007_bib0045 article-title: Discrete modeling of the crushing of nomex honeycomb core and application to impact and post-impact behavior of sandwich structures – volume: 118 start-page: 677 year: 2014 ident: 10.1016/j.ijimpeng.2018.08.007_bib0031 article-title: A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part II: the optimisation strategy publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.07.058 |
SSID | ssj0017050 |
Score | 2.5872114 |
Snippet | •Increasing facesheet thickness caused smaller deformation depths but larger deformation areas.•Core height had a small effect on the ballistic limit velocity... This paper presents a combined experimental and numerical study on the dynamic response and failure mechanisms of honeycomb sandwich panels subjected to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119 |
SubjectTerms | Aluminum Computer simulation Configurations Deformation effects Deformation mechanisms Deformation resistance Discrete element method Discrete optimisation Dynamic response Energy absorption Failure mechanism Failure mechanisms Impact analysis Impact behaviour Impact tests Materials durability Mathematical models Optimization Perforation Projectile penetration Projectiles Sandwich panel Sandwich panels Sandwich structures Stiffness Stress concentration Terminal ballistics Thickness ratio Velocity Wall thickness Weight |
Title | High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2018.08.007 https://www.proquest.com/docview/2131830704 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI6mcYED4inGSzlwLSup2yZHhEADxC6AtFvUpMnWCQpimxAXfjt2HwgQEgeOjZIqtd3PTmR_ZuwIEgHOmyiAGM-qkLs0MDZTATp7k9lIQu6pOPlmmAzu4WoUjzrsrK2FobTKBvtrTK_QuhnpN9LsPxdF_xaNE9D_jdAoibiMcBggJSs_fv9M8yC2mOqeBScHNPtLlfD0uJgWGJyWY0rxkhWVJ7WV_d1B_YDqyv9crLHVJnDkp_Xe1lnHlRts5Qud4CYrKWkjoCQgi7E1rwsgeVOIv3jhT55niEVFWSwe-eSpdG_41YbPsjJ_LeyEIzDgRjhdzfK2ccqc1wyzxM7B8ezsi_GiNprZFru_OL87GwRNP4XARhDOAwFeJFJ4A1GYeevwUcUC4lypzPrUhtJE0vkoNBjjpCIhHh-ZK3CxUcI5FW2zbomb22E8VtIZSQo9USDBmjxyCgcsoIIFZD0Wt0LUtiEbp54XD7rNKpvqVviahK-pGWaY9lj_c91zTbfx5wrV6kh_MxyNPuHPtfutUnXz6860OCGYQySE3X-8eo8t01Od-LLPuqgqd4Dhy9wcVvZ5yJZOL68Hww_qkvN- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIry9MAaGpxLa48IUZVHWQCpmxU7NqSCtKKtEAu_nbs8qoKQGBjj2JHjO393tu6-Y-wEWgKcN1EAMZ5VIXXtwNhEBWjsTWIjCamn5OTeXav7CNf9uL_ALupcGAqrrLC_xPQCrauWZrWazVGWNe9ROQHtXx-VkojLEIeXALcvlTE4_ZzFeRBdTHHRgr0D6j6XJjw4zQYZeqf5E8V4yYLLk-rK_m6hfmB1YYA662yt8hz5eTm5Dbbg8k22OscnuMVyitoIKArIonPNywxIXmXiT9_40PMEwSjLs-krfx7m7gN_2_BxkqfvmX3miAw4EU53s7yunDLhJcUs0XNwPDz77Glaas14mz12Lh8uukFVUCGwEYSTQIAXLSm8gShMvHX4qGIBcapUYn3bhtJE0vkoNOjktEWLiHxkqsDFRgnnVLTDFnOc3C7jsZLOSJLomQIJ1qSRU9hgASUsIGmwuF5EbSu2cSp68aLrsLKBrhdf0-JrqoYZthusORs3Kvk2_hyhahnpb5qj0Sj8OfagFqqu9u5YizPCOYRC2PvHp4_Zcvehd6tvr-5u9tkKvSmjYA7YIorNHaIvMzFHha5-AXmy9Qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-velocity+impact+behaviour+of+aluminium+honeycomb+sandwich+panels+with+different+structural+configurations&rft.jtitle=International+journal+of+impact+engineering&rft.au=Sun%2C+Guangyong&rft.au=Chen%2C+Dongdong&rft.au=Wang%2C+Hongxu&rft.au=Hazell%2C+Paul+J&rft.date=2018-12-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=122&rft.spage=119&rft_id=info:doi/10.1016%2Fj.ijimpeng.2018.08.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |