Key control variables affecting interior visual comfort for automated louver control in open-plan office -- a study using machine learning

Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 207; p. 108565
Main Authors Luo, Zhaoyang, Sun, Cheng, Dong, Qi, Qi, Xuanning
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a statically predictive daylighting model. Determining daylighting-affected variables is a crucial step benefiting approximation accuracy and modeling efficiency. However, studies about variable selections are rare since it is intractable and expertise required, and those limited studies mainly focus on private offices as a research subject. This paper performs a comprehensive analysis to explore the importance of control-related variables available for machine learning-assisted automated louvers in open-plan offices. The aim is to provide an efficient but compact set of control variables for better establishing the predictive model regarding visual comfort assisting automatic shading control for optimizing the daylighting environment. First, a validated simulation was performed to generate data samples that were used for feature analysis. Then, Filters, Embedded, and Wrappers methods were imposed to interpret feature importance according to their contributions to the robustness of the predictive model. Multicollinearity analysis was then employed to eliminate unnecessary features further. Finally, attributes affecting visual comfort in an open-plan office were derived from a comprehensive comparison and validated via a model training test. Results indicated that spatiotemporal occupancy info weighs most in affecting the predictive model, and the selected variables were proved efficient in the prediction horizon test. •Machine learning is utilized to analyze the control-related variables.•Spatiotemporal occupancy parameters influence interior daylight significantly.•Factors have varying impacts on interior daylight in different seasons.•Some climatic variables have low contributions to interior daylight.
AbstractList Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a statically predictive daylighting model. Determining daylighting-affected variables is a crucial step benefiting approximation accuracy and modeling efficiency. However, studies about variable selections are rare since it is intractable and expertise required, and those limited studies mainly focus on private offices as a research subject. This paper performs a comprehensive analysis to explore the importance of control-related variables available for machine learning-assisted automated louvers in open-plan offices. The aim is to provide an efficient but compact set of control variables for better establishing the predictive model regarding visual comfort assisting automatic shading control for optimizing the daylighting environment. First, a validated simulation was performed to generate data samples that were used for feature analysis. Then, Filters, Embedded, and Wrappers methods were imposed to interpret feature importance according to their contributions to the robustness of the predictive model. Multicollinearity analysis was then employed to eliminate unnecessary features further. Finally, attributes affecting visual comfort in an open-plan office were derived from a comprehensive comparison and validated via a model training test. Results indicated that spatiotemporal occupancy info weighs most in affecting the predictive model, and the selected variables were proved efficient in the prediction horizon test. •Machine learning is utilized to analyze the control-related variables.•Spatiotemporal occupancy parameters influence interior daylight significantly.•Factors have varying impacts on interior daylight in different seasons.•Some climatic variables have low contributions to interior daylight.
Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a statically predictive daylighting model. Determining daylighting-affected variables is a crucial step benefiting approximation accuracy and modeling efficiency. However, studies about variable selections are rare since it is intractable and expertise required, and those limited studies mainly focus on private offices as a research subject. This paper performs a comprehensive analysis to explore the importance of control-related variables available for machine learning-assisted automated louvers in open-plan offices. The aim is to provide an efficient but compact set of control variables for better establishing the predictive model regarding visual comfort assisting automatic shading control for optimizing the daylighting environment. First, a validated simulation was performed to generate data samples that were used for feature analysis. Then, Filters, Embedded, and Wrappers methods were imposed to interpret feature importance according to their contributions to the robustness of the predictive model. Multicollinearity analysis was then employed to eliminate unnecessary features further. Finally, attributes affecting visual comfort in an open-plan office were derived from a comprehensive comparison and validated via a model training test. Results indicated that spatiotemporal occupancy info weighs most in affecting the predictive model, and the selected variables were proved efficient in the prediction horizon test.
ArticleNumber 108565
Author Dong, Qi
Qi, Xuanning
Sun, Cheng
Luo, Zhaoyang
Author_xml – sequence: 1
  givenname: Zhaoyang
  orcidid: 0000-0003-0022-3549
  surname: Luo
  fullname: Luo, Zhaoyang
  email: 16b934028@stu.hit.edu.cn
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 2
  givenname: Cheng
  surname: Sun
  fullname: Sun, Cheng
  email: suncheng@hit.edu.cn, suncheng@hit.edu.cn
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 3
  givenname: Qi
  surname: Dong
  fullname: Dong, Qi
  email: dongqi@hit.edu.cn
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China
– sequence: 4
  givenname: Xuanning
  surname: Qi
  fullname: Qi, Xuanning
  email: michelle@hit.edu.cn
  organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China
BookMark eNqFkc1q3DAUhUVJoZO0r1AEXXuqH1u2IYuGkLYhgWxa6E5o5KvmDhppKsmGeYU-dTVM0kU22ejncs65up_OyVmIAQj5yNmaM64-b9ebGf0EYVkLJngtDp3q3pAVH3rZqKH9dUZWTCrWcCnkO3Ke85ZV4yjbFfl7BwdqYygperqYhGbjIVPjHNiC4TfFUCBhTHTBPBtftTsXU6F1oWYucWcKTNTHeYH0PwgDjXsIzd6benIOLdCmoYbmMk8HOudj8s7YRwxAPZgUauE9eeuMz_Dhab8gP7_e_Lj-3tw_fLu9vrpvrGxZaYSo84nJ9UNrRDsCY3Va0W0Eb0fVC77p2_p2141CDiAHBoYNdlT10nejk05ekE-n3H2Kf2bIRW_jnEJtqYUSfFBqFF1VqZPKpphzAqf3CXcmHTRn-shdb_Uzd33krk_cq_HyhdFiMQWPaAz61-1fTnaoCBaEpLNFCBYmTPVL9BTxtYh_P32m8A
CitedBy_id crossref_primary_10_12813_kieae_2024_24_5_061
crossref_primary_10_1016_j_jobe_2024_108687
crossref_primary_10_1016_j_autcon_2023_105093
crossref_primary_10_1016_j_jobe_2024_111310
crossref_primary_10_1108_SASBE_06_2022_0113
crossref_primary_10_1177_10692509251318454
crossref_primary_10_1016_j_jobe_2023_106101
crossref_primary_10_1016_j_buildenv_2022_109081
crossref_primary_10_2516_stet_2023035
crossref_primary_10_1016_j_buildenv_2023_110822
crossref_primary_10_1007_s12273_023_1045_x
crossref_primary_10_1016_j_buildenv_2025_112706
crossref_primary_10_2478_amns_2024_3250
crossref_primary_10_3390_atmos13122059
crossref_primary_10_1061_JMENEA_MEENG_5816
crossref_primary_10_3390_su142315663
crossref_primary_10_1016_j_scs_2024_105821
crossref_primary_10_1016_j_buildenv_2024_111394
crossref_primary_10_1016_j_buildenv_2022_109507
crossref_primary_10_1016_j_jobe_2023_105998
crossref_primary_10_1016_j_enbenv_2023_08_002
Cites_doi 10.1177/1420326X18798164
10.1115/1.1313529
10.1016/j.solener.2016.04.026
10.1016/j.solener.2013.08.009
10.1016/j.buildenv.2016.08.023
10.1007/s10489-009-0172-0
10.1016/j.enbuild.2006.03.017
10.1016/j.buildenv.2017.07.035
10.1016/j.solener.2013.10.005
10.1080/19401493.2012.671852
10.1016/j.buildenv.2015.02.007
10.1016/j.buildenv.2015.05.040
10.1007/s10994-006-6226-1
10.1016/j.aei.2010.09.002
10.1016/j.enbuild.2012.10.024
10.1023/A:1007958904918
10.1016/j.enbuild.2013.11.082
10.1016/j.buildenv.2017.01.018
10.1016/0038-092X(93)90017-I
10.1016/j.energy.2018.04.106
10.1016/j.buildenv.2018.10.058
10.1016/j.buildenv.2020.106854
10.1002/9781119961154.ch15
10.1016/j.buildenv.2020.107529
10.1109/TSMCC.2004.843247
10.1006/jcss.1997.1504
10.1016/j.enbuild.2006.03.006
10.1016/S0378-7788(00)00090-6
10.1080/15502724.2019.1570852
10.1080/00031305.1982.10482818
10.1016/j.cam.2017.05.038
10.1016/j.enbuild.2017.09.014
10.1108/SASBE-03-2013-0016
10.1016/j.solener.2020.03.104
10.1016/j.enbuild.2006.03.013
10.1016/j.buildenv.2021.107932
10.1016/j.enbuild.2013.02.009
10.1016/j.enbuild.2014.07.040
10.1016/S1364-0321(01)00006-5
10.1016/j.buildenv.2019.106642
10.1016/S0360-1323(00)00065-2
10.1007/s12273-008-8101-4
10.1016/S0004-3702(97)00043-X
10.1177/14771535950270040701
10.1016/S0038-092X(02)00037-3
10.1016/j.enbuild.2017.04.021
10.1177/0144598718822400
10.1080/15502724.2014.881720
10.1016/S0360-1323(01)00113-5
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.buildenv.2021.108565
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2021_108565
S0360132321009574
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c340t-220852df784a249e0056525b21496721b74fecf59238e380ea08c9638e759f3f3
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Wed Aug 13 09:05:11 EDT 2025
Tue Jul 01 00:25:10 EDT 2025
Thu Apr 24 22:55:58 EDT 2025
Fri Feb 23 02:41:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Automated louvers
Feature selection
Artificial intelligence
Daylighting control
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-220852df784a249e0056525b21496721b74fecf59238e380ea08c9638e759f3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0022-3549
PQID 2621866925
PQPubID 2045275
ParticipantIDs proquest_journals_2621866925
crossref_primary_10_1016_j_buildenv_2021_108565
crossref_citationtrail_10_1016_j_buildenv_2021_108565
elsevier_sciencedirect_doi_10_1016_j_buildenv_2021_108565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Building and environment
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Han, Shen, Sun (bib12) 2021; 200
Navada, Adiga, Kini (bib24) 2016; 11
Jones, Reinhart (bib49) 2017; 113
Kalogirou (bib10) 2001; 5
Zhang, Ho, Zhang, Lin (bib53) 2006; 30
Ahmed, Otreba, Korres (bib30) 2011; 25
Lorenz, Jabi (bib26) 2017
Mardaljevic (bib44) 1995; 27
Xiong, Tzempelikos (bib7) 2016; 134
Ke (bib64) 2017; 30
Luo, Sun, Dong (bib22) 2021; 189
Ward (bib41) 1994; 94
Logar, Kristl, Škrjanc (bib23) 2014; 70
Shen, Tzempelikos (bib39) 2017; 145
Wang, Hunter (bib55) 2010; 33
Bian, Luo (bib35) 2017; 123
Matusiak (bib37) 2013; 97
R Perez, Michalsky (bib43) 1993; 50
Chan, Tzempelikos (bib6) 2013; 98
Velds (bib36) 2002; 73
Geurts, Ernst, Wehenkel (bib62) 2006; 63
Guyon, Elisseeff (bib54) 2003; 3
Jones, Reinhart (bib47) 2015
Karlsen, Heiselberg, Bryn (bib70) 2015; 92
Motamed, Bueno, Deschamps (bib21) 2020; 171
Wang, Zhao, Shu, Yuan (bib58) 2018; 327
Mansfield, Helms (bib69) 1982; 36
Konstantoglou, Tsangrassoulis (bib1) 2016; 60
Viola, Wells (bib57) 1997; 24
Salzberg (bib52) 1991; 542
Kohavi, John (bib66) 1997; 97
Lal, Chapelle, Weston, Elisseeff (bib67) 2006; 207
Nault, Moonen, Rey, Andersen (bib19) 2017; 116
JA Jakubiec, CF Reinhart, DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus, In Proc. Build. Simulat., vol. 20, no. 11, pp. 2202-2209.
Privara, Cigler, Váňa, Oldewurtel, Sagerschnig, Žáčeková (bib2) 2013 Jan 1; 56
Nazzal (bib14) 2001; 33
Misra, Yadav (bib65) 2020; 11
Nabil, Mardaljevic (bib13) 2006; 38
Ayoub (bib28) 2019; 28
Van Den Wymelenberg, Inanici (bib34) 2014; 10
Solemma (bib42)
da Fonseca, EL Didoné, Pereira (bib31) 2013; 61
Wienold, Christoffersen (bib15) 2006; 38
Rokach, Maimon (bib60) 2005; 35
Liu, Wu, Liu (bib11) 2019; 37
Xiong, Tzempelikos (bib8) 2016 Sep 1; 134
McNeil, Lee (bib9) 2012; 6
Duch (bib68) 2006; 207
Zhou, Liu (bib32) 2015; 3
Reinhart, Andersen (bib45) 2006; 38
Ward (bib3) 1994 Jul 24
Ayoub (bib16) 2020; 202
Luo, Sun, Dong (bib20) 2020; 177
Liu, Wang, Zhang (bib61) 2012; 7473
Ahmad, Hippolyte, Mourshed (bib33) 2017
Quek, Jakubiec (bib50) 2021; 17
Jain, Saha (bib56) 2021
Verso, Mihaylov, Pellegrino (bib25) 2017; 155
Suk (bib72) 2019; 148
Adan, Fuerst (bib29) 2015; 4
Guillemin, Molteni (bib18) 2002; 37
Yun, Yoon, Kim (bib38) 2014; 84
Conraud-Bianchi (bib17) 2008; 47
Yun, Yoon, Kim (bib40) 2014; 84
Freund, Schapire, Schapire (bib63) 1997; 55
Jones, Reinhart (bib48) 2017
Konstantzos, Tzempelikos, Chan (bib71) 2015; 87
Mahdavi (bib4) 2001; 36
Beccali, Bonomolo, Ciulla, Brano (bib27) 2018; 154
Galimberti, Soffritti (bib59) 2011
Muneer, Gul (bib51) 2000; 122
Mahdavi (bib5) 2008; 1
Logar (10.1016/j.buildenv.2021.108565_bib23) 2014; 70
da Fonseca (10.1016/j.buildenv.2021.108565_bib31) 2013; 61
Beccali (10.1016/j.buildenv.2021.108565_bib27) 2018; 154
10.1016/j.buildenv.2021.108565_bib46
Chan (10.1016/j.buildenv.2021.108565_bib6) 2013; 98
Karlsen (10.1016/j.buildenv.2021.108565_bib70) 2015; 92
Wienold (10.1016/j.buildenv.2021.108565_bib15) 2006; 38
Jones (10.1016/j.buildenv.2021.108565_bib49) 2017; 113
Solemma (10.1016/j.buildenv.2021.108565_bib42)
Privara (10.1016/j.buildenv.2021.108565_bib2) 2013; 56
Ward (10.1016/j.buildenv.2021.108565_bib3) 1994
Mahdavi (10.1016/j.buildenv.2021.108565_bib5) 2008; 1
Reinhart (10.1016/j.buildenv.2021.108565_bib45) 2006; 38
Kohavi (10.1016/j.buildenv.2021.108565_bib66) 1997; 97
Wang (10.1016/j.buildenv.2021.108565_bib55) 2010; 33
Galimberti (10.1016/j.buildenv.2021.108565_bib59) 2011
Suk (10.1016/j.buildenv.2021.108565_bib72) 2019; 148
McNeil (10.1016/j.buildenv.2021.108565_bib9) 2012; 6
Nabil (10.1016/j.buildenv.2021.108565_bib13) 2006; 38
Velds (10.1016/j.buildenv.2021.108565_bib36) 2002; 73
R Perez (10.1016/j.buildenv.2021.108565_bib43) 1993; 50
Lal (10.1016/j.buildenv.2021.108565_bib67) 2006; 207
Xiong (10.1016/j.buildenv.2021.108565_bib8) 2016; 134
Lorenz (10.1016/j.buildenv.2021.108565_bib26)
Wang (10.1016/j.buildenv.2021.108565_bib58) 2018; 327
Ahmad (10.1016/j.buildenv.2021.108565_bib33) 2017
Guyon (10.1016/j.buildenv.2021.108565_bib54) 2003; 3
Adan (10.1016/j.buildenv.2021.108565_bib29) 2015; 4
Matusiak (10.1016/j.buildenv.2021.108565_bib37) 2013; 97
Ahmed (10.1016/j.buildenv.2021.108565_bib30) 2011; 25
Jones (10.1016/j.buildenv.2021.108565_bib48) 2017
Xiong (10.1016/j.buildenv.2021.108565_bib7) 2016; 134
Kalogirou (10.1016/j.buildenv.2021.108565_bib10) 2001; 5
Navada (10.1016/j.buildenv.2021.108565_bib24) 2016; 11
Conraud-Bianchi (10.1016/j.buildenv.2021.108565_bib17) 2008; 47
Nazzal (10.1016/j.buildenv.2021.108565_bib14) 2001; 33
Jain (10.1016/j.buildenv.2021.108565_bib56) 2021
Quek (10.1016/j.buildenv.2021.108565_bib50) 2021; 17
Mardaljevic (10.1016/j.buildenv.2021.108565_bib44) 1995; 27
Zhang (10.1016/j.buildenv.2021.108565_bib53) 2006; 30
Bian (10.1016/j.buildenv.2021.108565_bib35) 2017; 123
Mahdavi (10.1016/j.buildenv.2021.108565_bib4) 2001; 36
Han (10.1016/j.buildenv.2021.108565_bib12) 2021; 200
Rokach (10.1016/j.buildenv.2021.108565_bib60) 2005; 35
Ayoub (10.1016/j.buildenv.2021.108565_bib16) 2020; 202
Misra (10.1016/j.buildenv.2021.108565_bib65) 2020; 11
Mansfield (10.1016/j.buildenv.2021.108565_bib69) 1982; 36
Zhou (10.1016/j.buildenv.2021.108565_bib32) 2015; 3
Shen (10.1016/j.buildenv.2021.108565_bib39) 2017; 145
Van Den Wymelenberg (10.1016/j.buildenv.2021.108565_bib34) 2014; 10
Jones (10.1016/j.buildenv.2021.108565_bib47) 2015
Muneer (10.1016/j.buildenv.2021.108565_bib51) 2000; 122
Luo (10.1016/j.buildenv.2021.108565_bib20) 2020; 177
Liu (10.1016/j.buildenv.2021.108565_bib11) 2019; 37
Yun (10.1016/j.buildenv.2021.108565_bib40) 2014; 84
Freund (10.1016/j.buildenv.2021.108565_bib63) 1997; 55
Verso (10.1016/j.buildenv.2021.108565_bib25) 2017; 155
Konstantoglou (10.1016/j.buildenv.2021.108565_bib1) 2016; 60
Yun (10.1016/j.buildenv.2021.108565_bib38) 2014; 84
Viola (10.1016/j.buildenv.2021.108565_bib57) 1997; 24
Nault (10.1016/j.buildenv.2021.108565_bib19) 2017; 116
Guillemin (10.1016/j.buildenv.2021.108565_bib18) 2002; 37
Ayoub (10.1016/j.buildenv.2021.108565_bib28) 2019; 28
Ward (10.1016/j.buildenv.2021.108565_bib41) 1994; 94
Motamed (10.1016/j.buildenv.2021.108565_bib21) 2020; 171
Duch (10.1016/j.buildenv.2021.108565_bib68) 2006; 207
Konstantzos (10.1016/j.buildenv.2021.108565_bib71) 2015; 87
Geurts (10.1016/j.buildenv.2021.108565_bib62) 2006; 63
Luo (10.1016/j.buildenv.2021.108565_bib22) 2021; 189
Salzberg (10.1016/j.buildenv.2021.108565_bib52) 1991; 542
Ke (10.1016/j.buildenv.2021.108565_bib64) 2017; 30
Liu (10.1016/j.buildenv.2021.108565_bib61) 2012; 7473
References_xml – volume: 94
  start-page: 459
  year: 1994
  end-page: 472
  ident: bib41
  article-title: The RADIANCE lighting simulation and rendering system
  publication-title: Computer Graphics (Proceedings of SIGGRAPH
– volume: 1
  start-page: 25
  year: 2008
  end-page: 35
  ident: bib5
  article-title: Predictive simulation-based lighting and shading systems control in buildings
  publication-title: Building Simulation
– volume: 24
  start-page: 137
  year: 1997
  end-page: 154
  ident: bib57
  article-title: Alignment by maximization of mutual information
  publication-title: Int. J. Comput. Vis.
– volume: 38
  start-page: 905
  year: 2006
  end-page: 913
  ident: bib13
  article-title: A replacement for daylight factors
  publication-title: Energy Build.
– year: 2015
  ident: bib47
  article-title: Validation of GPU lighting simulation in naturally and artificially lit spaces
  publication-title: Building Simulation 2015: 14th International Conference of the International Building Performance Simulation Association
– volume: 542
  year: 1991
  ident: bib52
  article-title: Distance metrics for instance-based learning
  publication-title: Methodologies for Intelligent Systems. ISMIS 1991. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)
– volume: 37
  start-page: 1426
  year: 2019
  end-page: 1451
  ident: bib11
  article-title: Accuracy analyses and model comparison of machine learning adopted in building energy consumption prediction
  publication-title: Energy Explor. Exploit.
– year: 2021
  ident: bib56
  article-title: Rank-based univariate feature selection methods on machine learning classifiers for code smell detection
  publication-title: Evol. Intel.
– volume: 47
  year: 2008
  ident: bib17
  article-title: A methodology for the optimization of building energy, thermal, and visual performance
  publication-title: Masters Abstracts International
– volume: 30
  start-page: 305
  year: 2006
  end-page: 319
  ident: bib53
  article-title: Unsupervised feature extraction for time series clustering using orthogonal wavelet transform
  publication-title: Informatica
– volume: 7473
  year: 2012
  ident: bib61
  article-title: New machine learning algorithm: random forest
  publication-title: Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science
– volume: 11
  start-page: 4711
  year: 2016
  end-page: 4717
  ident: bib24
  article-title: Prediction of daylight availability for visual comfort
  publication-title: Int. J. Appl. Eng. Res.
– volume: 50
  start-page: 235
  year: 1993
  end-page: 245
  ident: bib43
  article-title: All-weather model for sky luminance distribution—Preliminary configuration and validation
  publication-title: Sol. Energy
– volume: 28
  start-page: 848
  year: 2019
  end-page: 866
  ident: bib28
  article-title: A multivariate regression to predict daylighting and energy consumption of residential buildings within hybrid settlements in hot-desert climates
  publication-title: Indoor Built Environ.
– volume: 97
  start-page: 230
  year: 2013
  end-page: 237
  ident: bib37
  article-title: Glare from a translucent façade, evaluation with an experimental method
  publication-title: Sol. Energy
– ident: bib42
  article-title: DIVA for Rhino
– reference: JA Jakubiec, CF Reinhart, DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus, In Proc. Build. Simulat., vol. 20, no. 11, pp. 2202-2209.
– volume: 35
  start-page: 476
  year: 2005
  end-page: 487
  ident: bib60
  article-title: Top-down induction of decision trees classifiers-a survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib54
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 200
  start-page: 107932
  year: 2021
  ident: bib12
  article-title: Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design
  publication-title: Build. Environ.
– volume: 87
  start-page: 244
  year: 2015
  end-page: 254
  ident: bib71
  article-title: Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades
  publication-title: Build. Environ.
– year: 2017
  ident: bib26
  article-title: Predicting daylight autonomy metrics using machine learning
– volume: 11
  start-page: 659
  year: 2020
  end-page: 665
  ident: bib65
  article-title: Improving the classification accuracy using recursive feature elimination with cross-validation
  publication-title: Int. J. Emerg. Technol.
– volume: 189
  start-page: 107529
  year: 2021
  ident: bib22
  article-title: An innovative shading controller for blinds in an open-plan office using machine learning
  publication-title: Build. Environ.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib66
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 60
  start-page: 268
  year: 2016
  end-page: 283
  ident: bib1
  article-title: Dynamic operation of daylighting and shading systems
  publication-title: Lit. Rev.
– volume: 33
  start-page: 257
  year: 2001
  end-page: 265
  ident: bib14
  article-title: A new daylight glare evaluation method: introduction of the monitoring protocol and calculation method
  publication-title: Energy Build.
– volume: 70
  start-page: 343
  year: 2014
  end-page: 351
  ident: bib23
  article-title: Using a fuzzy black-box model to estimate the indoor illuminance in buildings
  publication-title: Energy Build.
– volume: 122
  start-page: 146
  year: 2000
  end-page: 153
  ident: bib51
  article-title: Models for estimating solar radiation and illuminance from meteorological parameters
  publication-title: J. Sol. Energy Eng.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib63
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 37
  start-page: 1091
  year: 2002
  end-page: 1097
  ident: bib18
  article-title: An energy-efficient controller for shading devices self-adapting to the user wishes
  publication-title: Build. Environ.
– volume: 84
  start-page: 70
  year: 2014
  end-page: 85
  ident: bib38
  article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings
  publication-title: Energy Build.
– volume: 98
  start-page: 241
  year: 2013
  end-page: 254
  ident: bib6
  article-title: Efficient Venetian blind control strategies considering daylight utilization and glare protection
  publication-title: Sol. Energy
– volume: 25
  start-page: 364
  year: 2011
  end-page: 379
  ident: bib30
  article-title: Assessing the performance of naturally day-lit buildings using data mining
  publication-title: Adv. Eng. Inf.
– volume: 154
  start-page: 466
  year: 2018
  end-page: 476
  ident: bib27
  article-title: Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems, A new method based on artificial neural networks
  publication-title: Energy
– volume: 113
  start-page: 131
  year: 2017
  end-page: 150
  ident: bib49
  article-title: Experimental validation of ray tracing as a means of image-based visual discomfort prediction
  publication-title: Build. Environ.
– volume: 177
  start-page: 106854
  year: 2020
  ident: bib20
  article-title: A daylight-linked shading strategy for automated blinds based on model-based control and Radial Basis Function (RBF) optimization
  publication-title: Build. Environ.
– volume: 123
  start-page: 661
  year: 2017
  end-page: 671
  ident: bib35
  article-title: Investigation of visual comfort metrics from subjective responses in China: a study in offices with daylight
  publication-title: Build. Environ.
– volume: 134
  start-page: 416
  year: 2016 Sep 1
  end-page: 428
  ident: bib8
  article-title: Model-based shading and lighting controls considering visual comfort and energy use
  publication-title: Sol. Energy
– volume: 61
  start-page: 31
  year: 2013
  end-page: 38
  ident: bib31
  article-title: Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements
  publication-title: Energy Build.
– volume: 327
  start-page: 372
  year: 2018
  end-page: 387
  ident: bib58
  article-title: Fast search local extremum for maximal information coefficient (MIC)
  publication-title: J. Comput. Appl. Math.
– volume: 6
  start-page: 24
  year: 2012
  end-page: 37
  ident: bib9
  article-title: A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems
  publication-title: J. Build. Perform. Simul.
– volume: 155
  start-page: 151
  year: 2017
  end-page: 165
  ident: bib25
  article-title: Estimation of the daylight amount and the energy demand for lighting for the early design stages: definition of a set of mathematical models
  publication-title: Energy Build.
– volume: 134
  start-page: 416
  year: 2016
  end-page: 428
  ident: bib7
  article-title: Model-based shading and lighting controls considering visual comfort and energy use
  publication-title: Sol. Energy
– volume: 171
  start-page: 106642
  year: 2020
  ident: bib21
  article-title: Self-commissioning glare-based control system for integrated Venetian blind and electric lighting
  publication-title: Build. Environ.
– volume: 30
  start-page: 3146
  year: 2017
  end-page: 3154
  ident: bib64
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 283
  year: 2011
  end-page: 307
  ident: bib59
  article-title: Tree-based methods and decision trees
  publication-title: Modern Analysis of Customer Surveys
– volume: 33
  start-page: 357
  year: 2010
  end-page: 369
  ident: bib55
  article-title: A low variance error boosting algorithm
  publication-title: Appl. Intell.
– volume: 207
  year: 2006
  ident: bib68
  article-title: Filter methods
  publication-title: Feature Extraction. Studies in Fuzziness and Soft Computing
– volume: 92
  start-page: 615
  year: 2015
  end-page: 626
  ident: bib70
  article-title: Verification of simple illuminance based measures for indication of discomfort glare from windows
  publication-title: Build. Environ.
– volume: 207
  year: 2006
  ident: bib67
  article-title: Embedded methods
  publication-title: Feature Extraction. Studies in Fuzziness and Soft Computing
– volume: 36
  start-page: 789
  year: 2001
  end-page: 796
  ident: bib4
  article-title: Simulation-based control of building systems operation
  publication-title: Build. Environ.
– volume: 148
  start-page: 107
  year: 2019
  end-page: 115
  ident: bib72
  article-title: Luminance and vertical eye illuminance thresholds for occupants' visual comfort in daylit office environments
  publication-title: Build. Environ.
– volume: 116
  start-page: 1
  year: 2017
  end-page: 16
  ident: bib19
  article-title: Predictive models for assessing the passive solar and daylight potential of neighborhood designs: a comparative proof-of-concept study
  publication-title: Build. Environ.
– volume: 38
  start-page: 890
  year: 2006
  end-page: 904
  ident: bib45
  article-title: Development and validation of a Radiance model for a translucent panel
  publication-title: Energy Build.
– volume: 27
  start-page: 181
  year: 1995
  end-page: 188
  ident: bib44
  article-title: Validation of a lighting simulation program under real sky conditions
  publication-title: Light. Res. Technol.
– start-page: 1949
  year: 2017
  end-page: 1955
  ident: bib33
  article-title: Random forests and artificial neural network for predicting daylight illuminance and energy consumption
  publication-title: Proceedings of the 15th IBPSA Conference
– volume: 10
  start-page: 145
  year: 2014
  end-page: 164
  ident: bib34
  article-title: A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight
  publication-title: Leukos
– volume: 73
  start-page: 95
  year: 2002
  end-page: 103
  ident: bib36
  article-title: User acceptance studies to evaluate discomfort glare in daylit rooms
  publication-title: Sol. Energy
– volume: 202
  start-page: 249
  year: 2020
  end-page: 275
  ident: bib16
  article-title: A review on machine learning algorithms to predict daylighting inside buildings
  publication-title: Sol. Energy
– volume: 3
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib32
  article-title: Prediction of daylighting and energy performance using artificial neural network and support vector machine
  publication-title: Am. J. Civ. Eng. Architect.
– volume: 145
  start-page: 200
  year: 2017
  end-page: 212
  ident: bib39
  article-title: Daylight-linked synchronized shading operation using simplified model-based control
  publication-title: Energy Build.
– volume: 17
  start-page: 75
  year: 2021
  end-page: 90
  ident: bib50
  article-title: Calibration and validation of climate-based daylighting models based on one-time field measurements: office buildings in the tropics
  publication-title: Leukos
– volume: 4
  start-page: 251
  year: 2015
  end-page: 267
  ident: bib29
  article-title: Modelling energy retrofit investments in the UK housing market: a microeconomic approach
  publication-title: Smart. Sustain. Built. Environ.
– year: 2017
  ident: bib48
  article-title: Speedup potential of climate-based daylight modelling on GPUs
  publication-title: Building Simulation 2017: 15th International Conference of the International Building Performance Simulation Association
– volume: 5
  start-page: 373
  year: 2001
  end-page: 401
  ident: bib10
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 459
  year: 1994 Jul 24
  end-page: 472
  ident: bib3
  article-title: The RADIANCE lighting simulation and rendering system
  publication-title: In Proceedings of the 21st annual conference on Computer graphics and interactive techniques
– volume: 36
  start-page: 158
  year: 1982
  end-page: 160
  ident: bib69
  article-title: Detecting multicollinearity
  publication-title: Am. Statistician
– volume: 84
  start-page: 70
  year: 2014
  end-page: 85
  ident: bib40
  article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings
  publication-title: Energy Build.
– volume: 56
  start-page: 8
  year: 2013 Jan 1
  end-page: 22
  ident: bib2
  article-title: Building modeling as a crucial part for building predictive control
  publication-title: Energy Build.
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib62
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– volume: 38
  start-page: 743
  year: 2006
  end-page: 757
  ident: bib15
  article-title: Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras
  publication-title: Energy Build.
– volume: 28
  start-page: 848
  issue: 6
  year: 2019
  ident: 10.1016/j.buildenv.2021.108565_bib28
  article-title: A multivariate regression to predict daylighting and energy consumption of residential buildings within hybrid settlements in hot-desert climates
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X18798164
– volume: 122
  start-page: 146
  issue: 7
  year: 2000
  ident: 10.1016/j.buildenv.2021.108565_bib51
  article-title: Models for estimating solar radiation and illuminance from meteorological parameters
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.1313529
– volume: 134
  start-page: 416
  year: 2016
  ident: 10.1016/j.buildenv.2021.108565_bib7
  article-title: Model-based shading and lighting controls considering visual comfort and energy use
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.04.026
– volume: 3
  start-page: 1157
  issue: 3
  year: 2003
  ident: 10.1016/j.buildenv.2021.108565_bib54
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 97
  start-page: 230
  year: 2013
  ident: 10.1016/j.buildenv.2021.108565_bib37
  article-title: Glare from a translucent façade, evaluation with an experimental method
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.08.009
– volume: 47
  issue: 4
  year: 2008
  ident: 10.1016/j.buildenv.2021.108565_bib17
  article-title: A methodology for the optimization of building energy, thermal, and visual performance
  publication-title: Masters Abstracts International
– year: 2015
  ident: 10.1016/j.buildenv.2021.108565_bib47
  article-title: Validation of GPU lighting simulation in naturally and artificially lit spaces
– volume: 113
  start-page: 131
  year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib49
  article-title: Experimental validation of ray tracing as a means of image-based visual discomfort prediction
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.08.023
– volume: 11
  start-page: 659
  issue: 3
  year: 2020
  ident: 10.1016/j.buildenv.2021.108565_bib65
  article-title: Improving the classification accuracy using recursive feature elimination with cross-validation
  publication-title: Int. J. Emerg. Technol.
– volume: 11
  start-page: 4711
  issue: 7
  year: 2016
  ident: 10.1016/j.buildenv.2021.108565_bib24
  article-title: Prediction of daylight availability for visual comfort
  publication-title: Int. J. Appl. Eng. Res.
– volume: 33
  start-page: 357
  issue: 3
  year: 2010
  ident: 10.1016/j.buildenv.2021.108565_bib55
  article-title: A low variance error boosting algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-009-0172-0
– volume: 38
  start-page: 743
  issue: 7
  year: 2006
  ident: 10.1016/j.buildenv.2021.108565_bib15
  article-title: Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.03.017
– volume: 30
  start-page: 305
  year: 2006
  ident: 10.1016/j.buildenv.2021.108565_bib53
  article-title: Unsupervised feature extraction for time series clustering using orthogonal wavelet transform
  publication-title: Informatica
– volume: 123
  start-page: 661
  year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib35
  article-title: Investigation of visual comfort metrics from subjective responses in China: a study in offices with daylight
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.07.035
– volume: 98
  start-page: 241
  issue: PC
  year: 2013
  ident: 10.1016/j.buildenv.2021.108565_bib6
  article-title: Efficient Venetian blind control strategies considering daylight utilization and glare protection
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.10.005
– volume: 6
  start-page: 24
  year: 2012
  ident: 10.1016/j.buildenv.2021.108565_bib9
  article-title: A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2012.671852
– volume: 87
  start-page: 244
  year: 2015
  ident: 10.1016/j.buildenv.2021.108565_bib71
  article-title: Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.02.007
– volume: 92
  start-page: 615
  year: 2015
  ident: 10.1016/j.buildenv.2021.108565_bib70
  article-title: Verification of simple illuminance based measures for indication of discomfort glare from windows
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.05.040
– volume: 63
  start-page: 3
  year: 2006
  ident: 10.1016/j.buildenv.2021.108565_bib62
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 25
  start-page: 364
  issue: 2
  year: 2011
  ident: 10.1016/j.buildenv.2021.108565_bib30
  article-title: Assessing the performance of naturally day-lit buildings using data mining
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2010.09.002
– volume: 56
  start-page: 8
  year: 2013
  ident: 10.1016/j.buildenv.2021.108565_bib2
  article-title: Building modeling as a crucial part for building predictive control
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.10.024
– volume: 24
  start-page: 137
  year: 1997
  ident: 10.1016/j.buildenv.2021.108565_bib57
  article-title: Alignment by maximization of mutual information
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1007958904918
– ident: 10.1016/j.buildenv.2021.108565_bib46
– volume: 70
  start-page: 343
  year: 2014
  ident: 10.1016/j.buildenv.2021.108565_bib23
  article-title: Using a fuzzy black-box model to estimate the indoor illuminance in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.11.082
– volume: 116
  start-page: 1
  year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib19
  article-title: Predictive models for assessing the passive solar and daylight potential of neighborhood designs: a comparative proof-of-concept study
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.01.018
– volume: 3
  start-page: 1
  issue: 3A
  year: 2015
  ident: 10.1016/j.buildenv.2021.108565_bib32
  article-title: Prediction of daylighting and energy performance using artificial neural network and support vector machine
  publication-title: Am. J. Civ. Eng. Architect.
– volume: 50
  start-page: 235
  issue: 3
  year: 1993
  ident: 10.1016/j.buildenv.2021.108565_bib43
  article-title: All-weather model for sky luminance distribution—Preliminary configuration and validation
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(93)90017-I
– volume: 154
  start-page: 466
  year: 2018
  ident: 10.1016/j.buildenv.2021.108565_bib27
  article-title: Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems, A new method based on artificial neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.106
– volume: 94
  start-page: 459
  year: 1994
  ident: 10.1016/j.buildenv.2021.108565_bib41
  article-title: The RADIANCE lighting simulation and rendering system
– volume: 7473
  year: 2012
  ident: 10.1016/j.buildenv.2021.108565_bib61
  article-title: New machine learning algorithm: random forest
– year: 2021
  ident: 10.1016/j.buildenv.2021.108565_bib56
  article-title: Rank-based univariate feature selection methods on machine learning classifiers for code smell detection
  publication-title: Evol. Intel.
– volume: 148
  start-page: 107
  year: 2019
  ident: 10.1016/j.buildenv.2021.108565_bib72
  article-title: Luminance and vertical eye illuminance thresholds for occupants' visual comfort in daylit office environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.10.058
– volume: 177
  start-page: 106854
  year: 2020
  ident: 10.1016/j.buildenv.2021.108565_bib20
  article-title: A daylight-linked shading strategy for automated blinds based on model-based control and Radial Basis Function (RBF) optimization
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.106854
– start-page: 283
  year: 2011
  ident: 10.1016/j.buildenv.2021.108565_bib59
  article-title: Tree-based methods and decision trees
  publication-title: Modern Analysis of Customer Surveys
  doi: 10.1002/9781119961154.ch15
– volume: 189
  start-page: 107529
  year: 2021
  ident: 10.1016/j.buildenv.2021.108565_bib22
  article-title: An innovative shading controller for blinds in an open-plan office using machine learning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107529
– volume: 35
  start-page: 476
  issue: 4
  year: 2005
  ident: 10.1016/j.buildenv.2021.108565_bib60
  article-title: Top-down induction of decision trees classifiers-a survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
  doi: 10.1109/TSMCC.2004.843247
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.buildenv.2021.108565_bib63
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 38
  start-page: 890
  issue: 7
  year: 2006
  ident: 10.1016/j.buildenv.2021.108565_bib45
  article-title: Development and validation of a Radiance model for a translucent panel
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.03.006
– volume: 33
  start-page: 257
  issue: 3
  year: 2001
  ident: 10.1016/j.buildenv.2021.108565_bib14
  article-title: A new daylight glare evaluation method: introduction of the monitoring protocol and calculation method
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(00)00090-6
– volume: 17
  start-page: 75
  issue: 1
  year: 2021
  ident: 10.1016/j.buildenv.2021.108565_bib50
  article-title: Calibration and validation of climate-based daylighting models based on one-time field measurements: office buildings in the tropics
  publication-title: Leukos
  doi: 10.1080/15502724.2019.1570852
– volume: 36
  start-page: 158
  issue: 3a
  year: 1982
  ident: 10.1016/j.buildenv.2021.108565_bib69
  article-title: Detecting multicollinearity
  publication-title: Am. Statistician
  doi: 10.1080/00031305.1982.10482818
– volume: 327
  start-page: 372
  year: 2018
  ident: 10.1016/j.buildenv.2021.108565_bib58
  article-title: Fast search local extremum for maximal information coefficient (MIC)
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.05.038
– volume: 155
  start-page: 151
  year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib25
  article-title: Estimation of the daylight amount and the energy demand for lighting for the early design stages: definition of a set of mathematical models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.09.014
– ident: 10.1016/j.buildenv.2021.108565_bib42
– volume: 4
  start-page: 251
  issue: 3
  year: 2015
  ident: 10.1016/j.buildenv.2021.108565_bib29
  article-title: Modelling energy retrofit investments in the UK housing market: a microeconomic approach
  publication-title: Smart. Sustain. Built. Environ.
  doi: 10.1108/SASBE-03-2013-0016
– volume: 202
  start-page: 249
  year: 2020
  ident: 10.1016/j.buildenv.2021.108565_bib16
  article-title: A review on machine learning algorithms to predict daylighting inside buildings
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.03.104
– volume: 38
  start-page: 905
  issue: 7
  year: 2006
  ident: 10.1016/j.buildenv.2021.108565_bib13
  article-title: A replacement for daylight factors
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.03.013
– volume: 200
  start-page: 107932
  year: 2021
  ident: 10.1016/j.buildenv.2021.108565_bib12
  article-title: Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107932
– volume: 61
  start-page: 31
  year: 2013
  ident: 10.1016/j.buildenv.2021.108565_bib31
  article-title: Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.02.009
– volume: 84
  start-page: 70
  year: 2014
  ident: 10.1016/j.buildenv.2021.108565_bib40
  article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.07.040
– volume: 5
  start-page: 373
  issue: 4
  year: 2001
  ident: 10.1016/j.buildenv.2021.108565_bib10
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/S1364-0321(01)00006-5
– volume: 171
  start-page: 106642
  year: 2020
  ident: 10.1016/j.buildenv.2021.108565_bib21
  article-title: Self-commissioning glare-based control system for integrated Venetian blind and electric lighting
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106642
– volume: 134
  start-page: 416
  year: 2016
  ident: 10.1016/j.buildenv.2021.108565_bib8
  article-title: Model-based shading and lighting controls considering visual comfort and energy use
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.04.026
– volume: 207
  year: 2006
  ident: 10.1016/j.buildenv.2021.108565_bib67
  article-title: Embedded methods
– year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib48
  article-title: Speedup potential of climate-based daylight modelling on GPUs
– volume: 36
  start-page: 789
  issue: 6
  year: 2001
  ident: 10.1016/j.buildenv.2021.108565_bib4
  article-title: Simulation-based control of building systems operation
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(00)00065-2
– volume: 1
  start-page: 25
  issue: 1
  year: 2008
  ident: 10.1016/j.buildenv.2021.108565_bib5
  article-title: Predictive simulation-based lighting and shading systems control in buildings
  publication-title: Building Simulation
  doi: 10.1007/s12273-008-8101-4
– volume: 207
  year: 2006
  ident: 10.1016/j.buildenv.2021.108565_bib68
  article-title: Filter methods
– start-page: 1949
  year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib33
  article-title: Random forests and artificial neural network for predicting daylight illuminance and energy consumption
– volume: 97
  start-page: 273
  year: 1997
  ident: 10.1016/j.buildenv.2021.108565_bib66
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 30
  start-page: 3146
  year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib64
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 27
  start-page: 181
  issue: 4
  year: 1995
  ident: 10.1016/j.buildenv.2021.108565_bib44
  article-title: Validation of a lighting simulation program under real sky conditions
  publication-title: Light. Res. Technol.
  doi: 10.1177/14771535950270040701
– volume: 73
  start-page: 95
  year: 2002
  ident: 10.1016/j.buildenv.2021.108565_bib36
  article-title: User acceptance studies to evaluate discomfort glare in daylit rooms
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(02)00037-3
– ident: 10.1016/j.buildenv.2021.108565_bib26
– volume: 542
  year: 1991
  ident: 10.1016/j.buildenv.2021.108565_bib52
  article-title: Distance metrics for instance-based learning
– volume: 145
  start-page: 200
  year: 2017
  ident: 10.1016/j.buildenv.2021.108565_bib39
  article-title: Daylight-linked synchronized shading operation using simplified model-based control
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.021
– volume: 84
  start-page: 70
  year: 2014
  ident: 10.1016/j.buildenv.2021.108565_bib38
  article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.07.040
– volume: 37
  start-page: 1426
  issue: 4
  year: 2019
  ident: 10.1016/j.buildenv.2021.108565_bib11
  article-title: Accuracy analyses and model comparison of machine learning adopted in building energy consumption prediction
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598718822400
– start-page: 459
  year: 1994
  ident: 10.1016/j.buildenv.2021.108565_bib3
  article-title: The RADIANCE lighting simulation and rendering system
– volume: 10
  start-page: 145
  issue: 3
  year: 2014
  ident: 10.1016/j.buildenv.2021.108565_bib34
  article-title: A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight
  publication-title: Leukos
  doi: 10.1080/15502724.2014.881720
– volume: 60
  start-page: 268
  year: 2016
  ident: 10.1016/j.buildenv.2021.108565_bib1
  article-title: Dynamic operation of daylighting and shading systems
  publication-title: Lit. Rev.
– volume: 37
  start-page: 1091
  issue: 11
  year: 2002
  ident: 10.1016/j.buildenv.2021.108565_bib18
  article-title: An energy-efficient controller for shading devices self-adapting to the user wishes
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(01)00113-5
SSID ssj0016934
Score 2.4597614
Snippet Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108565
SubjectTerms Algorithms
Artificial intelligence
Automated louvers
Automatic control
Automation
Comfort
Daylighting
Daylighting control
Feature selection
Learning algorithms
Machine learning
Model accuracy
Model testing
Occupancy
Offices
Optimization
Prediction models
Predictions
Shading
Variables
Title Key control variables affecting interior visual comfort for automated louver control in open-plan office -- a study using machine learning
URI https://dx.doi.org/10.1016/j.buildenv.2021.108565
https://www.proquest.com/docview/2621866925
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_ioMgeva9NNtkmOIkq12IsK3pZNMpFITUubFrz4A_zVzqSboiJ48BJC2F2Snd15ZL_5RoizABWzrJH2QxtLslBWRkkQyZy55FKygZ2U853vBt3eY3D7pJ9WxGWTC8OwSqf7Fzq91tbuSdvNZntcFO170r18UMBJKOQnhMwJGgQhr_Lz9yXMg7lGHIWUJ7n1lyzhl_OES09jOac4UXUYbqfZyPxuoH6o6tr-XG-JTec4wsXi3bbFCpY7YuMLneCu-OjjGzjsOcwpCOa0qCnYGrJBLYC5ISbFaALzYjqjweijyWetgC5gZ9WIvFfMYDia0fpeDlSUwCW25Hho6Y4ZJxCkBAs1My0wcP4ZXmtMJoIrQvG8Jx6vrx4ue9LVWpCpH3iVVFyrU2V5GAWWIjJkilCtdKIogupSlJiEAb1rrskfjNCPPLRelPLmxVDHuZ_7-2K1HJV4ICCxWapQex2M-bQ4jfzUZjZWZAszr2PxUOhmgk3qiMi5HsbQNIizF9MIxrBgzEIwh6K97DdeUHH82SNu5Ge-LSpD9uLPvq1G4MZt66lRXS7h1Y2VPvrH0MdiXXESRf0jpyVWq8kMT8i1qZLTeu2eirWLm35v8Am3Yvn7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB7RcKAcKiitSgvtHHrdxll7HfuIUFFoIBdA4rZa22NklDpR4kTiFfrUnXHWEa0qcejFsizPar2zOz-emW8AvkakBWWNpR-5VLGGcirJokSVgiWXsw4c5FLvfD2JR3fRj3tzvwPnXS2MpFV62b-R6a209k_6fjX786rq37DslUCBFKGwnTCMXsGuoFOZHuyeXY5Hk20wIU5DjyIVKCF4Vij8-C2T7tNUr9lV1APJuDOiZ_6to_6S1q0KujiAN952xLPN9A5hh-q3sP8MUfAIfo3pCX36Oa7ZD5bKqCW6NmuD30CBh1hUswWuq-WKB-PvZrO1Qb6gWzUzNmCpwOlsxVt8O1BVo3TZUvOp4zsBnSBUCh224LQoufMP-LNNyyT0fSge3sHdxffb85Hy7RZUHkZBo7S069RFOUwix04ZCUqo0SbT7ETF7Chmw4jnWho2CRMKk4BckORyfmlo0jIsw_fQq2c1fQDMXJFrMsGAUgkY50mYu8KlmtVhEQwcHYPpFtjmHotcWmJMbZd09mg7xlhhjN0w5hj6W7r5Bo3jRYq045_9Y19ZVhkv0p50DLf-ZC-tjqWLV5xq8_E_hv4Ce6Pb6yt7dTkZf4LXWmoq2v86J9BrFis6ZUunyT77nfwbQQH8rA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+control+variables+affecting+interior+visual+comfort+for+automated+louver+control+in+open-plan+office+--+a+study+using+machine+learning&rft.jtitle=Building+and+environment&rft.au=Luo%2C+Zhaoyang&rft.au=Sun%2C+Cheng&rft.au=Dong%2C+Qi&rft.au=Qi%2C+Xuanning&rft.date=2022-01-01&rft.issn=0360-1323&rft.volume=207&rft.spage=108565&rft_id=info:doi/10.1016%2Fj.buildenv.2021.108565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2021_108565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon