Utilization of natural alleles and haplotypes of Ctb1 for rice cold adaptability

•The InDel at −1,302  bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting stages.•Incorporation of the InDel into NILs (NIL-Ctb1HapI) increases rice cold tolerance and yield.•The −1,302 fragment of InDel may be used a...

Full description

Saved in:
Bibliographic Details
Published inGene Vol. 941; p. 149225
Main Authors Li, Lingling, Cheng, Gongye, Li, Wenyu, Zhang, Di, Yu, Jianghui, Zhou, Huang, Ding, Xiaoping, Wang, Zhijun, Zhu, Wanjing, Li, Jiajia, He, Jiwai, Duan, Meijuan, Liu, Citao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The InDel at −1,302  bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting stages.•Incorporation of the InDel into NILs (NIL-Ctb1HapI) increases rice cold tolerance and yield.•The −1,302 fragment of InDel may be used as a marker for breeding cold-tolerant rice. Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at −1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the −1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice.
AbstractList Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice.Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice.
Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at -1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1 ) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the -1,302 InDel in cold tolerance and establish NIL-Ctb1 as a valuable breeding tool for cold-resilient rice.
Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at −1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1ᴴᵃᵖᴵ) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the −1,302 InDel in cold tolerance and establish NIL-Ctb1ᴴᵃᵖᴵ as a valuable breeding tool for cold-resilient rice.
•The InDel at −1,302  bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting stages.•Incorporation of the InDel into NILs (NIL-Ctb1HapI) increases rice cold tolerance and yield.•The −1,302 fragment of InDel may be used as a marker for breeding cold-tolerant rice. Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study investigates the Ctb1 gene, critical for booting-stage cold tolerance, to improve breeding of resilient rice varieties. Re-sequencing the Ctb1 promoter in 202 accessions identified six Insertions and/or deletions (InDels) and four Single nucleotide polymorphisms (SNPs), with an InDel at −1,302 bp significantly boosting Ctb1 expression and cold tolerance. Accessions carrying this InDel (Haplotype I) exhibited the highest tolerance. Near-isogenic lines (NIL-Ctb1HapI) introduced Haplotype I into the cold-sensitive Huazhan (HZ) variety, resulting in a 5.9-fold increase in Ctb1 expression, higher seedling survival, improved pollen fertility, a 64.2 % increase in seed setting rate, and a 12 g per plant yield boost under cold stress. These findings confirm the critical role of the −1,302 InDel in cold tolerance and establish NIL-Ctb1HapI as a valuable breeding tool for cold-resilient rice.
ArticleNumber 149225
Author Cheng, Gongye
Wang, Zhijun
Li, Jiajia
Duan, Meijuan
Liu, Citao
He, Jiwai
Zhou, Huang
Yu, Jianghui
Li, Lingling
Li, Wenyu
Ding, Xiaoping
Zhu, Wanjing
Zhang, Di
Author_xml – sequence: 1
  givenname: Lingling
  surname: Li
  fullname: Li, Lingling
– sequence: 2
  givenname: Gongye
  surname: Cheng
  fullname: Cheng, Gongye
– sequence: 3
  givenname: Wenyu
  surname: Li
  fullname: Li, Wenyu
– sequence: 4
  givenname: Di
  surname: Zhang
  fullname: Zhang, Di
– sequence: 5
  givenname: Jianghui
  surname: Yu
  fullname: Yu, Jianghui
– sequence: 6
  givenname: Huang
  surname: Zhou
  fullname: Zhou, Huang
– sequence: 7
  givenname: Xiaoping
  surname: Ding
  fullname: Ding, Xiaoping
– sequence: 8
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
– sequence: 9
  givenname: Wanjing
  surname: Zhu
  fullname: Zhu, Wanjing
– sequence: 10
  givenname: Jiajia
  surname: Li
  fullname: Li, Jiajia
– sequence: 11
  givenname: Jiwai
  surname: He
  fullname: He, Jiwai
– sequence: 12
  givenname: Meijuan
  surname: Duan
  fullname: Duan, Meijuan
– sequence: 13
  givenname: Citao
  surname: Liu
  fullname: Liu, Citao
  email: liucitao@hunau.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39793938$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9r3DAQxUVJaTZpv0AORcdevNEfy5agl7CkTSDQHpqzGMvjRovWciVtYfvpq2XTHkPmMgz83oN574KczXFGQq44W3PGu-vt-ifOuBZMqDVvjRDqDVlx3ZuGManPyIrJXjecc3NOLnLesjpKiXfkXJreSCP1inx_LD74P1B8nGmc6AxlnyBQCAEDZgrzSJ9gCbEclnpWYlMGTqeYaPIOqYthpDDCUmCoRuXwnrydIGT88LwvyeOX2x-bu-bh29f7zc1D42TLSsMnJjnXfDCAWoMTKPoBjNJKwuQqIwx2Uquuk64fVX3EdGKCqVUwto4beUk-nXyXFH_tMRe789lhCDBj3Gcread010vevwJVbcuEVqqiH5_R_bDD0S7J7yAd7L_AKiBOgEsx54TTf4Qze2zFbu2xFXtsxZ5aqaLPJxHWQH57TDY7j7PD0Sd0xY7RvyT_CwDvk2k
Cites_doi 10.1016/j.jplph.2021.153576
10.1104/pp.104.052191
10.1038/nrg3802
10.1016/j.tplants.2021.03.010
10.1007/s00344-018-9854-3
10.1016/j.tplants.2007.07.002
10.1016/j.molp.2020.02.004
10.1126/sciadv.1400218
10.1111/j.1365-3040.2005.01390.x
10.1016/j.tplants.2020.06.010
10.1016/j.molp.2020.04.006
10.1038/s41467-018-05753-w
10.1111/pce.13717
10.1038/ncomms14788
10.3389/fpls.2018.00692
10.1007/s12210-018-0702-y
10.1111/nph.17407
10.3389/fpls.2022.895427
10.1111/nph.19514
10.1038/nrg3605
10.1101/pdb.prot093203
10.1007/s00122-023-04388-w
10.1016/j.devcel.2022.03.010
10.1111/pbi.13424
10.1007/s00122-004-1667-z
10.1007/s12298-019-00715-y
10.1093/plphys/kiae118
10.1111/pbi.13104
10.1093/plcell/koab302
10.1016/j.plantsci.2010.04.004
10.1093/plcell/koac267
10.1186/1746-4811-1-13
10.1126/science.aaf6005
10.4103/aca.ACA_94_19
10.1186/1746-4811-7-30
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.gene.2025.149225
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Biology
EISSN 1879-0038
ExternalDocumentID 39793938
10_1016_j_gene_2025_149225
S0378111925000137
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
WH7
~G-
.55
.GJ
29H
53G
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
MVM
R2-
RIG
SBG
SSH
VH1
WUQ
X7M
XOL
XPP
Y6R
ZGI
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c340t-1f031181b9ae88ac2e27ba95853afcc3429e6385663c7d5378962faf45ad4c193
IEDL.DBID .~1
ISSN 0378-1119
1879-0038
IngestDate Fri Aug 22 20:36:58 EDT 2025
Fri Jul 11 01:23:26 EDT 2025
Fri May 02 01:41:18 EDT 2025
Tue Jul 01 05:23:07 EDT 2025
Sat Mar 08 15:48:35 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords PIF3
FIMO
QTL
K
AtFRS9
ChIP
EMSAs
N
P
SNK
Y1H
HZ
NIL-Ctb1HapI
CDS
CBFs
SNP
phyB
cDNA
LUC
fLUC
rLUC
Breeding
FAA
Rice cold tolerance
NIL
Ctb1 gene
InDel
I2-KI
NIL-Ctb1(HapI)
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-1f031181b9ae88ac2e27ba95853afcc3429e6385663c7d5378962faf45ad4c193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39793938
PQID 3154402855
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3165867317
proquest_miscellaneous_3154402855
pubmed_primary_39793938
crossref_primary_10_1016_j_gene_2025_149225
elsevier_sciencedirect_doi_10_1016_j_gene_2025_149225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Gene
PublicationTitleAlternate Gene
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Wang, Mao, Chu (b0095) 2018; 40
Guo, Zeng, Li, Ma, Zhang, Lou, Li, Gu, Zhang, Li, Li (b0020) 2020; 18
Zaid, Mohammad (b0165) 2018; 37
Necsulea, Kaessmann (b0115) 2014; 15
Liu, Ou, Mao, Tang, Wang, Wang, Cao, Schlappi, Zhao, Xiao, Wang, Chu (b0085) 2018; 9
Zaid, Mohammad, Siddique (b0175) 2022; 13
Liu, Luo, Li, Liang, Guo, Xu, Chong (b0080) 2024; 241
Zhang, Li, Pan, Li, Zhou, Shi, Zeng, Guo, Yang, Zheng, Yu, Sun, Li, Ding, Ma, Shen, Dai, Zhang, Yang, Guo, Li (b0185) 2017; 8
Hung, Weng (b0035) 2017; 2017
Lin, Wang (b0075) 2004; 136
Varshney, Bohra, Yu, Graner, Zhang, Sorrells (b0140) 2021; 26
Li, Zhang, Chong, Xu (b0070) 2022; 268
Ma, Li (b0100) 2018; 9
Jung, Domijan, Klose, Biswas, Ezer, Gao, Khattak, Box, Charoensawan, Cortijo, Kumar, Grant, Locke, Schäfer, Jaeger, Wigge (b0045) 2016; 354
Xu, Wang, Wang, Zhang, Yao (b0155) 2020; 43
Lasky, Josephs, Morris (b0055) 2023; 35
Saito, Hayano-Saito, Kuroki, Sato (b0130) 2010; 179
Zaid, Mohammad, Fariduddin (b0170) 2020; 26
Xu, Deng (b0150) 2020; 25
Ding, Shi, Yang (b0010) 2020; 13
Yang, Lei, Wang, Zheng, Xin, Liu, Zou (b0160) 2023; 136
Saito, Hayano-Saito, Maruyama-Funatsuki, Sato, Kato (b0125) 2004; 109
Wani, Masoodi, Zaid, Wani, Shah, Meena, Wani, Mosa (b0145) 2018; 29
Hou, Han, Meng, Wang, Zhang, Yang, Li, Tang, Guo, Liu, Qin, Zhang, Shui, Cao, Song (b0030) 2024; 195
Chinnusamy, Zhu, Zhu (b0005) 2007; 12
Mishra, Singh, Pandey, Mishra, Pandey (b0110) 2019; 22
Zhang, Li, Pan, Li, Zhou, Shi, Zeng, Guo, Yang, Zheng, Yu, Sun, Li, Ding, Ma, Shen, Dai, Zhang, Yang, Guo, Li (b0190) 2017; 8
Jiang, Shi, Peng, Jia, Yan, Dong, Li, Dong, Li, Gong, Thomashow, Yang (b0040) 2020; 13
Zaid, Wani (b0180) 2019
Oliver, Van Dongen, Alfred, Mamun, Zhao, Saini, Fernandes, Blanchard, Sutton, Geigenberger (b0120) 2005; 28
Zhang, Su, Duan, Ao, Dai, Liu, Wang, Li, Liu, Feng, Wang, Wang (b0195) 2011; 7
Hellens, Allan, Friel, Bolitho, Grafton, Templeton, Karunairetnam, Gleave, Laing (b0025) 2005; 1
Li, Zeng, Pan, Zhou, Zhang, Guo, Lou, Shui, Huang, Tian, Guo, Yuan, Yang, Pan, Wang, Zhang, Yang, Guo, Ge, Li, Li (b0065) 2021; 231
Lasky, Upadhyaya, Ramu, Deshpande, Hash, Bonnette, Juenger, Hyma, Acharya, Mitchell, Buckler, Brenton, Kresovich, Morris (b0050) 2015; 1
Schläppi, Jackson, Eizenga, Wang, Chu, Shi, Shimoyama, Boykin (b0135) 2017; 8
Ding, Yang (b0015) 2022; 57
Li, Liang, Liu (b0060) 2022; 34
Meyer, Purugganan (b0105) 2013; 14
Liu, Schlappi, Mao, Wang, Wang, Chu (b0090) 2019; 17
Liu (10.1016/j.gene.2025.149225_b0085) 2018; 9
Li (10.1016/j.gene.2025.149225_b0065) 2021; 231
Meyer (10.1016/j.gene.2025.149225_b0105) 2013; 14
Xu (10.1016/j.gene.2025.149225_b0155) 2020; 43
Liu (10.1016/j.gene.2025.149225_b0095) 2018; 40
Ding (10.1016/j.gene.2025.149225_b0010) 2020; 13
Yang (10.1016/j.gene.2025.149225_b0160) 2023; 136
Zaid (10.1016/j.gene.2025.149225_b0165) 2018; 37
Hung (10.1016/j.gene.2025.149225_b0035) 2017; 2017
Zaid (10.1016/j.gene.2025.149225_b0180) 2019
Saito (10.1016/j.gene.2025.149225_b0130) 2010; 179
Xu (10.1016/j.gene.2025.149225_b0150) 2020; 25
Lasky (10.1016/j.gene.2025.149225_b0050) 2015; 1
Zhang (10.1016/j.gene.2025.149225_b0195) 2011; 7
Hellens (10.1016/j.gene.2025.149225_b0025) 2005; 1
Oliver (10.1016/j.gene.2025.149225_b0120) 2005; 28
Ma (10.1016/j.gene.2025.149225_b0100) 2018; 9
Liu (10.1016/j.gene.2025.149225_b0090) 2019; 17
Chinnusamy (10.1016/j.gene.2025.149225_b0005) 2007; 12
Li (10.1016/j.gene.2025.149225_b0060) 2022; 34
Li (10.1016/j.gene.2025.149225_b0070) 2022; 268
Zhang (10.1016/j.gene.2025.149225_b0190) 2017; 8
Zaid (10.1016/j.gene.2025.149225_b0170) 2020; 26
Jiang (10.1016/j.gene.2025.149225_b0040) 2020; 13
Schläppi (10.1016/j.gene.2025.149225_b0135) 2017; 8
Lin (10.1016/j.gene.2025.149225_b0075) 2004; 136
Liu (10.1016/j.gene.2025.149225_b0080) 2024; 241
Saito (10.1016/j.gene.2025.149225_b0125) 2004; 109
Zaid (10.1016/j.gene.2025.149225_b0175) 2022; 13
Lasky (10.1016/j.gene.2025.149225_b0055) 2023; 35
Zhang (10.1016/j.gene.2025.149225_b0185) 2017; 8
Varshney (10.1016/j.gene.2025.149225_b0140) 2021; 26
Ding (10.1016/j.gene.2025.149225_b0015) 2022; 57
Wani (10.1016/j.gene.2025.149225_b0145) 2018; 29
Hou (10.1016/j.gene.2025.149225_b0030) 2024; 195
Guo (10.1016/j.gene.2025.149225_b0020) 2020; 18
Mishra (10.1016/j.gene.2025.149225_b0110) 2019; 22
Jung (10.1016/j.gene.2025.149225_b0045) 2016; 354
Necsulea (10.1016/j.gene.2025.149225_b0115) 2014; 15
References_xml – volume: 195
  start-page: 1277
  year: 2024
  end-page: 1292
  ident: b0030
  article-title: Acyl carrier protein OsMTACP2 confers rice cold tolerance at the booting stage
  publication-title: Plant Physiol
– volume: 15
  start-page: 734
  year: 2014
  end-page: 748
  ident: b0115
  article-title: Evolutionary dynamics of coding and non-coding transcriptomes
  publication-title: Nat Rev Genet
– volume: 22
  start-page: 407
  year: 2019
  end-page: 411
  ident: b0110
  article-title: Application of student's
  publication-title: Ann Card Anaesth
– volume: 18
  start-page: 2491
  year: 2020
  end-page: 2503
  ident: b0020
  article-title: Differentiation, evolution and utilization of natural alleles for cold adaptability at the reproductive stage in rice
  publication-title: Plant Biotechnol J
– volume: 1
  year: 2015
  ident: b0050
  article-title: Genome-environment associations in sorghum landraces predict adaptive traits
  publication-title: Sci Adv
– volume: 7
  start-page: 30
  year: 2011
  ident: b0195
  article-title: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes
  publication-title: Plant Methods
– volume: 57
  start-page: 947
  year: 2022
  end-page: 958
  ident: b0015
  article-title: Surviving and thriving: How plants perceive and respond to temperature stress
  publication-title: Dev Cell
– volume: 34
  start-page: 955
  year: 2022
  end-page: 966
  ident: b0060
  article-title: How plants coordinate their development in response to light and temperature signals
  publication-title: Plant Cell
– volume: 13
  start-page: 894
  year: 2020
  end-page: 906
  ident: b0040
  article-title: Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in
  publication-title: Mol Plant
– volume: 25
  start-page: 952
  year: 2020
  end-page: 954
  ident: b0150
  article-title: CBF-phyB-PIF module links light and low temperature signaling
  publication-title: Trends Plant Sci
– volume: 37
  start-page: 1331
  year: 2018
  end-page: 1348
  ident: b0165
  article-title: Methyl jasmonate and nitrogen interact to alleviate cadmium stress in mentha arvensis by regulating physio-biochemical damages and ROS detoxification
  publication-title: J Plant Growth Regul
– volume: 8
  year: 2017
  ident: b0185
  article-title: Natural variation in
  publication-title: Nat Commun
– volume: 43
  start-page: 992
  year: 2020
  end-page: 1007
  ident: b0155
  article-title: A point mutation in
  publication-title: Plant Cell Environ
– volume: 40
  start-page: 171
  year: 2018
  end-page: 185
  ident: b0095
  article-title: Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects
  publication-title: Yi Chuan
– volume: 14
  start-page: 840
  year: 2013
  end-page: 852
  ident: b0105
  article-title: Evolution of crop species: genetics of domestication and diversification
  publication-title: Nat Rev Genet
– volume: 26
  start-page: 25
  year: 2020
  end-page: 39
  ident: b0170
  article-title: Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (
  publication-title: Physiol Mol Biol Plants
– volume: 268
  year: 2022
  ident: b0070
  article-title: Chilling tolerance in rice: Past and present
  publication-title: J Plant Physiol
– volume: 241
  start-page: 2143
  year: 2024
  end-page: 2157
  ident: b0080
  article-title: confers the chilling tolerance to mediate OsFtsH2-D1 module in rice
  publication-title: New Phytol
– volume: 179
  start-page: 97
  year: 2010
  end-page: 102
  ident: b0130
  article-title: Mapbased cloning of the rice cold tolerance gene
  publication-title: Plant Sci
– volume: 26
  start-page: 631
  year: 2021
  end-page: 649
  ident: b0140
  article-title: Designing future crops: Genomics-assisted breeding comes of age
  publication-title: Trends Plant Sci
– volume: 13
  start-page: 544
  year: 2020
  end-page: 564
  ident: b0010
  article-title: Molecular regulation of plant responses to environmental temperatures
  publication-title: Mol Plant
– volume: 231
  start-page: 1056
  year: 2021
  end-page: 1072
  ident: b0065
  article-title: Stepwise selection of natural variations at
  publication-title: New Phytol
– volume: 28
  start-page: 1534
  year: 2005
  end-page: 1551
  ident: b0120
  article-title: Cold-induced repression of the rice anther-specific cell wall invertase gene
  publication-title: Plant Cell Environ
– volume: 109
  start-page: 515
  year: 2004
  end-page: 522
  ident: b0125
  article-title: Physical mapping and putative candidate gene identification of a quantitative trait locus
  publication-title: Theor Appl Genet
– volume: 9
  start-page: 692
  year: 2018
  ident: b0100
  article-title: FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in
  publication-title: Front Plant Sci
– start-page: 111
  year: 2019
  end-page: 132
  ident: b0180
  article-title: Reactive oxygen species generation, scavenging and signaling in plant defense responses, Bio Mol Plant Def
  publication-title: Springer Nature Switzerland
– volume: 136
  start-page: 4010
  year: 2004
  end-page: 4022
  ident: b0075
  article-title: gene family and distinct roles of its members in light control of
  publication-title: Plant Physiol
– volume: 29
  start-page: 709
  year: 2018
  end-page: 723
  ident: b0145
  article-title: Engineering plants for heavy metal stress tolerance
  publication-title: Rend Lincei Sci Fis Nat
– volume: 1
  start-page: 13
  year: 2005
  ident: b0025
  article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants
  publication-title: Plant Methods
– volume: 136
  start-page: 135
  year: 2023
  ident: b0160
  article-title: positively regulates cold tolerance at booting stage in rice
  publication-title: Theoretical and Applied Genetics
– volume: 354
  start-page: 886
  year: 2016
  end-page: 889
  ident: b0045
  article-title: Phytochromes function as thermosensors in
  publication-title: Science
– volume: 8
  start-page: 14788
  year: 2017
  ident: b0190
  article-title: Natural variation in
  publication-title: Nat Commun
– volume: 9
  start-page: 3302
  year: 2018
  ident: b0085
  article-title: Early selection of
  publication-title: Nat Commun
– volume: 17
  start-page: 1834
  year: 2019
  end-page: 1849
  ident: b0090
  article-title: The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage
  publication-title: Plant Biotechnol J
– volume: 12
  start-page: 444
  year: 2007
  end-page: 451
  ident: b0005
  article-title: Cold stress regulation of gene expression in plants
  publication-title: Trends Plant Sci
– volume: 2017
  start-page: 173
  year: 2017
  end-page: 181
  ident: b0035
  article-title: Discovering cis-regulatory motifs
  publication-title: Cold Spring Harbor Protocols
– volume: 35
  start-page: 125
  year: 2023
  end-page: 138
  ident: b0055
  article-title: Genotype-environment associations to reveal the molecular basis of environmental adaptation
  publication-title: Plant Cell
– volume: 13
  year: 2022
  ident: b0175
  article-title: Salicylic acid priming regulates stomatal conductance, trichome density and improves cadmium stress tolerance in
  publication-title: Front Plant Sci
– volume: 8
  year: 2017
  ident: b0135
  article-title: Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA Mini-Core collection. Front
  publication-title: Plant Sci
– volume: 268
  year: 2022
  ident: 10.1016/j.gene.2025.149225_b0070
  article-title: Chilling tolerance in rice: Past and present
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2021.153576
– volume: 136
  start-page: 4010
  year: 2004
  ident: 10.1016/j.gene.2025.149225_b0075
  article-title: Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.052191
– volume: 8
  year: 2017
  ident: 10.1016/j.gene.2025.149225_b0185
  article-title: Natural variation in CTB4a enhances rice adaptation to cold habitats
  publication-title: Nat Commun
– volume: 15
  start-page: 734
  year: 2014
  ident: 10.1016/j.gene.2025.149225_b0115
  article-title: Evolutionary dynamics of coding and non-coding transcriptomes
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3802
– volume: 26
  start-page: 631
  year: 2021
  ident: 10.1016/j.gene.2025.149225_b0140
  article-title: Designing future crops: Genomics-assisted breeding comes of age
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2021.03.010
– volume: 37
  start-page: 1331
  year: 2018
  ident: 10.1016/j.gene.2025.149225_b0165
  article-title: Methyl jasmonate and nitrogen interact to alleviate cadmium stress in mentha arvensis by regulating physio-biochemical damages and ROS detoxification
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-018-9854-3
– volume: 12
  start-page: 444
  year: 2007
  ident: 10.1016/j.gene.2025.149225_b0005
  article-title: Cold stress regulation of gene expression in plants
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2007.07.002
– volume: 13
  start-page: 544
  year: 2020
  ident: 10.1016/j.gene.2025.149225_b0010
  article-title: Molecular regulation of plant responses to environmental temperatures
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2020.02.004
– volume: 1
  year: 2015
  ident: 10.1016/j.gene.2025.149225_b0050
  article-title: Genome-environment associations in sorghum landraces predict adaptive traits
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1400218
– volume: 28
  start-page: 1534
  year: 2005
  ident: 10.1016/j.gene.2025.149225_b0120
  article-title: Cold-induced repression of the rice anther-specific cell wall invertase gene OsINV4 is correlated with sucrose accumulation and pollen sterility
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01390.x
– start-page: 111
  year: 2019
  ident: 10.1016/j.gene.2025.149225_b0180
  article-title: Reactive oxygen species generation, scavenging and signaling in plant defense responses, Bio Mol Plant Def
  publication-title: Springer Nature Switzerland
– volume: 25
  start-page: 952
  year: 2020
  ident: 10.1016/j.gene.2025.149225_b0150
  article-title: CBF-phyB-PIF module links light and low temperature signaling
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2020.06.010
– volume: 13
  start-page: 894
  year: 2020
  ident: 10.1016/j.gene.2025.149225_b0040
  article-title: Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2020.04.006
– volume: 8
  year: 2017
  ident: 10.1016/j.gene.2025.149225_b0135
  article-title: Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA Mini-Core collection. Front
  publication-title: Plant Sci
– volume: 9
  start-page: 3302
  year: 2018
  ident: 10.1016/j.gene.2025.149225_b0085
  article-title: Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05753-w
– volume: 43
  start-page: 992
  year: 2020
  ident: 10.1016/j.gene.2025.149225_b0155
  article-title: A point mutation in LTT1 enhances cold tolerance at the booting stage in rice
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13717
– volume: 8
  start-page: 14788
  year: 2017
  ident: 10.1016/j.gene.2025.149225_b0190
  article-title: Natural variation in CTB4a enhances rice adaptation to cold habitats
  publication-title: Nat Commun
  doi: 10.1038/ncomms14788
– volume: 9
  start-page: 692
  year: 2018
  ident: 10.1016/j.gene.2025.149225_b0100
  article-title: FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) family proteins in Arabidopsis growth and development
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00692
– volume: 29
  start-page: 709
  year: 2018
  ident: 10.1016/j.gene.2025.149225_b0145
  article-title: Engineering plants for heavy metal stress tolerance
  publication-title: Rend Lincei Sci Fis Nat
  doi: 10.1007/s12210-018-0702-y
– volume: 231
  start-page: 1056
  year: 2021
  ident: 10.1016/j.gene.2025.149225_b0065
  article-title: Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice
  publication-title: New Phytol
  doi: 10.1111/nph.17407
– volume: 13
  year: 2022
  ident: 10.1016/j.gene.2025.149225_b0175
  article-title: Salicylic acid priming regulates stomatal conductance, trichome density and improves cadmium stress tolerance in Mentha arvensis L
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.895427
– volume: 40
  start-page: 171
  year: 2018
  ident: 10.1016/j.gene.2025.149225_b0095
  article-title: Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects
  publication-title: Yi Chuan
– volume: 241
  start-page: 2143
  year: 2024
  ident: 10.1016/j.gene.2025.149225_b0080
  article-title: COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice
  publication-title: New Phytol
  doi: 10.1111/nph.19514
– volume: 14
  start-page: 840
  year: 2013
  ident: 10.1016/j.gene.2025.149225_b0105
  article-title: Evolution of crop species: genetics of domestication and diversification
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3605
– volume: 2017
  start-page: 173
  issue: 2
  year: 2017
  ident: 10.1016/j.gene.2025.149225_b0035
  article-title: Discovering cis-regulatory motifs
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.prot093203
– volume: 136
  start-page: 135
  year: 2023
  ident: 10.1016/j.gene.2025.149225_b0160
  article-title: qCTB7 positively regulates cold tolerance at booting stage in rice
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-023-04388-w
– volume: 57
  start-page: 947
  year: 2022
  ident: 10.1016/j.gene.2025.149225_b0015
  article-title: Surviving and thriving: How plants perceive and respond to temperature stress
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2022.03.010
– volume: 18
  start-page: 2491
  year: 2020
  ident: 10.1016/j.gene.2025.149225_b0020
  article-title: Differentiation, evolution and utilization of natural alleles for cold adaptability at the reproductive stage in rice
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13424
– volume: 109
  start-page: 515
  year: 2004
  ident: 10.1016/j.gene.2025.149225_b0125
  article-title: Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1667-z
– volume: 26
  start-page: 25
  year: 2020
  ident: 10.1016/j.gene.2025.149225_b0170
  article-title: Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.)
  publication-title: Physiol Mol Biol Plants
  doi: 10.1007/s12298-019-00715-y
– volume: 195
  start-page: 1277
  year: 2024
  ident: 10.1016/j.gene.2025.149225_b0030
  article-title: Acyl carrier protein OsMTACP2 confers rice cold tolerance at the booting stage
  publication-title: Plant Physiol
  doi: 10.1093/plphys/kiae118
– volume: 17
  start-page: 1834
  year: 2019
  ident: 10.1016/j.gene.2025.149225_b0090
  article-title: The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13104
– volume: 34
  start-page: 955
  year: 2022
  ident: 10.1016/j.gene.2025.149225_b0060
  article-title: How plants coordinate their development in response to light and temperature signals
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab302
– volume: 179
  start-page: 97
  year: 2010
  ident: 10.1016/j.gene.2025.149225_b0130
  article-title: Mapbased cloning of the rice cold tolerance gene Ctb1
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2010.04.004
– volume: 35
  start-page: 125
  year: 2023
  ident: 10.1016/j.gene.2025.149225_b0055
  article-title: Genotype-environment associations to reveal the molecular basis of environmental adaptation
  publication-title: Plant Cell
  doi: 10.1093/plcell/koac267
– volume: 1
  start-page: 13
  year: 2005
  ident: 10.1016/j.gene.2025.149225_b0025
  article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-1-13
– volume: 354
  start-page: 886
  year: 2016
  ident: 10.1016/j.gene.2025.149225_b0045
  article-title: Phytochromes function as thermosensors in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.aaf6005
– volume: 22
  start-page: 407
  year: 2019
  ident: 10.1016/j.gene.2025.149225_b0110
  article-title: Application of student's t-test, analysis of variance, and covariance
  publication-title: Ann Card Anaesth
  doi: 10.4103/aca.ACA_94_19
– volume: 7
  start-page: 30
  year: 2011
  ident: 10.1016/j.gene.2025.149225_b0195
  article-title: A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-7-30
SSID ssj0000552
Score 2.4797287
Snippet •The InDel at −1,302  bp in the Ctb1 promoter enhances gene expression and cold tolerance.•The InDel improves rice cold adaptability at seedling and booting...
Cold stress during the booting stage of rice (Oryza sativa) significantly reduces yields, particularly in temperate and high-altitude regions. This study...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 149225
SubjectTerms Adaptation, Physiological - genetics
Alleles
altitude
booting stage
Breeding
cold
cold stress
Cold Temperature
cold tolerance
Cold-Shock Response - genetics
Ctb1 gene
Gene Expression Regulation, Plant
genes
Haplotypes
InDel
INDEL Mutation
NIL-Ctb1HapI
Oryza - genetics
Oryza - physiology
Oryza sativa
Plant Breeding
Plant Proteins - genetics
Plant Proteins - metabolism
pollen
Polymorphism, Single Nucleotide
Promoter Regions, Genetic
rice
Rice cold tolerance
seedlings
Title Utilization of natural alleles and haplotypes of Ctb1 for rice cold adaptability
URI https://dx.doi.org/10.1016/j.gene.2025.149225
https://www.ncbi.nlm.nih.gov/pubmed/39793938
https://www.proquest.com/docview/3154402855
https://www.proquest.com/docview/3165867317
Volume 941
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EEfQgvq0vIogXWdtukn0ca1Gqogha8Bay2QQrdVvs9uDF3-7MPnyAevC2u0yWMJlMvmRmvgAc2pZJk0BIT1KWg0iiwCNaN09ElshOrAtSiuhe3wS9vrh8kA8z0K1rYSitsvL9pU8vvHX1pVlpszkeDJp3LU5VkohQZAFkqKJciJCs_OTtM82jJWUZSaDdEkpXhTNljheOEVFl-hIdRuzTddk_L06_gc9iETpfhqUKPbJO2cEVmLHZKqx1Mtw5P7-yI1bkcxYH5aswf1o_LX4hHVyD234-GFbVl2zkWEHtiT-lS1WGdsJ0lrJHPR6O6HR2QhLdPGkzBLeMCIgYWk7KdKrHeUnx_boO_fOz-27Pq-5V8AwXrdxrO5zJuLInsbZRpI1v_TDRMW4cuHYGZfzY4rREoMdNmErUXBz4TjshdSoMIr4NmM1Gmd0C5nTknJGaa4FQDNGgdS40BjGltI6ntgHHtULVuKTPUHVe2ZMi9StSvyrV3wBZ61x9MwKF_v3Pdgf1ACmcHRTy0JkdTSeKE9kQQij5pwyisCBEINWAzXJ0P_pKUU8e82j7nz3bgQV6o6S1ttyF2fxlavcQxeTJfmGm-zDXubjq3bwDUQDvKw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hUAUcqpbnlpa6EnBBYXdjO49DDzy1lIcqwUrcjOPYYtGSXbFBaC_8qf7BzuTBQ6IcKnGLEiexxuPxZ8_MNwBrtmXSJBDSkxTlIJIo8IjWzRORJbIT64KUPLonp0GnK35dyIsJ-FPnwlBYZWX7S5teWOvqTrOSZnPY6zXPWpyyJBGhyALIhFVk5ZEd3-O-bfTzcA8Hed33D_bPdzteVVrAM1y0cq_tUJlxcUtibaNIG9_6YaJjxM5cO4Nt_NiiZiLW4SZMJf4pDnynnZA6FaZNDExo96cEmgsqm7D18BRX0pKydF3Q9gy7V2XqlEFlqBTEzelLtFCxT_W5X18N_4V2i1Xv4BN8rOAq2y4l8hkmbDYH89sZbtVvxmyDFQGkxcn8HHzYqa9mn7EczsPvbt7rV-mebOBYwSWKH6UqLn07YjpL2ZUe9gd0HDyiFrt50maIphkxHjFU1ZTpVA_zklN8vADdd5H2Ikxmg8wuA3M6cs5IzbVA7Ifw0zoXGoMgVlrHU9uAzVqgaljydag6kO1akfgViV-V4m-ArGWuXmidwgXlzfd-1AOkcDqSj0VndnA3UpzYjRCzyTfbIOwLQkRuDVgqR_exr-Rm5TGPvvxnz77DdOf85FgdH54ercAMPaGIubb8CpP57Z39hhAqT1YLlWVw-d5z5C8qMCn4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilization+of+natural+alleles+and+haplotypes+of+Ctb1+for+rice+cold+adaptability&rft.jtitle=Gene&rft.au=Li%2C+Lingling&rft.au=Cheng%2C+Gongye&rft.au=Li%2C+Wenyu&rft.au=Zhang%2C+Di&rft.date=2025-03-15&rft.issn=0378-1119&rft.volume=941&rft.spage=149225&rft_id=info:doi/10.1016%2Fj.gene.2025.149225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gene_2025_149225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1119&client=summon