Clonal selection of high producing, stably transfected HEK293 cell lines utilizing modified, high-throughput FACS screening

BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compar...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical technology and biotechnology (1986) Vol. 86; no. 7; pp. 935 - 941
Main Authors Song, Michael, Raphaelli, Kristin, Jones, Martina L., Aliabadi-Zadeh, Khosrow, Leung, Kar Man, Crowley, David, Hughes, Benjamin, Mahler, Stephen, Gray, Peter P., Huang, Edwin P., Chin, David Y.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non‐amplifiable expression system, to achieve high‐level, scalable expression of recombinant antibodies. RESULTS: Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five‐ to seven‐fold improvement in volumetric outputs compared with the initial resistant pool (∼20 mg L−1) under batch conditions. In fed‐batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500–600 mg L−1 in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L−1, and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed‐batch production of gram quantities was completed within 4 months. CONCLUSION: HEK‐293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development. Copyright © 2011 Society of Chemical Industry
AbstractList BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non‐amplifiable expression system, to achieve high‐level, scalable expression of recombinant antibodies. RESULTS: Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five‐ to seven‐fold improvement in volumetric outputs compared with the initial resistant pool (∼20 mg L −1 ) under batch conditions. In fed‐batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500–600 mg L −1 in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L −1 , and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed‐batch production of gram quantities was completed within 4 months. CONCLUSION: HEK‐293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development. Copyright © 2011 Society of Chemical Industry
BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non‐amplifiable expression system, to achieve high‐level, scalable expression of recombinant antibodies. RESULTS: Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five‐ to seven‐fold improvement in volumetric outputs compared with the initial resistant pool (∼20 mg L−1) under batch conditions. In fed‐batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500–600 mg L−1 in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L−1, and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed‐batch production of gram quantities was completed within 4 months. CONCLUSION: HEK‐293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development. Copyright © 2011 Society of Chemical Industry
BACKGROUND: Human embryonic kidney-293 (HEK-293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non-amplifiable expression system, to achieve high-level, scalable expression of recombinant antibodies. RESULTS: Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five- to seven-fold improvement in volumetric outputs compared with the initial resistant pool (~20 mg L-1) under batch conditions. In fed-batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500-600 mg L-1 in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L-1, and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed-batch production of gram quantities was completed within 4 months. CONCLUSION: HEK-293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development.
Author Aliabadi-Zadeh, Khosrow
Hughes, Benjamin
Song, Michael
Raphaelli, Kristin
Gray, Peter P.
Jones, Martina L.
Crowley, David
Mahler, Stephen
Huang, Edwin P.
Chin, David Y.
Leung, Kar Man
Author_xml – sequence: 1
  givenname: Michael
  surname: Song
  fullname: Song, Michael
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 2
  givenname: Kristin
  surname: Raphaelli
  fullname: Raphaelli, Kristin
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 3
  givenname: Martina L.
  surname: Jones
  fullname: Jones, Martina L.
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 4
  givenname: Khosrow
  surname: Aliabadi-Zadeh
  fullname: Aliabadi-Zadeh, Khosrow
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 5
  givenname: Kar Man
  surname: Leung
  fullname: Leung, Kar Man
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 6
  givenname: David
  surname: Crowley
  fullname: Crowley, David
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 7
  givenname: Benjamin
  surname: Hughes
  fullname: Hughes, Benjamin
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 8
  givenname: Stephen
  surname: Mahler
  fullname: Mahler, Stephen
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 9
  givenname: Peter P.
  surname: Gray
  fullname: Gray, Peter P.
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 10
  givenname: Edwin P.
  surname: Huang
  fullname: Huang, Edwin P.
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
– sequence: 11
  givenname: David Y.
  surname: Chin
  fullname: Chin, David Y.
  email: david.chin@uq.edu.au
  organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia
BookMark eNp10EFv0zAUB3ALDYlucOAb-AjSstlO4sTHEa3rYCpIFCHtYjnOc-vh2l3sCDq-PC6duHHy4f3-T37_U3TigweE3lJyQQlhlw869ReM0_YFmlEimqLinJygGWG8LVjd1K_QaYwPhBDeMj5DvzsXvHI4ggOdbPA4GLyx6w3ejWGYtPXrcxyT6t0ep1H5aDKDAS-uPzFRYg3OYWc9RDwl6-xT9ngbBmssDOd_FxVpM4ZpvdlNCc-vuq846hHAZ_gavTTKRXjz_J6hb_PrVbco7j7f3HZXd4UuK9IWvRZV3VfC9AyMykca0WpDQFBioFZC8CHPQFSqF9nppmfKDD0rB8oZ62l5ht4d9-aTHieISW5tPPxceQhTlJTQRnDCeZ3p-yPVY4hxBCN3o92qcZ-RPBQsDwXLQ8HZXh7tT-tg_38oP3arD8-J4piwMcGvfwk1_pC8KZtafl_eyOX9YrliX-7lvPwDpMOQVw
CitedBy_id crossref_primary_10_1002_biot_202000621
crossref_primary_10_1002_jbm_a_34888
crossref_primary_10_1002_cbf_3787
crossref_primary_10_1002_biot_201500579
crossref_primary_10_4161_mabs_3_5_16968
crossref_primary_10_1002_biot_201200364
crossref_primary_10_1002_biot_202300671
crossref_primary_10_1002_jctb_2684
crossref_primary_10_1016_j_febslet_2013_11_035
crossref_primary_10_1016_j_vaccine_2019_05_064
crossref_primary_10_1016_j_ymeth_2012_03_004
Cites_doi 10.1038/nbt1026
10.1038/nrd3003
10.1016/j.vascn.2004.08.014
10.1007/s10616-009-9187-y
10.1016/j.copbio.2009.10.008
10.1093/nar/gkn423
10.1038/nbt0905-1073
10.1016/j.jbiotec.2009.03.001
10.1016/j.jim.2010.03.007
10.1016/j.tibtech.2007.07.002
10.1002/bit.22769
10.1038/nmeth1076
10.1016/S0022-1759(03)00108-X
10.1016/j.vaccine.2010.03.029
10.1038/nri2747
10.1007/s10529-006-9010-1
10.1006/meth.2000.1000
10.1038/nbt0410-307
10.1038/nbt1109-987
10.1016/S0958-1669(00)00197-X
10.1007/s12257-008-0221-2
10.1038/nbt.1579
10.1093/bfgp/eln012
10.1016/j.ddtec.2008.12.003
10.1002/bit.21612
10.1371/journal.pone.0008432
10.1016/j.biotechadv.2009.05.008
10.1021/bp060298i
10.1016/S0022-1759(00)00225-8
10.1016/S0022-1759(00)00236-2
10.1007/s00253-005-1980-8
ContentType Journal Article
Copyright Copyright © 2011 Society of Chemical Industry
Copyright_xml – notice: Copyright © 2011 Society of Chemical Industry
DBID BSCLL
AAYXX
CITATION
7QO
8FD
FR3
P64
DOI 10.1002/jctb.2618
DatabaseName Istex
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4660
EndPage 941
ExternalDocumentID 10_1002_jctb_2618
JCTB2618
ark_67375_WNG_NZHNT2PZ_F
Genre article
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29K
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D-I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UAO
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
XXG
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c3408-bc945b49fb2efa002f98cf0e910fe5a996d9fbe94ab95b4c7b2afdb23d1622b13
IEDL.DBID DR2
ISSN 0268-2575
1097-4660
IngestDate Wed Dec 04 03:43:16 EST 2024
Fri Dec 06 02:33:31 EST 2024
Sat Aug 24 00:56:30 EDT 2024
Wed Oct 30 10:00:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3408-bc945b49fb2efa002f98cf0e910fe5a996d9fbe94ab95b4c7b2afdb23d1622b13
Notes ark:/67375/WNG-NZHNT2PZ-F
ArticleID:JCTB2618
istex:C2A75D13CD952AA7DF54F844996609C1E56B8CF3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1017960665
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1017960665
crossref_primary_10_1002_jctb_2618
wiley_primary_10_1002_jctb_2618_JCTB2618
istex_primary_ark_67375_WNG_NZHNT2PZ_F
PublicationCentury 2000
PublicationDate 2011-07
July 2011
2011-07-00
20110701
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Journal of chemical technology and biotechnology (1986)
PublicationTitleAlternate J. Chem. Technol. Biotechnol
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, et al, Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4: 747-753 (2007).
Weaver JL, Introduction to flow cytometry. Methods 21: 199-201 (2000).
Wurm FM, Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22: 1393-1398 (2004).
O'Callaghan PM, McLeod J, Pybus LP, Lovelady CS, Wilkinson SJ, Racher AJ, et al, Cell line-specific control of recombinant monoclonal antibody production by CHO cells. Biotechnol Bioeng 106: 938-951 (2010).
Browne SM and Al-Rubeai M, Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25: 425-432 (2007).
Daugherty PS, Iverson BL and Georgiou G, Flow cytometric screening of cell-based libraries. J Immunol Methods 243: 211-227 (2000).
Hacker DL, De Jesus M and Wurm FM, 25 years of recombinant proteins from reactor-grown cells-where do we go from here? Biotechnol Adv 27: 1023-1027 (2009).
Hansel TT, Kropshofer H, Singer T, Mitchell JA and George AJT, The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9: 325-338 (2010).
DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, et al, Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog 23: 465-472 (2007).
Chu L and Robinson DK, Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12: 180-187 (2001).
Lindgren K, Salmen A, Lundgren M, Bylund L, Ebler A, Faldt E, et al, Automation of cell line development. Cytotechnology 59: 1-10 (2009).
Beck A, Wurch T, Bailly C and Corvaia N, Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10: 345-352 (2010).
Kim KS, Kim MS Moon JH, Jeong MS, Kim J, Lee GM, et al, Enhancement of recombinant antibody production in HEK 293E cells by WPRE. Biotechnol Bioprocess Eng 14: 633-638 (2009).
Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, et al, A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277: 141-155 (2003).
Matasci M, Hacker DL, Baldi L and Wurm FM Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects. Drug Discovery Today: Technol 5: e37-e42 (2008).
Aggarwal S, What's fueling the biotech engine-2008. Nat Biotechnol 27: 987-993 (2009).
O'Callaghan PM and James DC, Systems biotechnology of mammalian cell factories. Brief Funct Genomic Proteomic 7: 95-110 (2008).
Pechhold S, Stouffer M, Walker G, Martel R, Seligmann B, Hang Y, et al, Transcriptional analysis of intracytoplasmically stained FACS-purified cells by high-throughput, quantitative nuclease protection. Nat Biotechnol 27: 1038-1042 (2009).
Reichert JM, Rosensweig CJ, Faden LB and Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol 23: 1073-1078 (2005).
Sun X, Goh PE, Wong KT, Mori T and Yap MG, Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension. Biotechnol Lett 28: 843-848 (2006).
Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M and Wurm FM, Rational vector design and multi-pathway modulation of HEK293E cells yield recombinant antibody titers exceeding 1g/L by transient transfection under serum-free conditions. Nucleic Acids Res 36: e96 (2008).
Sheridan C, Fresh from the biologic pipeline-2009. Nat Biotechnol 28: 307-310 (2010).
Thomas P and Smart TG, HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51: 187-200 (2005).
Sleiman RJ, Gray PP, McCall MN, Codamo J and Sunstrom NA, Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng 99: 578-587 (2008).
Lin S, Shen Z, Zha D, Sharkey N, Prinz B, Hamilton S, et al, Selection of Pichia pastoris strains expressing recombinant immunoglobulin G by cell surface labeling. J Immunol Methods 358: 66-74 (2010).
Pilbrough W, Munro TP and Gray P, Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 4: e8432 (2009).
Hasse R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M, et al, pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol 10: 2033 (2010).
Battye FL, Light A and Tarlinton DM, Single cell sorting and cloning. J Immunol Methods 243: 25-32 (2000).
Durocher Y and Butler M, Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20: 700-707 (2009).
Butler M, Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68: 283-291 (2005).
Pichler J, Hesse F, Wieser M, Kunert R, Galosy SS, Mott JE, et al, A study on the temperature dependency and time course of the cold capture antibody secretion assay. J Biotechnol 141: 80-83 (2009).
Le Ru A, Jacob D, Transfiguracion J, Ansorge S, Henry O and Kamen AA, Scalable production of influenza virus in HEK-293 cells for efficient vaccine manufacturing. Vaccine 28: 3661-3671 (2010).
2004; 22
2010; 10
2009; 20
2010; 106
2000; 21
2008; 36
2008; 7
2008; 5
2008; 99
2003; 277
2009; 27
2005; 23
2005; 68
2009; 14
2010; 358
2010; 28
2006; 28
2005; 51
2007; 4
2000; 243
2009; 141
2009; 4
2001; 12
2007; 23
2007; 25
2009; 59
2010; 9
e_1_2_5_26_2
e_1_2_5_27_2
e_1_2_5_24_2
e_1_2_5_25_2
e_1_2_5_22_2
e_1_2_5_23_2
e_1_2_5_20_2
e_1_2_5_21_2
e_1_2_5_28_2
e_1_2_5_29_2
e_1_2_5_14_2
e_1_2_5_13_2
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_8_2
e_1_2_5_15_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_32_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_17_2
Hasse R (e_1_2_5_19_2) 2010; 10
e_1_2_5_30_2
References_xml – volume: 141
  start-page: 80
  year: 2009
  end-page: 83
  article-title: A study on the temperature dependency and time course of the cold capture antibody secretion assay
  publication-title: J Biotechnol
– volume: 14
  start-page: 633
  year: 2009
  end-page: 638
  article-title: Enhancement of recombinant antibody production in HEK 293E cells by WPRE
  publication-title: Biotechnol Bioprocess Eng
– volume: 12
  start-page: 180
  year: 2001
  end-page: 187
  article-title: Industrial choices for protein production by large‐scale cell culture
  publication-title: Curr Opin Biotechnol
– volume: 10
  start-page: 2033
  year: 2010
  article-title: pEPito: a significantly improved non‐viral episomal expression vector for mammalian cells
  publication-title: BMC Biotechnol
– volume: 28
  start-page: 307
  year: 2010
  end-page: 310
  article-title: Fresh from the biologic pipeline‐2009
  publication-title: Nat Biotechnol
– volume: 243
  start-page: 25
  year: 2000
  end-page: 32
  article-title: Single cell sorting and cloning
  publication-title: J Immunol Methods
– volume: 21
  start-page: 199
  year: 2000
  end-page: 201
  article-title: Introduction to flow cytometry
  publication-title: Methods
– volume: 36
  start-page: e96
  year: 2008
  article-title: Rational vector design and multi‐pathway modulation of HEK293E cells yield recombinant antibody titers exceeding 1g/L by transient transfection under serum‐free conditions
  publication-title: Nucleic Acids Res
– volume: 4
  start-page: 747
  year: 2007
  end-page: 753
  article-title: Genome‐wide prediction of matrix attachment regions that increase gene expression in mammalian cells
  publication-title: Nat Methods
– volume: 28
  start-page: 3661
  year: 2010
  end-page: 3671
  article-title: Scalable production of influenza virus in HEK‐293 cells for efficient vaccine manufacturing
  publication-title: Vaccine
– volume: 9
  start-page: 325
  year: 2010
  end-page: 338
  article-title: The safety and side effects of monoclonal antibodies
  publication-title: Nat Rev Drug Discov
– volume: 7
  start-page: 95
  year: 2008
  end-page: 110
  article-title: Systems biotechnology of mammalian cell factories
  publication-title: Brief Funct Genomic Proteomic
– volume: 99
  start-page: 578
  year: 2008
  end-page: 587
  article-title: Accelerated cell line development using two‐color fluorescence activated cell sorting to select highly expressing antibody‐producing clones
  publication-title: Biotechnol Bioeng
– volume: 23
  start-page: 1073
  year: 2005
  end-page: 1078
  article-title: Monoclonal antibody successes in the clinic
  publication-title: Nat Biotechnol
– volume: 4
  start-page: e8432
  year: 2009
  article-title: Intraclonal protein expression heterogeneity in recombinant CHO cells
  publication-title: PLoS One
– volume: 28
  start-page: 843
  year: 2006
  end-page: 848
  article-title: Enhancement of transient gene expression by fed‐batch culture of HEK 293 EBNA1 cells in suspension
  publication-title: Biotechnol Lett
– volume: 59
  start-page: 1
  year: 2009
  end-page: 10
  article-title: Automation of cell line development
  publication-title: Cytotechnology
– volume: 51
  start-page: 187
  year: 2005
  end-page: 200
  article-title: HEK293 cell line: a vehicle for the expression of recombinant proteins
  publication-title: J Pharmacol Toxicol Methods
– volume: 277
  start-page: 141
  year: 2003
  end-page: 155
  article-title: A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity
  publication-title: J Immunol Methods
– volume: 106
  start-page: 938
  year: 2010
  end-page: 951
  article-title: Cell line‐specific control of recombinant monoclonal antibody production by CHO cells
  publication-title: Biotechnol Bioeng
– volume: 5
  start-page: e37
  year: 2008
  end-page: e42
  article-title: Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects
  publication-title: Drug Discovery Today: Technol
– volume: 25
  start-page: 425
  year: 2007
  end-page: 432
  article-title: Selection methods for high‐producing mammalian cell lines
  publication-title: Trends Biotechnol
– volume: 27
  start-page: 987
  year: 2009
  end-page: 993
  article-title: What's fueling the biotech engine‐2008
  publication-title: Nat Biotechnol
– volume: 22
  start-page: 1393
  year: 2004
  end-page: 1398
  article-title: Production of recombinant protein therapeutics in cultivated mammalian cells
  publication-title: Nat Biotechnol
– volume: 27
  start-page: 1023
  year: 2009
  end-page: 1027
  article-title: 25 years of recombinant proteins from reactor‐grown cells—where do we go from here?
  publication-title: Biotechnol Adv
– volume: 20
  start-page: 700
  year: 2009
  end-page: 707
  article-title: Expression systems for therapeutic glycoprotein production
  publication-title: Curr Opin Biotechnol
– volume: 358
  start-page: 66
  year: 2010
  end-page: 74
  article-title: Selection of Pichia pastoris strains expressing recombinant immunoglobulin G by cell surface labeling
  publication-title: J Immunol Methods
– volume: 27
  start-page: 1038
  year: 2009
  end-page: 1042
  article-title: Transcriptional analysis of intracytoplasmically stained FACS‐purified cells by high‐throughput, quantitative nuclease protection
  publication-title: Nat Biotechnol
– volume: 10
  start-page: 345
  year: 2010
  end-page: 352
  article-title: Strategies and challenges for the next generation of therapeutic antibodies
  publication-title: Nat Rev Immunol
– volume: 23
  start-page: 465
  year: 2007
  end-page: 472
  article-title: Accelerated clone selection for recombinant CHO CELLS using a FACS‐based high‐throughput screen
  publication-title: Biotechnol Prog
– volume: 68
  start-page: 283
  year: 2005
  end-page: 291
  article-title: Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals
  publication-title: Appl Microbiol Biotechnol
– volume: 243
  start-page: 211
  year: 2000
  end-page: 227
  article-title: Flow cytometric screening of cell‐based libraries
  publication-title: J Immunol Methods
– ident: e_1_2_5_8_2
  doi: 10.1038/nbt1026
– ident: e_1_2_5_10_2
  doi: 10.1038/nrd3003
– ident: e_1_2_5_16_2
  doi: 10.1016/j.vascn.2004.08.014
– ident: e_1_2_5_21_2
  doi: 10.1007/s10616-009-9187-y
– volume: 10
  start-page: 2033
  year: 2010
  ident: e_1_2_5_19_2
  article-title: pEPito: a significantly improved non‐viral episomal expression vector for mammalian cells
  publication-title: BMC Biotechnol
  contributor:
    fullname: Hasse R
– ident: e_1_2_5_6_2
  doi: 10.1016/j.copbio.2009.10.008
– ident: e_1_2_5_11_2
  doi: 10.1093/nar/gkn423
– ident: e_1_2_5_5_2
  doi: 10.1038/nbt0905-1073
– ident: e_1_2_5_30_2
  doi: 10.1016/j.jbiotec.2009.03.001
– ident: e_1_2_5_29_2
  doi: 10.1016/j.jim.2010.03.007
– ident: e_1_2_5_20_2
  doi: 10.1016/j.tibtech.2007.07.002
– ident: e_1_2_5_33_2
  doi: 10.1002/bit.22769
– ident: e_1_2_5_14_2
  doi: 10.1038/nmeth1076
– ident: e_1_2_5_28_2
  doi: 10.1016/S0022-1759(03)00108-X
– ident: e_1_2_5_15_2
  doi: 10.1016/j.vaccine.2010.03.029
– ident: e_1_2_5_3_2
  doi: 10.1038/nri2747
– ident: e_1_2_5_12_2
  doi: 10.1007/s10529-006-9010-1
– ident: e_1_2_5_31_2
  doi: 10.1006/meth.2000.1000
– ident: e_1_2_5_4_2
  doi: 10.1038/nbt0410-307
– ident: e_1_2_5_2_2
  doi: 10.1038/nbt1109-987
– ident: e_1_2_5_9_2
  doi: 10.1016/S0958-1669(00)00197-X
– ident: e_1_2_5_13_2
  doi: 10.1007/s12257-008-0221-2
– ident: e_1_2_5_22_2
  doi: 10.1038/nbt.1579
– ident: e_1_2_5_32_2
  doi: 10.1093/bfgp/eln012
– ident: e_1_2_5_18_2
  doi: 10.1016/j.ddtec.2008.12.003
– ident: e_1_2_5_26_2
  doi: 10.1002/bit.21612
– ident: e_1_2_5_25_2
  doi: 10.1371/journal.pone.0008432
– ident: e_1_2_5_17_2
  doi: 10.1016/j.biotechadv.2009.05.008
– ident: e_1_2_5_27_2
  doi: 10.1021/bp060298i
– ident: e_1_2_5_23_2
  doi: 10.1016/S0022-1759(00)00225-8
– ident: e_1_2_5_24_2
  doi: 10.1016/S0022-1759(00)00236-2
– ident: e_1_2_5_7_2
  doi: 10.1007/s00253-005-1980-8
SSID ssj0006826
Score 2.103885
Snippet BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein...
BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein...
BACKGROUND: Human embryonic kidney-293 (HEK-293) cells are commonly used as a transient expression host but their application in stable therapeutic protein...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 935
SubjectTerms cold capture
FACS
HEK-293
monoclonal antibody
stable transfection
Title Clonal selection of high producing, stably transfected HEK293 cell lines utilizing modified, high-throughput FACS screening
URI https://api.istex.fr/ark:/67375/WNG-NZHNT2PZ-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.2618
https://search.proquest.com/docview/1017960665
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD6U9kUf2nqj6UVGEfEhaXdn9pLFpxoTQ8QgmtJSCsPODWpjEpoN1ILgT_A3-ks8ZzabpkJB-jawZ2dnzpnLd2bPfAfglUuNEEo3G4FN0UFJKAggFFjioXEqNpGO6HLyp37SPYp6J_HJCryt7sKU_BCLAzeaGX69pgmeq-nBDWnoN12ofcT_dNE3FCmF873_ckMdlTR9qjV0MXAkICapWIUCfrB489ZetEZqvboFNJfhqt9vOhtwVrW0DDO52J9hZfr6HxLHe3ZlE9bnOJQdlgPnEazY0WN4uMRO-AR-toYE09nUp8pB-7GxY0RvzCaeJhaF6gzBpRr-YIXHvyhmDeu2P-LuzuiXAKO2TRkO7uH5Ncqz72Nz7hD11n1Ff379nucJmswK1jlsfWW4iqFnjaJP4ajTHrS6jXm2hoYWUdBsKJ1FsYoyp7h1OXbMZU3tAot4xNk4R7_K4DObRbnKUE6niufOKC5MmHCuQvEMVkfjkd0ChhAW_T6nrRZJFGqhXJZoFxoVa_So86AGLyu7yUlJyiFL-mUuSZeSdFmD196iC4n88oKi2NJYHvc_yP5ptz_gn09lpwYvKpNLnFuknXxkx7Op9MsVeXhxDd54A979OdlrDd5RYfv_RXfgQXlETdG_u7BaXM7sHmKcQj33g_kvEq77Vg
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5YfWh9qPYiblvbaSmlD64mk8sm4Itd3aZeQmlXFEGGzA2s293FzYIVCv0J_Y3-Es-ZbFYtFErfBnIymTlnzsx3Jme-AXhrWzoIpEqanmlhgBJTEoAfYIn72spIhyqkw8n7eZwdhDtH0dEMbNRnYSp-iOmGG3mGm6_JwWlDev2GNfSbKuUaBgDJPZhDd_cpoWvryw15VJy4y9YwyMCxgKik5hXy-Pr01Tur0Rwp9uIO1LwNWN2K01mAk7qtVaLJ2doYK1OXf9A4_m9nFuHhBIqyzWrsPIIZ038M87cICp_Az3aPkDobudty0IRsYBkxHLOhY4pFoVWG-FL2frDSQWAUM5pl27u4wDP6K8CocSOG47t3eony7PtAn1oEvquuoqtfvydXBQ3HJetstr8ynMgwuEbRp3DQ2e62s-bkwoamCkIvaUqVhpEMUyu5sQV2zKaJsp5BSGJNVGBopfGZScNCpiinWpIXVkseaD_mXPrBEsz2B32zDAxRLIZ-VhkVxKGvAmnTWFlfy0hhUF14DXhTG04MK14OUTEwc0G6FKTLBrxzJp1KFOdnlMjWisRh_lHkx1ne5Z-PRacBr2ubC3Qv0k7RN4PxSLgZi4K8qAHvnQX__jmx0-5-oMKzfxd9Bfez7v6e2PuU7z6HB9WONSUDv4DZ8nxsVhDylPKlG9nXwyH_dw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tS9xAEB6sQqkfqn0Rr611W0rpB0-Tzcsl-Mmepldtg7QnighL9g2s17vDy4EVCv0J_Y3-Emc2l1MLhdJvC5nsZmf25ZnN7DMAb2xLB4FUSdMzLXRQYgoC8AMscV9bGelQhXQ5-XMedw7C3aPoaAY267swFT_E9MCNZoZbr2mCD7XduCEN_aZKuY74P7kHc9hGSsT5219uuKPixOVaQx8DhwKCkppWyOMb01fvbEZzpNeLO0jzNl51G062ACf1p1ZxJmfrY6xMXf7B4viffVmEhxMgyraqkfMIZkz_Mczfoid8Aj_bPcLpbORy5aAB2cAy4jdmQ8cTi0JrDNGl7P1gpQPAKGY06-zs4fbO6J8Ao28bMRzdvdNLlGffB_rUIuxdcxVd_fo9SRQ0HJcs22p_ZbiMoWuNok_hINvptjvNSbqGpgpCL2lKlYaRDFMrubEFdsymibKeQUBiTVSgY6XxmUnDQqYop1qSF1ZLHmg_5lz6wRLM9gd9swwMMSw6flYZFcShrwJp01hZX8tIoUtdeA14XdtNDCtWDlHxL3NBuhSkywa8dRadShTnZxTG1orEYf5B5MedvMv3j0XWgFe1yQVOLtJO0TeD8Ui49YpcvKgB75wB_96c2G1331Ph2b-LrsL9_e1MfPqY7z2HB9VxNUUCv4DZ8nxsVhDvlPKlG9fX1eX-Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clonal+selection+of+high+producing%2C+stably+transfected+HEK293+cell+lines+utilizing+modified%2C+high%E2%80%90throughput+FACS+screening&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Song%2C+Michael&rft.au=Raphaelli%2C+Kristin&rft.au=Jones%2C+Martina+L.&rft.au=Aliabadi%E2%80%90Zadeh%2C+Khosrow&rft.date=2011-07-01&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=86&rft.issue=7&rft.spage=935&rft.epage=941&rft_id=info:doi/10.1002%2Fjctb.2618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jctb_2618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon