Key control variables affecting interior visual comfort for automated louver control in open-plan office -- a study using machine learning
Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a...
Saved in:
Published in | Building and environment Vol. 207; p. 108565 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a statically predictive daylighting model. Determining daylighting-affected variables is a crucial step benefiting approximation accuracy and modeling efficiency. However, studies about variable selections are rare since it is intractable and expertise required, and those limited studies mainly focus on private offices as a research subject. This paper performs a comprehensive analysis to explore the importance of control-related variables available for machine learning-assisted automated louvers in open-plan offices. The aim is to provide an efficient but compact set of control variables for better establishing the predictive model regarding visual comfort assisting automatic shading control for optimizing the daylighting environment. First, a validated simulation was performed to generate data samples that were used for feature analysis. Then, Filters, Embedded, and Wrappers methods were imposed to interpret feature importance according to their contributions to the robustness of the predictive model. Multicollinearity analysis was then employed to eliminate unnecessary features further. Finally, attributes affecting visual comfort in an open-plan office were derived from a comprehensive comparison and validated via a model training test. Results indicated that spatiotemporal occupancy info weighs most in affecting the predictive model, and the selected variables were proved efficient in the prediction horizon test.
•Machine learning is utilized to analyze the control-related variables.•Spatiotemporal occupancy parameters influence interior daylight significantly.•Factors have varying impacts on interior daylight in different seasons.•Some climatic variables have low contributions to interior daylight. |
---|---|
AbstractList | Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a statically predictive daylighting model. Determining daylighting-affected variables is a crucial step benefiting approximation accuracy and modeling efficiency. However, studies about variable selections are rare since it is intractable and expertise required, and those limited studies mainly focus on private offices as a research subject. This paper performs a comprehensive analysis to explore the importance of control-related variables available for machine learning-assisted automated louvers in open-plan offices. The aim is to provide an efficient but compact set of control variables for better establishing the predictive model regarding visual comfort assisting automatic shading control for optimizing the daylighting environment. First, a validated simulation was performed to generate data samples that were used for feature analysis. Then, Filters, Embedded, and Wrappers methods were imposed to interpret feature importance according to their contributions to the robustness of the predictive model. Multicollinearity analysis was then employed to eliminate unnecessary features further. Finally, attributes affecting visual comfort in an open-plan office were derived from a comprehensive comparison and validated via a model training test. Results indicated that spatiotemporal occupancy info weighs most in affecting the predictive model, and the selected variables were proved efficient in the prediction horizon test.
•Machine learning is utilized to analyze the control-related variables.•Spatiotemporal occupancy parameters influence interior daylight significantly.•Factors have varying impacts on interior daylight in different seasons.•Some climatic variables have low contributions to interior daylight. Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As the data-driven approach is thriving, the machine learning algorithm can enhance the efficiency of model-based shading control by building a statically predictive daylighting model. Determining daylighting-affected variables is a crucial step benefiting approximation accuracy and modeling efficiency. However, studies about variable selections are rare since it is intractable and expertise required, and those limited studies mainly focus on private offices as a research subject. This paper performs a comprehensive analysis to explore the importance of control-related variables available for machine learning-assisted automated louvers in open-plan offices. The aim is to provide an efficient but compact set of control variables for better establishing the predictive model regarding visual comfort assisting automatic shading control for optimizing the daylighting environment. First, a validated simulation was performed to generate data samples that were used for feature analysis. Then, Filters, Embedded, and Wrappers methods were imposed to interpret feature importance according to their contributions to the robustness of the predictive model. Multicollinearity analysis was then employed to eliminate unnecessary features further. Finally, attributes affecting visual comfort in an open-plan office were derived from a comprehensive comparison and validated via a model training test. Results indicated that spatiotemporal occupancy info weighs most in affecting the predictive model, and the selected variables were proved efficient in the prediction horizon test. |
ArticleNumber | 108565 |
Author | Dong, Qi Qi, Xuanning Sun, Cheng Luo, Zhaoyang |
Author_xml | – sequence: 1 givenname: Zhaoyang orcidid: 0000-0003-0022-3549 surname: Luo fullname: Luo, Zhaoyang email: 16b934028@stu.hit.edu.cn organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China – sequence: 2 givenname: Cheng surname: Sun fullname: Sun, Cheng email: suncheng@hit.edu.cn, suncheng@hit.edu.cn organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China – sequence: 3 givenname: Qi surname: Dong fullname: Dong, Qi email: dongqi@hit.edu.cn organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China – sequence: 4 givenname: Xuanning surname: Qi fullname: Qi, Xuanning email: michelle@hit.edu.cn organization: School of Architecture, Harbin Institute of Technology, Harbin, 150001, China |
BookMark | eNqFkc1q3DAUhUVJoZO0r1AEXXuqH1u2IYuGkLYhgWxa6E5o5KvmDhppKsmGeYU-dTVM0kU22ejncs65up_OyVmIAQj5yNmaM64-b9ebGf0EYVkLJngtDp3q3pAVH3rZqKH9dUZWTCrWcCnkO3Ke85ZV4yjbFfl7BwdqYygperqYhGbjIVPjHNiC4TfFUCBhTHTBPBtftTsXU6F1oWYucWcKTNTHeYH0PwgDjXsIzd6benIOLdCmoYbmMk8HOudj8s7YRwxAPZgUauE9eeuMz_Dhab8gP7_e_Lj-3tw_fLu9vrpvrGxZaYSo84nJ9UNrRDsCY3Va0W0Eb0fVC77p2_p2141CDiAHBoYNdlT10nejk05ekE-n3H2Kf2bIRW_jnEJtqYUSfFBqFF1VqZPKpphzAqf3CXcmHTRn-shdb_Uzd33krk_cq_HyhdFiMQWPaAz61-1fTnaoCBaEpLNFCBYmTPVL9BTxtYh_P32m8A |
CitedBy_id | crossref_primary_10_12813_kieae_2024_24_5_061 crossref_primary_10_1016_j_jobe_2024_108687 crossref_primary_10_1016_j_autcon_2023_105093 crossref_primary_10_1016_j_jobe_2024_111310 crossref_primary_10_1108_SASBE_06_2022_0113 crossref_primary_10_1177_10692509251318454 crossref_primary_10_1016_j_jobe_2023_106101 crossref_primary_10_1016_j_buildenv_2022_109081 crossref_primary_10_2516_stet_2023035 crossref_primary_10_1016_j_buildenv_2023_110822 crossref_primary_10_1007_s12273_023_1045_x crossref_primary_10_1016_j_buildenv_2025_112706 crossref_primary_10_2478_amns_2024_3250 crossref_primary_10_3390_atmos13122059 crossref_primary_10_1061_JMENEA_MEENG_5816 crossref_primary_10_3390_su142315663 crossref_primary_10_1016_j_scs_2024_105821 crossref_primary_10_1016_j_buildenv_2024_111394 crossref_primary_10_1016_j_buildenv_2022_109507 crossref_primary_10_1016_j_jobe_2023_105998 crossref_primary_10_1016_j_enbenv_2023_08_002 |
Cites_doi | 10.1177/1420326X18798164 10.1115/1.1313529 10.1016/j.solener.2016.04.026 10.1016/j.solener.2013.08.009 10.1016/j.buildenv.2016.08.023 10.1007/s10489-009-0172-0 10.1016/j.enbuild.2006.03.017 10.1016/j.buildenv.2017.07.035 10.1016/j.solener.2013.10.005 10.1080/19401493.2012.671852 10.1016/j.buildenv.2015.02.007 10.1016/j.buildenv.2015.05.040 10.1007/s10994-006-6226-1 10.1016/j.aei.2010.09.002 10.1016/j.enbuild.2012.10.024 10.1023/A:1007958904918 10.1016/j.enbuild.2013.11.082 10.1016/j.buildenv.2017.01.018 10.1016/0038-092X(93)90017-I 10.1016/j.energy.2018.04.106 10.1016/j.buildenv.2018.10.058 10.1016/j.buildenv.2020.106854 10.1002/9781119961154.ch15 10.1016/j.buildenv.2020.107529 10.1109/TSMCC.2004.843247 10.1006/jcss.1997.1504 10.1016/j.enbuild.2006.03.006 10.1016/S0378-7788(00)00090-6 10.1080/15502724.2019.1570852 10.1080/00031305.1982.10482818 10.1016/j.cam.2017.05.038 10.1016/j.enbuild.2017.09.014 10.1108/SASBE-03-2013-0016 10.1016/j.solener.2020.03.104 10.1016/j.enbuild.2006.03.013 10.1016/j.buildenv.2021.107932 10.1016/j.enbuild.2013.02.009 10.1016/j.enbuild.2014.07.040 10.1016/S1364-0321(01)00006-5 10.1016/j.buildenv.2019.106642 10.1016/S0360-1323(00)00065-2 10.1007/s12273-008-8101-4 10.1016/S0004-3702(97)00043-X 10.1177/14771535950270040701 10.1016/S0038-092X(02)00037-3 10.1016/j.enbuild.2017.04.021 10.1177/0144598718822400 10.1080/15502724.2014.881720 10.1016/S0360-1323(01)00113-5 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.buildenv.2021.108565 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-684X |
ExternalDocumentID | 10_1016_j_buildenv_2021_108565 S0360132321009574 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSJ SSR SST SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c340t-220852df784a249e0056525b21496721b74fecf59238e380ea08c9638e759f3f3 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Wed Aug 13 09:05:11 EDT 2025 Tue Jul 01 00:25:10 EDT 2025 Thu Apr 24 22:55:58 EDT 2025 Fri Feb 23 02:41:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Automated louvers Feature selection Artificial intelligence Daylighting control Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-220852df784a249e0056525b21496721b74fecf59238e380ea08c9638e759f3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0022-3549 |
PQID | 2621866925 |
PQPubID | 2045275 |
ParticipantIDs | proquest_journals_2621866925 crossref_primary_10_1016_j_buildenv_2021_108565 crossref_citationtrail_10_1016_j_buildenv_2021_108565 elsevier_sciencedirect_doi_10_1016_j_buildenv_2021_108565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Building and environment |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Han, Shen, Sun (bib12) 2021; 200 Navada, Adiga, Kini (bib24) 2016; 11 Jones, Reinhart (bib49) 2017; 113 Kalogirou (bib10) 2001; 5 Zhang, Ho, Zhang, Lin (bib53) 2006; 30 Ahmed, Otreba, Korres (bib30) 2011; 25 Lorenz, Jabi (bib26) 2017 Mardaljevic (bib44) 1995; 27 Xiong, Tzempelikos (bib7) 2016; 134 Ke (bib64) 2017; 30 Luo, Sun, Dong (bib22) 2021; 189 Ward (bib41) 1994; 94 Logar, Kristl, Škrjanc (bib23) 2014; 70 Shen, Tzempelikos (bib39) 2017; 145 Wang, Hunter (bib55) 2010; 33 Bian, Luo (bib35) 2017; 123 Matusiak (bib37) 2013; 97 R Perez, Michalsky (bib43) 1993; 50 Chan, Tzempelikos (bib6) 2013; 98 Velds (bib36) 2002; 73 Geurts, Ernst, Wehenkel (bib62) 2006; 63 Guyon, Elisseeff (bib54) 2003; 3 Jones, Reinhart (bib47) 2015 Karlsen, Heiselberg, Bryn (bib70) 2015; 92 Motamed, Bueno, Deschamps (bib21) 2020; 171 Wang, Zhao, Shu, Yuan (bib58) 2018; 327 Mansfield, Helms (bib69) 1982; 36 Konstantoglou, Tsangrassoulis (bib1) 2016; 60 Viola, Wells (bib57) 1997; 24 Salzberg (bib52) 1991; 542 Kohavi, John (bib66) 1997; 97 Lal, Chapelle, Weston, Elisseeff (bib67) 2006; 207 Nault, Moonen, Rey, Andersen (bib19) 2017; 116 JA Jakubiec, CF Reinhart, DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus, In Proc. Build. Simulat., vol. 20, no. 11, pp. 2202-2209. Privara, Cigler, Váňa, Oldewurtel, Sagerschnig, Žáčeková (bib2) 2013 Jan 1; 56 Nazzal (bib14) 2001; 33 Misra, Yadav (bib65) 2020; 11 Nabil, Mardaljevic (bib13) 2006; 38 Ayoub (bib28) 2019; 28 Van Den Wymelenberg, Inanici (bib34) 2014; 10 Solemma (bib42) da Fonseca, EL Didoné, Pereira (bib31) 2013; 61 Wienold, Christoffersen (bib15) 2006; 38 Rokach, Maimon (bib60) 2005; 35 Liu, Wu, Liu (bib11) 2019; 37 Xiong, Tzempelikos (bib8) 2016 Sep 1; 134 McNeil, Lee (bib9) 2012; 6 Duch (bib68) 2006; 207 Zhou, Liu (bib32) 2015; 3 Reinhart, Andersen (bib45) 2006; 38 Ward (bib3) 1994 Jul 24 Ayoub (bib16) 2020; 202 Luo, Sun, Dong (bib20) 2020; 177 Liu, Wang, Zhang (bib61) 2012; 7473 Ahmad, Hippolyte, Mourshed (bib33) 2017 Quek, Jakubiec (bib50) 2021; 17 Jain, Saha (bib56) 2021 Verso, Mihaylov, Pellegrino (bib25) 2017; 155 Suk (bib72) 2019; 148 Adan, Fuerst (bib29) 2015; 4 Guillemin, Molteni (bib18) 2002; 37 Yun, Yoon, Kim (bib38) 2014; 84 Conraud-Bianchi (bib17) 2008; 47 Yun, Yoon, Kim (bib40) 2014; 84 Freund, Schapire, Schapire (bib63) 1997; 55 Jones, Reinhart (bib48) 2017 Konstantzos, Tzempelikos, Chan (bib71) 2015; 87 Mahdavi (bib4) 2001; 36 Beccali, Bonomolo, Ciulla, Brano (bib27) 2018; 154 Galimberti, Soffritti (bib59) 2011 Muneer, Gul (bib51) 2000; 122 Mahdavi (bib5) 2008; 1 Logar (10.1016/j.buildenv.2021.108565_bib23) 2014; 70 da Fonseca (10.1016/j.buildenv.2021.108565_bib31) 2013; 61 Beccali (10.1016/j.buildenv.2021.108565_bib27) 2018; 154 10.1016/j.buildenv.2021.108565_bib46 Chan (10.1016/j.buildenv.2021.108565_bib6) 2013; 98 Karlsen (10.1016/j.buildenv.2021.108565_bib70) 2015; 92 Wienold (10.1016/j.buildenv.2021.108565_bib15) 2006; 38 Jones (10.1016/j.buildenv.2021.108565_bib49) 2017; 113 Solemma (10.1016/j.buildenv.2021.108565_bib42) Privara (10.1016/j.buildenv.2021.108565_bib2) 2013; 56 Ward (10.1016/j.buildenv.2021.108565_bib3) 1994 Mahdavi (10.1016/j.buildenv.2021.108565_bib5) 2008; 1 Reinhart (10.1016/j.buildenv.2021.108565_bib45) 2006; 38 Kohavi (10.1016/j.buildenv.2021.108565_bib66) 1997; 97 Wang (10.1016/j.buildenv.2021.108565_bib55) 2010; 33 Galimberti (10.1016/j.buildenv.2021.108565_bib59) 2011 Suk (10.1016/j.buildenv.2021.108565_bib72) 2019; 148 McNeil (10.1016/j.buildenv.2021.108565_bib9) 2012; 6 Nabil (10.1016/j.buildenv.2021.108565_bib13) 2006; 38 Velds (10.1016/j.buildenv.2021.108565_bib36) 2002; 73 R Perez (10.1016/j.buildenv.2021.108565_bib43) 1993; 50 Lal (10.1016/j.buildenv.2021.108565_bib67) 2006; 207 Xiong (10.1016/j.buildenv.2021.108565_bib8) 2016; 134 Lorenz (10.1016/j.buildenv.2021.108565_bib26) Wang (10.1016/j.buildenv.2021.108565_bib58) 2018; 327 Ahmad (10.1016/j.buildenv.2021.108565_bib33) 2017 Guyon (10.1016/j.buildenv.2021.108565_bib54) 2003; 3 Adan (10.1016/j.buildenv.2021.108565_bib29) 2015; 4 Matusiak (10.1016/j.buildenv.2021.108565_bib37) 2013; 97 Ahmed (10.1016/j.buildenv.2021.108565_bib30) 2011; 25 Jones (10.1016/j.buildenv.2021.108565_bib48) 2017 Xiong (10.1016/j.buildenv.2021.108565_bib7) 2016; 134 Kalogirou (10.1016/j.buildenv.2021.108565_bib10) 2001; 5 Navada (10.1016/j.buildenv.2021.108565_bib24) 2016; 11 Conraud-Bianchi (10.1016/j.buildenv.2021.108565_bib17) 2008; 47 Nazzal (10.1016/j.buildenv.2021.108565_bib14) 2001; 33 Jain (10.1016/j.buildenv.2021.108565_bib56) 2021 Quek (10.1016/j.buildenv.2021.108565_bib50) 2021; 17 Mardaljevic (10.1016/j.buildenv.2021.108565_bib44) 1995; 27 Zhang (10.1016/j.buildenv.2021.108565_bib53) 2006; 30 Bian (10.1016/j.buildenv.2021.108565_bib35) 2017; 123 Mahdavi (10.1016/j.buildenv.2021.108565_bib4) 2001; 36 Han (10.1016/j.buildenv.2021.108565_bib12) 2021; 200 Rokach (10.1016/j.buildenv.2021.108565_bib60) 2005; 35 Ayoub (10.1016/j.buildenv.2021.108565_bib16) 2020; 202 Misra (10.1016/j.buildenv.2021.108565_bib65) 2020; 11 Mansfield (10.1016/j.buildenv.2021.108565_bib69) 1982; 36 Zhou (10.1016/j.buildenv.2021.108565_bib32) 2015; 3 Shen (10.1016/j.buildenv.2021.108565_bib39) 2017; 145 Van Den Wymelenberg (10.1016/j.buildenv.2021.108565_bib34) 2014; 10 Jones (10.1016/j.buildenv.2021.108565_bib47) 2015 Muneer (10.1016/j.buildenv.2021.108565_bib51) 2000; 122 Luo (10.1016/j.buildenv.2021.108565_bib20) 2020; 177 Liu (10.1016/j.buildenv.2021.108565_bib11) 2019; 37 Yun (10.1016/j.buildenv.2021.108565_bib40) 2014; 84 Freund (10.1016/j.buildenv.2021.108565_bib63) 1997; 55 Verso (10.1016/j.buildenv.2021.108565_bib25) 2017; 155 Konstantoglou (10.1016/j.buildenv.2021.108565_bib1) 2016; 60 Yun (10.1016/j.buildenv.2021.108565_bib38) 2014; 84 Viola (10.1016/j.buildenv.2021.108565_bib57) 1997; 24 Nault (10.1016/j.buildenv.2021.108565_bib19) 2017; 116 Guillemin (10.1016/j.buildenv.2021.108565_bib18) 2002; 37 Ayoub (10.1016/j.buildenv.2021.108565_bib28) 2019; 28 Ward (10.1016/j.buildenv.2021.108565_bib41) 1994; 94 Motamed (10.1016/j.buildenv.2021.108565_bib21) 2020; 171 Duch (10.1016/j.buildenv.2021.108565_bib68) 2006; 207 Konstantzos (10.1016/j.buildenv.2021.108565_bib71) 2015; 87 Geurts (10.1016/j.buildenv.2021.108565_bib62) 2006; 63 Luo (10.1016/j.buildenv.2021.108565_bib22) 2021; 189 Salzberg (10.1016/j.buildenv.2021.108565_bib52) 1991; 542 Ke (10.1016/j.buildenv.2021.108565_bib64) 2017; 30 Liu (10.1016/j.buildenv.2021.108565_bib61) 2012; 7473 |
References_xml | – volume: 94 start-page: 459 year: 1994 end-page: 472 ident: bib41 article-title: The RADIANCE lighting simulation and rendering system publication-title: Computer Graphics (Proceedings of SIGGRAPH – volume: 1 start-page: 25 year: 2008 end-page: 35 ident: bib5 article-title: Predictive simulation-based lighting and shading systems control in buildings publication-title: Building Simulation – volume: 24 start-page: 137 year: 1997 end-page: 154 ident: bib57 article-title: Alignment by maximization of mutual information publication-title: Int. J. Comput. Vis. – volume: 38 start-page: 905 year: 2006 end-page: 913 ident: bib13 article-title: A replacement for daylight factors publication-title: Energy Build. – year: 2015 ident: bib47 article-title: Validation of GPU lighting simulation in naturally and artificially lit spaces publication-title: Building Simulation 2015: 14th International Conference of the International Building Performance Simulation Association – volume: 542 year: 1991 ident: bib52 article-title: Distance metrics for instance-based learning publication-title: Methodologies for Intelligent Systems. ISMIS 1991. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence) – volume: 37 start-page: 1426 year: 2019 end-page: 1451 ident: bib11 article-title: Accuracy analyses and model comparison of machine learning adopted in building energy consumption prediction publication-title: Energy Explor. Exploit. – year: 2021 ident: bib56 article-title: Rank-based univariate feature selection methods on machine learning classifiers for code smell detection publication-title: Evol. Intel. – volume: 47 year: 2008 ident: bib17 article-title: A methodology for the optimization of building energy, thermal, and visual performance publication-title: Masters Abstracts International – volume: 30 start-page: 305 year: 2006 end-page: 319 ident: bib53 article-title: Unsupervised feature extraction for time series clustering using orthogonal wavelet transform publication-title: Informatica – volume: 7473 year: 2012 ident: bib61 article-title: New machine learning algorithm: random forest publication-title: Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science – volume: 11 start-page: 4711 year: 2016 end-page: 4717 ident: bib24 article-title: Prediction of daylight availability for visual comfort publication-title: Int. J. Appl. Eng. Res. – volume: 50 start-page: 235 year: 1993 end-page: 245 ident: bib43 article-title: All-weather model for sky luminance distribution—Preliminary configuration and validation publication-title: Sol. Energy – volume: 28 start-page: 848 year: 2019 end-page: 866 ident: bib28 article-title: A multivariate regression to predict daylighting and energy consumption of residential buildings within hybrid settlements in hot-desert climates publication-title: Indoor Built Environ. – volume: 97 start-page: 230 year: 2013 end-page: 237 ident: bib37 article-title: Glare from a translucent façade, evaluation with an experimental method publication-title: Sol. Energy – ident: bib42 article-title: DIVA for Rhino – reference: JA Jakubiec, CF Reinhart, DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus, In Proc. Build. Simulat., vol. 20, no. 11, pp. 2202-2209. – volume: 35 start-page: 476 year: 2005 end-page: 487 ident: bib60 article-title: Top-down induction of decision trees classifiers-a survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib54 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 200 start-page: 107932 year: 2021 ident: bib12 article-title: Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design publication-title: Build. Environ. – volume: 87 start-page: 244 year: 2015 end-page: 254 ident: bib71 article-title: Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades publication-title: Build. Environ. – year: 2017 ident: bib26 article-title: Predicting daylight autonomy metrics using machine learning – volume: 11 start-page: 659 year: 2020 end-page: 665 ident: bib65 article-title: Improving the classification accuracy using recursive feature elimination with cross-validation publication-title: Int. J. Emerg. Technol. – volume: 189 start-page: 107529 year: 2021 ident: bib22 article-title: An innovative shading controller for blinds in an open-plan office using machine learning publication-title: Build. Environ. – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: bib66 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 60 start-page: 268 year: 2016 end-page: 283 ident: bib1 article-title: Dynamic operation of daylighting and shading systems publication-title: Lit. Rev. – volume: 33 start-page: 257 year: 2001 end-page: 265 ident: bib14 article-title: A new daylight glare evaluation method: introduction of the monitoring protocol and calculation method publication-title: Energy Build. – volume: 70 start-page: 343 year: 2014 end-page: 351 ident: bib23 article-title: Using a fuzzy black-box model to estimate the indoor illuminance in buildings publication-title: Energy Build. – volume: 122 start-page: 146 year: 2000 end-page: 153 ident: bib51 article-title: Models for estimating solar radiation and illuminance from meteorological parameters publication-title: J. Sol. Energy Eng. – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib63 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – volume: 37 start-page: 1091 year: 2002 end-page: 1097 ident: bib18 article-title: An energy-efficient controller for shading devices self-adapting to the user wishes publication-title: Build. Environ. – volume: 84 start-page: 70 year: 2014 end-page: 85 ident: bib38 article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings publication-title: Energy Build. – volume: 98 start-page: 241 year: 2013 end-page: 254 ident: bib6 article-title: Efficient Venetian blind control strategies considering daylight utilization and glare protection publication-title: Sol. Energy – volume: 25 start-page: 364 year: 2011 end-page: 379 ident: bib30 article-title: Assessing the performance of naturally day-lit buildings using data mining publication-title: Adv. Eng. Inf. – volume: 154 start-page: 466 year: 2018 end-page: 476 ident: bib27 article-title: Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems, A new method based on artificial neural networks publication-title: Energy – volume: 113 start-page: 131 year: 2017 end-page: 150 ident: bib49 article-title: Experimental validation of ray tracing as a means of image-based visual discomfort prediction publication-title: Build. Environ. – volume: 177 start-page: 106854 year: 2020 ident: bib20 article-title: A daylight-linked shading strategy for automated blinds based on model-based control and Radial Basis Function (RBF) optimization publication-title: Build. Environ. – volume: 123 start-page: 661 year: 2017 end-page: 671 ident: bib35 article-title: Investigation of visual comfort metrics from subjective responses in China: a study in offices with daylight publication-title: Build. Environ. – volume: 134 start-page: 416 year: 2016 Sep 1 end-page: 428 ident: bib8 article-title: Model-based shading and lighting controls considering visual comfort and energy use publication-title: Sol. Energy – volume: 61 start-page: 31 year: 2013 end-page: 38 ident: bib31 article-title: Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements publication-title: Energy Build. – volume: 327 start-page: 372 year: 2018 end-page: 387 ident: bib58 article-title: Fast search local extremum for maximal information coefficient (MIC) publication-title: J. Comput. Appl. Math. – volume: 6 start-page: 24 year: 2012 end-page: 37 ident: bib9 article-title: A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems publication-title: J. Build. Perform. Simul. – volume: 155 start-page: 151 year: 2017 end-page: 165 ident: bib25 article-title: Estimation of the daylight amount and the energy demand for lighting for the early design stages: definition of a set of mathematical models publication-title: Energy Build. – volume: 134 start-page: 416 year: 2016 end-page: 428 ident: bib7 article-title: Model-based shading and lighting controls considering visual comfort and energy use publication-title: Sol. Energy – volume: 171 start-page: 106642 year: 2020 ident: bib21 article-title: Self-commissioning glare-based control system for integrated Venetian blind and electric lighting publication-title: Build. Environ. – volume: 30 start-page: 3146 year: 2017 end-page: 3154 ident: bib64 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – start-page: 283 year: 2011 end-page: 307 ident: bib59 article-title: Tree-based methods and decision trees publication-title: Modern Analysis of Customer Surveys – volume: 33 start-page: 357 year: 2010 end-page: 369 ident: bib55 article-title: A low variance error boosting algorithm publication-title: Appl. Intell. – volume: 207 year: 2006 ident: bib68 article-title: Filter methods publication-title: Feature Extraction. Studies in Fuzziness and Soft Computing – volume: 92 start-page: 615 year: 2015 end-page: 626 ident: bib70 article-title: Verification of simple illuminance based measures for indication of discomfort glare from windows publication-title: Build. Environ. – volume: 207 year: 2006 ident: bib67 article-title: Embedded methods publication-title: Feature Extraction. Studies in Fuzziness and Soft Computing – volume: 36 start-page: 789 year: 2001 end-page: 796 ident: bib4 article-title: Simulation-based control of building systems operation publication-title: Build. Environ. – volume: 148 start-page: 107 year: 2019 end-page: 115 ident: bib72 article-title: Luminance and vertical eye illuminance thresholds for occupants' visual comfort in daylit office environments publication-title: Build. Environ. – volume: 116 start-page: 1 year: 2017 end-page: 16 ident: bib19 article-title: Predictive models for assessing the passive solar and daylight potential of neighborhood designs: a comparative proof-of-concept study publication-title: Build. Environ. – volume: 38 start-page: 890 year: 2006 end-page: 904 ident: bib45 article-title: Development and validation of a Radiance model for a translucent panel publication-title: Energy Build. – volume: 27 start-page: 181 year: 1995 end-page: 188 ident: bib44 article-title: Validation of a lighting simulation program under real sky conditions publication-title: Light. Res. Technol. – start-page: 1949 year: 2017 end-page: 1955 ident: bib33 article-title: Random forests and artificial neural network for predicting daylight illuminance and energy consumption publication-title: Proceedings of the 15th IBPSA Conference – volume: 10 start-page: 145 year: 2014 end-page: 164 ident: bib34 article-title: A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight publication-title: Leukos – volume: 73 start-page: 95 year: 2002 end-page: 103 ident: bib36 article-title: User acceptance studies to evaluate discomfort glare in daylit rooms publication-title: Sol. Energy – volume: 202 start-page: 249 year: 2020 end-page: 275 ident: bib16 article-title: A review on machine learning algorithms to predict daylighting inside buildings publication-title: Sol. Energy – volume: 3 start-page: 1 year: 2015 end-page: 8 ident: bib32 article-title: Prediction of daylighting and energy performance using artificial neural network and support vector machine publication-title: Am. J. Civ. Eng. Architect. – volume: 145 start-page: 200 year: 2017 end-page: 212 ident: bib39 article-title: Daylight-linked synchronized shading operation using simplified model-based control publication-title: Energy Build. – volume: 17 start-page: 75 year: 2021 end-page: 90 ident: bib50 article-title: Calibration and validation of climate-based daylighting models based on one-time field measurements: office buildings in the tropics publication-title: Leukos – volume: 4 start-page: 251 year: 2015 end-page: 267 ident: bib29 article-title: Modelling energy retrofit investments in the UK housing market: a microeconomic approach publication-title: Smart. Sustain. Built. Environ. – year: 2017 ident: bib48 article-title: Speedup potential of climate-based daylight modelling on GPUs publication-title: Building Simulation 2017: 15th International Conference of the International Building Performance Simulation Association – volume: 5 start-page: 373 year: 2001 end-page: 401 ident: bib10 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew. Sustain. Energy Rev. – start-page: 459 year: 1994 Jul 24 end-page: 472 ident: bib3 article-title: The RADIANCE lighting simulation and rendering system publication-title: In Proceedings of the 21st annual conference on Computer graphics and interactive techniques – volume: 36 start-page: 158 year: 1982 end-page: 160 ident: bib69 article-title: Detecting multicollinearity publication-title: Am. Statistician – volume: 84 start-page: 70 year: 2014 end-page: 85 ident: bib40 article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings publication-title: Energy Build. – volume: 56 start-page: 8 year: 2013 Jan 1 end-page: 22 ident: bib2 article-title: Building modeling as a crucial part for building predictive control publication-title: Energy Build. – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib62 article-title: Extremely randomized trees publication-title: Mach. Learn. – volume: 38 start-page: 743 year: 2006 end-page: 757 ident: bib15 article-title: Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras publication-title: Energy Build. – volume: 28 start-page: 848 issue: 6 year: 2019 ident: 10.1016/j.buildenv.2021.108565_bib28 article-title: A multivariate regression to predict daylighting and energy consumption of residential buildings within hybrid settlements in hot-desert climates publication-title: Indoor Built Environ. doi: 10.1177/1420326X18798164 – volume: 122 start-page: 146 issue: 7 year: 2000 ident: 10.1016/j.buildenv.2021.108565_bib51 article-title: Models for estimating solar radiation and illuminance from meteorological parameters publication-title: J. Sol. Energy Eng. doi: 10.1115/1.1313529 – volume: 134 start-page: 416 year: 2016 ident: 10.1016/j.buildenv.2021.108565_bib7 article-title: Model-based shading and lighting controls considering visual comfort and energy use publication-title: Sol. Energy doi: 10.1016/j.solener.2016.04.026 – volume: 3 start-page: 1157 issue: 3 year: 2003 ident: 10.1016/j.buildenv.2021.108565_bib54 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 97 start-page: 230 year: 2013 ident: 10.1016/j.buildenv.2021.108565_bib37 article-title: Glare from a translucent façade, evaluation with an experimental method publication-title: Sol. Energy doi: 10.1016/j.solener.2013.08.009 – volume: 47 issue: 4 year: 2008 ident: 10.1016/j.buildenv.2021.108565_bib17 article-title: A methodology for the optimization of building energy, thermal, and visual performance publication-title: Masters Abstracts International – year: 2015 ident: 10.1016/j.buildenv.2021.108565_bib47 article-title: Validation of GPU lighting simulation in naturally and artificially lit spaces – volume: 113 start-page: 131 year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib49 article-title: Experimental validation of ray tracing as a means of image-based visual discomfort prediction publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.08.023 – volume: 11 start-page: 659 issue: 3 year: 2020 ident: 10.1016/j.buildenv.2021.108565_bib65 article-title: Improving the classification accuracy using recursive feature elimination with cross-validation publication-title: Int. J. Emerg. Technol. – volume: 11 start-page: 4711 issue: 7 year: 2016 ident: 10.1016/j.buildenv.2021.108565_bib24 article-title: Prediction of daylight availability for visual comfort publication-title: Int. J. Appl. Eng. Res. – volume: 33 start-page: 357 issue: 3 year: 2010 ident: 10.1016/j.buildenv.2021.108565_bib55 article-title: A low variance error boosting algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-009-0172-0 – volume: 38 start-page: 743 issue: 7 year: 2006 ident: 10.1016/j.buildenv.2021.108565_bib15 article-title: Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.03.017 – volume: 30 start-page: 305 year: 2006 ident: 10.1016/j.buildenv.2021.108565_bib53 article-title: Unsupervised feature extraction for time series clustering using orthogonal wavelet transform publication-title: Informatica – volume: 123 start-page: 661 year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib35 article-title: Investigation of visual comfort metrics from subjective responses in China: a study in offices with daylight publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.07.035 – volume: 98 start-page: 241 issue: PC year: 2013 ident: 10.1016/j.buildenv.2021.108565_bib6 article-title: Efficient Venetian blind control strategies considering daylight utilization and glare protection publication-title: Sol. Energy doi: 10.1016/j.solener.2013.10.005 – volume: 6 start-page: 24 year: 2012 ident: 10.1016/j.buildenv.2021.108565_bib9 article-title: A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems publication-title: J. Build. Perform. Simul. doi: 10.1080/19401493.2012.671852 – volume: 87 start-page: 244 year: 2015 ident: 10.1016/j.buildenv.2021.108565_bib71 article-title: Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.02.007 – volume: 92 start-page: 615 year: 2015 ident: 10.1016/j.buildenv.2021.108565_bib70 article-title: Verification of simple illuminance based measures for indication of discomfort glare from windows publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.05.040 – volume: 63 start-page: 3 year: 2006 ident: 10.1016/j.buildenv.2021.108565_bib62 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 25 start-page: 364 issue: 2 year: 2011 ident: 10.1016/j.buildenv.2021.108565_bib30 article-title: Assessing the performance of naturally day-lit buildings using data mining publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2010.09.002 – volume: 56 start-page: 8 year: 2013 ident: 10.1016/j.buildenv.2021.108565_bib2 article-title: Building modeling as a crucial part for building predictive control publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.10.024 – volume: 24 start-page: 137 year: 1997 ident: 10.1016/j.buildenv.2021.108565_bib57 article-title: Alignment by maximization of mutual information publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1007958904918 – ident: 10.1016/j.buildenv.2021.108565_bib46 – volume: 70 start-page: 343 year: 2014 ident: 10.1016/j.buildenv.2021.108565_bib23 article-title: Using a fuzzy black-box model to estimate the indoor illuminance in buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.11.082 – volume: 116 start-page: 1 year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib19 article-title: Predictive models for assessing the passive solar and daylight potential of neighborhood designs: a comparative proof-of-concept study publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.01.018 – volume: 3 start-page: 1 issue: 3A year: 2015 ident: 10.1016/j.buildenv.2021.108565_bib32 article-title: Prediction of daylighting and energy performance using artificial neural network and support vector machine publication-title: Am. J. Civ. Eng. Architect. – volume: 50 start-page: 235 issue: 3 year: 1993 ident: 10.1016/j.buildenv.2021.108565_bib43 article-title: All-weather model for sky luminance distribution—Preliminary configuration and validation publication-title: Sol. Energy doi: 10.1016/0038-092X(93)90017-I – volume: 154 start-page: 466 year: 2018 ident: 10.1016/j.buildenv.2021.108565_bib27 article-title: Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems, A new method based on artificial neural networks publication-title: Energy doi: 10.1016/j.energy.2018.04.106 – volume: 94 start-page: 459 year: 1994 ident: 10.1016/j.buildenv.2021.108565_bib41 article-title: The RADIANCE lighting simulation and rendering system – volume: 7473 year: 2012 ident: 10.1016/j.buildenv.2021.108565_bib61 article-title: New machine learning algorithm: random forest – year: 2021 ident: 10.1016/j.buildenv.2021.108565_bib56 article-title: Rank-based univariate feature selection methods on machine learning classifiers for code smell detection publication-title: Evol. Intel. – volume: 148 start-page: 107 year: 2019 ident: 10.1016/j.buildenv.2021.108565_bib72 article-title: Luminance and vertical eye illuminance thresholds for occupants' visual comfort in daylit office environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.10.058 – volume: 177 start-page: 106854 year: 2020 ident: 10.1016/j.buildenv.2021.108565_bib20 article-title: A daylight-linked shading strategy for automated blinds based on model-based control and Radial Basis Function (RBF) optimization publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.106854 – start-page: 283 year: 2011 ident: 10.1016/j.buildenv.2021.108565_bib59 article-title: Tree-based methods and decision trees publication-title: Modern Analysis of Customer Surveys doi: 10.1002/9781119961154.ch15 – volume: 189 start-page: 107529 year: 2021 ident: 10.1016/j.buildenv.2021.108565_bib22 article-title: An innovative shading controller for blinds in an open-plan office using machine learning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107529 – volume: 35 start-page: 476 issue: 4 year: 2005 ident: 10.1016/j.buildenv.2021.108565_bib60 article-title: Top-down induction of decision trees classifiers-a survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) doi: 10.1109/TSMCC.2004.843247 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.buildenv.2021.108565_bib63 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 38 start-page: 890 issue: 7 year: 2006 ident: 10.1016/j.buildenv.2021.108565_bib45 article-title: Development and validation of a Radiance model for a translucent panel publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.03.006 – volume: 33 start-page: 257 issue: 3 year: 2001 ident: 10.1016/j.buildenv.2021.108565_bib14 article-title: A new daylight glare evaluation method: introduction of the monitoring protocol and calculation method publication-title: Energy Build. doi: 10.1016/S0378-7788(00)00090-6 – volume: 17 start-page: 75 issue: 1 year: 2021 ident: 10.1016/j.buildenv.2021.108565_bib50 article-title: Calibration and validation of climate-based daylighting models based on one-time field measurements: office buildings in the tropics publication-title: Leukos doi: 10.1080/15502724.2019.1570852 – volume: 36 start-page: 158 issue: 3a year: 1982 ident: 10.1016/j.buildenv.2021.108565_bib69 article-title: Detecting multicollinearity publication-title: Am. Statistician doi: 10.1080/00031305.1982.10482818 – volume: 327 start-page: 372 year: 2018 ident: 10.1016/j.buildenv.2021.108565_bib58 article-title: Fast search local extremum for maximal information coefficient (MIC) publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.05.038 – volume: 155 start-page: 151 year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib25 article-title: Estimation of the daylight amount and the energy demand for lighting for the early design stages: definition of a set of mathematical models publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.09.014 – ident: 10.1016/j.buildenv.2021.108565_bib42 – volume: 4 start-page: 251 issue: 3 year: 2015 ident: 10.1016/j.buildenv.2021.108565_bib29 article-title: Modelling energy retrofit investments in the UK housing market: a microeconomic approach publication-title: Smart. Sustain. Built. Environ. doi: 10.1108/SASBE-03-2013-0016 – volume: 202 start-page: 249 year: 2020 ident: 10.1016/j.buildenv.2021.108565_bib16 article-title: A review on machine learning algorithms to predict daylighting inside buildings publication-title: Sol. Energy doi: 10.1016/j.solener.2020.03.104 – volume: 38 start-page: 905 issue: 7 year: 2006 ident: 10.1016/j.buildenv.2021.108565_bib13 article-title: A replacement for daylight factors publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.03.013 – volume: 200 start-page: 107932 year: 2021 ident: 10.1016/j.buildenv.2021.108565_bib12 article-title: Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107932 – volume: 61 start-page: 31 year: 2013 ident: 10.1016/j.buildenv.2021.108565_bib31 article-title: Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.02.009 – volume: 84 start-page: 70 year: 2014 ident: 10.1016/j.buildenv.2021.108565_bib40 article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.07.040 – volume: 5 start-page: 373 issue: 4 year: 2001 ident: 10.1016/j.buildenv.2021.108565_bib10 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/S1364-0321(01)00006-5 – volume: 171 start-page: 106642 year: 2020 ident: 10.1016/j.buildenv.2021.108565_bib21 article-title: Self-commissioning glare-based control system for integrated Venetian blind and electric lighting publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106642 – volume: 134 start-page: 416 year: 2016 ident: 10.1016/j.buildenv.2021.108565_bib8 article-title: Model-based shading and lighting controls considering visual comfort and energy use publication-title: Sol. Energy doi: 10.1016/j.solener.2016.04.026 – volume: 207 year: 2006 ident: 10.1016/j.buildenv.2021.108565_bib67 article-title: Embedded methods – year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib48 article-title: Speedup potential of climate-based daylight modelling on GPUs – volume: 36 start-page: 789 issue: 6 year: 2001 ident: 10.1016/j.buildenv.2021.108565_bib4 article-title: Simulation-based control of building systems operation publication-title: Build. Environ. doi: 10.1016/S0360-1323(00)00065-2 – volume: 1 start-page: 25 issue: 1 year: 2008 ident: 10.1016/j.buildenv.2021.108565_bib5 article-title: Predictive simulation-based lighting and shading systems control in buildings publication-title: Building Simulation doi: 10.1007/s12273-008-8101-4 – volume: 207 year: 2006 ident: 10.1016/j.buildenv.2021.108565_bib68 article-title: Filter methods – start-page: 1949 year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib33 article-title: Random forests and artificial neural network for predicting daylight illuminance and energy consumption – volume: 97 start-page: 273 year: 1997 ident: 10.1016/j.buildenv.2021.108565_bib66 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 30 start-page: 3146 year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib64 article-title: Lightgbm: a highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – volume: 27 start-page: 181 issue: 4 year: 1995 ident: 10.1016/j.buildenv.2021.108565_bib44 article-title: Validation of a lighting simulation program under real sky conditions publication-title: Light. Res. Technol. doi: 10.1177/14771535950270040701 – volume: 73 start-page: 95 year: 2002 ident: 10.1016/j.buildenv.2021.108565_bib36 article-title: User acceptance studies to evaluate discomfort glare in daylit rooms publication-title: Sol. Energy doi: 10.1016/S0038-092X(02)00037-3 – ident: 10.1016/j.buildenv.2021.108565_bib26 – volume: 542 year: 1991 ident: 10.1016/j.buildenv.2021.108565_bib52 article-title: Distance metrics for instance-based learning – volume: 145 start-page: 200 year: 2017 ident: 10.1016/j.buildenv.2021.108565_bib39 article-title: Daylight-linked synchronized shading operation using simplified model-based control publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.04.021 – volume: 84 start-page: 70 year: 2014 ident: 10.1016/j.buildenv.2021.108565_bib38 article-title: The influence of shading control strategies on the visual comfort and energy demand of office buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.07.040 – volume: 37 start-page: 1426 issue: 4 year: 2019 ident: 10.1016/j.buildenv.2021.108565_bib11 article-title: Accuracy analyses and model comparison of machine learning adopted in building energy consumption prediction publication-title: Energy Explor. Exploit. doi: 10.1177/0144598718822400 – start-page: 459 year: 1994 ident: 10.1016/j.buildenv.2021.108565_bib3 article-title: The RADIANCE lighting simulation and rendering system – volume: 10 start-page: 145 issue: 3 year: 2014 ident: 10.1016/j.buildenv.2021.108565_bib34 article-title: A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight publication-title: Leukos doi: 10.1080/15502724.2014.881720 – volume: 60 start-page: 268 year: 2016 ident: 10.1016/j.buildenv.2021.108565_bib1 article-title: Dynamic operation of daylighting and shading systems publication-title: Lit. Rev. – volume: 37 start-page: 1091 issue: 11 year: 2002 ident: 10.1016/j.buildenv.2021.108565_bib18 article-title: An energy-efficient controller for shading devices self-adapting to the user wishes publication-title: Build. Environ. doi: 10.1016/S0360-1323(01)00113-5 |
SSID | ssj0016934 |
Score | 2.4597614 |
Snippet | Model-based control strategy has been a promising approach for maximizing the potentials of automated louver systems regarding visual comfort optimizations. As... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108565 |
SubjectTerms | Algorithms Artificial intelligence Automated louvers Automatic control Automation Comfort Daylighting Daylighting control Feature selection Learning algorithms Machine learning Model accuracy Model testing Occupancy Offices Optimization Prediction models Predictions Shading Variables |
Title | Key control variables affecting interior visual comfort for automated louver control in open-plan office -- a study using machine learning |
URI | https://dx.doi.org/10.1016/j.buildenv.2021.108565 https://www.proquest.com/docview/2621866925 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_ioMgeva9NNtkmOIkq12IsK3pZNMpFITUubFrz4A_zVzqSboiJ48BJC2F2Snd15ZL_5RoizABWzrJH2QxtLslBWRkkQyZy55FKygZ2U853vBt3eY3D7pJ9WxGWTC8OwSqf7Fzq91tbuSdvNZntcFO170r18UMBJKOQnhMwJGgQhr_Lz9yXMg7lGHIWUJ7n1lyzhl_OES09jOac4UXUYbqfZyPxuoH6o6tr-XG-JTec4wsXi3bbFCpY7YuMLneCu-OjjGzjsOcwpCOa0qCnYGrJBLYC5ISbFaALzYjqjweijyWetgC5gZ9WIvFfMYDia0fpeDlSUwCW25Hho6Y4ZJxCkBAs1My0wcP4ZXmtMJoIrQvG8Jx6vrx4ue9LVWpCpH3iVVFyrU2V5GAWWIjJkilCtdKIogupSlJiEAb1rrskfjNCPPLRelPLmxVDHuZ_7-2K1HJV4ICCxWapQex2M-bQ4jfzUZjZWZAszr2PxUOhmgk3qiMi5HsbQNIizF9MIxrBgzEIwh6K97DdeUHH82SNu5Ge-LSpD9uLPvq1G4MZt66lRXS7h1Y2VPvrH0MdiXXESRf0jpyVWq8kMT8i1qZLTeu2eirWLm35v8Am3Yvn7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB7RcKAcKiitSgvtHHrdxll7HfuIUFFoIBdA4rZa22NklDpR4kTiFfrUnXHWEa0qcejFsizPar2zOz-emW8AvkakBWWNpR-5VLGGcirJokSVgiWXsw4c5FLvfD2JR3fRj3tzvwPnXS2MpFV62b-R6a209k_6fjX786rq37DslUCBFKGwnTCMXsGuoFOZHuyeXY5Hk20wIU5DjyIVKCF4Vij8-C2T7tNUr9lV1APJuDOiZ_6to_6S1q0KujiAN952xLPN9A5hh-q3sP8MUfAIfo3pCX36Oa7ZD5bKqCW6NmuD30CBh1hUswWuq-WKB-PvZrO1Qb6gWzUzNmCpwOlsxVt8O1BVo3TZUvOp4zsBnSBUCh224LQoufMP-LNNyyT0fSge3sHdxffb85Hy7RZUHkZBo7S069RFOUwix04ZCUqo0SbT7ETF7Chmw4jnWho2CRMKk4BckORyfmlo0jIsw_fQq2c1fQDMXJFrMsGAUgkY50mYu8KlmtVhEQwcHYPpFtjmHotcWmJMbZd09mg7xlhhjN0w5hj6W7r5Bo3jRYq045_9Y19ZVhkv0p50DLf-ZC-tjqWLV5xq8_E_hv4Ce6Pb6yt7dTkZf4LXWmoq2v86J9BrFis6ZUunyT77nfwbQQH8rA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+control+variables+affecting+interior+visual+comfort+for+automated+louver+control+in+open-plan+office+--+a+study+using+machine+learning&rft.jtitle=Building+and+environment&rft.au=Luo%2C+Zhaoyang&rft.au=Sun%2C+Cheng&rft.au=Dong%2C+Qi&rft.au=Qi%2C+Xuanning&rft.date=2022-01-01&rft.issn=0360-1323&rft.volume=207&rft.spage=108565&rft_id=info:doi/10.1016%2Fj.buildenv.2021.108565&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2021_108565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |