Utilization of natural alleles and haplotypes of Ctb1 for rice cold adaptability
•The InDel at −1,302 bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting stages.•Incorporation of the InDel into NILs (NIL-Ctb1HapI) increases rice cold tolerance and yield.•The −1,302 fragment of InDel may be used a...
Saved in:
Published in | Gene Vol. 941; p. 149225 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The InDel at −1,302 bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting stages.•Incorporation of the InDel into NILs (NIL-Ctb1HapI) increases rice cold tolerance and yield.•The −1,302 fragment of InDel may be used as a marker for breeding cold-tolerant rice.
Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at −1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the −1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice. |
---|---|
AbstractList | Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice.Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice. Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1 ) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1 as a valuable breeding tool for cold-resilient rice. Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at −1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1ᴴᵃᵖᴵ) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the −1,302 InDel in cold tolerance and establish NIL-Ctb1ᴴᵃᵖᴵ as a valuable breeding tool for cold-resilient rice. •The InDel at −1,302 bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting stages.•Incorporation of the InDel into NILs (NIL-Ctb1HapI) increases rice cold tolerance and yield.•The −1,302 fragment of InDel may be used as a marker for breeding cold-tolerant rice. Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at −1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the −1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice. |
ArticleNumber | 149225 |
Author | Cheng, Gongye Wang, Zhijun Li, Jiajia Duan, Meijuan Liu, Citao He, Jiwai Zhou, Huang Yu, Jianghui Li, Lingling Li, Wenyu Ding, Xiaoping Zhu, Wanjing Zhang, Di |
Author_xml | – sequence: 1 givenname: Lingling surname: Li fullname: Li, Lingling – sequence: 2 givenname: Gongye surname: Cheng fullname: Cheng, Gongye – sequence: 3 givenname: Wenyu surname: Li fullname: Li, Wenyu – sequence: 4 givenname: Di surname: Zhang fullname: Zhang, Di – sequence: 5 givenname: Jianghui surname: Yu fullname: Yu, Jianghui – sequence: 6 givenname: Huang surname: Zhou fullname: Zhou, Huang – sequence: 7 givenname: Xiaoping surname: Ding fullname: Ding, Xiaoping – sequence: 8 givenname: Zhijun surname: Wang fullname: Wang, Zhijun – sequence: 9 givenname: Wanjing surname: Zhu fullname: Zhu, Wanjing – sequence: 10 givenname: Jiajia surname: Li fullname: Li, Jiajia – sequence: 11 givenname: Jiwai surname: He fullname: He, Jiwai – sequence: 12 givenname: Meijuan surname: Duan fullname: Duan, Meijuan – sequence: 13 givenname: Citao surname: Liu fullname: Liu, Citao email: liucitao@hunau.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39793938$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9r3DAQxUVJaTZpv0AORcdevNEfy5agl7CkTSDQHpqzGMvjRovWciVtYfvpq2XTHkPmMgz83oN574KczXFGQq44W3PGu-vt-ifOuBZMqDVvjRDqDVlx3ZuGManPyIrJXjecc3NOLnLesjpKiXfkXJreSCP1inx_LD74P1B8nGmc6AxlnyBQCAEDZgrzSJ9gCbEclnpWYlMGTqeYaPIOqYthpDDCUmCoRuXwnrydIGT88LwvyeOX2x-bu-bh29f7zc1D42TLSsMnJjnXfDCAWoMTKPoBjNJKwuQqIwx2Uquuk64fVX3EdGKCqVUwto4beUk-nXyXFH_tMRe789lhCDBj3Gcread010vevwJVbcuEVqqiH5_R_bDD0S7J7yAd7L_AKiBOgEsx54TTf4Qze2zFbu2xFXtsxZ5aqaLPJxHWQH57TDY7j7PD0Sd0xY7RvyT_CwDvk2k |
Cites_doi | 10.1016/j.jplph.2021.153576 10.1104/pp.104.052191 10.1038/nrg3802 10.1016/j.tplants.2021.03.010 10.1007/s00344-018-9854-3 10.1016/j.tplants.2007.07.002 10.1016/j.molp.2020.02.004 10.1126/sciadv.1400218 10.1111/j.1365-3040.2005.01390.x 10.1016/j.tplants.2020.06.010 10.1016/j.molp.2020.04.006 10.1038/s41467-018-05753-w 10.1111/pce.13717 10.1038/ncomms14788 10.3389/fpls.2018.00692 10.1007/s12210-018-0702-y 10.1111/nph.17407 10.3389/fpls.2022.895427 10.1111/nph.19514 10.1038/nrg3605 10.1101/pdb.prot093203 10.1007/s00122-023-04388-w 10.1016/j.devcel.2022.03.010 10.1111/pbi.13424 10.1007/s00122-004-1667-z 10.1007/s12298-019-00715-y 10.1093/plphys/kiae118 10.1111/pbi.13104 10.1093/plcell/koab302 10.1016/j.plantsci.2010.04.004 10.1093/plcell/koac267 10.1186/1746-4811-1-13 10.1126/science.aaf6005 10.4103/aca.ACA_94_19 10.1186/1746-4811-7-30 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.gene.2025.149225 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Biology |
EISSN | 1879-0038 |
ExternalDocumentID | 39793938 10_1016_j_gene_2025_149225 S0378111925000137 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K WH7 ~G- .55 .GJ 29H 53G AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLW HVGLF HZ~ MVM R2- RIG SBG SSH VH1 WUQ X7M XOL XPP Y6R ZGI ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c340t-1f031181b9ae88ac2e27ba95853afcc3429e6385663c7d5378962faf45ad4c193 |
IEDL.DBID | .~1 |
ISSN | 0378-1119 1879-0038 |
IngestDate | Fri Aug 22 20:36:58 EDT 2025 Fri Jul 11 01:23:26 EDT 2025 Fri May 02 01:41:18 EDT 2025 Tue Jul 01 05:23:07 EDT 2025 Sat Mar 08 15:48:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PIF3 FIMO QTL K AtFRS9 ChIP EMSAs N P SNK Y1H HZ NIL-Ctb1HapI CDS CBFs SNP phyB cDNA LUC fLUC rLUC Breeding FAA Rice cold tolerance NIL Ctb1 gene InDel I2-KI NIL-Ctb1(HapI) |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-1f031181b9ae88ac2e27ba95853afcc3429e6385663c7d5378962faf45ad4c193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39793938 |
PQID | 3154402855 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3165867317 proquest_miscellaneous_3154402855 pubmed_primary_39793938 crossref_primary_10_1016_j_gene_2025_149225 elsevier_sciencedirect_doi_10_1016_j_gene_2025_149225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Gene |
PublicationTitleAlternate | Gene |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Wang, Mao, Chu (b0095) 2018; 40 Guo, Zeng, Li, Ma, Zhang, Lou, Li, Gu, Zhang, Li, Li (b0020) 2020; 18 Zaid, Mohammad (b0165) 2018; 37 Necsulea, Kaessmann (b0115) 2014; 15 Liu, Ou, Mao, Tang, Wang, Wang, Cao, Schlappi, Zhao, Xiao, Wang, Chu (b0085) 2018; 9 Zaid, Mohammad, Siddique (b0175) 2022; 13 Liu, Luo, Li, Liang, Guo, Xu, Chong (b0080) 2024; 241 Zhang, Li, Pan, Li, Zhou, Shi, Zeng, Guo, Yang, Zheng, Yu, Sun, Li, Ding, Ma, Shen, Dai, Zhang, Yang, Guo, Li (b0185) 2017; 8 Hung, Weng (b0035) 2017; 2017 Lin, Wang (b0075) 2004; 136 Varshney, Bohra, Yu, Graner, Zhang, Sorrells (b0140) 2021; 26 Li, Zhang, Chong, Xu (b0070) 2022; 268 Ma, Li (b0100) 2018; 9 Jung, Domijan, Klose, Biswas, Ezer, Gao, Khattak, Box, Charoensawan, Cortijo, Kumar, Grant, Locke, Schäfer, Jaeger, Wigge (b0045) 2016; 354 Xu, Wang, Wang, Zhang, Yao (b0155) 2020; 43 Lasky, Josephs, Morris (b0055) 2023; 35 Saito, Hayano-Saito, Kuroki, Sato (b0130) 2010; 179 Zaid, Mohammad, Fariduddin (b0170) 2020; 26 Xu, Deng (b0150) 2020; 25 Ding, Shi, Yang (b0010) 2020; 13 Yang, Lei, Wang, Zheng, Xin, Liu, Zou (b0160) 2023; 136 Saito, Hayano-Saito, Maruyama-Funatsuki, Sato, Kato (b0125) 2004; 109 Wani, Masoodi, Zaid, Wani, Shah, Meena, Wani, Mosa (b0145) 2018; 29 Hou, Han, Meng, Wang, Zhang, Yang, Li, Tang, Guo, Liu, Qin, Zhang, Shui, Cao, Song (b0030) 2024; 195 Chinnusamy, Zhu, Zhu (b0005) 2007; 12 Mishra, Singh, Pandey, Mishra, Pandey (b0110) 2019; 22 Zhang, Li, Pan, Li, Zhou, Shi, Zeng, Guo, Yang, Zheng, Yu, Sun, Li, Ding, Ma, Shen, Dai, Zhang, Yang, Guo, Li (b0190) 2017; 8 Jiang, Shi, Peng, Jia, Yan, Dong, Li, Dong, Li, Gong, Thomashow, Yang (b0040) 2020; 13 Zaid, Wani (b0180) 2019 Oliver, Van Dongen, Alfred, Mamun, Zhao, Saini, Fernandes, Blanchard, Sutton, Geigenberger (b0120) 2005; 28 Zhang, Su, Duan, Ao, Dai, Liu, Wang, Li, Liu, Feng, Wang, Wang (b0195) 2011; 7 Hellens, Allan, Friel, Bolitho, Grafton, Templeton, Karunairetnam, Gleave, Laing (b0025) 2005; 1 Li, Zeng, Pan, Zhou, Zhang, Guo, Lou, Shui, Huang, Tian, Guo, Yuan, Yang, Pan, Wang, Zhang, Yang, Guo, Ge, Li, Li (b0065) 2021; 231 Lasky, Upadhyaya, Ramu, Deshpande, Hash, Bonnette, Juenger, Hyma, Acharya, Mitchell, Buckler, Brenton, Kresovich, Morris (b0050) 2015; 1 Schläppi, Jackson, Eizenga, Wang, Chu, Shi, Shimoyama, Boykin (b0135) 2017; 8 Ding, Yang (b0015) 2022; 57 Li, Liang, Liu (b0060) 2022; 34 Meyer, Purugganan (b0105) 2013; 14 Liu, Schlappi, Mao, Wang, Wang, Chu (b0090) 2019; 17 Liu (10.1016/j.gene.2025.149225_b0085) 2018; 9 Li (10.1016/j.gene.2025.149225_b0065) 2021; 231 Meyer (10.1016/j.gene.2025.149225_b0105) 2013; 14 Xu (10.1016/j.gene.2025.149225_b0155) 2020; 43 Liu (10.1016/j.gene.2025.149225_b0095) 2018; 40 Ding (10.1016/j.gene.2025.149225_b0010) 2020; 13 Yang (10.1016/j.gene.2025.149225_b0160) 2023; 136 Zaid (10.1016/j.gene.2025.149225_b0165) 2018; 37 Hung (10.1016/j.gene.2025.149225_b0035) 2017; 2017 Zaid (10.1016/j.gene.2025.149225_b0180) 2019 Saito (10.1016/j.gene.2025.149225_b0130) 2010; 179 Xu (10.1016/j.gene.2025.149225_b0150) 2020; 25 Lasky (10.1016/j.gene.2025.149225_b0050) 2015; 1 Zhang (10.1016/j.gene.2025.149225_b0195) 2011; 7 Hellens (10.1016/j.gene.2025.149225_b0025) 2005; 1 Oliver (10.1016/j.gene.2025.149225_b0120) 2005; 28 Ma (10.1016/j.gene.2025.149225_b0100) 2018; 9 Liu (10.1016/j.gene.2025.149225_b0090) 2019; 17 Chinnusamy (10.1016/j.gene.2025.149225_b0005) 2007; 12 Li (10.1016/j.gene.2025.149225_b0060) 2022; 34 Li (10.1016/j.gene.2025.149225_b0070) 2022; 268 Zhang (10.1016/j.gene.2025.149225_b0190) 2017; 8 Zaid (10.1016/j.gene.2025.149225_b0170) 2020; 26 Jiang (10.1016/j.gene.2025.149225_b0040) 2020; 13 Schläppi (10.1016/j.gene.2025.149225_b0135) 2017; 8 Lin (10.1016/j.gene.2025.149225_b0075) 2004; 136 Liu (10.1016/j.gene.2025.149225_b0080) 2024; 241 Saito (10.1016/j.gene.2025.149225_b0125) 2004; 109 Zaid (10.1016/j.gene.2025.149225_b0175) 2022; 13 Lasky (10.1016/j.gene.2025.149225_b0055) 2023; 35 Zhang (10.1016/j.gene.2025.149225_b0185) 2017; 8 Varshney (10.1016/j.gene.2025.149225_b0140) 2021; 26 Ding (10.1016/j.gene.2025.149225_b0015) 2022; 57 Wani (10.1016/j.gene.2025.149225_b0145) 2018; 29 Hou (10.1016/j.gene.2025.149225_b0030) 2024; 195 Guo (10.1016/j.gene.2025.149225_b0020) 2020; 18 Mishra (10.1016/j.gene.2025.149225_b0110) 2019; 22 Jung (10.1016/j.gene.2025.149225_b0045) 2016; 354 Necsulea (10.1016/j.gene.2025.149225_b0115) 2014; 15 |
References_xml | – volume: 195 start-page: 1277 year: 2024 end-page: 1292 ident: b0030 article-title: Acyl carrier protein OsMTACP2 confers rice cold tolerance at the booting stage publication-title: Plant Physiol – volume: 15 start-page: 734 year: 2014 end-page: 748 ident: b0115 article-title: Evolutionary dynamics of coding and non-coding transcriptomes publication-title: Nat Rev Genet – volume: 22 start-page: 407 year: 2019 end-page: 411 ident: b0110 article-title: Application of student's publication-title: Ann Card Anaesth – volume: 18 start-page: 2491 year: 2020 end-page: 2503 ident: b0020 article-title: Differentiation, evolution and utilization of natural alleles for cold adaptability at the reproductive stage in rice publication-title: Plant Biotechnol J – volume: 1 year: 2015 ident: b0050 article-title: Genome-environment associations in sorghum landraces predict adaptive traits publication-title: Sci Adv – volume: 7 start-page: 30 year: 2011 ident: b0195 article-title: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes publication-title: Plant Methods – volume: 57 start-page: 947 year: 2022 end-page: 958 ident: b0015 article-title: Surviving and thriving: How plants perceive and respond to temperature stress publication-title: Dev Cell – volume: 34 start-page: 955 year: 2022 end-page: 966 ident: b0060 article-title: How plants coordinate their development in response to light and temperature signals publication-title: Plant Cell – volume: 13 start-page: 894 year: 2020 end-page: 906 ident: b0040 article-title: Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in publication-title: Mol Plant – volume: 25 start-page: 952 year: 2020 end-page: 954 ident: b0150 article-title: CBF-phyB-PIF module links light and low temperature signaling publication-title: Trends Plant Sci – volume: 37 start-page: 1331 year: 2018 end-page: 1348 ident: b0165 article-title: Methyl jasmonate and nitrogen interact to alleviate cadmium stress in mentha arvensis by regulating physio-biochemical damages and ROS detoxification publication-title: J Plant Growth Regul – volume: 8 year: 2017 ident: b0185 article-title: Natural variation in publication-title: Nat Commun – volume: 43 start-page: 992 year: 2020 end-page: 1007 ident: b0155 article-title: A point mutation in publication-title: Plant Cell Environ – volume: 40 start-page: 171 year: 2018 end-page: 185 ident: b0095 article-title: Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects publication-title: Yi Chuan – volume: 14 start-page: 840 year: 2013 end-page: 852 ident: b0105 article-title: Evolution of crop species: genetics of domestication and diversification publication-title: Nat Rev Genet – volume: 26 start-page: 25 year: 2020 end-page: 39 ident: b0170 article-title: Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint ( publication-title: Physiol Mol Biol Plants – volume: 268 year: 2022 ident: b0070 article-title: Chilling tolerance in rice: Past and present publication-title: J Plant Physiol – volume: 241 start-page: 2143 year: 2024 end-page: 2157 ident: b0080 article-title: confers the chilling tolerance to mediate OsFtsH2-D1 module in rice publication-title: New Phytol – volume: 179 start-page: 97 year: 2010 end-page: 102 ident: b0130 article-title: Mapbased cloning of the rice cold tolerance gene publication-title: Plant Sci – volume: 26 start-page: 631 year: 2021 end-page: 649 ident: b0140 article-title: Designing future crops: Genomics-assisted breeding comes of age publication-title: Trends Plant Sci – volume: 13 start-page: 544 year: 2020 end-page: 564 ident: b0010 article-title: Molecular regulation of plant responses to environmental temperatures publication-title: Mol Plant – volume: 231 start-page: 1056 year: 2021 end-page: 1072 ident: b0065 article-title: Stepwise selection of natural variations at publication-title: New Phytol – volume: 28 start-page: 1534 year: 2005 end-page: 1551 ident: b0120 article-title: Cold-induced repression of the rice anther-specific cell wall invertase gene publication-title: Plant Cell Environ – volume: 109 start-page: 515 year: 2004 end-page: 522 ident: b0125 article-title: Physical mapping and putative candidate gene identification of a quantitative trait locus publication-title: Theor Appl Genet – volume: 9 start-page: 692 year: 2018 ident: b0100 article-title: FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in publication-title: Front Plant Sci – start-page: 111 year: 2019 end-page: 132 ident: b0180 article-title: Reactive oxygen species generation, scavenging and signaling in plant defense responses, Bio Mol Plant Def publication-title: Springer Nature Switzerland – volume: 136 start-page: 4010 year: 2004 end-page: 4022 ident: b0075 article-title: gene family and distinct roles of its members in light control of publication-title: Plant Physiol – volume: 29 start-page: 709 year: 2018 end-page: 723 ident: b0145 article-title: Engineering plants for heavy metal stress tolerance publication-title: Rend Lincei Sci Fis Nat – volume: 1 start-page: 13 year: 2005 ident: b0025 article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants publication-title: Plant Methods – volume: 136 start-page: 135 year: 2023 ident: b0160 article-title: positively regulates cold tolerance at booting stage in rice publication-title: Theoretical and Applied Genetics – volume: 354 start-page: 886 year: 2016 end-page: 889 ident: b0045 article-title: Phytochromes function as thermosensors in publication-title: Science – volume: 8 start-page: 14788 year: 2017 ident: b0190 article-title: Natural variation in publication-title: Nat Commun – volume: 9 start-page: 3302 year: 2018 ident: b0085 article-title: Early selection of publication-title: Nat Commun – volume: 17 start-page: 1834 year: 2019 end-page: 1849 ident: b0090 article-title: The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage publication-title: Plant Biotechnol J – volume: 12 start-page: 444 year: 2007 end-page: 451 ident: b0005 article-title: Cold stress regulation of gene expression in plants publication-title: Trends Plant Sci – volume: 2017 start-page: 173 year: 2017 end-page: 181 ident: b0035 article-title: Discovering cis-regulatory motifs publication-title: Cold Spring Harbor Protocols – volume: 35 start-page: 125 year: 2023 end-page: 138 ident: b0055 article-title: Genotype-environment associations to reveal the molecular basis of environmental adaptation publication-title: Plant Cell – volume: 13 year: 2022 ident: b0175 article-title: Salicylic acid priming regulates stomatal conductance, trichome density and improves cadmium stress tolerance in publication-title: Front Plant Sci – volume: 8 year: 2017 ident: b0135 article-title: Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA Mini-Core collection. Front publication-title: Plant Sci – volume: 268 year: 2022 ident: 10.1016/j.gene.2025.149225_b0070 article-title: Chilling tolerance in rice: Past and present publication-title: J Plant Physiol doi: 10.1016/j.jplph.2021.153576 – volume: 136 start-page: 4010 year: 2004 ident: 10.1016/j.gene.2025.149225_b0075 article-title: Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development publication-title: Plant Physiol doi: 10.1104/pp.104.052191 – volume: 8 year: 2017 ident: 10.1016/j.gene.2025.149225_b0185 article-title: Natural variation in CTB4a enhances rice adaptation to cold habitats publication-title: Nat Commun – volume: 15 start-page: 734 year: 2014 ident: 10.1016/j.gene.2025.149225_b0115 article-title: Evolutionary dynamics of coding and non-coding transcriptomes publication-title: Nat Rev Genet doi: 10.1038/nrg3802 – volume: 26 start-page: 631 year: 2021 ident: 10.1016/j.gene.2025.149225_b0140 article-title: Designing future crops: Genomics-assisted breeding comes of age publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2021.03.010 – volume: 37 start-page: 1331 year: 2018 ident: 10.1016/j.gene.2025.149225_b0165 article-title: Methyl jasmonate and nitrogen interact to alleviate cadmium stress in mentha arvensis by regulating physio-biochemical damages and ROS detoxification publication-title: J Plant Growth Regul doi: 10.1007/s00344-018-9854-3 – volume: 12 start-page: 444 year: 2007 ident: 10.1016/j.gene.2025.149225_b0005 article-title: Cold stress regulation of gene expression in plants publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2007.07.002 – volume: 13 start-page: 544 year: 2020 ident: 10.1016/j.gene.2025.149225_b0010 article-title: Molecular regulation of plant responses to environmental temperatures publication-title: Mol Plant doi: 10.1016/j.molp.2020.02.004 – volume: 1 year: 2015 ident: 10.1016/j.gene.2025.149225_b0050 article-title: Genome-environment associations in sorghum landraces predict adaptive traits publication-title: Sci Adv doi: 10.1126/sciadv.1400218 – volume: 28 start-page: 1534 year: 2005 ident: 10.1016/j.gene.2025.149225_b0120 article-title: Cold-induced repression of the rice anther-specific cell wall invertase gene OsINV4 is correlated with sucrose accumulation and pollen sterility publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2005.01390.x – start-page: 111 year: 2019 ident: 10.1016/j.gene.2025.149225_b0180 article-title: Reactive oxygen species generation, scavenging and signaling in plant defense responses, Bio Mol Plant Def publication-title: Springer Nature Switzerland – volume: 25 start-page: 952 year: 2020 ident: 10.1016/j.gene.2025.149225_b0150 article-title: CBF-phyB-PIF module links light and low temperature signaling publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2020.06.010 – volume: 13 start-page: 894 year: 2020 ident: 10.1016/j.gene.2025.149225_b0040 article-title: Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis publication-title: Mol Plant doi: 10.1016/j.molp.2020.04.006 – volume: 8 year: 2017 ident: 10.1016/j.gene.2025.149225_b0135 article-title: Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA Mini-Core collection. Front publication-title: Plant Sci – volume: 9 start-page: 3302 year: 2018 ident: 10.1016/j.gene.2025.149225_b0085 article-title: Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates publication-title: Nat Commun doi: 10.1038/s41467-018-05753-w – volume: 43 start-page: 992 year: 2020 ident: 10.1016/j.gene.2025.149225_b0155 article-title: A point mutation in LTT1 enhances cold tolerance at the booting stage in rice publication-title: Plant Cell Environ doi: 10.1111/pce.13717 – volume: 8 start-page: 14788 year: 2017 ident: 10.1016/j.gene.2025.149225_b0190 article-title: Natural variation in CTB4a enhances rice adaptation to cold habitats publication-title: Nat Commun doi: 10.1038/ncomms14788 – volume: 9 start-page: 692 year: 2018 ident: 10.1016/j.gene.2025.149225_b0100 article-title: FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in Arabidopsis growth and development publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00692 – volume: 29 start-page: 709 year: 2018 ident: 10.1016/j.gene.2025.149225_b0145 article-title: Engineering plants for heavy metal stress tolerance publication-title: Rend Lincei Sci Fis Nat doi: 10.1007/s12210-018-0702-y – volume: 231 start-page: 1056 year: 2021 ident: 10.1016/j.gene.2025.149225_b0065 article-title: Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice publication-title: New Phytol doi: 10.1111/nph.17407 – volume: 13 year: 2022 ident: 10.1016/j.gene.2025.149225_b0175 article-title: Salicylic acid priming regulates stomatal conductance, trichome density and improves cadmium stress tolerance in Mentha arvensis L publication-title: Front Plant Sci doi: 10.3389/fpls.2022.895427 – volume: 40 start-page: 171 year: 2018 ident: 10.1016/j.gene.2025.149225_b0095 article-title: Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects publication-title: Yi Chuan – volume: 241 start-page: 2143 year: 2024 ident: 10.1016/j.gene.2025.149225_b0080 article-title: COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice publication-title: New Phytol doi: 10.1111/nph.19514 – volume: 14 start-page: 840 year: 2013 ident: 10.1016/j.gene.2025.149225_b0105 article-title: Evolution of crop species: genetics of domestication and diversification publication-title: Nat Rev Genet doi: 10.1038/nrg3605 – volume: 2017 start-page: 173 issue: 2 year: 2017 ident: 10.1016/j.gene.2025.149225_b0035 article-title: Discovering cis-regulatory motifs publication-title: Cold Spring Harbor Protocols doi: 10.1101/pdb.prot093203 – volume: 136 start-page: 135 year: 2023 ident: 10.1016/j.gene.2025.149225_b0160 article-title: qCTB7 positively regulates cold tolerance at booting stage in rice publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-023-04388-w – volume: 57 start-page: 947 year: 2022 ident: 10.1016/j.gene.2025.149225_b0015 article-title: Surviving and thriving: How plants perceive and respond to temperature stress publication-title: Dev Cell doi: 10.1016/j.devcel.2022.03.010 – volume: 18 start-page: 2491 year: 2020 ident: 10.1016/j.gene.2025.149225_b0020 article-title: Differentiation, evolution and utilization of natural alleles for cold adaptability at the reproductive stage in rice publication-title: Plant Biotechnol J doi: 10.1111/pbi.13424 – volume: 109 start-page: 515 year: 2004 ident: 10.1016/j.gene.2025.149225_b0125 article-title: Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice publication-title: Theor Appl Genet doi: 10.1007/s00122-004-1667-z – volume: 26 start-page: 25 year: 2020 ident: 10.1016/j.gene.2025.149225_b0170 article-title: Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.) publication-title: Physiol Mol Biol Plants doi: 10.1007/s12298-019-00715-y – volume: 195 start-page: 1277 year: 2024 ident: 10.1016/j.gene.2025.149225_b0030 article-title: Acyl carrier protein OsMTACP2 confers rice cold tolerance at the booting stage publication-title: Plant Physiol doi: 10.1093/plphys/kiae118 – volume: 17 start-page: 1834 year: 2019 ident: 10.1016/j.gene.2025.149225_b0090 article-title: The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage publication-title: Plant Biotechnol J doi: 10.1111/pbi.13104 – volume: 34 start-page: 955 year: 2022 ident: 10.1016/j.gene.2025.149225_b0060 article-title: How plants coordinate their development in response to light and temperature signals publication-title: Plant Cell doi: 10.1093/plcell/koab302 – volume: 179 start-page: 97 year: 2010 ident: 10.1016/j.gene.2025.149225_b0130 article-title: Mapbased cloning of the rice cold tolerance gene Ctb1 publication-title: Plant Sci doi: 10.1016/j.plantsci.2010.04.004 – volume: 35 start-page: 125 year: 2023 ident: 10.1016/j.gene.2025.149225_b0055 article-title: Genotype-environment associations to reveal the molecular basis of environmental adaptation publication-title: Plant Cell doi: 10.1093/plcell/koac267 – volume: 1 start-page: 13 year: 2005 ident: 10.1016/j.gene.2025.149225_b0025 article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants publication-title: Plant Methods doi: 10.1186/1746-4811-1-13 – volume: 354 start-page: 886 year: 2016 ident: 10.1016/j.gene.2025.149225_b0045 article-title: Phytochromes function as thermosensors in Arabidopsis publication-title: Science doi: 10.1126/science.aaf6005 – volume: 22 start-page: 407 year: 2019 ident: 10.1016/j.gene.2025.149225_b0110 article-title: Application of student's t-test, analysis of variance, and covariance publication-title: Ann Card Anaesth doi: 10.4103/aca.ACA_94_19 – volume: 7 start-page: 30 year: 2011 ident: 10.1016/j.gene.2025.149225_b0195 article-title: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes publication-title: Plant Methods doi: 10.1186/1746-4811-7-30 |
SSID | ssj0000552 |
Score | 2.4797287 |
Snippet | •The InDel at −1,302 bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting... Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 149225 |
SubjectTerms | Adaptation, Physiological - genetics Alleles altitude booting stage Breeding cold cold stress Cold Temperature cold tolerance Cold-Shock Response - genetics Ctb1 gene Gene Expression Regulation, Plant genes Haplotypes InDel INDEL Mutation NIL-Ctb1HapI Oryza - genetics Oryza - physiology Oryza sativa Plant Breeding Plant Proteins - genetics Plant Proteins - metabolism pollen Polymorphism, Single Nucleotide Promoter Regions, Genetic rice Rice cold tolerance seedlings |
Title | Utilization of natural alleles and haplotypes of Ctb1 for rice cold adaptability |
URI | https://dx.doi.org/10.1016/j.gene.2025.149225 https://www.ncbi.nlm.nih.gov/pubmed/39793938 https://www.proquest.com/docview/3154402855 https://www.proquest.com/docview/3165867317 |
Volume | 941 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EEfQgvq0vIogXWdtukn0ca1Gqogha8Bay2QQrdVvs9uDF3-7MPnyAevC2u0yWMJlMvmRmvgAc2pZJk0BIT1KWg0iiwCNaN09ElshOrAtSiuhe3wS9vrh8kA8z0K1rYSitsvL9pU8vvHX1pVlpszkeDJp3LU5VkohQZAFkqKJciJCs_OTtM82jJWUZSaDdEkpXhTNljheOEVFl-hIdRuzTddk_L06_gc9iETpfhqUKPbJO2cEVmLHZKqx1Mtw5P7-yI1bkcxYH5aswf1o_LX4hHVyD234-GFbVl2zkWEHtiT-lS1WGdsJ0lrJHPR6O6HR2QhLdPGkzBLeMCIgYWk7KdKrHeUnx_boO_fOz-27Pq-5V8AwXrdxrO5zJuLInsbZRpI1v_TDRMW4cuHYGZfzY4rREoMdNmErUXBz4TjshdSoMIr4NmM1Gmd0C5nTknJGaa4FQDNGgdS40BjGltI6ntgHHtULVuKTPUHVe2ZMi9StSvyrV3wBZ61x9MwKF_v3Pdgf1ACmcHRTy0JkdTSeKE9kQQij5pwyisCBEINWAzXJ0P_pKUU8e82j7nz3bgQV6o6S1ttyF2fxlavcQxeTJfmGm-zDXubjq3bwDUQDvKw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hUAUcqpbnlpa6EnBBYXdjO49DDzy1lIcqwUrcjOPYYtGSXbFBaC_8qf7BzuTBQ6IcKnGLEiexxuPxZ8_MNwBrtmXSJBDSkxTlIJIo8IjWzRORJbIT64KUPLonp0GnK35dyIsJ-FPnwlBYZWX7S5teWOvqTrOSZnPY6zXPWpyyJBGhyALIhFVk5ZEd3-O-bfTzcA8Hed33D_bPdzteVVrAM1y0cq_tUJlxcUtibaNIG9_6YaJjxM5cO4Nt_NiiZiLW4SZMJf4pDnynnZA6FaZNDExo96cEmgsqm7D18BRX0pKydF3Q9gy7V2XqlEFlqBTEzelLtFCxT_W5X18N_4V2i1Xv4BN8rOAq2y4l8hkmbDYH89sZbtVvxmyDFQGkxcn8HHzYqa9mn7EczsPvbt7rV-mebOBYwSWKH6UqLn07YjpL2ZUe9gd0HDyiFrt50maIphkxHjFU1ZTpVA_zklN8vADdd5H2Ikxmg8wuA3M6cs5IzbVA7Ifw0zoXGoMgVlrHU9uAzVqgaljydag6kO1akfgViV-V4m-ArGWuXmidwgXlzfd-1AOkcDqSj0VndnA3UpzYjRCzyTfbIOwLQkRuDVgqR_exr-Rm5TGPvvxnz77DdOf85FgdH54ercAMPaGIubb8CpP57Z39hhAqT1YLlWVw-d5z5C8qMCn4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilization+of+natural+alleles+and+haplotypes+of+Ctb1+for+rice+cold+adaptability&rft.jtitle=Gene&rft.au=Li%2C+Lingling&rft.au=Cheng%2C+Gongye&rft.au=Li%2C+Wenyu&rft.au=Zhang%2C+Di&rft.date=2025-03-15&rft.issn=0378-1119&rft.volume=941&rft.spage=149225&rft_id=info:doi/10.1016%2Fj.gene.2025.149225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gene_2025_149225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon |