Clonal selection of high producing, stably transfected HEK293 cell lines utilizing modified, high-throughput FACS screening
BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compar...
Saved in:
Published in | Journal of chemical technology and biotechnology (1986) Vol. 86; no. 7; pp. 935 - 941 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non‐amplifiable expression system, to achieve high‐level, scalable expression of recombinant antibodies.
RESULTS: Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five‐ to seven‐fold improvement in volumetric outputs compared with the initial resistant pool (∼20 mg L−1) under batch conditions. In fed‐batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500–600 mg L−1 in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L−1, and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed‐batch production of gram quantities was completed within 4 months.
CONCLUSION: HEK‐293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development. Copyright © 2011 Society of Chemical Industry |
---|---|
AbstractList | BACKGROUND:
Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non‐amplifiable expression system, to achieve high‐level, scalable expression of recombinant antibodies.
RESULTS:
Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five‐ to seven‐fold improvement in volumetric outputs compared with the initial resistant pool (∼20 mg L
−1
) under batch conditions. In fed‐batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500–600 mg L
−1
in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L
−1
, and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed‐batch production of gram quantities was completed within 4 months.
CONCLUSION:
HEK‐293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development. Copyright © 2011 Society of Chemical Industry BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non‐amplifiable expression system, to achieve high‐level, scalable expression of recombinant antibodies. RESULTS: Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five‐ to seven‐fold improvement in volumetric outputs compared with the initial resistant pool (∼20 mg L−1) under batch conditions. In fed‐batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500–600 mg L−1 in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L−1, and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed‐batch production of gram quantities was completed within 4 months. CONCLUSION: HEK‐293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development. Copyright © 2011 Society of Chemical Industry BACKGROUND: Human embryonic kidney-293 (HEK-293) cells are commonly used as a transient expression host but their application in stable therapeutic protein production is limited. This is presumably due to the absence of a suitable amplifiable expression system and hence limited protein output compared with other mammalian cells such as Chinese hamster ovary cells. This paper describes a rapid clonal selection method for isolating HEK293 cell lines with high specific productivity, for a non-amplifiable expression system, to achieve high-level, scalable expression of recombinant antibodies. RESULTS: Flow cytometry utilizing cold capture of secreted protein on the cell surface was applied to isolate high expressing clones from a stable antibiotic resistant pool. The top three isolated clones showed a five- to seven-fold improvement in volumetric outputs compared with the initial resistant pool (~20 mg L-1) under batch conditions. In fed-batch conditions using commercially available hydrolysate supplements, the final titre was further increased to 500-600 mg L-1 in shaker flasks. One clone was scaled up to 25 L bag production using a similar hydrolysate feeding regime. The antibody titre reached 655 mg L-1, and 12 g of antibody was recovered after purification, demonstrating scalability of the process. The process of clonal selection through to fed-batch production of gram quantities was completed within 4 months. CONCLUSION: HEK-293 cells can be used as a stable host for the production of biopharmaceuticals, producing gram quantities of recombinant proteins for preclinical development. |
Author | Aliabadi-Zadeh, Khosrow Hughes, Benjamin Song, Michael Raphaelli, Kristin Gray, Peter P. Jones, Martina L. Crowley, David Mahler, Stephen Huang, Edwin P. Chin, David Y. Leung, Kar Man |
Author_xml | – sequence: 1 givenname: Michael surname: Song fullname: Song, Michael organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 2 givenname: Kristin surname: Raphaelli fullname: Raphaelli, Kristin organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 3 givenname: Martina L. surname: Jones fullname: Jones, Martina L. organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 4 givenname: Khosrow surname: Aliabadi-Zadeh fullname: Aliabadi-Zadeh, Khosrow organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 5 givenname: Kar Man surname: Leung fullname: Leung, Kar Man organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 6 givenname: David surname: Crowley fullname: Crowley, David organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 7 givenname: Benjamin surname: Hughes fullname: Hughes, Benjamin organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 8 givenname: Stephen surname: Mahler fullname: Mahler, Stephen organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 9 givenname: Peter P. surname: Gray fullname: Gray, Peter P. organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 10 givenname: Edwin P. surname: Huang fullname: Huang, Edwin P. organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia – sequence: 11 givenname: David Y. surname: Chin fullname: Chin, David Y. email: david.chin@uq.edu.au organization: Biologics Facility, AIBN, The University of Queensland, Brisbane, Australia |
BookMark | eNp10EFv0zAUB3ALDYlucOAb-AjSstlO4sTHEa3rYCpIFCHtYjnOc-vh2l3sCDq-PC6duHHy4f3-T37_U3TigweE3lJyQQlhlw869ReM0_YFmlEimqLinJygGWG8LVjd1K_QaYwPhBDeMj5DvzsXvHI4ggOdbPA4GLyx6w3ejWGYtPXrcxyT6t0ep1H5aDKDAS-uPzFRYg3OYWc9RDwl6-xT9ngbBmssDOd_FxVpM4ZpvdlNCc-vuq846hHAZ_gavTTKRXjz_J6hb_PrVbco7j7f3HZXd4UuK9IWvRZV3VfC9AyMykca0WpDQFBioFZC8CHPQFSqF9nppmfKDD0rB8oZ62l5ht4d9-aTHieISW5tPPxceQhTlJTQRnDCeZ3p-yPVY4hxBCN3o92qcZ-RPBQsDwXLQ8HZXh7tT-tg_38oP3arD8-J4piwMcGvfwk1_pC8KZtafl_eyOX9YrliX-7lvPwDpMOQVw |
CitedBy_id | crossref_primary_10_1002_biot_202000621 crossref_primary_10_1002_jbm_a_34888 crossref_primary_10_1002_cbf_3787 crossref_primary_10_1002_biot_201500579 crossref_primary_10_4161_mabs_3_5_16968 crossref_primary_10_1002_biot_201200364 crossref_primary_10_1002_biot_202300671 crossref_primary_10_1002_jctb_2684 crossref_primary_10_1016_j_febslet_2013_11_035 crossref_primary_10_1016_j_vaccine_2019_05_064 crossref_primary_10_1016_j_ymeth_2012_03_004 |
Cites_doi | 10.1038/nbt1026 10.1038/nrd3003 10.1016/j.vascn.2004.08.014 10.1007/s10616-009-9187-y 10.1016/j.copbio.2009.10.008 10.1093/nar/gkn423 10.1038/nbt0905-1073 10.1016/j.jbiotec.2009.03.001 10.1016/j.jim.2010.03.007 10.1016/j.tibtech.2007.07.002 10.1002/bit.22769 10.1038/nmeth1076 10.1016/S0022-1759(03)00108-X 10.1016/j.vaccine.2010.03.029 10.1038/nri2747 10.1007/s10529-006-9010-1 10.1006/meth.2000.1000 10.1038/nbt0410-307 10.1038/nbt1109-987 10.1016/S0958-1669(00)00197-X 10.1007/s12257-008-0221-2 10.1038/nbt.1579 10.1093/bfgp/eln012 10.1016/j.ddtec.2008.12.003 10.1002/bit.21612 10.1371/journal.pone.0008432 10.1016/j.biotechadv.2009.05.008 10.1021/bp060298i 10.1016/S0022-1759(00)00225-8 10.1016/S0022-1759(00)00236-2 10.1007/s00253-005-1980-8 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Society of Chemical Industry |
Copyright_xml | – notice: Copyright © 2011 Society of Chemical Industry |
DBID | BSCLL AAYXX CITATION 7QO 8FD FR3 P64 |
DOI | 10.1002/jctb.2618 |
DatabaseName | Istex CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4660 |
EndPage | 941 |
ExternalDocumentID | 10_1002_jctb_2618 JCTB2618 ark_67375_WNG_NZHNT2PZ_F |
Genre | article |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29K 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D-I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TUS UAO UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 XXG ZXP ZZTAW ~02 ~IA ~KM ~WT AAMNL AAYXX ACRPL ACYXJ CITATION 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c3408-bc945b49fb2efa002f98cf0e910fe5a996d9fbe94ab95b4c7b2afdb23d1622b13 |
IEDL.DBID | DR2 |
ISSN | 0268-2575 1097-4660 |
IngestDate | Wed Dec 04 03:43:16 EST 2024 Fri Dec 06 02:33:31 EST 2024 Sat Aug 24 00:56:30 EDT 2024 Wed Oct 30 10:00:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3408-bc945b49fb2efa002f98cf0e910fe5a996d9fbe94ab95b4c7b2afdb23d1622b13 |
Notes | ark:/67375/WNG-NZHNT2PZ-F ArticleID:JCTB2618 istex:C2A75D13CD952AA7DF54F844996609C1E56B8CF3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1017960665 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1017960665 crossref_primary_10_1002_jctb_2618 wiley_primary_10_1002_jctb_2618_JCTB2618 istex_primary_ark_67375_WNG_NZHNT2PZ_F |
PublicationCentury | 2000 |
PublicationDate | 2011-07 July 2011 2011-07-00 20110701 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Journal of chemical technology and biotechnology (1986) |
PublicationTitleAlternate | J. Chem. Technol. Biotechnol |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, et al, Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4: 747-753 (2007). Weaver JL, Introduction to flow cytometry. Methods 21: 199-201 (2000). Wurm FM, Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22: 1393-1398 (2004). O'Callaghan PM, McLeod J, Pybus LP, Lovelady CS, Wilkinson SJ, Racher AJ, et al, Cell line-specific control of recombinant monoclonal antibody production by CHO cells. Biotechnol Bioeng 106: 938-951 (2010). Browne SM and Al-Rubeai M, Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25: 425-432 (2007). Daugherty PS, Iverson BL and Georgiou G, Flow cytometric screening of cell-based libraries. J Immunol Methods 243: 211-227 (2000). Hacker DL, De Jesus M and Wurm FM, 25 years of recombinant proteins from reactor-grown cells-where do we go from here? Biotechnol Adv 27: 1023-1027 (2009). Hansel TT, Kropshofer H, Singer T, Mitchell JA and George AJT, The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9: 325-338 (2010). DeMaria CT, Cairns V, Schwarz C, Zhang J, Guerin M, Zuena E, et al, Accelerated clone selection for recombinant CHO CELLS using a FACS-based high-throughput screen. Biotechnol Prog 23: 465-472 (2007). Chu L and Robinson DK, Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12: 180-187 (2001). Lindgren K, Salmen A, Lundgren M, Bylund L, Ebler A, Faldt E, et al, Automation of cell line development. Cytotechnology 59: 1-10 (2009). Beck A, Wurch T, Bailly C and Corvaia N, Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10: 345-352 (2010). Kim KS, Kim MS Moon JH, Jeong MS, Kim J, Lee GM, et al, Enhancement of recombinant antibody production in HEK 293E cells by WPRE. Biotechnol Bioprocess Eng 14: 633-638 (2009). Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, et al, A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277: 141-155 (2003). Matasci M, Hacker DL, Baldi L and Wurm FM Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects. Drug Discovery Today: Technol 5: e37-e42 (2008). Aggarwal S, What's fueling the biotech engine-2008. Nat Biotechnol 27: 987-993 (2009). O'Callaghan PM and James DC, Systems biotechnology of mammalian cell factories. Brief Funct Genomic Proteomic 7: 95-110 (2008). Pechhold S, Stouffer M, Walker G, Martel R, Seligmann B, Hang Y, et al, Transcriptional analysis of intracytoplasmically stained FACS-purified cells by high-throughput, quantitative nuclease protection. Nat Biotechnol 27: 1038-1042 (2009). Reichert JM, Rosensweig CJ, Faden LB and Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol 23: 1073-1078 (2005). Sun X, Goh PE, Wong KT, Mori T and Yap MG, Enhancement of transient gene expression by fed-batch culture of HEK 293 EBNA1 cells in suspension. Biotechnol Lett 28: 843-848 (2006). Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M and Wurm FM, Rational vector design and multi-pathway modulation of HEK293E cells yield recombinant antibody titers exceeding 1g/L by transient transfection under serum-free conditions. Nucleic Acids Res 36: e96 (2008). Sheridan C, Fresh from the biologic pipeline-2009. Nat Biotechnol 28: 307-310 (2010). Thomas P and Smart TG, HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51: 187-200 (2005). Sleiman RJ, Gray PP, McCall MN, Codamo J and Sunstrom NA, Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng 99: 578-587 (2008). Lin S, Shen Z, Zha D, Sharkey N, Prinz B, Hamilton S, et al, Selection of Pichia pastoris strains expressing recombinant immunoglobulin G by cell surface labeling. J Immunol Methods 358: 66-74 (2010). Pilbrough W, Munro TP and Gray P, Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 4: e8432 (2009). Hasse R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M, et al, pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol 10: 2033 (2010). Battye FL, Light A and Tarlinton DM, Single cell sorting and cloning. J Immunol Methods 243: 25-32 (2000). Durocher Y and Butler M, Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20: 700-707 (2009). Butler M, Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68: 283-291 (2005). Pichler J, Hesse F, Wieser M, Kunert R, Galosy SS, Mott JE, et al, A study on the temperature dependency and time course of the cold capture antibody secretion assay. J Biotechnol 141: 80-83 (2009). Le Ru A, Jacob D, Transfiguracion J, Ansorge S, Henry O and Kamen AA, Scalable production of influenza virus in HEK-293 cells for efficient vaccine manufacturing. Vaccine 28: 3661-3671 (2010). 2004; 22 2010; 10 2009; 20 2010; 106 2000; 21 2008; 36 2008; 7 2008; 5 2008; 99 2003; 277 2009; 27 2005; 23 2005; 68 2009; 14 2010; 358 2010; 28 2006; 28 2005; 51 2007; 4 2000; 243 2009; 141 2009; 4 2001; 12 2007; 23 2007; 25 2009; 59 2010; 9 e_1_2_5_26_2 e_1_2_5_27_2 e_1_2_5_24_2 e_1_2_5_25_2 e_1_2_5_22_2 e_1_2_5_23_2 e_1_2_5_20_2 e_1_2_5_21_2 e_1_2_5_28_2 e_1_2_5_29_2 e_1_2_5_14_2 e_1_2_5_13_2 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_8_2 e_1_2_5_15_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_32_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_17_2 Hasse R (e_1_2_5_19_2) 2010; 10 e_1_2_5_30_2 |
References_xml | – volume: 141 start-page: 80 year: 2009 end-page: 83 article-title: A study on the temperature dependency and time course of the cold capture antibody secretion assay publication-title: J Biotechnol – volume: 14 start-page: 633 year: 2009 end-page: 638 article-title: Enhancement of recombinant antibody production in HEK 293E cells by WPRE publication-title: Biotechnol Bioprocess Eng – volume: 12 start-page: 180 year: 2001 end-page: 187 article-title: Industrial choices for protein production by large‐scale cell culture publication-title: Curr Opin Biotechnol – volume: 10 start-page: 2033 year: 2010 article-title: pEPito: a significantly improved non‐viral episomal expression vector for mammalian cells publication-title: BMC Biotechnol – volume: 28 start-page: 307 year: 2010 end-page: 310 article-title: Fresh from the biologic pipeline‐2009 publication-title: Nat Biotechnol – volume: 243 start-page: 25 year: 2000 end-page: 32 article-title: Single cell sorting and cloning publication-title: J Immunol Methods – volume: 21 start-page: 199 year: 2000 end-page: 201 article-title: Introduction to flow cytometry publication-title: Methods – volume: 36 start-page: e96 year: 2008 article-title: Rational vector design and multi‐pathway modulation of HEK293E cells yield recombinant antibody titers exceeding 1g/L by transient transfection under serum‐free conditions publication-title: Nucleic Acids Res – volume: 4 start-page: 747 year: 2007 end-page: 753 article-title: Genome‐wide prediction of matrix attachment regions that increase gene expression in mammalian cells publication-title: Nat Methods – volume: 28 start-page: 3661 year: 2010 end-page: 3671 article-title: Scalable production of influenza virus in HEK‐293 cells for efficient vaccine manufacturing publication-title: Vaccine – volume: 9 start-page: 325 year: 2010 end-page: 338 article-title: The safety and side effects of monoclonal antibodies publication-title: Nat Rev Drug Discov – volume: 7 start-page: 95 year: 2008 end-page: 110 article-title: Systems biotechnology of mammalian cell factories publication-title: Brief Funct Genomic Proteomic – volume: 99 start-page: 578 year: 2008 end-page: 587 article-title: Accelerated cell line development using two‐color fluorescence activated cell sorting to select highly expressing antibody‐producing clones publication-title: Biotechnol Bioeng – volume: 23 start-page: 1073 year: 2005 end-page: 1078 article-title: Monoclonal antibody successes in the clinic publication-title: Nat Biotechnol – volume: 4 start-page: e8432 year: 2009 article-title: Intraclonal protein expression heterogeneity in recombinant CHO cells publication-title: PLoS One – volume: 28 start-page: 843 year: 2006 end-page: 848 article-title: Enhancement of transient gene expression by fed‐batch culture of HEK 293 EBNA1 cells in suspension publication-title: Biotechnol Lett – volume: 59 start-page: 1 year: 2009 end-page: 10 article-title: Automation of cell line development publication-title: Cytotechnology – volume: 51 start-page: 187 year: 2005 end-page: 200 article-title: HEK293 cell line: a vehicle for the expression of recombinant proteins publication-title: J Pharmacol Toxicol Methods – volume: 277 start-page: 141 year: 2003 end-page: 155 article-title: A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity publication-title: J Immunol Methods – volume: 106 start-page: 938 year: 2010 end-page: 951 article-title: Cell line‐specific control of recombinant monoclonal antibody production by CHO cells publication-title: Biotechnol Bioeng – volume: 5 start-page: e37 year: 2008 end-page: e42 article-title: Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects publication-title: Drug Discovery Today: Technol – volume: 25 start-page: 425 year: 2007 end-page: 432 article-title: Selection methods for high‐producing mammalian cell lines publication-title: Trends Biotechnol – volume: 27 start-page: 987 year: 2009 end-page: 993 article-title: What's fueling the biotech engine‐2008 publication-title: Nat Biotechnol – volume: 22 start-page: 1393 year: 2004 end-page: 1398 article-title: Production of recombinant protein therapeutics in cultivated mammalian cells publication-title: Nat Biotechnol – volume: 27 start-page: 1023 year: 2009 end-page: 1027 article-title: 25 years of recombinant proteins from reactor‐grown cells—where do we go from here? publication-title: Biotechnol Adv – volume: 20 start-page: 700 year: 2009 end-page: 707 article-title: Expression systems for therapeutic glycoprotein production publication-title: Curr Opin Biotechnol – volume: 358 start-page: 66 year: 2010 end-page: 74 article-title: Selection of Pichia pastoris strains expressing recombinant immunoglobulin G by cell surface labeling publication-title: J Immunol Methods – volume: 27 start-page: 1038 year: 2009 end-page: 1042 article-title: Transcriptional analysis of intracytoplasmically stained FACS‐purified cells by high‐throughput, quantitative nuclease protection publication-title: Nat Biotechnol – volume: 10 start-page: 345 year: 2010 end-page: 352 article-title: Strategies and challenges for the next generation of therapeutic antibodies publication-title: Nat Rev Immunol – volume: 23 start-page: 465 year: 2007 end-page: 472 article-title: Accelerated clone selection for recombinant CHO CELLS using a FACS‐based high‐throughput screen publication-title: Biotechnol Prog – volume: 68 start-page: 283 year: 2005 end-page: 291 article-title: Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals publication-title: Appl Microbiol Biotechnol – volume: 243 start-page: 211 year: 2000 end-page: 227 article-title: Flow cytometric screening of cell‐based libraries publication-title: J Immunol Methods – ident: e_1_2_5_8_2 doi: 10.1038/nbt1026 – ident: e_1_2_5_10_2 doi: 10.1038/nrd3003 – ident: e_1_2_5_16_2 doi: 10.1016/j.vascn.2004.08.014 – ident: e_1_2_5_21_2 doi: 10.1007/s10616-009-9187-y – volume: 10 start-page: 2033 year: 2010 ident: e_1_2_5_19_2 article-title: pEPito: a significantly improved non‐viral episomal expression vector for mammalian cells publication-title: BMC Biotechnol contributor: fullname: Hasse R – ident: e_1_2_5_6_2 doi: 10.1016/j.copbio.2009.10.008 – ident: e_1_2_5_11_2 doi: 10.1093/nar/gkn423 – ident: e_1_2_5_5_2 doi: 10.1038/nbt0905-1073 – ident: e_1_2_5_30_2 doi: 10.1016/j.jbiotec.2009.03.001 – ident: e_1_2_5_29_2 doi: 10.1016/j.jim.2010.03.007 – ident: e_1_2_5_20_2 doi: 10.1016/j.tibtech.2007.07.002 – ident: e_1_2_5_33_2 doi: 10.1002/bit.22769 – ident: e_1_2_5_14_2 doi: 10.1038/nmeth1076 – ident: e_1_2_5_28_2 doi: 10.1016/S0022-1759(03)00108-X – ident: e_1_2_5_15_2 doi: 10.1016/j.vaccine.2010.03.029 – ident: e_1_2_5_3_2 doi: 10.1038/nri2747 – ident: e_1_2_5_12_2 doi: 10.1007/s10529-006-9010-1 – ident: e_1_2_5_31_2 doi: 10.1006/meth.2000.1000 – ident: e_1_2_5_4_2 doi: 10.1038/nbt0410-307 – ident: e_1_2_5_2_2 doi: 10.1038/nbt1109-987 – ident: e_1_2_5_9_2 doi: 10.1016/S0958-1669(00)00197-X – ident: e_1_2_5_13_2 doi: 10.1007/s12257-008-0221-2 – ident: e_1_2_5_22_2 doi: 10.1038/nbt.1579 – ident: e_1_2_5_32_2 doi: 10.1093/bfgp/eln012 – ident: e_1_2_5_18_2 doi: 10.1016/j.ddtec.2008.12.003 – ident: e_1_2_5_26_2 doi: 10.1002/bit.21612 – ident: e_1_2_5_25_2 doi: 10.1371/journal.pone.0008432 – ident: e_1_2_5_17_2 doi: 10.1016/j.biotechadv.2009.05.008 – ident: e_1_2_5_27_2 doi: 10.1021/bp060298i – ident: e_1_2_5_23_2 doi: 10.1016/S0022-1759(00)00225-8 – ident: e_1_2_5_24_2 doi: 10.1016/S0022-1759(00)00236-2 – ident: e_1_2_5_7_2 doi: 10.1007/s00253-005-1980-8 |
SSID | ssj0006826 |
Score | 2.103885 |
Snippet | BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein... BACKGROUND: Human embryonic kidney‐293 (HEK‐293) cells are commonly used as a transient expression host but their application in stable therapeutic protein... BACKGROUND: Human embryonic kidney-293 (HEK-293) cells are commonly used as a transient expression host but their application in stable therapeutic protein... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 935 |
SubjectTerms | cold capture FACS HEK-293 monoclonal antibody stable transfection |
Title | Clonal selection of high producing, stably transfected HEK293 cell lines utilizing modified, high-throughput FACS screening |
URI | https://api.istex.fr/ark:/67375/WNG-NZHNT2PZ-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjctb.2618 https://search.proquest.com/docview/1017960665 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD6U9kUf2nqj6UVGEfEhaXdn9pLFpxoTQ8QgmtJSCsPODWpjEpoN1ILgT_A3-ks8ZzabpkJB-jawZ2dnzpnLd2bPfAfglUuNEEo3G4FN0UFJKAggFFjioXEqNpGO6HLyp37SPYp6J_HJCryt7sKU_BCLAzeaGX69pgmeq-nBDWnoN12ofcT_dNE3FCmF873_ckMdlTR9qjV0MXAkICapWIUCfrB489ZetEZqvboFNJfhqt9vOhtwVrW0DDO52J9hZfr6HxLHe3ZlE9bnOJQdlgPnEazY0WN4uMRO-AR-toYE09nUp8pB-7GxY0RvzCaeJhaF6gzBpRr-YIXHvyhmDeu2P-LuzuiXAKO2TRkO7uH5Ncqz72Nz7hD11n1Ff379nucJmswK1jlsfWW4iqFnjaJP4ajTHrS6jXm2hoYWUdBsKJ1FsYoyp7h1OXbMZU3tAot4xNk4R7_K4DObRbnKUE6niufOKC5MmHCuQvEMVkfjkd0ChhAW_T6nrRZJFGqhXJZoFxoVa_So86AGLyu7yUlJyiFL-mUuSZeSdFmD196iC4n88oKi2NJYHvc_yP5ptz_gn09lpwYvKpNLnFuknXxkx7Op9MsVeXhxDd54A979OdlrDd5RYfv_RXfgQXlETdG_u7BaXM7sHmKcQj33g_kvEq77Vg |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD5YfWh9qPYiblvbaSmlD64mk8sm4Itd3aZeQmlXFEGGzA2s293FzYIVCv0J_Y3-Es-ZbFYtFErfBnIymTlnzsx3Jme-AXhrWzoIpEqanmlhgBJTEoAfYIn72spIhyqkw8n7eZwdhDtH0dEMbNRnYSp-iOmGG3mGm6_JwWlDev2GNfSbKuUaBgDJPZhDd_cpoWvryw15VJy4y9YwyMCxgKik5hXy-Pr01Tur0Rwp9uIO1LwNWN2K01mAk7qtVaLJ2doYK1OXf9A4_m9nFuHhBIqyzWrsPIIZ038M87cICp_Az3aPkDobudty0IRsYBkxHLOhY4pFoVWG-FL2frDSQWAUM5pl27u4wDP6K8CocSOG47t3eony7PtAn1oEvquuoqtfvydXBQ3HJetstr8ynMgwuEbRp3DQ2e62s-bkwoamCkIvaUqVhpEMUyu5sQV2zKaJsp5BSGJNVGBopfGZScNCpiinWpIXVkseaD_mXPrBEsz2B32zDAxRLIZ-VhkVxKGvAmnTWFlfy0hhUF14DXhTG04MK14OUTEwc0G6FKTLBrxzJp1KFOdnlMjWisRh_lHkx1ne5Z-PRacBr2ubC3Qv0k7RN4PxSLgZi4K8qAHvnQX__jmx0-5-oMKzfxd9Bfez7v6e2PuU7z6HB9WONSUDv4DZ8nxsVhDylPKlG9nXwyH_dw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tS9xAEB6sQqkfqn0Rr611W0rpB0-Tzcsl-Mmepldtg7QnighL9g2s17vDy4EVCv0J_Y3-Emc2l1MLhdJvC5nsZmf25ZnN7DMAb2xLB4FUSdMzLXRQYgoC8AMscV9bGelQhXQ5-XMedw7C3aPoaAY267swFT_E9MCNZoZbr2mCD7XduCEN_aZKuY74P7kHc9hGSsT5219uuKPixOVaQx8DhwKCkppWyOMb01fvbEZzpNeLO0jzNl51G062ACf1p1ZxJmfrY6xMXf7B4viffVmEhxMgyraqkfMIZkz_Mczfoid8Aj_bPcLpbORy5aAB2cAy4jdmQ8cTi0JrDNGl7P1gpQPAKGY06-zs4fbO6J8Ao28bMRzdvdNLlGffB_rUIuxdcxVd_fo9SRQ0HJcs22p_ZbiMoWuNok_hINvptjvNSbqGpgpCL2lKlYaRDFMrubEFdsymibKeQUBiTVSgY6XxmUnDQqYop1qSF1ZLHmg_5lz6wRLM9gd9swwMMSw6flYZFcShrwJp01hZX8tIoUtdeA14XdtNDCtWDlHxL3NBuhSkywa8dRadShTnZxTG1orEYf5B5MedvMv3j0XWgFe1yQVOLtJO0TeD8Ui49YpcvKgB75wB_96c2G1331Ph2b-LrsL9_e1MfPqY7z2HB9VxNUUCv4DZ8nxsVhDvlPKlG9fX1eX-Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clonal+selection+of+high+producing%2C+stably+transfected+HEK293+cell+lines+utilizing+modified%2C+high%E2%80%90throughput+FACS+screening&rft.jtitle=Journal+of+chemical+technology+and+biotechnology+%281986%29&rft.au=Song%2C+Michael&rft.au=Raphaelli%2C+Kristin&rft.au=Jones%2C+Martina+L.&rft.au=Aliabadi%E2%80%90Zadeh%2C+Khosrow&rft.date=2011-07-01&rft.issn=0268-2575&rft.eissn=1097-4660&rft.volume=86&rft.issue=7&rft.spage=935&rft.epage=941&rft_id=info:doi/10.1002%2Fjctb.2618&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jctb_2618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-2575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-2575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-2575&client=summon |