Comparative analysis of dynamic constitutive response of hybrid fibre-reinforced concrete with different matrix strengths
•The addition of basalt fibre and polypropylene fibre increases the dynamic compressive behaviour of concrete.•Increasing the matrix strength and improving the strain rate exhibited a similar impact on the damage pattern of basalt fibre and polypropylene fibre.•Basalt fibre mainly contributes to the...
Saved in:
Published in | International journal of impact engineering Vol. 148; p. 103763 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0734-743X 1879-3509 |
DOI | 10.1016/j.ijimpeng.2020.103763 |
Cover
Loading…
Abstract | •The addition of basalt fibre and polypropylene fibre increases the dynamic compressive behaviour of concrete.•Increasing the matrix strength and improving the strain rate exhibited a similar impact on the damage pattern of basalt fibre and polypropylene fibre.•Basalt fibre mainly contributes to the strength of concrete, and polypropylene fibre mainly contributes to the energy consumption.•A dynamic damage constitutive model was established.
In this study, the dynamic compressive behaviour of concrete reinforced with hybrid basalt-polypropylene fibres (HBPRC) and different matrix strengths was investigated using a split Hopkinson pressure bar. The results indicated that the differences between the highest dynamic strength and the dynamic strength of the reference concrete for each matrix strength grade increased from 6.63 MPa, 3.77 MPa, and 4.80 MPa under the minimum strain rates to 7.16 MPa, 9.04 MPa, and 12.08 MPa under the maximum strain rates. The strain rate effect of dynamic compressive strength of HBPRC was increased by increasing the volume of hybrid basalt fibre (BF) and polypropylene fibre (PF) from 0.1% to 0.2%, but was decreased with increasing matrix strength. The toughness was increased with increasing strain rate, hybrid BF and PF volume, and matrix strength. A microscopic test indicated that an increase in the matrix strength and strain rate exhibited a similar impact on the damage patterns of BF and PF. The primary effect of BF on the dynamic mechanical properties of HBPRC was to increase the strength and that of the PF was to improve the energy dissipation. A dynamic damage constitutive model for HBPRC was established based on the continuum media and statistical damage theories, and its validity was verified.
[Display omitted] |
---|---|
AbstractList | In this study, the dynamic compressive behaviour of concrete reinforced with hybrid basalt-polypropylene fibres (HBPRC) and different matrix strengths was investigated using a split Hopkinson pressure bar. The results indicated that the differences between the highest dynamic strength and the dynamic strength of the reference concrete for each matrix strength grade increased from 6.63 MPa, 3.77 MPa, and 4.80 MPa under the minimum strain rates to 7.16 MPa, 9.04 MPa, and 12.08 MPa under the maximum strain rates. The strain rate effect of dynamic compressive strength of HBPRC was increased by increasing the volume of hybrid basalt fibre (BF) and polypropylene fibre (PF) from 0.1% to 0.2%, but was decreased with increasing matrix strength. The toughness was increased with increasing strain rate, hybrid BF and PF volume, and matrix strength. A microscopic test indicated that an increase in the matrix strength and strain rate exhibited a similar impact on the damage patterns of BF and PF. The primary effect of BF on the dynamic mechanical properties of HBPRC was to increase the strength and that of the PF was to improve the energy dissipation. A dynamic damage constitutive model for HBPRC was established based on the continuum media and statistical damage theories, and its validity was verified. •The addition of basalt fibre and polypropylene fibre increases the dynamic compressive behaviour of concrete.•Increasing the matrix strength and improving the strain rate exhibited a similar impact on the damage pattern of basalt fibre and polypropylene fibre.•Basalt fibre mainly contributes to the strength of concrete, and polypropylene fibre mainly contributes to the energy consumption.•A dynamic damage constitutive model was established. In this study, the dynamic compressive behaviour of concrete reinforced with hybrid basalt-polypropylene fibres (HBPRC) and different matrix strengths was investigated using a split Hopkinson pressure bar. The results indicated that the differences between the highest dynamic strength and the dynamic strength of the reference concrete for each matrix strength grade increased from 6.63 MPa, 3.77 MPa, and 4.80 MPa under the minimum strain rates to 7.16 MPa, 9.04 MPa, and 12.08 MPa under the maximum strain rates. The strain rate effect of dynamic compressive strength of HBPRC was increased by increasing the volume of hybrid basalt fibre (BF) and polypropylene fibre (PF) from 0.1% to 0.2%, but was decreased with increasing matrix strength. The toughness was increased with increasing strain rate, hybrid BF and PF volume, and matrix strength. A microscopic test indicated that an increase in the matrix strength and strain rate exhibited a similar impact on the damage patterns of BF and PF. The primary effect of BF on the dynamic mechanical properties of HBPRC was to increase the strength and that of the PF was to improve the energy dissipation. A dynamic damage constitutive model for HBPRC was established based on the continuum media and statistical damage theories, and its validity was verified. [Display omitted] |
ArticleNumber | 103763 |
Author | Bu, Mengxin Li, Dan Li, He Chen, Lou Kou, Hailei Fu, Qiang Xu, Wenrui He, Jiaqi |
Author_xml | – sequence: 1 givenname: Qiang surname: Fu fullname: Fu, Qiang email: fuqiangzn2011@163.com organization: State Key Laboratory of Green Building in Western China, Xi′an University of Architecture and Technology, Xi′an, 710055, PR China – sequence: 2 givenname: Mengxin surname: Bu fullname: Bu, Mengxin organization: School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an, 710055, PR China – sequence: 3 givenname: Wenrui surname: Xu fullname: Xu, Wenrui organization: School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an, 710055, PR China – sequence: 4 givenname: Lou surname: Chen fullname: Chen, Lou email: chen.lou.17@ucl.ac.uk organization: School of Civil Engineering, Central South University, Changsha, 410075, PR China – sequence: 5 givenname: Dan surname: Li fullname: Li, Dan organization: School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an, 710055, PR China – sequence: 6 givenname: Jiaqi surname: He fullname: He, Jiaqi organization: School of Civil Engineering, Xi′an University of Architecture and Technology, Xi′an, 710055, PR China – sequence: 7 givenname: Hailei surname: Kou fullname: Kou, Hailei email: hlkou@ouc.edu.cn organization: College of Engineering, Ocean University of China, Qingdao, 266100, PR China – sequence: 8 givenname: He surname: Li fullname: Li, He organization: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China |
BookMark | eNqFkE2LFDEQhoOs4OzqX5CA5x6TTjo9Ax6UwS9Y8KLgLaSTyk4100mbZNbtf2_a0cte9lS8xfsU1HNNrkIMQMhrzraccfV23OKI0wzhbtuydl2KXolnZMN3_b4RHdtfkQ3rhWx6KX6-INc5j4zxnnVsQ5ZDnGaTTMF7oCaY05Ix0-ipW4KZ0FIbQy5Yzn8LCfJcM6yF4zIkdNTjkKBJgMHHZMGtgE1QgP7GcqQOvYcEodDJlIQPNJea7soxvyTPvTllePVv3pAfnz5-P3xpbr99_nr4cNtYIVlp-NB51btBcalaKZxQ_V4K6aXsFFhod05wA7x13U5KAJCSd1z4jishlbODuCFvLnfnFH-dIRc9xnOqn2bdyipKqH3LaktdWjbFnBN4PSecTFo0Z3rVrEf9X7NeNeuL5gq-ewRaLFVnDCUZPD2Nv7_gUBXcIySdLUKoIjGBLdpFfOrEHySMolE |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2021_124691 crossref_primary_10_1016_j_jobe_2024_111424 crossref_primary_10_1016_j_conbuildmat_2023_132159 crossref_primary_10_1016_j_tws_2024_112717 crossref_primary_10_1016_j_conbuildmat_2021_122629 crossref_primary_10_1016_j_istruc_2024_107412 crossref_primary_10_1016_j_istruc_2024_106560 crossref_primary_10_1007_s10706_021_01822_y crossref_primary_10_1016_j_tafmec_2023_103927 crossref_primary_10_1016_j_ijimpeng_2022_104205 crossref_primary_10_1016_j_susmat_2024_e01228 crossref_primary_10_1520_JTE20200294 crossref_primary_10_3390_buildings14113442 crossref_primary_10_1007_s11595_021_2447_1 crossref_primary_10_1002_suco_202000655 crossref_primary_10_1080_00150193_2024_2319549 crossref_primary_10_3389_fbuil_2024_1407327 crossref_primary_10_1016_j_conbuildmat_2022_130145 crossref_primary_10_1016_j_jclepro_2021_127775 crossref_primary_10_3390_met12060990 crossref_primary_10_3390_ma16083226 crossref_primary_10_3390_w14101648 crossref_primary_10_1016_j_hybadv_2023_100035 crossref_primary_10_1016_j_jobe_2021_102212 crossref_primary_10_1016_j_tca_2021_178964 crossref_primary_10_3390_app132212108 crossref_primary_10_3390_ma17164000 crossref_primary_10_3390_app12031482 crossref_primary_10_1155_2021_8811303 crossref_primary_10_1002_suco_202000823 crossref_primary_10_1016_j_cemconcomp_2021_104139 crossref_primary_10_1016_j_conbuildmat_2023_130717 crossref_primary_10_1016_j_conbuildmat_2021_125003 crossref_primary_10_1021_acssuschemeng_0c08618 crossref_primary_10_3390_ma15207073 crossref_primary_10_1016_j_compstruct_2021_113944 crossref_primary_10_1016_j_conbuildmat_2023_133548 crossref_primary_10_1016_j_cemconcomp_2022_104417 crossref_primary_10_1016_j_conbuildmat_2022_129360 crossref_primary_10_1080_15732479_2021_1876106 crossref_primary_10_1080_21650373_2024_2335315 crossref_primary_10_1007_s43452_021_00248_w crossref_primary_10_1016_j_conbuildmat_2023_134289 crossref_primary_10_1016_j_jobe_2022_105479 crossref_primary_10_1016_j_cemconcomp_2021_103954 crossref_primary_10_1016_j_conbuildmat_2022_129912 crossref_primary_10_1016_j_oceaneng_2023_116469 crossref_primary_10_3390_buildings14020380 crossref_primary_10_1016_j_conbuildmat_2023_130424 crossref_primary_10_3390_ma14051138 crossref_primary_10_1016_j_conbuildmat_2024_138053 |
Cites_doi | 10.1016/j.conbuildmat.2017.06.177 10.1016/j.cemconcomp.2016.08.001 10.1007/BF02472016 10.1016/j.cemconres.2013.05.008 10.1016/j.ijimpeng.2017.03.009 10.1016/S0020-7683(02)00526-7 10.1016/j.mechrescom.2005.02.019 10.1016/j.ijimpeng.2005.02.008 10.1016/j.cemconcomp.2014.07.011 10.1016/j.matdes.2020.108473 10.1016/j.cemconres.2012.08.011 10.1016/j.ijmecsci.2004.03.002 10.1016/j.ijimpeng.2020.103527 10.1016/j.ijsolstr.2003.09.019 10.1016/j.cemconcomp.2017.02.010 10.1007/BF00277929 10.1016/j.cemconres.2009.06.006 10.1016/j.conbuildmat.2019.117184 10.1016/j.cemconcomp.2019.103389 10.1016/j.ijimpeng.2005.08.012 10.1016/j.jclepro.2020.120825 10.1016/j.cemconres.2013.08.004 10.1016/S0008-8846(99)00202-1 10.1016/j.ijimpeng.2019.103466 10.1016/j.ijrmms.2015.01.013 10.1016/j.cemconres.2020.106117 10.1016/0010-4361(75)90416-4 10.1016/0148-9062(95)00064-X 10.1016/j.ijmecsci.2016.02.005 10.1016/j.matdes.2016.09.045 10.1016/j.conbuildmat.2016.08.009 10.1016/S0148-9062(96)00041-1 10.1016/j.ijimpeng.2015.10.005 10.1016/j.cemconcomp.2015.10.001 10.1016/j.compstruc.2007.05.014 10.1016/j.eurpolymj.2016.10.036 10.1016/S0734-743X(99)00044-5 10.1016/j.compositesb.2011.01.027 10.1016/j.compstruct.2018.10.021 10.1016/j.cemconres.2015.01.014 10.1016/j.engstruct.2016.06.029 10.1016/j.engstruct.2018.05.036 10.1016/j.compositesb.2017.11.007 10.1016/j.msea.2009.02.033 10.1061/(ASCE)MT.1943-5533.0000764 10.1016/j.conbuildmat.2007.01.005 10.1016/j.conbuildmat.2013.05.063 10.1016/j.ijimpeng.2015.04.010 10.1016/S0020-7225(02)00378-6 10.1016/j.compositesb.2005.02.002 10.1016/j.matdes.2012.08.037 10.1260/2041-4196.1.1.145 10.1016/j.ijmecsci.2014.10.003 10.1016/j.ijsolstr.2008.04.002 10.1007/s11709-019-0552-4 10.1063/1.1712836 10.1016/j.cemconres.2017.05.016 10.1016/j.msea.2008.11.063 10.1016/j.cemconres.2009.07.012 10.1016/j.ijimpeng.2017.01.011 10.1016/j.conbuildmat.2009.12.001 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Feb 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Feb 2021 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2020.103763 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
ExternalDocumentID | 10_1016_j_ijimpeng_2020_103763 S0734743X20308332 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c340t-1b5f67db6146243d3679434f4456ece28d31ae12d5844eee441513f516346dcb3 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Mon Jul 14 08:22:23 EDT 2025 Tue Jul 01 03:54:30 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 Fri Feb 23 02:46:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dynamic damage constitutive model Toughness Split Hopkinson pressure bar Basalt fibre Polypropylene fibre Strain rate |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-1b5f67db6146243d3679434f4456ece28d31ae12d5844eee441513f516346dcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2476336920 |
PQPubID | 2045463 |
ParticipantIDs | proquest_journals_2476336920 crossref_primary_10_1016_j_ijimpeng_2020_103763 crossref_citationtrail_10_1016_j_ijimpeng_2020_103763 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2020_103763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Miao, Li, Liu, Deng, Shen (bib0044) 2016; 108-109 Hao, Hao, Li (bib0052) 2010; 1 Lu, Xu (bib0065) 2004; 41 Sim, Park, Moon (bib0056) 2005; 36 Zhang, Hao, Lu (bib0064) 2003; 41 Li, Xu (bib0023) 2009; 513-514 Hao, Hao, Jiang, Zhou (bib0011) 2013; 52 Zhang, Lu, Ma (bib0063) 2006; 33 Boshoff, Mechtcherine, Zijl (bib0055) 2009; 39 Li, Luo, Long, Wu, Duan, Shah (bib0012) 2016; 112 Gui, Bui, Kodikara, Zhang, Zhao, Rabczuk (bib0033) 2016; 87 Yang, Shim, Lim (bib0062) 2000; 24 Yoo, Banthia (bib0003) 2016; 73 Shishegaran, Khalili, Karami, Rabczuk, Shishegaran (bib0030) 2020; 139 Li, Xu, Shen, Li (bib0021) 2008; 25 Meson, Michel, Solgaard, Fisher, Edvardsen, Skovhus (bib0008) 2018; 103 Buendía, Sánchez, Climent, Guillem (bib0019) 2013; 54 Shishegaran, Daneshpajoh, Taghavizade, Mirvalad (bib0006) 2020; 232 Ross, Jerome, Tedesco, Hughes (bib0047) 1996; 93 Hu, Guo, Chen, Xie, Jing, He (bib0060) 2016; 85 Yang, Bawden, Katsabanis (bib0066) 1996; 33 Rabczuk, Eibl (bib0031) 2006; 32 Chi, Xu, Zhang (bib0015) 2014; 26 Li, Meng (bib0038) 2003; 40 Liu, Katsabanis (bib0069) 1997; 34 Xiao, Li, Shen, Poon (bib0013) 2015; 71 Rabczuk, Samaniego, Belytschko (bib0032) 2007; 34 Lyer, Kenno, Das (bib0018) 2015; 27 Mechtcherine, Silva, Müller, Jun, Filho (bib0057) 2012; 42 Hu, Yang, Zhou, Tang (bib0026) 2005; 26 Li, Xu (bib0024) 2009; 505 Yoo, Yoon, Banthia (bib0004) 2015; 64 Wu, Zhang, Ma (bib0048) 2010; 24 Bischoff, Perry (bib0050) 1991; 24 Shishegaran, Ghasemi, Varaee (bib0035) 2019; 13 Soufeiani, Raman, Jumaat, Alengaram, Ghadyani, Mendis (bib0016) 2016; 124 Cotsovos, Pavlović (bib0053) 2008; 86 Lu, Wang, Du, Wang (bib0054) 2017; 103 Salloum, Almusallam, Ibrahim, Abbas, Alsayed (bib0028) 2015; 55 Fu, Xie, Long, Niu, Song, Liu (bib0041) 2017; 106 Yoo, Banthia (bib0001) 2019; 104 Niu, Li, Fu (bib0037) 2020; 188 Wu, Lin, Zhou (bib0007) 2020; 135 Zhang, Zhao, Rabczuk (bib0009) 2018; 137 Zhang, Hu, Li, Huang (bib0051) 2007 Noll (bib0059) 1958; 2 Zhou, Hao (bib0049) 2008; 45 Liu, Lv, Zhang, Yuan (bib0068) 2015; 75 Shishegaran, Saeedi, Kumar, Ghiasinejad (bib0036) 2020; 259 Mooney (bib0061) 1940; 11 Ma, Yue, Yu, Mei, Chen, Zhang, Zhang, Jiang (bib0002) 2020; 137 Chen, Ding, Zhu, Zhao, Rabczuk (bib0005) 2019; 208 Zhou, Wang, Qian, Shao, Fang (bib0039) 2014; 11 Zhang, Lu, Hao (bib0067) 2004; 46 Wang, Shi, Wang (bib0046) 2011; 42 Chen, Wu, Zhou (bib0027) 2013; 47 Wu, Shi, He, Wang (bib0014) 2017; 79 Zhang, Gao, Li, Lu (bib0025) 2013; 44 (bib0040) 2002 Lai, Sun (bib0029) 2009; 39 Rabczuk, Song (bib0034) 2016; 87 Walton, Majumdar (bib0010) 1975; 6 Branston, Das, Kenno, Taylor (bib0017) 2016; 124 Qian, Stroeven (bib0020) 2000; 30 Hou, Cao, Zheng, Rong, Li (bib0042) 2018; 169 Wang, Liu, Shen (bib0045) 2008; 22 Zhang, Wang, Xie, Qi (bib0022) 2017; 152 Xiao, Shu, Wang (bib0043) 2014; 89 Chen, Yang, Yao (bib0058) 2013; 44 Li (10.1016/j.ijimpeng.2020.103763_bib0021) 2008; 25 Hu (10.1016/j.ijimpeng.2020.103763_bib0060) 2016; 85 Wu (10.1016/j.ijimpeng.2020.103763_bib0048) 2010; 24 Shishegaran (10.1016/j.ijimpeng.2020.103763_bib0006) 2020; 232 Miao (10.1016/j.ijimpeng.2020.103763_bib0044) 2016; 108-109 Sim (10.1016/j.ijimpeng.2020.103763_bib0056) 2005; 36 Mechtcherine (10.1016/j.ijimpeng.2020.103763_bib0057) 2012; 42 Ma (10.1016/j.ijimpeng.2020.103763_bib0002) 2020; 137 Chi (10.1016/j.ijimpeng.2020.103763_bib0015) 2014; 26 Zhang (10.1016/j.ijimpeng.2020.103763_bib0067) 2004; 46 Cotsovos (10.1016/j.ijimpeng.2020.103763_bib0053) 2008; 86 Ross (10.1016/j.ijimpeng.2020.103763_bib0047) 1996; 93 Yoo (10.1016/j.ijimpeng.2020.103763_bib0003) 2016; 73 Buendía (10.1016/j.ijimpeng.2020.103763_bib0019) 2013; 54 Xiao (10.1016/j.ijimpeng.2020.103763_bib0013) 2015; 71 (10.1016/j.ijimpeng.2020.103763_bib0040) 2002 Boshoff (10.1016/j.ijimpeng.2020.103763_bib0055) 2009; 39 Meson (10.1016/j.ijimpeng.2020.103763_bib0008) 2018; 103 Lu (10.1016/j.ijimpeng.2020.103763_bib0065) 2004; 41 Liu (10.1016/j.ijimpeng.2020.103763_bib0068) 2015; 75 Chen (10.1016/j.ijimpeng.2020.103763_bib0005) 2019; 208 Zhang (10.1016/j.ijimpeng.2020.103763_bib0051) 2007 Chen (10.1016/j.ijimpeng.2020.103763_bib0058) 2013; 44 Soufeiani (10.1016/j.ijimpeng.2020.103763_bib0016) 2016; 124 Salloum (10.1016/j.ijimpeng.2020.103763_bib0028) 2015; 55 Rabczuk (10.1016/j.ijimpeng.2020.103763_bib0031) 2006; 32 Walton (10.1016/j.ijimpeng.2020.103763_bib0010) 1975; 6 Mooney (10.1016/j.ijimpeng.2020.103763_bib0061) 1940; 11 Hou (10.1016/j.ijimpeng.2020.103763_bib0042) 2018; 169 Hao (10.1016/j.ijimpeng.2020.103763_bib0011) 2013; 52 Yoo (10.1016/j.ijimpeng.2020.103763_bib0004) 2015; 64 Zhang (10.1016/j.ijimpeng.2020.103763_bib0022) 2017; 152 Wang (10.1016/j.ijimpeng.2020.103763_bib0045) 2008; 22 Zhang (10.1016/j.ijimpeng.2020.103763_bib0025) 2013; 44 Shishegaran (10.1016/j.ijimpeng.2020.103763_bib0030) 2020; 139 Niu (10.1016/j.ijimpeng.2020.103763_bib0037) 2020; 188 Rabczuk (10.1016/j.ijimpeng.2020.103763_bib0034) 2016; 87 Shishegaran (10.1016/j.ijimpeng.2020.103763_bib0035) 2019; 13 Zhou (10.1016/j.ijimpeng.2020.103763_bib0049) 2008; 45 Li (10.1016/j.ijimpeng.2020.103763_bib0038) 2003; 40 Qian (10.1016/j.ijimpeng.2020.103763_bib0020) 2000; 30 Lu (10.1016/j.ijimpeng.2020.103763_bib0054) 2017; 103 Xiao (10.1016/j.ijimpeng.2020.103763_bib0043) 2014; 89 Zhou (10.1016/j.ijimpeng.2020.103763_bib0039) 2014; 11 Bischoff (10.1016/j.ijimpeng.2020.103763_bib0050) 1991; 24 Yoo (10.1016/j.ijimpeng.2020.103763_bib0001) 2019; 104 Yang (10.1016/j.ijimpeng.2020.103763_bib0062) 2000; 24 Wu (10.1016/j.ijimpeng.2020.103763_bib0014) 2017; 79 Zhang (10.1016/j.ijimpeng.2020.103763_bib0009) 2018; 137 Liu (10.1016/j.ijimpeng.2020.103763_bib0069) 1997; 34 Shishegaran (10.1016/j.ijimpeng.2020.103763_bib0036) 2020; 259 Lai (10.1016/j.ijimpeng.2020.103763_bib0029) 2009; 39 Li (10.1016/j.ijimpeng.2020.103763_bib0012) 2016; 112 Chen (10.1016/j.ijimpeng.2020.103763_bib0027) 2013; 47 Hu (10.1016/j.ijimpeng.2020.103763_bib0026) 2005; 26 Noll (10.1016/j.ijimpeng.2020.103763_bib0059) 1958; 2 Fu (10.1016/j.ijimpeng.2020.103763_bib0041) 2017; 106 Wu (10.1016/j.ijimpeng.2020.103763_bib0007) 2020; 135 Zhang (10.1016/j.ijimpeng.2020.103763_bib0063) 2006; 33 Li (10.1016/j.ijimpeng.2020.103763_bib0023) 2009; 513-514 Rabczuk (10.1016/j.ijimpeng.2020.103763_bib0032) 2007; 34 Branston (10.1016/j.ijimpeng.2020.103763_bib0017) 2016; 124 Yang (10.1016/j.ijimpeng.2020.103763_bib0066) 1996; 33 Lyer (10.1016/j.ijimpeng.2020.103763_bib0018) 2015; 27 Zhang (10.1016/j.ijimpeng.2020.103763_bib0064) 2003; 41 Wang (10.1016/j.ijimpeng.2020.103763_bib0046) 2011; 42 Hao (10.1016/j.ijimpeng.2020.103763_bib0052) 2010; 1 Li (10.1016/j.ijimpeng.2020.103763_bib0024) 2009; 505 Gui (10.1016/j.ijimpeng.2020.103763_bib0033) 2016; 87 |
References_xml | – volume: 46 start-page: 27 year: 2004 end-page: 34 ident: bib0067 article-title: Analysis of fragment size and ejection velocity at high strain rate publication-title: Int J Mech Sci – volume: 232 year: 2020 ident: bib0006 article-title: Developing conductive concrete containing wire rope and steel powder wastes for route deicing publication-title: Constr Build Mater – volume: 87 start-page: 146 year: 2016 end-page: 155 ident: bib0033 article-title: Modelling the dynamic failure of brittle rocks using a hubrid continuum-discrete element method with a mixed-mode cohesive fracture model publication-title: Int J Impact Eng – volume: 30 start-page: 63 year: 2000 end-page: 69 ident: bib0020 article-title: Development of hybrid polypropylene-steel fibre-reinforced concrete publication-title: Cem Concr Res – volume: 45 start-page: 4648 year: 2008 end-page: 4661 ident: bib0049 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct – volume: 103 start-page: 124 year: 2017 end-page: 137 ident: bib0054 article-title: A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete publication-title: Int J Impact Eng – volume: 71 start-page: 46 year: 2015 end-page: 55 ident: bib0013 article-title: Compressive behaviour of recycled aggregate concrete under impact loading publication-title: Cem Concr Res – volume: 137 year: 2020 ident: bib0002 article-title: Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete publication-title: Int J Impact Eng – volume: 75 start-page: 132 year: 2015 end-page: 139 ident: bib0068 article-title: A dynamic damage constitutive model for a rock mass with persistent joints publication-title: Int J Rock Mech Min Sci – volume: 104 year: 2019 ident: bib0001 article-title: Impact resistance of fiber-reinforced concrete-A review publication-title: Cem Concr Compos – volume: 112 start-page: 58 year: 2016 end-page: 66 ident: bib0012 article-title: Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading publication-title: Mater Des – volume: 135 year: 2020 ident: bib0007 article-title: A review of mechanical properties of fibre reinforced concrete at elevated temperatures publication-title: Cem Concr Res – volume: 89 start-page: 381 year: 2014 end-page: 390 ident: bib0043 article-title: Effect of strain rate and temperature on the mechanical behavior of magnesium nanocomposites publication-title: Int J Mech Sci – volume: 85 start-page: 313 year: 2016 end-page: 323 ident: bib0060 article-title: Experimental investigation and modeling of the rate-dependent deformation behavior of PMMA at different temperatures publication-title: Eur Polym J – volume: 41 start-page: 917 year: 2003 end-page: 929 ident: bib0064 article-title: Anisotropic dynamic damage and fragmentation of rock materials under explosive loading publication-title: Int J Eng Sci – volume: 87 start-page: 2 year: 2016 ident: bib0034 article-title: Preface to SI: Experimental testing and computational modeling of dynamic fracture publication-title: Int J Impact Eng – volume: 152 start-page: 154 year: 2017 end-page: 167 ident: bib0022 article-title: Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete publication-title: Constr Build Mater – volume: 103 start-page: 1 year: 2018 end-page: 20 ident: bib0008 article-title: Corrosion resistance of steel fibre reinforced concrete-A literature review publication-title: Cem Concr Res – volume: 26 start-page: 101 year: 2005 end-page: 105 ident: bib0026 article-title: Experimental study on tenacity increase characteristics of steel fiber reinforced concrete and polypropylene fiber reinforced concrete under impact load publication-title: J Build Struct – volume: 188 year: 2020 ident: bib0037 article-title: A 3D-IFU model for characterising the pore structures of hybrid fibre-reinforced concrete publication-title: Mater Des – volume: 169 start-page: 119 year: 2018 end-page: 130 ident: bib0042 article-title: Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates publication-title: Eng Struct – volume: 93 start-page: 293 year: 1996 end-page: 300 ident: bib0047 article-title: Moisture and strain rate effects on concrete strength publication-title: ACI Mater J – volume: 208 start-page: 150 year: 2019 end-page: 167 ident: bib0005 article-title: Size- and edge-effect cohesive energy and shear strength between grapheme, carbon nanotubes and nanofibers: Continuum modeling and molecular dynamics simulations publication-title: Compos Struct – volume: 32 start-page: 1878 year: 2006 end-page: 1897 ident: bib0031 article-title: Modelling dynamic failure of concrete with meshfree methods publication-title: Int J Impact Eng – volume: 34 start-page: 217 year: 1997 end-page: 231 ident: bib0069 article-title: Development of a continuum damage model for blasting analysis publication-title: Int J Rock Mech Min Sci – volume: 13 start-page: 1301 year: 2019 end-page: 1315 ident: bib0035 article-title: Performance of a novel bent-up bars system not interacting with concrete publication-title: Front Struct Civ Eng – volume: 33 start-page: 245 year: 1996 end-page: 254 ident: bib0066 article-title: A new constitutive model for blast damage publication-title: Int J Rock Mech Min Sci – volume: 41 start-page: 131 year: 2004 end-page: 143 ident: bib0065 article-title: Modelling of dynamic behaviour of concrete materials under blast loading publication-title: Int J solids Struct – volume: 11 start-page: 5 year: 2014 end-page: 10 ident: bib0039 article-title: Comparison and construction of the models of the dynamic increase factor for concrete publication-title: Concr – volume: 139 year: 2020 ident: bib0030 article-title: Computational predictions for estimating the maximum deflection of reinforced concrete panels subjected to the blast load publication-title: Int J Impact Eng – volume: 22 start-page: 811 year: 2008 end-page: 819 ident: bib0045 article-title: Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression publication-title: Constr Build Mater – volume: 26 start-page: 211 year: 2014 end-page: 218 ident: bib0015 article-title: Experimental study on hybrid fiber-reinforced concrete subjected to uniaxial compression publication-title: J Mater Civ Eng – volume: 55 start-page: 34 year: 2015 end-page: 44 ident: bib0028 article-title: Rate dependent behavior and modeling of concrete based on SHPB experiments publication-title: Cem Concr Compos – volume: 42 start-page: 1285 year: 2011 end-page: 1290 ident: bib0046 article-title: On the strength and toughness properties of SFRC under static-dynamic compression publication-title: Compos Part B Eng – volume: 73 start-page: 267 year: 2016 end-page: 280 ident: bib0003 article-title: Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review publication-title: Cem Concr Compos – volume: 11 start-page: 582 year: 1940 end-page: 592 ident: bib0061 article-title: A theory of large elastic deformation publication-title: J Appl Phys – volume: 54 start-page: 29 year: 2013 end-page: 35 ident: bib0019 article-title: Surface treated polypropylene (PP) fibres for reinforced concrete publication-title: Cem Concr Res – year: 2002 ident: bib0040 article-title: Test method of mechanical properties on ordinary concrete – volume: 106 start-page: 44 year: 2017 end-page: 52 ident: bib0041 article-title: Impact characterization and modelling of cement and asphalt mortar based on SHPB experiments publication-title: Int J Impact Eng – volume: 39 start-page: 1044 year: 2009 end-page: 1051 ident: bib0029 article-title: Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite publication-title: Cem Concr Res – volume: 64 start-page: 84 year: 2015 end-page: 92 ident: bib0004 article-title: Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate publication-title: Cem Concr Compos – volume: 86 start-page: 145 year: 2008 end-page: 163 ident: bib0053 article-title: Numerical investigation of concrete subjected to compressive impact loading: Part 1: a fundamental explanation for the apparent strength gain at high loading rates publication-title: Comput Struct – volume: 124 start-page: 878 year: 2016 end-page: 886 ident: bib0017 article-title: Mechanical behaviour of basalt fibre reinforced concrete publication-title: Constr Build Mater – volume: 47 start-page: 419 year: 2013 end-page: 430 ident: bib0027 article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete publication-title: Constr Build Mater – volume: 42 start-page: 1417 year: 2012 end-page: 1427 ident: bib0057 article-title: Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers publication-title: Cem Concr Res – volume: 36 start-page: 504 year: 2005 end-page: 512 ident: bib0056 article-title: Characteristics of basalt fiber as a strengthening material for concrete structures publication-title: Compos Part B Eng – volume: 6 start-page: 209 year: 1975 end-page: 216 ident: bib0010 article-title: Cement-based composites with mixtures of different types of fibres publication-title: Compos – volume: 24 start-page: 425 year: 1991 end-page: 450 ident: bib0050 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct – volume: 39 start-page: 787 year: 2009 end-page: 797 ident: bib0055 article-title: Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 2: The rate effects on fibre pull-out tests publication-title: Cem Concr Res – volume: 513-514 start-page: 145 year: 2009 end-page: 153 ident: bib0023 article-title: Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar publication-title: Mater Sci Eng A – volume: 108-109 start-page: 1881 year: 2016 end-page: 1896 ident: bib0044 article-title: Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar publication-title: Int J Mech Sci – volume: 124 start-page: 405 year: 2016 end-page: 417 ident: bib0016 article-title: Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading-A review publication-title: Eng Struct – volume: 40 start-page: 343 year: 2003 end-page: 360 ident: bib0038 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct – volume: 1 start-page: 145 year: 2010 end-page: 167 ident: bib0052 article-title: Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties publication-title: Int J Prot Struct – volume: 505 start-page: 178 year: 2009 end-page: 186 ident: bib0024 article-title: Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading publication-title: Mater Sci Eng A – volume: 34 start-page: 163 year: 2007 end-page: 177 ident: bib0032 article-title: Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction publication-title: Int J Impact Eng – volume: 27 year: 2015 ident: bib0018 article-title: Mechanical properties of fiber-reinforced concrete made with basalt filament fibers publication-title: J Mater Civ Eng – volume: 137 start-page: 225 year: 2018 end-page: 234 ident: bib0009 article-title: The interface strength and delamination of fiber-reinforced composites using a continuum modeling approach publication-title: Compos Part B Eng – volume: 259 year: 2020 ident: bib0036 article-title: Prediction of air quality in Tehran by developing the nonlinear ensemble model publication-title: J Clean Prod – volume: 44 start-page: 500 year: 2013 end-page: 508 ident: bib0058 article-title: Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag publication-title: Mater Des – volume: 44 start-page: 3464 year: 2013 end-page: 3473 ident: bib0025 article-title: Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate publication-title: J Cent Sout Univ (Sci Tech) – volume: 79 start-page: 148 year: 2017 end-page: 157 ident: bib0014 article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements publication-title: Cem Concr Compos – volume: 33 start-page: 359 year: 2006 end-page: 369 ident: bib0063 article-title: Investigation of dynamic response of brittle materials under high-rate loading publication-title: Mech Res Commun – volume: 52 start-page: 63 year: 2013 end-page: 70 ident: bib0011 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strength in high-speed impact tests publication-title: Cem Concr Res – volume: 24 start-page: 545 year: 2000 end-page: 560 ident: bib0062 article-title: A visco-hyperelastic approach to modelling the constitutive behaviour of rubber publication-title: Int J Impact Eng – volume: 2 start-page: 197 year: 1958 end-page: 226 ident: bib0059 article-title: A mathematical theory of the mechanical behavior of continuous media publication-title: Arch Ration Mech An – start-page: 707 year: 2007 end-page: 714 ident: bib0051 article-title: Experimental study of compressive strength of mortar using SHPB publication-title: Proceedings of the 7th international conference on shock and impact loads on structures – volume: 24 start-page: 910 year: 2010 end-page: 917 ident: bib0048 article-title: Mechanical properties of copper slag reinforced concrete under dynamic compression publication-title: Constr Build Mater – volume: 25 start-page: 135 year: 2008 end-page: 142 ident: bib0021 article-title: Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar publication-title: Act Mater Compos Sin – volume: 152 start-page: 154 year: 2017 ident: 10.1016/j.ijimpeng.2020.103763_bib0022 article-title: Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.06.177 – volume: 73 start-page: 267 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0003 article-title: Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2016.08.001 – volume: 44 start-page: 3464 issue: 8 year: 2013 ident: 10.1016/j.ijimpeng.2020.103763_bib0025 article-title: Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate publication-title: J Cent Sout Univ (Sci Tech) – volume: 24 start-page: 425 issue: 6 year: 1991 ident: 10.1016/j.ijimpeng.2020.103763_bib0050 article-title: Compressive behaviour of concrete at high strain rates publication-title: Mater Struct doi: 10.1007/BF02472016 – volume: 52 start-page: 63 year: 2013 ident: 10.1016/j.ijimpeng.2020.103763_bib0011 article-title: Experimental confirmation of some factors influencing dynamic concrete compressive strength in high-speed impact tests publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.05.008 – volume: 106 start-page: 44 year: 2017 ident: 10.1016/j.ijimpeng.2020.103763_bib0041 article-title: Impact characterization and modelling of cement and asphalt mortar based on SHPB experiments publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.03.009 – volume: 40 start-page: 343 issue: 2 year: 2003 ident: 10.1016/j.ijimpeng.2020.103763_bib0038 article-title: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00526-7 – volume: 33 start-page: 359 issue: 3 year: 2006 ident: 10.1016/j.ijimpeng.2020.103763_bib0063 article-title: Investigation of dynamic response of brittle materials under high-rate loading publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2005.02.019 – volume: 32 start-page: 1878 issue: 11 year: 2006 ident: 10.1016/j.ijimpeng.2020.103763_bib0031 article-title: Modelling dynamic failure of concrete with meshfree methods publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.02.008 – volume: 55 start-page: 34 year: 2015 ident: 10.1016/j.ijimpeng.2020.103763_bib0028 article-title: Rate dependent behavior and modeling of concrete based on SHPB experiments publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2014.07.011 – volume: 188 year: 2020 ident: 10.1016/j.ijimpeng.2020.103763_bib0037 article-title: A 3D-IFU model for characterising the pore structures of hybrid fibre-reinforced concrete publication-title: Mater Des doi: 10.1016/j.matdes.2020.108473 – volume: 42 start-page: 1417 issue: 11 year: 2012 ident: 10.1016/j.ijimpeng.2020.103763_bib0057 article-title: Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2012.08.011 – volume: 46 start-page: 27 issue: 1 year: 2004 ident: 10.1016/j.ijimpeng.2020.103763_bib0067 article-title: Analysis of fragment size and ejection velocity at high strain rate publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2004.03.002 – volume: 139 year: 2020 ident: 10.1016/j.ijimpeng.2020.103763_bib0030 article-title: Computational predictions for estimating the maximum deflection of reinforced concrete panels subjected to the blast load publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2020.103527 – volume: 41 start-page: 131 issue: 1 year: 2004 ident: 10.1016/j.ijimpeng.2020.103763_bib0065 article-title: Modelling of dynamic behaviour of concrete materials under blast loading publication-title: Int J solids Struct doi: 10.1016/j.ijsolstr.2003.09.019 – volume: 79 start-page: 148 year: 2017 ident: 10.1016/j.ijimpeng.2020.103763_bib0014 article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2017.02.010 – volume: 2 start-page: 197 year: 1958 ident: 10.1016/j.ijimpeng.2020.103763_bib0059 article-title: A mathematical theory of the mechanical behavior of continuous media publication-title: Arch Ration Mech An doi: 10.1007/BF00277929 – volume: 39 start-page: 787 issue: 9 year: 2009 ident: 10.1016/j.ijimpeng.2020.103763_bib0055 article-title: Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 2: The rate effects on fibre pull-out tests publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2009.06.006 – volume: 27 issue: 11 year: 2015 ident: 10.1016/j.ijimpeng.2020.103763_bib0018 article-title: Mechanical properties of fiber-reinforced concrete made with basalt filament fibers publication-title: J Mater Civ Eng – volume: 232 year: 2020 ident: 10.1016/j.ijimpeng.2020.103763_bib0006 article-title: Developing conductive concrete containing wire rope and steel powder wastes for route deicing publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117184 – volume: 104 year: 2019 ident: 10.1016/j.ijimpeng.2020.103763_bib0001 article-title: Impact resistance of fiber-reinforced concrete-A review publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2019.103389 – volume: 34 start-page: 163 issue: 2 year: 2007 ident: 10.1016/j.ijimpeng.2020.103763_bib0032 article-title: Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2005.08.012 – volume: 259 year: 2020 ident: 10.1016/j.ijimpeng.2020.103763_bib0036 article-title: Prediction of air quality in Tehran by developing the nonlinear ensemble model publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.120825 – volume: 54 start-page: 29 year: 2013 ident: 10.1016/j.ijimpeng.2020.103763_bib0019 article-title: Surface treated polypropylene (PP) fibres for reinforced concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2013.08.004 – volume: 30 start-page: 63 issue: 1 year: 2000 ident: 10.1016/j.ijimpeng.2020.103763_bib0020 article-title: Development of hybrid polypropylene-steel fibre-reinforced concrete publication-title: Cem Concr Res doi: 10.1016/S0008-8846(99)00202-1 – volume: 137 year: 2020 ident: 10.1016/j.ijimpeng.2020.103763_bib0002 article-title: Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2019.103466 – volume: 75 start-page: 132 year: 2015 ident: 10.1016/j.ijimpeng.2020.103763_bib0068 article-title: A dynamic damage constitutive model for a rock mass with persistent joints publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2015.01.013 – volume: 135 year: 2020 ident: 10.1016/j.ijimpeng.2020.103763_bib0007 article-title: A review of mechanical properties of fibre reinforced concrete at elevated temperatures publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2020.106117 – volume: 11 start-page: 5 year: 2014 ident: 10.1016/j.ijimpeng.2020.103763_bib0039 article-title: Comparison and construction of the models of the dynamic increase factor for concrete publication-title: Concr – volume: 6 start-page: 209 issue: 5 year: 1975 ident: 10.1016/j.ijimpeng.2020.103763_bib0010 article-title: Cement-based composites with mixtures of different types of fibres publication-title: Compos doi: 10.1016/0010-4361(75)90416-4 – volume: 33 start-page: 245 issue: 3 year: 1996 ident: 10.1016/j.ijimpeng.2020.103763_bib0066 article-title: A new constitutive model for blast damage publication-title: Int J Rock Mech Min Sci doi: 10.1016/0148-9062(95)00064-X – volume: 108-109 start-page: 1881 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0044 article-title: Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2016.02.005 – year: 2002 ident: 10.1016/j.ijimpeng.2020.103763_bib0040 – volume: 112 start-page: 58 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0012 article-title: Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading publication-title: Mater Des doi: 10.1016/j.matdes.2016.09.045 – volume: 124 start-page: 878 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0017 article-title: Mechanical behaviour of basalt fibre reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2016.08.009 – volume: 26 start-page: 101 issue: 2 year: 2005 ident: 10.1016/j.ijimpeng.2020.103763_bib0026 article-title: Experimental study on tenacity increase characteristics of steel fiber reinforced concrete and polypropylene fiber reinforced concrete under impact load publication-title: J Build Struct – volume: 34 start-page: 217 issue: 2 year: 1997 ident: 10.1016/j.ijimpeng.2020.103763_bib0069 article-title: Development of a continuum damage model for blasting analysis publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(96)00041-1 – volume: 87 start-page: 2 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0034 article-title: Preface to SI: Experimental testing and computational modeling of dynamic fracture publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.10.005 – volume: 64 start-page: 84 year: 2015 ident: 10.1016/j.ijimpeng.2020.103763_bib0004 article-title: Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2015.10.001 – volume: 86 start-page: 145 issue: 1 year: 2008 ident: 10.1016/j.ijimpeng.2020.103763_bib0053 article-title: Numerical investigation of concrete subjected to compressive impact loading: Part 1: a fundamental explanation for the apparent strength gain at high loading rates publication-title: Comput Struct doi: 10.1016/j.compstruc.2007.05.014 – volume: 85 start-page: 313 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0060 article-title: Experimental investigation and modeling of the rate-dependent deformation behavior of PMMA at different temperatures publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2016.10.036 – volume: 24 start-page: 545 issue: 6-7 year: 2000 ident: 10.1016/j.ijimpeng.2020.103763_bib0062 article-title: A visco-hyperelastic approach to modelling the constitutive behaviour of rubber publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(99)00044-5 – volume: 42 start-page: 1285 issue: 5 year: 2011 ident: 10.1016/j.ijimpeng.2020.103763_bib0046 article-title: On the strength and toughness properties of SFRC under static-dynamic compression publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2011.01.027 – volume: 208 start-page: 150 year: 2019 ident: 10.1016/j.ijimpeng.2020.103763_bib0005 article-title: Size- and edge-effect cohesive energy and shear strength between grapheme, carbon nanotubes and nanofibers: Continuum modeling and molecular dynamics simulations publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.10.021 – volume: 71 start-page: 46 year: 2015 ident: 10.1016/j.ijimpeng.2020.103763_bib0013 article-title: Compressive behaviour of recycled aggregate concrete under impact loading publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2015.01.014 – volume: 124 start-page: 405 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0016 article-title: Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading-A review publication-title: Eng Struct doi: 10.1016/j.engstruct.2016.06.029 – volume: 169 start-page: 119 year: 2018 ident: 10.1016/j.ijimpeng.2020.103763_bib0042 article-title: Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.05.036 – volume: 137 start-page: 225 year: 2018 ident: 10.1016/j.ijimpeng.2020.103763_bib0009 article-title: The interface strength and delamination of fiber-reinforced composites using a continuum modeling approach publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2017.11.007 – volume: 513-514 start-page: 145 year: 2009 ident: 10.1016/j.ijimpeng.2020.103763_bib0023 article-title: Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.02.033 – volume: 26 start-page: 211 issue: 2 year: 2014 ident: 10.1016/j.ijimpeng.2020.103763_bib0015 article-title: Experimental study on hybrid fiber-reinforced concrete subjected to uniaxial compression publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0000764 – volume: 25 start-page: 135 issue: 2 year: 2008 ident: 10.1016/j.ijimpeng.2020.103763_bib0021 article-title: Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar publication-title: Act Mater Compos Sin – volume: 22 start-page: 811 issue: 5 year: 2008 ident: 10.1016/j.ijimpeng.2020.103763_bib0045 article-title: Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2007.01.005 – volume: 47 start-page: 419 year: 2013 ident: 10.1016/j.ijimpeng.2020.103763_bib0027 article-title: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2013.05.063 – volume: 87 start-page: 146 year: 2016 ident: 10.1016/j.ijimpeng.2020.103763_bib0033 article-title: Modelling the dynamic failure of brittle rocks using a hubrid continuum-discrete element method with a mixed-mode cohesive fracture model publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2015.04.010 – volume: 41 start-page: 917 issue: 9 year: 2003 ident: 10.1016/j.ijimpeng.2020.103763_bib0064 article-title: Anisotropic dynamic damage and fragmentation of rock materials under explosive loading publication-title: Int J Eng Sci doi: 10.1016/S0020-7225(02)00378-6 – volume: 36 start-page: 504 issue: 6-7 year: 2005 ident: 10.1016/j.ijimpeng.2020.103763_bib0056 article-title: Characteristics of basalt fiber as a strengthening material for concrete structures publication-title: Compos Part B Eng doi: 10.1016/j.compositesb.2005.02.002 – volume: 44 start-page: 500 year: 2013 ident: 10.1016/j.ijimpeng.2020.103763_bib0058 article-title: Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag publication-title: Mater Des doi: 10.1016/j.matdes.2012.08.037 – volume: 93 start-page: 293 issue: 3 year: 1996 ident: 10.1016/j.ijimpeng.2020.103763_bib0047 article-title: Moisture and strain rate effects on concrete strength publication-title: ACI Mater J – volume: 1 start-page: 145 issue: 1 year: 2010 ident: 10.1016/j.ijimpeng.2020.103763_bib0052 article-title: Numerical analysis of lateral inertial confinement effects on impact test of concrete compressive material properties publication-title: Int J Prot Struct doi: 10.1260/2041-4196.1.1.145 – volume: 89 start-page: 381 year: 2014 ident: 10.1016/j.ijimpeng.2020.103763_bib0043 article-title: Effect of strain rate and temperature on the mechanical behavior of magnesium nanocomposites publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2014.10.003 – volume: 45 start-page: 4648 issue: 17 year: 2008 ident: 10.1016/j.ijimpeng.2020.103763_bib0049 article-title: Modelling of compressive behaviour of concrete-like materials at high strain rate publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2008.04.002 – start-page: 707 year: 2007 ident: 10.1016/j.ijimpeng.2020.103763_bib0051 article-title: Experimental study of compressive strength of mortar using SHPB – volume: 13 start-page: 1301 issue: 6 year: 2019 ident: 10.1016/j.ijimpeng.2020.103763_bib0035 article-title: Performance of a novel bent-up bars system not interacting with concrete publication-title: Front Struct Civ Eng doi: 10.1007/s11709-019-0552-4 – volume: 11 start-page: 582 issue: 6 year: 1940 ident: 10.1016/j.ijimpeng.2020.103763_bib0061 article-title: A theory of large elastic deformation publication-title: J Appl Phys doi: 10.1063/1.1712836 – volume: 103 start-page: 1 year: 2018 ident: 10.1016/j.ijimpeng.2020.103763_bib0008 article-title: Corrosion resistance of steel fibre reinforced concrete-A literature review publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2017.05.016 – volume: 505 start-page: 178 year: 2009 ident: 10.1016/j.ijimpeng.2020.103763_bib0024 article-title: Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2008.11.063 – volume: 39 start-page: 1044 issue: 11 year: 2009 ident: 10.1016/j.ijimpeng.2020.103763_bib0029 article-title: Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2009.07.012 – volume: 103 start-page: 124 year: 2017 ident: 10.1016/j.ijimpeng.2020.103763_bib0054 article-title: A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2017.01.011 – volume: 24 start-page: 910 issue: 6 year: 2010 ident: 10.1016/j.ijimpeng.2020.103763_bib0048 article-title: Mechanical properties of copper slag reinforced concrete under dynamic compression publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2009.12.001 |
SSID | ssj0017050 |
Score | 2.5261438 |
Snippet | •The addition of basalt fibre and polypropylene fibre increases the dynamic compressive behaviour of concrete.•Increasing the matrix strength and improving the... In this study, the dynamic compressive behaviour of concrete reinforced with hybrid basalt-polypropylene fibres (HBPRC) and different matrix strengths was... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103763 |
SubjectTerms | Basalt Basalt fibre Compressive properties Compressive strength Constitutive models Damage patterns Dynamic damage constitutive model Dynamic mechanical properties Energy dissipation Fiber reinforced concretes Impact damage Mechanical properties Polypropylene Polypropylene fibre Reinforced concrete Split Hopkinson pressure bar Split Hopkinson pressure bars Strain rate Toughness |
Title | Comparative analysis of dynamic constitutive response of hybrid fibre-reinforced concrete with different matrix strengths |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2020.103763 https://www.proquest.com/docview/2476336920 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0QvOjB-BlRJHvwWkp3l5UeCZGgRi5Kwm3TdrdQooVATeTib3em3SKaGA5etztNszOdebOZeUPIjYYQFIlYOKGRkKBguuP7QjtBi0Pq1mEiDPC-42koByPxMG6PK6RX9sJgWaX1_YVPz721XXHtabqLJHGfwTgFxL8xQ8oVztEPC1gAm25-bso8kC0mv2eBzQ7u3uoSnjWTWQLgNJ1AnsiK_nPJ_wpQv1x1Hn_6R-TQAkfaLb7tmFRMekIOtugET8m6903lTQPLNkLnMdXF2HkazW1pAG5YFtWxBjdM19i4RWPInY2zNDmbKhwNCgCqzAzF61paDlPJ6BsS-39QbDRJJ9l0dUZG_buX3sCxoxWciItW5nhhO5a3OoTgLJngmsucKC4WgKdMZFhHcy8wHtOAT4QxBrMuj8dtQG9C6ijk56SazlNzQajxQsQYfsAgNeExQLaO9HGICdgooKmgRtrlearI8o7j-ItXVRaYzVSpB4V6UIUeasTdyC0K5o2dEn6pLvXDhhSEh52y9VK_yv7FK8UEPOHSZ63Lf7z6iuwzLITJS73rpJot3801IJksbOSm2iB73fvHwfAL27r09A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YOKgH4zOiqHvwWqG724UeCZGAPC5Cwm3Tx5ZHtBCoifx7Z9otoonh4LXdaZqd6cw325lvCHkMIQQFIhKWryUkKJjuuK4ILa_KIXWrM-F7eN7RH8j2SLyMnfEBaea9MFhWaXx_5tNTb22uVMxuVpazWeUVjFNA_BszpFzhHPxwEdmpwNiLjU63Pdj-TKhV00GtuN5CgZ1G4fnTbD4DfBpPIFVkWQu65H_FqF_eOg1BrVNyYrAjbWSvd0YOdHxOjncYBS_IpvnN5k09QzhCFxENs8nzNFiY6gBcsMoKZDUumG6wd4tGkD5ra6VTQlXYHRQAYJloiie2NJ-nktB35Pb_pNhrEk-S6fqSjFrPw2bbMtMVrICLamLZvhPJWuhDfJZM8JDLlCsuEgCpdKBZPeS2p20WAkQRWmtMvGweOQDghAwDn1-RQryI9TWh2vYRZrgeg-yER4Da6tLFOSZgpgCovBJx8v1UgaEexwkYbyqvMZurXA8K9aAyPZRIZSu3zMg39kq4ubrUDzNSECH2ypZz_SrzIa8VE3CHS5dVb_7x6Ady2B72e6rXGXRvyRHDupi08rtMCsnqQ98BsEn8e2O4Xzui96U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+dynamic+constitutive+response+of+hybrid+fibre-reinforced+concrete+with+different+matrix+strengths&rft.jtitle=International+journal+of+impact+engineering&rft.au=Fu%2C+Qiang&rft.au=Bu%2C+Mengxin&rft.au=Xu%2C+Wenrui&rft.au=Chen%2C+Lou&rft.date=2021-02-01&rft.pub=Elsevier+BV&rft.issn=0734-743X&rft.eissn=1879-3509&rft.volume=148&rft.spage=103763&rft_id=info:doi/10.1016%2Fj.ijimpeng.2020.103763&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |