Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries

In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of...

Full description

Saved in:
Bibliographic Details
Published inSurface & coatings technology Vol. 387; pp. 125528 - 6
Main Authors Hsu, Yu-Ching, Hsieh, Cheng-Che, Liu, Wei-Ren
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.04.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0257-8972
1879-3347
DOI10.1016/j.surfcoat.2020.125528

Cover

Loading…
Abstract In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of Si during charge and discharge processes. MCMB serves as the core material, by adding nano-sized silicon on the surface to increase reversible capacity and then make a pitch coating as the shell via a high-temperature carbonization process. We try to optimize the content of silicon by 10%, 20%, 30% and 40% onto MCMB. With the increase of silicon content, the reversible capacity is significantly improved. When the silicon content increases to 40%, the reversible capacity begins to decline rapidly. The optimal silicon content in Si/MCMB composite is 30%. The composition-optimized Si/C composite deliver a reversible capacity of 847 mAh/g with a columbic efficiency of 87.8%. After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. The results indicate that we demonstrate a silicon/carbon composite with high reversible capacity and good cycle stability. [Display omitted] •First attempt to employ a double core-shell Si/C composite as an anode material for lithium ion battery•The double core-shell structure delivered a reversible capacity of 847 mAh/g with 87.8% columbic efficiency in the first cycle.•After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention.
AbstractList In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of Si during charge and discharge processes. MCMB serves as the core material, by adding nano-sized silicon on the surface to increase reversible capacity and then make a pitch coating as the shell via a high-temperature carbonization process. We try to optimize the content of silicon by 10%, 20%, 30% and 40% onto MCMB. With the increase of silicon content, the reversible capacity is significantly improved. When the silicon content increases to 40%, the reversible capacity begins to decline rapidly. The optimal silicon content in Si/MCMB composite is 30%. The composition-optimized Si/C composite deliver a reversible capacity of 847 mAh/g with a columbic efficiency of 87.8%. After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. The results indicate that we demonstrate a silicon/carbon composite with high reversible capacity and good cycle stability.
In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of Si during charge and discharge processes. MCMB serves as the core material, by adding nano-sized silicon on the surface to increase reversible capacity and then make a pitch coating as the shell via a high-temperature carbonization process. We try to optimize the content of silicon by 10%, 20%, 30% and 40% onto MCMB. With the increase of silicon content, the reversible capacity is significantly improved. When the silicon content increases to 40%, the reversible capacity begins to decline rapidly. The optimal silicon content in Si/MCMB composite is 30%. The composition-optimized Si/C composite deliver a reversible capacity of 847 mAh/g with a columbic efficiency of 87.8%. After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. The results indicate that we demonstrate a silicon/carbon composite with high reversible capacity and good cycle stability. [Display omitted] •First attempt to employ a double core-shell Si/C composite as an anode material for lithium ion battery•The double core-shell structure delivered a reversible capacity of 847 mAh/g with 87.8% columbic efficiency in the first cycle.•After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention.
ArticleNumber 125528
Author Hsieh, Cheng-Che
Hsu, Yu-Ching
Liu, Wei-Ren
Author_xml – sequence: 1
  givenname: Yu-Ching
  surname: Hsu
  fullname: Hsu, Yu-Ching
– sequence: 2
  givenname: Cheng-Che
  surname: Hsieh
  fullname: Hsieh, Cheng-Che
– sequence: 3
  givenname: Wei-Ren
  surname: Liu
  fullname: Liu, Wei-Ren
  email: wrliu@cycu.edu.tw
BookMark eNqFkE1Lw0AQhhepYKv-BQl4Tt2PbD7Ag1L8goIH9bxMNrN2Q5qtuxuh_96E6sVLTzPMvO87w7Mgs971SMgVo0tGWX7TLsPgjXYQl5zyccil5OUJmbOyqFIhsmJG5pTLIi2rgp-RRQgtpZQVVTYn7du-jxsMNiTOJI0b6g4T7TymYYNdl2jwtetvgu2sHuunh93Gxkmy3bkwddC7BpMtRPQWupAY55POxo0dtql1fVJDnFYYLsipGQV4-VvPycfjw_vqOV2_Pr2s7tepFhmNKdO5KKipwEApaS2BZUI2ukFBZZZBpUGLOtdAC1PrCrmoGmBSFlhyYVBW4pxcH3J33n0NGKJq3eD78aTiGWNMSJrLUXV7UGnvQvBolLYR4vhx9GA7xaia6KpW_dFVE111oDva83_2nbdb8PvjxruDEUcE3xa9Ctpir7GxHnVUjbPHIn4AxzGddQ
CitedBy_id crossref_primary_10_1016_j_apt_2024_104463
crossref_primary_10_1007_s10008_024_05967_7
crossref_primary_10_1016_j_apmt_2024_102561
crossref_primary_10_1016_j_powtec_2023_118988
crossref_primary_10_1088_1742_6596_1858_1_012035
crossref_primary_10_3390_ma16020541
crossref_primary_10_1002_slct_202303545
crossref_primary_10_1007_s10854_021_07500_2
crossref_primary_10_3389_fenrg_2021_651386
crossref_primary_10_1007_s11581_021_04278_5
crossref_primary_10_1016_j_wasman_2021_08_037
crossref_primary_10_1016_j_est_2024_113125
crossref_primary_10_1039_D4SE00314D
crossref_primary_10_1016_j_diamond_2020_107898
crossref_primary_10_1016_j_est_2023_109142
crossref_primary_10_1016_j_jpowsour_2022_232274
crossref_primary_10_1021_acs_energyfuels_0c03725
crossref_primary_10_1016_j_est_2023_107045
crossref_primary_10_1016_j_jpowsour_2025_236314
crossref_primary_10_3389_fenrg_2020_00170
crossref_primary_10_1016_j_susmat_2022_e00410
crossref_primary_10_1016_j_jelechem_2023_117356
crossref_primary_10_1016_j_jiec_2025_01_006
crossref_primary_10_1016_j_jpowsour_2024_234617
crossref_primary_10_1016_j_ensm_2024_103243
crossref_primary_10_1007_s11581_022_04622_3
crossref_primary_10_1016_j_ensm_2020_11_028
crossref_primary_10_1002_cssc_202101837
crossref_primary_10_1149_1945_7111_ad1ecd
crossref_primary_10_1016_j_ensm_2020_10_021
crossref_primary_10_1016_j_mtadv_2024_100472
crossref_primary_10_3390_ijms221910331
crossref_primary_10_1002_smll_202405005
crossref_primary_10_1016_j_ces_2024_120302
crossref_primary_10_1016_j_est_2024_113794
crossref_primary_10_1021_acsaem_2c00933
crossref_primary_10_3390_batteries9070377
crossref_primary_10_1016_j_surfin_2020_100585
crossref_primary_10_1111_jace_19444
crossref_primary_10_1002_jccs_202300129
crossref_primary_10_1016_j_jallcom_2024_176404
crossref_primary_10_1016_j_susmat_2023_e00583
crossref_primary_10_1149_1945_7111_ac069b
crossref_primary_10_3390_en16041935
crossref_primary_10_1016_j_surfcoat_2024_130746
Cites_doi 10.1021/acsami.7b16760
10.1149/1.2129753
10.1002/adfm.201800855
10.1016/S0378-7753(99)00122-6
10.1039/C9CC06661F
10.1149/1.2127495
10.1021/nl201470j
10.1039/C5EE02487K
10.1038/ncomms8393
10.1021/acsnano.8b03312
10.1002/smll.201802457
10.1021/nn507003z
10.1016/j.jpowsour.2013.10.012
10.1016/j.cej.2019.122619
10.1021/acsnano.7b02030
10.1002/adma.201605650
10.1016/j.ssi.2007.07.007
10.1149/1.2132692
10.1126/science.270.5236.590
10.1149/1.1390899
10.1021/acsami.5b11628
10.1021/acssuschemeng.8b02880
10.3762/bjnano.9.223
10.1021/acsami.9b12596
10.1016/j.jpowsour.2010.03.008
10.1016/0038-1098(85)90155-3
10.1016/j.jallcom.2015.10.217
10.1016/0022-4596(81)90487-4
10.1021/acs.nanolett.6b04551
10.1038/nature11475
10.1107/S0365110X51000842
10.1038/s41598-017-01086-8
10.1002/adma.201302757
10.1016/j.ensm.2019.07.045
10.1107/S0365110X56002989
10.1021/acs.nanolett.7b02433
10.1016/j.jpowsour.2006.09.084
10.1007/s12274-012-0268-4
10.1016/j.apsusc.2019.01.215
10.1016/j.jallcom.2019.151848
10.1016/S0167-2738(02)00362-4
10.1016/j.nanoen.2014.04.006
10.1016/j.jallcom.2012.03.096
10.1016/0008-6223(84)90086-1
10.1016/j.carbon.2019.07.067
10.1063/1.1714879
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2020
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
JG9
DOI 10.1016/j.surfcoat.2020.125528
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3347
EndPage 6
ExternalDocumentID 10_1016_j_surfcoat_2020_125528
S0257897220301973
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29Q
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HX~
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
WUQ
7QQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c340t-1c6370f9afa850b5a1435dcde30544a9cac3b6ca07fbc9e239da1557e823fe593
IEDL.DBID .~1
ISSN 0257-8972
IngestDate Mon Jul 14 10:28:23 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 03:07:51 EDT 2025
Fri Feb 23 02:49:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Silicon
Carbon coatings
Li ion batteries
Anode
Core-shell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-1c6370f9afa850b5a1435dcde30544a9cac3b6ca07fbc9e239da1557e823fe593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2411135065
PQPubID 2045394
PageCount 6
ParticipantIDs proquest_journals_2411135065
crossref_citationtrail_10_1016_j_surfcoat_2020_125528
crossref_primary_10_1016_j_surfcoat_2020_125528
elsevier_sciencedirect_doi_10_1016_j_surfcoat_2020_125528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Surface & coatings technology
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Kim, Lee, Kim, Kim, Yang, Park (bb0125) 2016; 8
Zhou, Fan, Tian, Zhou, Guo, Kou, Zhang (bb0200) 2016; 658
Son, Park, Kwon, Park, Rümmeli, Bachmatiuk, Song, Ku, Choi, Choi (bb0050) 2015; 6
Van der Marel, Vinke, Van der Lugt (bb0090) 1985; 54
Ruttert, Holtstiege, Hüsker, Börner, Winter, Placke (bb0190) 2018; 9
Yao, McDowell, Ryu, Wu, Liu, Hu, Nix, Cui (bb0115) 2011; 11
Lin, Han, Zhou, Zhang, Xu, Zhu, Qian (bb0065) 2015; 8
Wen, Huggins (bb0105) 1981; 37
Gao, Xiao, Plümel, Xu, Ren, Zuo, Liu, Schulz, Wiggers, Amine (bb0070) 2017; 17
Li, Huang, Chen, Wu, Liang (bb0085) 1999; 2
Zhu, Zhou, Guan, Cai, Zhao, Zhu, Zhu, Zhu, Qian (bb0165) 2018; 14
Liu, Shan, Huang, Wang, Lin, Cao, Chen, Meng, Chen (bb0135) 2018; 10
Wang, Favors, Li, Liu, Ye, Fu, Bozhilov, Guo, Ozkan, Ozkan (bb0180) 2017; 7
Shen, Fang, Ge, Zhang, Liu, Ma, Mecklenburg, Nie, Zhou (bb0140) 2018; 12
Yi, Zai, Dai, Gordin, Wang (bb0150) 2014; 6
Franklin (bb0030) 1951; 4
Kasavajjula, Wang, Appleby (bb0075) 2007; 163
Chen, Shen, van Aken, Maier, Yu (bb0195) 2017; 29
Zhu, Chen, Wu, Chu, Zhang, Jiang, Zeng, Zhang, Guo (bb0220) 2020; 812
Wang, Zhou, Cao, Xu, Zhang, Li, Zhou, Ma, Chen, Song (bb0225) 2020; 24
Li, Hou, Sha, Wang, Hu, Liu, Shao (bb0120) 2014; 248
Boukamp, Lesh, Huggins (bb0100) 1981; 128
Nzabahimana, Guo, Hu (bb0205) 2019; 479
Bacon, Warren (bb0025) 1956; 9
Dahn, Zheng, Liu, Xue (bb0045) 1995; 270
Sharma, Seefurth (bb0095) 1976; 123
Tong, Wang, Chen, Qiu, Fang, Yang, Wang, Yang (bb0235) 2019; 153
Zhou, Cao, Wan, Guo (bb0160) 2012; 5
Jeong, Du, Islam, Lee, Sun, Jung (bb0035) 2017; 17
Nazri, Pistoia (bb0010) 2008
Li, Liu, Wang, Mutlu, Bell, Ahmed, Ye, Ozkan, Ozkan (bb0185) 2017; 7
Lazzari, Scrosati (bb0005) 1980; 127
Lai, Guo, Wang, Li, Zhang, Wu, Yue (bb0130) 2012; 530
Wang, Tan, Li, Xue, Sun (bb0230) 2019; 11
Jo, Kim, Kim, Song, Kim, Kwag, Lee, Park, Kim (bb0145) 2010; 195
Yang, Takeda, Imanishi, Capiglia, Xie, Yamamoto (bb0080) 2002; 152
Liu, Li, Goodman, Zhang, Epstein, Huang, Pan, Kim, Choi, Huang (bb0170) 2015; 9
Sandu, Moreau, Guyomard, Brousse, Roue (bb0060) 2007; 178
Azuma, Imoto, Yamada, Sekai (bb0040) 1999; 81
Chang, Huang, Zhou, Cui, Hallac, Jiang, Hurley, Chen (bb0155) 2014; 26
Yi, Wang, Qian, Liu, Lin, Qian (bb0175) 2018; 6
Sohn, Lee, Park, Park, Choi, Kim (bb0210) 2018; 28
Lin, Ma, Xie, Wang, Zhang, Peng (bb0110) 2017; 11
Biscoe, Warren (bb0015) 1942; 13
Zhang, Zhou, Zhang, Yan, Huang, Fang (bb0240) 2019; 55
Oberlin (bb0020) 1984; 22
Chu, Majumdar (bb0055) 2012; 488
Lee, Nam, Jung, Park (bb0215) 2020; 381
Chu (10.1016/j.surfcoat.2020.125528_bb0055) 2012; 488
Yang (10.1016/j.surfcoat.2020.125528_bb0080) 2002; 152
Wang (10.1016/j.surfcoat.2020.125528_bb0180) 2017; 7
Zhang (10.1016/j.surfcoat.2020.125528_bb0240) 2019; 55
Lai (10.1016/j.surfcoat.2020.125528_bb0130) 2012; 530
Chen (10.1016/j.surfcoat.2020.125528_bb0195) 2017; 29
Tong (10.1016/j.surfcoat.2020.125528_bb0235) 2019; 153
Liu (10.1016/j.surfcoat.2020.125528_bb0135) 2018; 10
Sandu (10.1016/j.surfcoat.2020.125528_bb0060) 2007; 178
Kasavajjula (10.1016/j.surfcoat.2020.125528_bb0075) 2007; 163
Franklin (10.1016/j.surfcoat.2020.125528_bb0030) 1951; 4
Jeong (10.1016/j.surfcoat.2020.125528_bb0035) 2017; 17
Dahn (10.1016/j.surfcoat.2020.125528_bb0045) 1995; 270
Shen (10.1016/j.surfcoat.2020.125528_bb0140) 2018; 12
Yi (10.1016/j.surfcoat.2020.125528_bb0150) 2014; 6
Zhou (10.1016/j.surfcoat.2020.125528_bb0200) 2016; 658
Lin (10.1016/j.surfcoat.2020.125528_bb0110) 2017; 11
Wang (10.1016/j.surfcoat.2020.125528_bb0225) 2020; 24
Gao (10.1016/j.surfcoat.2020.125528_bb0070) 2017; 17
Ruttert (10.1016/j.surfcoat.2020.125528_bb0190) 2018; 9
Zhu (10.1016/j.surfcoat.2020.125528_bb0220) 2020; 812
Nazri (10.1016/j.surfcoat.2020.125528_bb0010) 2008
Jo (10.1016/j.surfcoat.2020.125528_bb0145) 2010; 195
Son (10.1016/j.surfcoat.2020.125528_bb0050) 2015; 6
Wen (10.1016/j.surfcoat.2020.125528_bb0105) 1981; 37
Li (10.1016/j.surfcoat.2020.125528_bb0120) 2014; 248
Yi (10.1016/j.surfcoat.2020.125528_bb0175) 2018; 6
Oberlin (10.1016/j.surfcoat.2020.125528_bb0020) 1984; 22
Bacon (10.1016/j.surfcoat.2020.125528_bb0025) 1956; 9
Boukamp (10.1016/j.surfcoat.2020.125528_bb0100) 1981; 128
Li (10.1016/j.surfcoat.2020.125528_bb0185) 2017; 7
Lee (10.1016/j.surfcoat.2020.125528_bb0215) 2020; 381
Lazzari (10.1016/j.surfcoat.2020.125528_bb0005) 1980; 127
Liu (10.1016/j.surfcoat.2020.125528_bb0170) 2015; 9
Li (10.1016/j.surfcoat.2020.125528_bb0085) 1999; 2
Chang (10.1016/j.surfcoat.2020.125528_bb0155) 2014; 26
Van der Marel (10.1016/j.surfcoat.2020.125528_bb0090) 1985; 54
Biscoe (10.1016/j.surfcoat.2020.125528_bb0015) 1942; 13
Sohn (10.1016/j.surfcoat.2020.125528_bb0210) 2018; 28
Zhou (10.1016/j.surfcoat.2020.125528_bb0160) 2012; 5
Wang (10.1016/j.surfcoat.2020.125528_bb0230) 2019; 11
Sharma (10.1016/j.surfcoat.2020.125528_bb0095) 1976; 123
Zhu (10.1016/j.surfcoat.2020.125528_bb0165) 2018; 14
Nzabahimana (10.1016/j.surfcoat.2020.125528_bb0205) 2019; 479
Lin (10.1016/j.surfcoat.2020.125528_bb0065) 2015; 8
Yao (10.1016/j.surfcoat.2020.125528_bb0115) 2011; 11
Azuma (10.1016/j.surfcoat.2020.125528_bb0040) 1999; 81
Kim (10.1016/j.surfcoat.2020.125528_bb0125) 2016; 8
References_xml – volume: 14
  year: 2018
  ident: bb0165
  article-title: Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries
  publication-title: Small
– volume: 658
  start-page: 91
  year: 2016
  end-page: 97
  ident: bb0200
  article-title: Preparation and characterization of core-shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 1985
  year: 2015
  end-page: 1994
  ident: bb0170
  article-title: Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes
  publication-title: ACS Nano
– volume: 8
  start-page: 3187
  year: 2015
  end-page: 3191
  ident: bb0065
  article-title: A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 547
  year: 1999
  end-page: 549
  ident: bb0085
  article-title: A high capacity nano Si composite anode material for lithium rechargeable batteries
  publication-title: Electrochem. Solid-State Lett.
– volume: 178
  start-page: 1297
  year: 2007
  end-page: 1303
  ident: bb0060
  article-title: Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries
  publication-title: Solid State Ionics
– volume: 152
  start-page: 125
  year: 2002
  end-page: 129
  ident: bb0080
  article-title: SiOx-based anodes for secondary lithium batteries
  publication-title: Solid State Ionics
– volume: 7
  year: 2017
  ident: bb0180
  article-title: Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries
  publication-title: Sci. Rep.
– volume: 479
  start-page: 287
  year: 2019
  end-page: 295
  ident: bb0205
  article-title: Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 845
  year: 2012
  end-page: 853
  ident: bb0160
  article-title: Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries
  publication-title: Nano Res.
– volume: 17
  start-page: 1512
  year: 2017
  end-page: 1519
  ident: bb0070
  article-title: Parasitic reactions in nanosized silicon anodes for lithium-ion batteries
  publication-title: Nano Lett.
– volume: 195
  start-page: 6031
  year: 2010
  end-page: 6036
  ident: bb0145
  article-title: Si–graphite composites as anode materials for lithium secondary batteries
  publication-title: J. Power Sources
– volume: 123
  start-page: 1763
  year: 1976
  end-page: 1768
  ident: bb0095
  article-title: Thermodynamic properties of the lithium-silicon system
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 37732
  year: 2019
  end-page: 37740
  ident: bb0230
  article-title: Facile synthesis of double-layer-constrained micron-sized porous Si/SiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 917
  year: 1985
  end-page: 919
  ident: bb0090
  article-title: The phase diagram of the system lithium-silicon
  publication-title: Solid State Commun.
– volume: 81
  start-page: 1
  year: 1999
  end-page: 7
  ident: bb0040
  article-title: Advanced carbon anode materials for lithium ion cells
  publication-title: J. Power Sources
– volume: 9
  start-page: 2381
  year: 2018
  end-page: 2395
  ident: bb0190
  article-title: Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells
  publication-title: Beilstein Journal of Nanotechnology
– volume: 381
  year: 2020
  ident: bb0215
  article-title: Si-based composite interconnected by multiple matrices for high-performance Li-ion batteries
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 2949
  year: 2011
  end-page: 2954
  ident: bb0115
  article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
  publication-title: Nano Lett.
– volume: 7
  start-page: 917
  year: 2017
  ident: bb0185
  article-title: Silicon derived from glass bottles as anode materials for lithium ion full cell batteries
  publication-title: Sci. Rep.
– volume: 8
  start-page: 12109
  year: 2016
  end-page: 12117
  ident: bb0125
  article-title: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 13438
  year: 2019
  end-page: 13441
  ident: bb0240
  article-title: A facile method to fabricate a porous Si/C composite with excellent cycling stability for use as the anode in a lithium ion battery
  publication-title: Chem. Commun.
– volume: 812
  year: 2020
  ident: bb0220
  article-title: Double-carbon protected silicon anode for high performance lithium-ion batteries
  publication-title: J. Alloys Compounds
– volume: 6
  start-page: Ncomms8393
  year: 2015
  ident: bb0050
  article-title: Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4715
  year: 2018
  end-page: 4725
  ident: bb0135
  article-title: Self-assembly of silicon@ oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 127
  start-page: 773
  year: 1980
  end-page: 774
  ident: bb0005
  article-title: A cyclable lithium organic electrolyte cell based on two intercalation electrodes
  publication-title: J. Electrochem. Soc.
– volume: 37
  start-page: 271
  year: 1981
  end-page: 278
  ident: bb0105
  article-title: Chemical diffusion in intermediate phases in the lithium-silicon system
  publication-title: J. Solid State Chem.
– volume: 22
  start-page: 521
  year: 1984
  end-page: 541
  ident: bb0020
  article-title: Carbonization and graphitization
  publication-title: Carbon
– volume: 248
  start-page: 721
  year: 2014
  end-page: 728
  ident: bb0120
  article-title: Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries
  publication-title: J. Power Sources
– volume: 153
  start-page: 592
  year: 2019
  end-page: 601
  ident: bb0235
  article-title: Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries
  publication-title: Carbon
– volume: 6
  start-page: 211
  year: 2014
  end-page: 218
  ident: bb0150
  article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries
  publication-title: Nano Energy
– volume: 26
  start-page: 758
  year: 2014
  end-page: 764
  ident: bb0155
  article-title: Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode
  publication-title: Adv. Mater.
– volume: 11
  start-page: 6893
  year: 2017
  end-page: 6903
  ident: bb0110
  article-title: Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries
  publication-title: ACS Nano
– volume: 488
  start-page: 294
  year: 2012
  ident: bb0055
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
– volume: 163
  start-page: 1003
  year: 2007
  end-page: 1039
  ident: bb0075
  article-title: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells
  publication-title: J. Power Sources
– volume: 29
  year: 2017
  ident: bb0195
  article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries
  publication-title: Adv. Mater.
– volume: 270
  start-page: 590
  year: 1995
  end-page: 593
  ident: bb0045
  article-title: Mechanisms for lithium insertion in carbonaceous materials
  publication-title: Science
– volume: 13
  start-page: 364
  year: 1942
  end-page: 371
  ident: bb0015
  article-title: An X-ray study of carbon black
  publication-title: J. Appl. Phys.
– volume: 128
  start-page: 725
  year: 1981
  end-page: 729
  ident: bb0100
  article-title: All-solid lithium electrodes with mixed-conductor matrix
  publication-title: J. Electrochem. Soc.
– year: 2008
  ident: bb0010
  article-title: Lithium Batteries: Science and Technology
– volume: 24
  start-page: 312
  year: 2020
  end-page: 318
  ident: bb0225
  article-title: One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries
  publication-title: Energy Storage Materials
– volume: 12
  start-page: 6280
  year: 2018
  end-page: 6291
  ident: bb0140
  article-title: Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries
  publication-title: ACS Nano
– volume: 530
  start-page: 30
  year: 2012
  end-page: 35
  ident: bb0130
  article-title: Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 1029
  year: 1956
  end-page: 1035
  ident: bb0025
  article-title: X-ray diffraction studies of neutron-irradiated graphite
  publication-title: Acta Crystallogr.
– volume: 4
  start-page: 253
  year: 1951
  end-page: 261
  ident: bb0030
  article-title: The structure of graphitic carbons
  publication-title: Acta Crystallogr.
– volume: 17
  start-page: 5600
  year: 2017
  end-page: 5606
  ident: bb0035
  article-title: Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries
  publication-title: Nano Lett.
– volume: 6
  start-page: 14230
  year: 2018
  end-page: 14238
  ident: bb0175
  article-title: Mechanical pressing route for scalable preparation of microstructured/nanostructured Si/graphite composite for lithium ion battery anodes
  publication-title: ACS Sustain. Chem. Eng.
– volume: 28
  year: 2018
  ident: bb0210
  article-title: Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 4715
  issue: 5
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125528_bb0135
  article-title: Self-assembly of silicon@ oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16760
– volume: 127
  start-page: 773
  issue: 3
  year: 1980
  ident: 10.1016/j.surfcoat.2020.125528_bb0005
  article-title: A cyclable lithium organic electrolyte cell based on two intercalation electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129753
– volume: 28
  issue: 23
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125528_bb0210
  article-title: Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800855
– volume: 81
  start-page: 1
  year: 1999
  ident: 10.1016/j.surfcoat.2020.125528_bb0040
  article-title: Advanced carbon anode materials for lithium ion cells
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00122-6
– volume: 7
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125528_bb0180
  article-title: Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries
  publication-title: Sci. Rep.
– volume: 55
  start-page: 13438
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125528_bb0240
  article-title: A facile method to fabricate a porous Si/C composite with excellent cycling stability for use as the anode in a lithium ion battery
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06661F
– volume: 128
  start-page: 725
  issue: 4
  year: 1981
  ident: 10.1016/j.surfcoat.2020.125528_bb0100
  article-title: All-solid lithium electrodes with mixed-conductor matrix
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2127495
– volume: 11
  start-page: 2949
  issue: 7
  year: 2011
  ident: 10.1016/j.surfcoat.2020.125528_bb0115
  article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life
  publication-title: Nano Lett.
  doi: 10.1021/nl201470j
– volume: 8
  start-page: 3187
  issue: 11
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125528_bb0065
  article-title: A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02487K
– volume: 6
  start-page: Ncomms8393
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125528_bb0050
  article-title: Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8393
– volume: 12
  start-page: 6280
  issue: 6
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125528_bb0140
  article-title: Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03312
– volume: 14
  issue: 47
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125528_bb0165
  article-title: Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries
  publication-title: Small
  doi: 10.1002/smll.201802457
– volume: 9
  start-page: 1985
  issue: 2
  year: 2015
  ident: 10.1016/j.surfcoat.2020.125528_bb0170
  article-title: Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/nn507003z
– volume: 248
  start-page: 721
  year: 2014
  ident: 10.1016/j.surfcoat.2020.125528_bb0120
  article-title: Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.012
– volume: 381
  year: 2020
  ident: 10.1016/j.surfcoat.2020.125528_bb0215
  article-title: Si-based composite interconnected by multiple matrices for high-performance Li-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122619
– volume: 11
  start-page: 6893
  issue: 7
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125528_bb0110
  article-title: Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02030
– volume: 29
  issue: 21
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125528_bb0195
  article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605650
– volume: 178
  start-page: 1297
  issue: 21−22
  year: 2007
  ident: 10.1016/j.surfcoat.2020.125528_bb0060
  article-title: Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2007.07.007
– volume: 123
  start-page: 1763
  issue: 12
  year: 1976
  ident: 10.1016/j.surfcoat.2020.125528_bb0095
  article-title: Thermodynamic properties of the lithium-silicon system
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2132692
– volume: 270
  start-page: 590
  issue: 5236
  year: 1995
  ident: 10.1016/j.surfcoat.2020.125528_bb0045
  article-title: Mechanisms for lithium insertion in carbonaceous materials
  publication-title: Science
  doi: 10.1126/science.270.5236.590
– volume: 2
  start-page: 547
  issue: 11
  year: 1999
  ident: 10.1016/j.surfcoat.2020.125528_bb0085
  article-title: A high capacity nano Si composite anode material for lithium rechargeable batteries
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1390899
– volume: 8
  start-page: 12109
  issue: 19
  year: 2016
  ident: 10.1016/j.surfcoat.2020.125528_bb0125
  article-title: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11628
– volume: 6
  start-page: 14230
  issue: 11
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125528_bb0175
  article-title: Mechanical pressing route for scalable preparation of microstructured/nanostructured Si/graphite composite for lithium ion battery anodes
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02880
– volume: 9
  start-page: 2381
  issue: 1
  year: 2018
  ident: 10.1016/j.surfcoat.2020.125528_bb0190
  article-title: Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells
  publication-title: Beilstein Journal of Nanotechnology
  doi: 10.3762/bjnano.9.223
– volume: 11
  start-page: 37732
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125528_bb0230
  article-title: Facile synthesis of double-layer-constrained micron-sized porous Si/SiO2/C composites for lithium-ion battery anodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12596
– volume: 195
  start-page: 6031
  issue: 18
  year: 2010
  ident: 10.1016/j.surfcoat.2020.125528_bb0145
  article-title: Si–graphite composites as anode materials for lithium secondary batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.03.008
– volume: 54
  start-page: 917
  issue: 11
  year: 1985
  ident: 10.1016/j.surfcoat.2020.125528_bb0090
  article-title: The phase diagram of the system lithium-silicon
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(85)90155-3
– volume: 658
  start-page: 91
  year: 2016
  ident: 10.1016/j.surfcoat.2020.125528_bb0200
  article-title: Preparation and characterization of core-shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.10.217
– volume: 37
  start-page: 271
  issue: 3
  year: 1981
  ident: 10.1016/j.surfcoat.2020.125528_bb0105
  article-title: Chemical diffusion in intermediate phases in the lithium-silicon system
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(81)90487-4
– volume: 17
  start-page: 1512
  issue: 3
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125528_bb0070
  article-title: Parasitic reactions in nanosized silicon anodes for lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04551
– volume: 488
  start-page: 294
  issue: 7411
  year: 2012
  ident: 10.1016/j.surfcoat.2020.125528_bb0055
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 4
  start-page: 253
  issue: 3
  year: 1951
  ident: 10.1016/j.surfcoat.2020.125528_bb0030
  article-title: The structure of graphitic carbons
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X51000842
– volume: 7
  start-page: 917
  issue: 1
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125528_bb0185
  article-title: Silicon derived from glass bottles as anode materials for lithium ion full cell batteries
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01086-8
– volume: 26
  start-page: 758
  issue: 5
  year: 2014
  ident: 10.1016/j.surfcoat.2020.125528_bb0155
  article-title: Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302757
– volume: 24
  start-page: 312
  year: 2020
  ident: 10.1016/j.surfcoat.2020.125528_bb0225
  article-title: One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2019.07.045
– volume: 9
  start-page: 1029
  issue: 12
  year: 1956
  ident: 10.1016/j.surfcoat.2020.125528_bb0025
  article-title: X-ray diffraction studies of neutron-irradiated graphite
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X56002989
– volume: 17
  start-page: 5600
  issue: 9
  year: 2017
  ident: 10.1016/j.surfcoat.2020.125528_bb0035
  article-title: Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02433
– volume: 163
  start-page: 1003
  issue: 2
  year: 2007
  ident: 10.1016/j.surfcoat.2020.125528_bb0075
  article-title: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.084
– volume: 5
  start-page: 845
  issue: 12
  year: 2012
  ident: 10.1016/j.surfcoat.2020.125528_bb0160
  article-title: Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0268-4
– volume: 479
  start-page: 287
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125528_bb0205
  article-title: Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.215
– volume: 812
  year: 2020
  ident: 10.1016/j.surfcoat.2020.125528_bb0220
  article-title: Double-carbon protected silicon anode for high performance lithium-ion batteries
  publication-title: J. Alloys Compounds
  doi: 10.1016/j.jallcom.2019.151848
– year: 2008
  ident: 10.1016/j.surfcoat.2020.125528_bb0010
– volume: 152
  start-page: 125
  year: 2002
  ident: 10.1016/j.surfcoat.2020.125528_bb0080
  article-title: SiOx-based anodes for secondary lithium batteries
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(02)00362-4
– volume: 6
  start-page: 211
  year: 2014
  ident: 10.1016/j.surfcoat.2020.125528_bb0150
  article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.04.006
– volume: 530
  start-page: 30
  year: 2012
  ident: 10.1016/j.surfcoat.2020.125528_bb0130
  article-title: Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.03.096
– volume: 22
  start-page: 521
  issue: 6
  year: 1984
  ident: 10.1016/j.surfcoat.2020.125528_bb0020
  article-title: Carbonization and graphitization
  publication-title: Carbon
  doi: 10.1016/0008-6223(84)90086-1
– volume: 153
  start-page: 592
  year: 2019
  ident: 10.1016/j.surfcoat.2020.125528_bb0235
  article-title: Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.07.067
– volume: 13
  start-page: 364
  issue: 6
  year: 1942
  ident: 10.1016/j.surfcoat.2020.125528_bb0015
  article-title: An X-ray study of carbon black
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1714879
SSID ssj0001794
Score 2.5077085
Snippet In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125528
SubjectTerms Anode
Anodes
Carbon
Carbon coatings
Core-shell
Electrode materials
Graphite
High temperature
Li ion batteries
Lithium
Lithium-ion batteries
Nanoparticles
Optimization
Rechargeable batteries
Silicon
Structural stability
Title Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries
URI https://dx.doi.org/10.1016/j.surfcoat.2020.125528
https://www.proquest.com/docview/2411135065
Volume 387
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUQLFoWCGhRgenIi27dPBwn8RKNQFOQ2FAkdpafIqNpgiYzi2767dybB48KiQXLRHEU-R5fH8fH5xLyIza549YGhkYsDBh4YDI4zXSSOoeOdN51AtnrfH6bXd6Juy0yG8_CoKxyyP19Tu-y9XAnGnozeqiq6CZGtMkiTZHVywIdP9G9DjD989-zzAMB1_1nEZCN4ekXp4QXkJ9WwTYaNZUpGi0IgVXZ356g_kvV3fxzsU_2BuJIz_pvOyBbvj4kn2ZjvbZDsvvCWvALWdz8rYHbtVVLm0BdszFLT9GykrUo_aRWr0xTR221BCjUUedbDeyTosQcdVye6rpxngKh7TFKgd1S4Oz31eYPg2BS0zlzwkL7K7m9OP89m7OhrgKzPIvXLLE5L-IgddCliI3QyJmcdR7GfpZpabXlJrc6LoKx0qdcOg20o_BlyoMXkh-R7bqp_TdCYQ3qpc2N1bDs4pktpS2KUJRYZ6zMSnFMxNiZyg6m41j7YqlGddlCjUFQGATVB-GYRE_tHnrbjXdbyDFW6hWAFMwN77adjMFVwxBuFVCbJOECKNrJB159Sj7jFe4_JWJCtterjf8ONGZtph1Op2Tn7NfV_PoRMKv1Ew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFwQFBA9AH4wDXKw3ESH6sV1ZaWvbSVerP8FFltk2qze-DfM5NHVRBSD1wTTRR5xp8_J5-_AfiamMJxa0NERiwRMvAQyeB0pNPMOXKk864XyC6LxW3-_U7c7cF8OgtDssoR-wdM79F6vBKPoxk_1HV8nVC1yTLLiNXLkr-AfXKnymewf3ZxuVg-AjLVXP-pRSAgY8CTg8IrhKhNsK0mWWVGXgtCUGP2f69Rf6F1vwSdv4HXI3dkZ8PrvYU93xzCwXxq2XYIr564C76D1fWvBuldV3esDcy1O7P2jFwro47Un8zqjWmbuKvXWA1N3FtXIwFlpDInKZdnummdZ8hphzJlSHAZ0vaf9e4-wnwy05tz4l77Pdyef7uZL6KxtUJkeZ5so9QWvEyC1EFXIjFCE21y1nmc_nmupdWWm8LqpAzGSp9x6TQyj9JXGQ9eSP4BZk3b-I_AcBvqpS2M1bjz4rmtpC3LUFbUaqzKK3EEYhpMZUffcWp_sVaTwGylpiQoSoIaknAE8WPcw-C88WyEnHKl_qghhcvDs7GnU3LVOIs7hewmTblAlnb8H4_-AgeLmx9X6upieXkCL-kO_Y5KxSnMtpud_4SsZms-j1X7G5A-98Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+double+core-shell+carbon%2Fsilicon%2Fgraphite+composite+anode+materials+for+lithium-ion+batteries&rft.jtitle=Surface+%26+coatings+technology&rft.au=Hsu%2C+Yu-Ching&rft.au=Hsieh%2C+Cheng-Che&rft.au=Liu%2C+Wei-Ren&rft.date=2020-04-15&rft.issn=0257-8972&rft.volume=387&rft.spage=125528&rft_id=info:doi/10.1016%2Fj.surfcoat.2020.125528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2020_125528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon