Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries
In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of...
Saved in:
Published in | Surface & coatings technology Vol. 387; pp. 125528 - 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0257-8972 1879-3347 |
DOI | 10.1016/j.surfcoat.2020.125528 |
Cover
Loading…
Abstract | In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of Si during charge and discharge processes. MCMB serves as the core material, by adding nano-sized silicon on the surface to increase reversible capacity and then make a pitch coating as the shell via a high-temperature carbonization process. We try to optimize the content of silicon by 10%, 20%, 30% and 40% onto MCMB. With the increase of silicon content, the reversible capacity is significantly improved. When the silicon content increases to 40%, the reversible capacity begins to decline rapidly. The optimal silicon content in Si/MCMB composite is 30%. The composition-optimized Si/C composite deliver a reversible capacity of 847 mAh/g with a columbic efficiency of 87.8%. After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. The results indicate that we demonstrate a silicon/carbon composite with high reversible capacity and good cycle stability.
[Display omitted]
•First attempt to employ a double core-shell Si/C composite as an anode material for lithium ion battery•The double core-shell structure delivered a reversible capacity of 847 mAh/g with 87.8% columbic efficiency in the first cycle.•After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. |
---|---|
AbstractList | In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of Si during charge and discharge processes. MCMB serves as the core material, by adding nano-sized silicon on the surface to increase reversible capacity and then make a pitch coating as the shell via a high-temperature carbonization process. We try to optimize the content of silicon by 10%, 20%, 30% and 40% onto MCMB. With the increase of silicon content, the reversible capacity is significantly improved. When the silicon content increases to 40%, the reversible capacity begins to decline rapidly. The optimal silicon content in Si/MCMB composite is 30%. The composition-optimized Si/C composite deliver a reversible capacity of 847 mAh/g with a columbic efficiency of 87.8%. After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. The results indicate that we demonstrate a silicon/carbon composite with high reversible capacity and good cycle stability. In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including crystalline mesocarbon microbeads (MCMB) and amorphous pitch to construct a highly stable carbon matrix to stabilize structural stability of Si during charge and discharge processes. MCMB serves as the core material, by adding nano-sized silicon on the surface to increase reversible capacity and then make a pitch coating as the shell via a high-temperature carbonization process. We try to optimize the content of silicon by 10%, 20%, 30% and 40% onto MCMB. With the increase of silicon content, the reversible capacity is significantly improved. When the silicon content increases to 40%, the reversible capacity begins to decline rapidly. The optimal silicon content in Si/MCMB composite is 30%. The composition-optimized Si/C composite deliver a reversible capacity of 847 mAh/g with a columbic efficiency of 87.8%. After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. The results indicate that we demonstrate a silicon/carbon composite with high reversible capacity and good cycle stability. [Display omitted] •First attempt to employ a double core-shell Si/C composite as an anode material for lithium ion battery•The double core-shell structure delivered a reversible capacity of 847 mAh/g with 87.8% columbic efficiency in the first cycle.•After 500 cycles, the capacity still remains at 650 mAh/g with >79% capacity retention. |
ArticleNumber | 125528 |
Author | Hsieh, Cheng-Che Hsu, Yu-Ching Liu, Wei-Ren |
Author_xml | – sequence: 1 givenname: Yu-Ching surname: Hsu fullname: Hsu, Yu-Ching – sequence: 2 givenname: Cheng-Che surname: Hsieh fullname: Hsieh, Cheng-Che – sequence: 3 givenname: Wei-Ren surname: Liu fullname: Liu, Wei-Ren email: wrliu@cycu.edu.tw |
BookMark | eNqFkE1Lw0AQhhepYKv-BQl4Tt2PbD7Ag1L8goIH9bxMNrN2Q5qtuxuh_96E6sVLTzPMvO87w7Mgs971SMgVo0tGWX7TLsPgjXYQl5zyccil5OUJmbOyqFIhsmJG5pTLIi2rgp-RRQgtpZQVVTYn7du-jxsMNiTOJI0b6g4T7TymYYNdl2jwtetvgu2sHuunh93Gxkmy3bkwddC7BpMtRPQWupAY55POxo0dtql1fVJDnFYYLsipGQV4-VvPycfjw_vqOV2_Pr2s7tepFhmNKdO5KKipwEApaS2BZUI2ukFBZZZBpUGLOtdAC1PrCrmoGmBSFlhyYVBW4pxcH3J33n0NGKJq3eD78aTiGWNMSJrLUXV7UGnvQvBolLYR4vhx9GA7xaia6KpW_dFVE111oDva83_2nbdb8PvjxruDEUcE3xa9Ctpir7GxHnVUjbPHIn4AxzGddQ |
CitedBy_id | crossref_primary_10_1016_j_apt_2024_104463 crossref_primary_10_1007_s10008_024_05967_7 crossref_primary_10_1016_j_apmt_2024_102561 crossref_primary_10_1016_j_powtec_2023_118988 crossref_primary_10_1088_1742_6596_1858_1_012035 crossref_primary_10_3390_ma16020541 crossref_primary_10_1002_slct_202303545 crossref_primary_10_1007_s10854_021_07500_2 crossref_primary_10_3389_fenrg_2021_651386 crossref_primary_10_1007_s11581_021_04278_5 crossref_primary_10_1016_j_wasman_2021_08_037 crossref_primary_10_1016_j_est_2024_113125 crossref_primary_10_1039_D4SE00314D crossref_primary_10_1016_j_diamond_2020_107898 crossref_primary_10_1016_j_est_2023_109142 crossref_primary_10_1016_j_jpowsour_2022_232274 crossref_primary_10_1021_acs_energyfuels_0c03725 crossref_primary_10_1016_j_est_2023_107045 crossref_primary_10_1016_j_jpowsour_2025_236314 crossref_primary_10_3389_fenrg_2020_00170 crossref_primary_10_1016_j_susmat_2022_e00410 crossref_primary_10_1016_j_jelechem_2023_117356 crossref_primary_10_1016_j_jiec_2025_01_006 crossref_primary_10_1016_j_jpowsour_2024_234617 crossref_primary_10_1016_j_ensm_2024_103243 crossref_primary_10_1007_s11581_022_04622_3 crossref_primary_10_1016_j_ensm_2020_11_028 crossref_primary_10_1002_cssc_202101837 crossref_primary_10_1149_1945_7111_ad1ecd crossref_primary_10_1016_j_ensm_2020_10_021 crossref_primary_10_1016_j_mtadv_2024_100472 crossref_primary_10_3390_ijms221910331 crossref_primary_10_1002_smll_202405005 crossref_primary_10_1016_j_ces_2024_120302 crossref_primary_10_1016_j_est_2024_113794 crossref_primary_10_1021_acsaem_2c00933 crossref_primary_10_3390_batteries9070377 crossref_primary_10_1016_j_surfin_2020_100585 crossref_primary_10_1111_jace_19444 crossref_primary_10_1002_jccs_202300129 crossref_primary_10_1016_j_jallcom_2024_176404 crossref_primary_10_1016_j_susmat_2023_e00583 crossref_primary_10_1149_1945_7111_ac069b crossref_primary_10_3390_en16041935 crossref_primary_10_1016_j_surfcoat_2024_130746 |
Cites_doi | 10.1021/acsami.7b16760 10.1149/1.2129753 10.1002/adfm.201800855 10.1016/S0378-7753(99)00122-6 10.1039/C9CC06661F 10.1149/1.2127495 10.1021/nl201470j 10.1039/C5EE02487K 10.1038/ncomms8393 10.1021/acsnano.8b03312 10.1002/smll.201802457 10.1021/nn507003z 10.1016/j.jpowsour.2013.10.012 10.1016/j.cej.2019.122619 10.1021/acsnano.7b02030 10.1002/adma.201605650 10.1016/j.ssi.2007.07.007 10.1149/1.2132692 10.1126/science.270.5236.590 10.1149/1.1390899 10.1021/acsami.5b11628 10.1021/acssuschemeng.8b02880 10.3762/bjnano.9.223 10.1021/acsami.9b12596 10.1016/j.jpowsour.2010.03.008 10.1016/0038-1098(85)90155-3 10.1016/j.jallcom.2015.10.217 10.1016/0022-4596(81)90487-4 10.1021/acs.nanolett.6b04551 10.1038/nature11475 10.1107/S0365110X51000842 10.1038/s41598-017-01086-8 10.1002/adma.201302757 10.1016/j.ensm.2019.07.045 10.1107/S0365110X56002989 10.1021/acs.nanolett.7b02433 10.1016/j.jpowsour.2006.09.084 10.1007/s12274-012-0268-4 10.1016/j.apsusc.2019.01.215 10.1016/j.jallcom.2019.151848 10.1016/S0167-2738(02)00362-4 10.1016/j.nanoen.2014.04.006 10.1016/j.jallcom.2012.03.096 10.1016/0008-6223(84)90086-1 10.1016/j.carbon.2019.07.067 10.1063/1.1714879 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Apr 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2020 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.surfcoat.2020.125528 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3347 |
EndPage | 6 |
ExternalDocumentID | 10_1016_j_surfcoat_2020_125528 S0257897220301973 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K XPP ZMT ~02 ~G- 29Q AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HX~ HZ~ NDZJH R2- RIG SEW SMS SPG SSH WUQ 7QQ 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c340t-1c6370f9afa850b5a1435dcde30544a9cac3b6ca07fbc9e239da1557e823fe593 |
IEDL.DBID | .~1 |
ISSN | 0257-8972 |
IngestDate | Mon Jul 14 10:28:23 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Tue Jul 01 03:07:51 EDT 2025 Fri Feb 23 02:49:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Silicon Carbon coatings Li ion batteries Anode Core-shell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-1c6370f9afa850b5a1435dcde30544a9cac3b6ca07fbc9e239da1557e823fe593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2411135065 |
PQPubID | 2045394 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2411135065 crossref_citationtrail_10_1016_j_surfcoat_2020_125528 crossref_primary_10_1016_j_surfcoat_2020_125528 elsevier_sciencedirect_doi_10_1016_j_surfcoat_2020_125528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Surface & coatings technology |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Kim, Lee, Kim, Kim, Yang, Park (bb0125) 2016; 8 Zhou, Fan, Tian, Zhou, Guo, Kou, Zhang (bb0200) 2016; 658 Son, Park, Kwon, Park, Rümmeli, Bachmatiuk, Song, Ku, Choi, Choi (bb0050) 2015; 6 Van der Marel, Vinke, Van der Lugt (bb0090) 1985; 54 Ruttert, Holtstiege, Hüsker, Börner, Winter, Placke (bb0190) 2018; 9 Yao, McDowell, Ryu, Wu, Liu, Hu, Nix, Cui (bb0115) 2011; 11 Lin, Han, Zhou, Zhang, Xu, Zhu, Qian (bb0065) 2015; 8 Wen, Huggins (bb0105) 1981; 37 Gao, Xiao, Plümel, Xu, Ren, Zuo, Liu, Schulz, Wiggers, Amine (bb0070) 2017; 17 Li, Huang, Chen, Wu, Liang (bb0085) 1999; 2 Zhu, Zhou, Guan, Cai, Zhao, Zhu, Zhu, Zhu, Qian (bb0165) 2018; 14 Liu, Shan, Huang, Wang, Lin, Cao, Chen, Meng, Chen (bb0135) 2018; 10 Wang, Favors, Li, Liu, Ye, Fu, Bozhilov, Guo, Ozkan, Ozkan (bb0180) 2017; 7 Shen, Fang, Ge, Zhang, Liu, Ma, Mecklenburg, Nie, Zhou (bb0140) 2018; 12 Yi, Zai, Dai, Gordin, Wang (bb0150) 2014; 6 Franklin (bb0030) 1951; 4 Kasavajjula, Wang, Appleby (bb0075) 2007; 163 Chen, Shen, van Aken, Maier, Yu (bb0195) 2017; 29 Zhu, Chen, Wu, Chu, Zhang, Jiang, Zeng, Zhang, Guo (bb0220) 2020; 812 Wang, Zhou, Cao, Xu, Zhang, Li, Zhou, Ma, Chen, Song (bb0225) 2020; 24 Li, Hou, Sha, Wang, Hu, Liu, Shao (bb0120) 2014; 248 Boukamp, Lesh, Huggins (bb0100) 1981; 128 Nzabahimana, Guo, Hu (bb0205) 2019; 479 Bacon, Warren (bb0025) 1956; 9 Dahn, Zheng, Liu, Xue (bb0045) 1995; 270 Sharma, Seefurth (bb0095) 1976; 123 Tong, Wang, Chen, Qiu, Fang, Yang, Wang, Yang (bb0235) 2019; 153 Zhou, Cao, Wan, Guo (bb0160) 2012; 5 Jeong, Du, Islam, Lee, Sun, Jung (bb0035) 2017; 17 Nazri, Pistoia (bb0010) 2008 Li, Liu, Wang, Mutlu, Bell, Ahmed, Ye, Ozkan, Ozkan (bb0185) 2017; 7 Lazzari, Scrosati (bb0005) 1980; 127 Lai, Guo, Wang, Li, Zhang, Wu, Yue (bb0130) 2012; 530 Wang, Tan, Li, Xue, Sun (bb0230) 2019; 11 Jo, Kim, Kim, Song, Kim, Kwag, Lee, Park, Kim (bb0145) 2010; 195 Yang, Takeda, Imanishi, Capiglia, Xie, Yamamoto (bb0080) 2002; 152 Liu, Li, Goodman, Zhang, Epstein, Huang, Pan, Kim, Choi, Huang (bb0170) 2015; 9 Sandu, Moreau, Guyomard, Brousse, Roue (bb0060) 2007; 178 Azuma, Imoto, Yamada, Sekai (bb0040) 1999; 81 Chang, Huang, Zhou, Cui, Hallac, Jiang, Hurley, Chen (bb0155) 2014; 26 Yi, Wang, Qian, Liu, Lin, Qian (bb0175) 2018; 6 Sohn, Lee, Park, Park, Choi, Kim (bb0210) 2018; 28 Lin, Ma, Xie, Wang, Zhang, Peng (bb0110) 2017; 11 Biscoe, Warren (bb0015) 1942; 13 Zhang, Zhou, Zhang, Yan, Huang, Fang (bb0240) 2019; 55 Oberlin (bb0020) 1984; 22 Chu, Majumdar (bb0055) 2012; 488 Lee, Nam, Jung, Park (bb0215) 2020; 381 Chu (10.1016/j.surfcoat.2020.125528_bb0055) 2012; 488 Yang (10.1016/j.surfcoat.2020.125528_bb0080) 2002; 152 Wang (10.1016/j.surfcoat.2020.125528_bb0180) 2017; 7 Zhang (10.1016/j.surfcoat.2020.125528_bb0240) 2019; 55 Lai (10.1016/j.surfcoat.2020.125528_bb0130) 2012; 530 Chen (10.1016/j.surfcoat.2020.125528_bb0195) 2017; 29 Tong (10.1016/j.surfcoat.2020.125528_bb0235) 2019; 153 Liu (10.1016/j.surfcoat.2020.125528_bb0135) 2018; 10 Sandu (10.1016/j.surfcoat.2020.125528_bb0060) 2007; 178 Kasavajjula (10.1016/j.surfcoat.2020.125528_bb0075) 2007; 163 Franklin (10.1016/j.surfcoat.2020.125528_bb0030) 1951; 4 Jeong (10.1016/j.surfcoat.2020.125528_bb0035) 2017; 17 Dahn (10.1016/j.surfcoat.2020.125528_bb0045) 1995; 270 Shen (10.1016/j.surfcoat.2020.125528_bb0140) 2018; 12 Yi (10.1016/j.surfcoat.2020.125528_bb0150) 2014; 6 Zhou (10.1016/j.surfcoat.2020.125528_bb0200) 2016; 658 Lin (10.1016/j.surfcoat.2020.125528_bb0110) 2017; 11 Wang (10.1016/j.surfcoat.2020.125528_bb0225) 2020; 24 Gao (10.1016/j.surfcoat.2020.125528_bb0070) 2017; 17 Ruttert (10.1016/j.surfcoat.2020.125528_bb0190) 2018; 9 Zhu (10.1016/j.surfcoat.2020.125528_bb0220) 2020; 812 Nazri (10.1016/j.surfcoat.2020.125528_bb0010) 2008 Jo (10.1016/j.surfcoat.2020.125528_bb0145) 2010; 195 Son (10.1016/j.surfcoat.2020.125528_bb0050) 2015; 6 Wen (10.1016/j.surfcoat.2020.125528_bb0105) 1981; 37 Li (10.1016/j.surfcoat.2020.125528_bb0120) 2014; 248 Yi (10.1016/j.surfcoat.2020.125528_bb0175) 2018; 6 Oberlin (10.1016/j.surfcoat.2020.125528_bb0020) 1984; 22 Bacon (10.1016/j.surfcoat.2020.125528_bb0025) 1956; 9 Boukamp (10.1016/j.surfcoat.2020.125528_bb0100) 1981; 128 Li (10.1016/j.surfcoat.2020.125528_bb0185) 2017; 7 Lee (10.1016/j.surfcoat.2020.125528_bb0215) 2020; 381 Lazzari (10.1016/j.surfcoat.2020.125528_bb0005) 1980; 127 Liu (10.1016/j.surfcoat.2020.125528_bb0170) 2015; 9 Li (10.1016/j.surfcoat.2020.125528_bb0085) 1999; 2 Chang (10.1016/j.surfcoat.2020.125528_bb0155) 2014; 26 Van der Marel (10.1016/j.surfcoat.2020.125528_bb0090) 1985; 54 Biscoe (10.1016/j.surfcoat.2020.125528_bb0015) 1942; 13 Sohn (10.1016/j.surfcoat.2020.125528_bb0210) 2018; 28 Zhou (10.1016/j.surfcoat.2020.125528_bb0160) 2012; 5 Wang (10.1016/j.surfcoat.2020.125528_bb0230) 2019; 11 Sharma (10.1016/j.surfcoat.2020.125528_bb0095) 1976; 123 Zhu (10.1016/j.surfcoat.2020.125528_bb0165) 2018; 14 Nzabahimana (10.1016/j.surfcoat.2020.125528_bb0205) 2019; 479 Lin (10.1016/j.surfcoat.2020.125528_bb0065) 2015; 8 Yao (10.1016/j.surfcoat.2020.125528_bb0115) 2011; 11 Azuma (10.1016/j.surfcoat.2020.125528_bb0040) 1999; 81 Kim (10.1016/j.surfcoat.2020.125528_bb0125) 2016; 8 |
References_xml | – volume: 14 year: 2018 ident: bb0165 article-title: Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries publication-title: Small – volume: 658 start-page: 91 year: 2016 end-page: 97 ident: bb0200 article-title: Preparation and characterization of core-shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries publication-title: J. Alloys Compd. – volume: 9 start-page: 1985 year: 2015 end-page: 1994 ident: bb0170 article-title: Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes publication-title: ACS Nano – volume: 8 start-page: 3187 year: 2015 end-page: 3191 ident: bb0065 article-title: A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries publication-title: Energy Environ. Sci. – volume: 2 start-page: 547 year: 1999 end-page: 549 ident: bb0085 article-title: A high capacity nano Si composite anode material for lithium rechargeable batteries publication-title: Electrochem. Solid-State Lett. – volume: 178 start-page: 1297 year: 2007 end-page: 1303 ident: bb0060 article-title: Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries publication-title: Solid State Ionics – volume: 152 start-page: 125 year: 2002 end-page: 129 ident: bb0080 article-title: SiOx-based anodes for secondary lithium batteries publication-title: Solid State Ionics – volume: 7 year: 2017 ident: bb0180 article-title: Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries publication-title: Sci. Rep. – volume: 479 start-page: 287 year: 2019 end-page: 295 ident: bb0205 article-title: Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries publication-title: Appl. Surf. Sci. – volume: 5 start-page: 845 year: 2012 end-page: 853 ident: bb0160 article-title: Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries publication-title: Nano Res. – volume: 17 start-page: 1512 year: 2017 end-page: 1519 ident: bb0070 article-title: Parasitic reactions in nanosized silicon anodes for lithium-ion batteries publication-title: Nano Lett. – volume: 195 start-page: 6031 year: 2010 end-page: 6036 ident: bb0145 article-title: Si–graphite composites as anode materials for lithium secondary batteries publication-title: J. Power Sources – volume: 123 start-page: 1763 year: 1976 end-page: 1768 ident: bb0095 article-title: Thermodynamic properties of the lithium-silicon system publication-title: J. Electrochem. Soc. – volume: 11 start-page: 37732 year: 2019 end-page: 37740 ident: bb0230 article-title: Facile synthesis of double-layer-constrained micron-sized porous Si/SiO publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 917 year: 1985 end-page: 919 ident: bb0090 article-title: The phase diagram of the system lithium-silicon publication-title: Solid State Commun. – volume: 81 start-page: 1 year: 1999 end-page: 7 ident: bb0040 article-title: Advanced carbon anode materials for lithium ion cells publication-title: J. Power Sources – volume: 9 start-page: 2381 year: 2018 end-page: 2395 ident: bb0190 article-title: Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells publication-title: Beilstein Journal of Nanotechnology – volume: 381 year: 2020 ident: bb0215 article-title: Si-based composite interconnected by multiple matrices for high-performance Li-ion batteries publication-title: Chem. Eng. J. – volume: 11 start-page: 2949 year: 2011 end-page: 2954 ident: bb0115 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. – volume: 7 start-page: 917 year: 2017 ident: bb0185 article-title: Silicon derived from glass bottles as anode materials for lithium ion full cell batteries publication-title: Sci. Rep. – volume: 8 start-page: 12109 year: 2016 end-page: 12117 ident: bb0125 article-title: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 13438 year: 2019 end-page: 13441 ident: bb0240 article-title: A facile method to fabricate a porous Si/C composite with excellent cycling stability for use as the anode in a lithium ion battery publication-title: Chem. Commun. – volume: 812 year: 2020 ident: bb0220 article-title: Double-carbon protected silicon anode for high performance lithium-ion batteries publication-title: J. Alloys Compounds – volume: 6 start-page: Ncomms8393 year: 2015 ident: bb0050 article-title: Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density publication-title: Nat. Commun. – volume: 10 start-page: 4715 year: 2018 end-page: 4725 ident: bb0135 article-title: Self-assembly of silicon@ oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 127 start-page: 773 year: 1980 end-page: 774 ident: bb0005 article-title: A cyclable lithium organic electrolyte cell based on two intercalation electrodes publication-title: J. Electrochem. Soc. – volume: 37 start-page: 271 year: 1981 end-page: 278 ident: bb0105 article-title: Chemical diffusion in intermediate phases in the lithium-silicon system publication-title: J. Solid State Chem. – volume: 22 start-page: 521 year: 1984 end-page: 541 ident: bb0020 article-title: Carbonization and graphitization publication-title: Carbon – volume: 248 start-page: 721 year: 2014 end-page: 728 ident: bb0120 article-title: Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries publication-title: J. Power Sources – volume: 153 start-page: 592 year: 2019 end-page: 601 ident: bb0235 article-title: Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries publication-title: Carbon – volume: 6 start-page: 211 year: 2014 end-page: 218 ident: bb0150 article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries publication-title: Nano Energy – volume: 26 start-page: 758 year: 2014 end-page: 764 ident: bb0155 article-title: Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode publication-title: Adv. Mater. – volume: 11 start-page: 6893 year: 2017 end-page: 6903 ident: bb0110 article-title: Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries publication-title: ACS Nano – volume: 488 start-page: 294 year: 2012 ident: bb0055 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature – volume: 163 start-page: 1003 year: 2007 end-page: 1039 ident: bb0075 article-title: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells publication-title: J. Power Sources – volume: 29 year: 2017 ident: bb0195 article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries publication-title: Adv. Mater. – volume: 270 start-page: 590 year: 1995 end-page: 593 ident: bb0045 article-title: Mechanisms for lithium insertion in carbonaceous materials publication-title: Science – volume: 13 start-page: 364 year: 1942 end-page: 371 ident: bb0015 article-title: An X-ray study of carbon black publication-title: J. Appl. Phys. – volume: 128 start-page: 725 year: 1981 end-page: 729 ident: bb0100 article-title: All-solid lithium electrodes with mixed-conductor matrix publication-title: J. Electrochem. Soc. – year: 2008 ident: bb0010 article-title: Lithium Batteries: Science and Technology – volume: 24 start-page: 312 year: 2020 end-page: 318 ident: bb0225 article-title: One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries publication-title: Energy Storage Materials – volume: 12 start-page: 6280 year: 2018 end-page: 6291 ident: bb0140 article-title: Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries publication-title: ACS Nano – volume: 530 start-page: 30 year: 2012 end-page: 35 ident: bb0130 article-title: Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries publication-title: J. Alloys Compd. – volume: 9 start-page: 1029 year: 1956 end-page: 1035 ident: bb0025 article-title: X-ray diffraction studies of neutron-irradiated graphite publication-title: Acta Crystallogr. – volume: 4 start-page: 253 year: 1951 end-page: 261 ident: bb0030 article-title: The structure of graphitic carbons publication-title: Acta Crystallogr. – volume: 17 start-page: 5600 year: 2017 end-page: 5606 ident: bb0035 article-title: Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries publication-title: Nano Lett. – volume: 6 start-page: 14230 year: 2018 end-page: 14238 ident: bb0175 article-title: Mechanical pressing route for scalable preparation of microstructured/nanostructured Si/graphite composite for lithium ion battery anodes publication-title: ACS Sustain. Chem. Eng. – volume: 28 year: 2018 ident: bb0210 article-title: Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering publication-title: Adv. Funct. Mater. – volume: 10 start-page: 4715 issue: 5 year: 2018 ident: 10.1016/j.surfcoat.2020.125528_bb0135 article-title: Self-assembly of silicon@ oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16760 – volume: 127 start-page: 773 issue: 3 year: 1980 ident: 10.1016/j.surfcoat.2020.125528_bb0005 article-title: A cyclable lithium organic electrolyte cell based on two intercalation electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129753 – volume: 28 issue: 23 year: 2018 ident: 10.1016/j.surfcoat.2020.125528_bb0210 article-title: Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800855 – volume: 81 start-page: 1 year: 1999 ident: 10.1016/j.surfcoat.2020.125528_bb0040 article-title: Advanced carbon anode materials for lithium ion cells publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00122-6 – volume: 7 year: 2017 ident: 10.1016/j.surfcoat.2020.125528_bb0180 article-title: Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries publication-title: Sci. Rep. – volume: 55 start-page: 13438 year: 2019 ident: 10.1016/j.surfcoat.2020.125528_bb0240 article-title: A facile method to fabricate a porous Si/C composite with excellent cycling stability for use as the anode in a lithium ion battery publication-title: Chem. Commun. doi: 10.1039/C9CC06661F – volume: 128 start-page: 725 issue: 4 year: 1981 ident: 10.1016/j.surfcoat.2020.125528_bb0100 article-title: All-solid lithium electrodes with mixed-conductor matrix publication-title: J. Electrochem. Soc. doi: 10.1149/1.2127495 – volume: 11 start-page: 2949 issue: 7 year: 2011 ident: 10.1016/j.surfcoat.2020.125528_bb0115 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. doi: 10.1021/nl201470j – volume: 8 start-page: 3187 issue: 11 year: 2015 ident: 10.1016/j.surfcoat.2020.125528_bb0065 article-title: A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02487K – volume: 6 start-page: Ncomms8393 year: 2015 ident: 10.1016/j.surfcoat.2020.125528_bb0050 article-title: Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density publication-title: Nat. Commun. doi: 10.1038/ncomms8393 – volume: 12 start-page: 6280 issue: 6 year: 2018 ident: 10.1016/j.surfcoat.2020.125528_bb0140 article-title: Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.8b03312 – volume: 14 issue: 47 year: 2018 ident: 10.1016/j.surfcoat.2020.125528_bb0165 article-title: Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries publication-title: Small doi: 10.1002/smll.201802457 – volume: 9 start-page: 1985 issue: 2 year: 2015 ident: 10.1016/j.surfcoat.2020.125528_bb0170 article-title: Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes publication-title: ACS Nano doi: 10.1021/nn507003z – volume: 248 start-page: 721 year: 2014 ident: 10.1016/j.surfcoat.2020.125528_bb0120 article-title: Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.012 – volume: 381 year: 2020 ident: 10.1016/j.surfcoat.2020.125528_bb0215 article-title: Si-based composite interconnected by multiple matrices for high-performance Li-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122619 – volume: 11 start-page: 6893 issue: 7 year: 2017 ident: 10.1016/j.surfcoat.2020.125528_bb0110 article-title: Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b02030 – volume: 29 issue: 21 year: 2017 ident: 10.1016/j.surfcoat.2020.125528_bb0195 article-title: Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201605650 – volume: 178 start-page: 1297 issue: 21−22 year: 2007 ident: 10.1016/j.surfcoat.2020.125528_bb0060 article-title: Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2007.07.007 – volume: 123 start-page: 1763 issue: 12 year: 1976 ident: 10.1016/j.surfcoat.2020.125528_bb0095 article-title: Thermodynamic properties of the lithium-silicon system publication-title: J. Electrochem. Soc. doi: 10.1149/1.2132692 – volume: 270 start-page: 590 issue: 5236 year: 1995 ident: 10.1016/j.surfcoat.2020.125528_bb0045 article-title: Mechanisms for lithium insertion in carbonaceous materials publication-title: Science doi: 10.1126/science.270.5236.590 – volume: 2 start-page: 547 issue: 11 year: 1999 ident: 10.1016/j.surfcoat.2020.125528_bb0085 article-title: A high capacity nano Si composite anode material for lithium rechargeable batteries publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1390899 – volume: 8 start-page: 12109 issue: 19 year: 2016 ident: 10.1016/j.surfcoat.2020.125528_bb0125 article-title: Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11628 – volume: 6 start-page: 14230 issue: 11 year: 2018 ident: 10.1016/j.surfcoat.2020.125528_bb0175 article-title: Mechanical pressing route for scalable preparation of microstructured/nanostructured Si/graphite composite for lithium ion battery anodes publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02880 – volume: 9 start-page: 2381 issue: 1 year: 2018 ident: 10.1016/j.surfcoat.2020.125528_bb0190 article-title: Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells publication-title: Beilstein Journal of Nanotechnology doi: 10.3762/bjnano.9.223 – volume: 11 start-page: 37732 year: 2019 ident: 10.1016/j.surfcoat.2020.125528_bb0230 article-title: Facile synthesis of double-layer-constrained micron-sized porous Si/SiO2/C composites for lithium-ion battery anodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12596 – volume: 195 start-page: 6031 issue: 18 year: 2010 ident: 10.1016/j.surfcoat.2020.125528_bb0145 article-title: Si–graphite composites as anode materials for lithium secondary batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.03.008 – volume: 54 start-page: 917 issue: 11 year: 1985 ident: 10.1016/j.surfcoat.2020.125528_bb0090 article-title: The phase diagram of the system lithium-silicon publication-title: Solid State Commun. doi: 10.1016/0038-1098(85)90155-3 – volume: 658 start-page: 91 year: 2016 ident: 10.1016/j.surfcoat.2020.125528_bb0200 article-title: Preparation and characterization of core-shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.10.217 – volume: 37 start-page: 271 issue: 3 year: 1981 ident: 10.1016/j.surfcoat.2020.125528_bb0105 article-title: Chemical diffusion in intermediate phases in the lithium-silicon system publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(81)90487-4 – volume: 17 start-page: 1512 issue: 3 year: 2017 ident: 10.1016/j.surfcoat.2020.125528_bb0070 article-title: Parasitic reactions in nanosized silicon anodes for lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04551 – volume: 488 start-page: 294 issue: 7411 year: 2012 ident: 10.1016/j.surfcoat.2020.125528_bb0055 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 4 start-page: 253 issue: 3 year: 1951 ident: 10.1016/j.surfcoat.2020.125528_bb0030 article-title: The structure of graphitic carbons publication-title: Acta Crystallogr. doi: 10.1107/S0365110X51000842 – volume: 7 start-page: 917 issue: 1 year: 2017 ident: 10.1016/j.surfcoat.2020.125528_bb0185 article-title: Silicon derived from glass bottles as anode materials for lithium ion full cell batteries publication-title: Sci. Rep. doi: 10.1038/s41598-017-01086-8 – volume: 26 start-page: 758 issue: 5 year: 2014 ident: 10.1016/j.surfcoat.2020.125528_bb0155 article-title: Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode publication-title: Adv. Mater. doi: 10.1002/adma.201302757 – volume: 24 start-page: 312 year: 2020 ident: 10.1016/j.surfcoat.2020.125528_bb0225 article-title: One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2019.07.045 – volume: 9 start-page: 1029 issue: 12 year: 1956 ident: 10.1016/j.surfcoat.2020.125528_bb0025 article-title: X-ray diffraction studies of neutron-irradiated graphite publication-title: Acta Crystallogr. doi: 10.1107/S0365110X56002989 – volume: 17 start-page: 5600 issue: 9 year: 2017 ident: 10.1016/j.surfcoat.2020.125528_bb0035 article-title: Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02433 – volume: 163 start-page: 1003 issue: 2 year: 2007 ident: 10.1016/j.surfcoat.2020.125528_bb0075 article-title: Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.09.084 – volume: 5 start-page: 845 issue: 12 year: 2012 ident: 10.1016/j.surfcoat.2020.125528_bb0160 article-title: Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries publication-title: Nano Res. doi: 10.1007/s12274-012-0268-4 – volume: 479 start-page: 287 year: 2019 ident: 10.1016/j.surfcoat.2020.125528_bb0205 article-title: Facile synthesis of Si@void@C nanocomposites from low-cost microsized Si as anode materials for lithium-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.215 – volume: 812 year: 2020 ident: 10.1016/j.surfcoat.2020.125528_bb0220 article-title: Double-carbon protected silicon anode for high performance lithium-ion batteries publication-title: J. Alloys Compounds doi: 10.1016/j.jallcom.2019.151848 – year: 2008 ident: 10.1016/j.surfcoat.2020.125528_bb0010 – volume: 152 start-page: 125 year: 2002 ident: 10.1016/j.surfcoat.2020.125528_bb0080 article-title: SiOx-based anodes for secondary lithium batteries publication-title: Solid State Ionics doi: 10.1016/S0167-2738(02)00362-4 – volume: 6 start-page: 211 year: 2014 ident: 10.1016/j.surfcoat.2020.125528_bb0150 article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.006 – volume: 530 start-page: 30 year: 2012 ident: 10.1016/j.surfcoat.2020.125528_bb0130 article-title: Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.03.096 – volume: 22 start-page: 521 issue: 6 year: 1984 ident: 10.1016/j.surfcoat.2020.125528_bb0020 article-title: Carbonization and graphitization publication-title: Carbon doi: 10.1016/0008-6223(84)90086-1 – volume: 153 start-page: 592 year: 2019 ident: 10.1016/j.surfcoat.2020.125528_bb0235 article-title: Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2019.07.067 – volume: 13 start-page: 364 issue: 6 year: 1942 ident: 10.1016/j.surfcoat.2020.125528_bb0015 article-title: An X-ray study of carbon black publication-title: J. Appl. Phys. doi: 10.1063/1.1714879 |
SSID | ssj0001794 |
Score | 2.5077085 |
Snippet | In this study, we propose a double core-shell carbon/silicon/graphite composite anode for Li ion batteries. We choose two different sorts of carbon, including... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 125528 |
SubjectTerms | Anode Anodes Carbon Carbon coatings Core-shell Electrode materials Graphite High temperature Li ion batteries Lithium Lithium-ion batteries Nanoparticles Optimization Rechargeable batteries Silicon Structural stability |
Title | Synthesis of double core-shell carbon/silicon/graphite composite anode materials for lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.surfcoat.2020.125528 https://www.proquest.com/docview/2411135065 |
Volume | 387 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUQLFoWCGhRgenIi27dPBwn8RKNQFOQ2FAkdpafIqNpgiYzi2767dybB48KiQXLRHEU-R5fH8fH5xLyIza549YGhkYsDBh4YDI4zXSSOoeOdN51AtnrfH6bXd6Juy0yG8_CoKxyyP19Tu-y9XAnGnozeqiq6CZGtMkiTZHVywIdP9G9DjD989-zzAMB1_1nEZCN4ekXp4QXkJ9WwTYaNZUpGi0IgVXZ356g_kvV3fxzsU_2BuJIz_pvOyBbvj4kn2ZjvbZDsvvCWvALWdz8rYHbtVVLm0BdszFLT9GykrUo_aRWr0xTR221BCjUUedbDeyTosQcdVye6rpxngKh7TFKgd1S4Oz31eYPg2BS0zlzwkL7K7m9OP89m7OhrgKzPIvXLLE5L-IgddCliI3QyJmcdR7GfpZpabXlJrc6LoKx0qdcOg20o_BlyoMXkh-R7bqp_TdCYQ3qpc2N1bDs4pktpS2KUJRYZ6zMSnFMxNiZyg6m41j7YqlGddlCjUFQGATVB-GYRE_tHnrbjXdbyDFW6hWAFMwN77adjMFVwxBuFVCbJOECKNrJB159Sj7jFe4_JWJCtterjf8ONGZtph1Op2Tn7NfV_PoRMKv1Ew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFwQFBA9AH4wDXKw3ESH6sV1ZaWvbSVerP8FFltk2qze-DfM5NHVRBSD1wTTRR5xp8_J5-_AfiamMJxa0NERiwRMvAQyeB0pNPMOXKk864XyC6LxW3-_U7c7cF8OgtDssoR-wdM79F6vBKPoxk_1HV8nVC1yTLLiNXLkr-AfXKnymewf3ZxuVg-AjLVXP-pRSAgY8CTg8IrhKhNsK0mWWVGXgtCUGP2f69Rf6F1vwSdv4HXI3dkZ8PrvYU93xzCwXxq2XYIr564C76D1fWvBuldV3esDcy1O7P2jFwro47Un8zqjWmbuKvXWA1N3FtXIwFlpDInKZdnummdZ8hphzJlSHAZ0vaf9e4-wnwy05tz4l77Pdyef7uZL6KxtUJkeZ5so9QWvEyC1EFXIjFCE21y1nmc_nmupdWWm8LqpAzGSp9x6TQyj9JXGQ9eSP4BZk3b-I_AcBvqpS2M1bjz4rmtpC3LUFbUaqzKK3EEYhpMZUffcWp_sVaTwGylpiQoSoIaknAE8WPcw-C88WyEnHKl_qghhcvDs7GnU3LVOIs7hewmTblAlnb8H4_-AgeLmx9X6upieXkCL-kO_Y5KxSnMtpud_4SsZms-j1X7G5A-98Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+double+core-shell+carbon%2Fsilicon%2Fgraphite+composite+anode+materials+for+lithium-ion+batteries&rft.jtitle=Surface+%26+coatings+technology&rft.au=Hsu%2C+Yu-Ching&rft.au=Hsieh%2C+Cheng-Che&rft.au=Liu%2C+Wei-Ren&rft.date=2020-04-15&rft.issn=0257-8972&rft.volume=387&rft.spage=125528&rft_id=info:doi/10.1016%2Fj.surfcoat.2020.125528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_surfcoat_2020_125528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0257-8972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0257-8972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0257-8972&client=summon |