Developmental exposure to the Parkinson’s disease-associated organochlorine pesticide dieldrin alters dopamine neurotransmission in α-synuclein pre-formed fibril (PFF)-injected mice

Abstract Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persiste...

Full description

Saved in:
Bibliographic Details
Published inToxicological sciences Vol. 196; no. 1; pp. 99 - 111
Main Authors Boyd, Sierra L, Kuhn, Nathan C, Patterson, Joseph R, Stoll, Anna C, Zimmerman, Sydney A, Kolanowski, Mason R, Neubecker, Joseph J, Luk, Kelvin C, Ramsson, Eric S, Sortwell, Caryl E, Bernstein, Alison I
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 30.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.
AbstractList Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3 H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.
Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.
Abstract Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.
Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.
Author Stoll, Anna C
Kuhn, Nathan C
Luk, Kelvin C
Patterson, Joseph R
Neubecker, Joseph J
Zimmerman, Sydney A
Boyd, Sierra L
Kolanowski, Mason R
Sortwell, Caryl E
Bernstein, Alison I
Ramsson, Eric S
Author_xml – sequence: 1
  givenname: Sierra L
  orcidid: 0000-0003-1039-9484
  surname: Boyd
  fullname: Boyd, Sierra L
– sequence: 2
  givenname: Nathan C
  surname: Kuhn
  fullname: Kuhn, Nathan C
– sequence: 3
  givenname: Joseph R
  orcidid: 0000-0003-0926-7396
  surname: Patterson
  fullname: Patterson, Joseph R
– sequence: 4
  givenname: Anna C
  orcidid: 0000-0001-7135-121X
  surname: Stoll
  fullname: Stoll, Anna C
– sequence: 5
  givenname: Sydney A
  orcidid: 0009-0003-7419-0329
  surname: Zimmerman
  fullname: Zimmerman, Sydney A
– sequence: 6
  givenname: Mason R
  orcidid: 0009-0006-3101-9574
  surname: Kolanowski
  fullname: Kolanowski, Mason R
– sequence: 7
  givenname: Joseph J
  orcidid: 0009-0005-5044-0623
  surname: Neubecker
  fullname: Neubecker, Joseph J
– sequence: 8
  givenname: Kelvin C
  orcidid: 0000-0002-6591-6269
  surname: Luk
  fullname: Luk, Kelvin C
– sequence: 9
  givenname: Eric S
  orcidid: 0000-0001-7187-7684
  surname: Ramsson
  fullname: Ramsson, Eric S
– sequence: 10
  givenname: Caryl E
  orcidid: 0000-0003-2571-6753
  surname: Sortwell
  fullname: Sortwell, Caryl E
– sequence: 11
  givenname: Alison I
  orcidid: 0000-0002-5589-4318
  surname: Bernstein
  fullname: Bernstein, Alison I
  email: bernstein.alison@rutgers.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37607008$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1u1TAQjlAR_YEtS-Rlu0jrxImTrBBqKSBVogtYWxN73OfWsYPtVO2Oa3AMdpyCQ3AS_PQeFSAhVrbH38_48-wXO847LIrnFT2u6MBOkr-L0pzcaFC054-KvVzlJR3qYWe757Snu8V-jNeUVhWnw5Nil3WcdpT2e8W3M7xF6-cJXQJL8G72cQlIkidpheQSwo1x0bsfn79EokxEiFhCjF4aSKiID1fgvFxZH4xDMmNMRhqFGYtW5RoBmzBkrp9hWkMcLsGnAC5OJkbjHcmg71_LeO8WaTEf5oCl9mHK8tqMwVhyeHl-flQad41ybToZiU-LxxpsxGfb9aD4eP76w-nb8uL9m3enry5KyRrKSxybulaV5LRtNbBaNWzkQBl2eui4GtuqGetuRNW0quYdVW3PGFKuNYBsOs0Oipcb3XkZc0cy5xTAijmYCcK98GDEnzfOrMSVvxUV5RUbeJ8VDrcKwX9ackAiP1yiteDQL1HUfdsMvGu6IUNf_G724PLrvzLgeAOQwccYUD9AKirWAyE2AyG2A5EJzV8EaRKkHHtu1th_0442NL_M_7P4CVSZ1MI
CitedBy_id crossref_primary_10_3390_ijms242216233
crossref_primary_10_1111_ejn_16275
crossref_primary_10_1093_toxsci_kfae091
crossref_primary_10_1016_j_brainres_2023_148613
crossref_primary_10_1080_87559129_2024_2337766
crossref_primary_10_1007_s10571_024_01501_5
crossref_primary_10_1002_mds_30067
Cites_doi 10.1016/S0896-6273(00)80886-7
10.5061/dryad.qz612jmmq
10.1007/s12035-012-8341-2
10.1093/ije/29.2.323
10.1523/ENEURO.0483-22.2022
10.1111/j.1471-4159.2006.04146.x
10.1021/acschemneuro.2c00033
10.1021/bi0102398
10.1016/j.ntt.2016.03.005
10.1016/j.jneumeth.2011.03.001
10.3390/ijms22115999
10.1111/bpa.13036
10.1021/acschemneuro.5b00010
10.1016/S1474-4422(18)30295-3
10.1016/0006-8993(88)90264-8
10.1523/JNEUROSCI.22-08-03090.2002
10.1007/s10571-011-9780-4
10.1016/j.neuro.2012.01.010
10.1523/JNEUROSCI.0319-07.2007
10.1371/journal.pone.0235407
10.2144/000114476
10.1002/(SICI)1098-2396(19990601)32:3<165::AID-SYN3>3.0.CO;2-N
10.1038/nn.4660
10.1006/nbdi.1997.0157
10.1111/j.1600-0773.1996.tb00234.x
10.1289/ehp.1002839
10.1289/ehp.8095
10.17605/OSF.IO/QV4YA
10.1136/oem.54.10.702
10.1136/jnnp.2008.168211
10.1093/toxsci/kfw106
10.1007/s40572-022-00380-6
10.1007/s40572-017-0143-2
10.1186/1478-811X-11-34
10.1007/BF03159728
10.1006/enrs.2001.4264
10.1016/j.expneurol.2006.12.020
10.3389/fnins.2016.00408
10.1093/aje/kwg068
10.1016/B978-0-444-63425-2.00006-4
10.1093/toxsci/kfz082
10.1073/pnas.1407935111
10.1523/JNEUROSCI.20-09-03214.2000
10.1523/JNEUROSCI.1495-09.2009
10.1016/0006-8993(86)90894-2
10.1016/j.yfrne.2014.02.002
10.1038/s41531-022-00410-y
10.1136/jnnp.2006.103788
10.1016/B978-0-12-411512-5.00012-9
10.1007/s10654-011-9581-6
10.4161/cib.3.2.10964
10.1016/S0165-6147(99)01379-6
10.1016/j.tips.2008.03.007
10.1016/j.jchemneu.2010.12.001
10.1073/pnas.2013652117
10.1084/jem.20112457
10.1021/ac902753x
10.1007/BF01345243
10.1016/j.neuron.2009.12.023
10.1016/j.neuro.2012.05.011
10.1021/es0000955
10.1212/WNL.55.9.1358
10.1016/j.tips.2009.06.005
10.1002/mds.29051
10.1002/ana.21717
10.1016/0378-4274(95)03482-X
10.1097/01.ede.0000190707.51536.2b
10.1016/S1474-4422(06)70471-9
10.1007/s11910-013-0362-3
10.1016/S0895-4356(01)00425-5
10.1016/j.neuro.2011.03.004
10.1111/j.1471-4159.2008.05568.x
10.1016/S0753-3322(99)80077-8
10.1136/jnnp.2006.104695
10.1212/WNL.42.7.1328
10.1016/S0306-4522(03)00226-4
10.1371/journal.pone.0141340
10.1111/ane.12796
10.1126/science.1227157
10.1016/j.baga.2016.02.001
10.1002/ana.410430503
10.1093/toxsci/kfz069
10.1523/JNEUROSCI.2559-04.2004
10.1006/exnr.1998.6776
10.1097/00019052-200008000-00010
10.1523/JNEUROSCI.17-07-02420.1997
10.1016/j.jneumeth.2012.06.002
10.1016/j.bbadis.2017.07.013
10.1111/j.1471-4159.2004.02271.x
10.1021/acsomega.1c04475
10.1002/ana.410360119
10.1016/S0301-0082(98)00006-9
10.1016/j.pbb.2014.08.010
10.1046/j.1471-4159.1995.64020718.x
10.1038/s41531-021-00210-w
10.1002/ana.21995
10.1038/nn.4641
10.1016/S0891-5849(01)00726-2
10.3233/JPD-212922
10.1136/jnnp.2003.020982
10.1242/jcs.02481
10.1038/nmeth.2089
10.1080/009841000156907
10.1001/archneur.1984.04050190062015
10.1016/j.nbd.2020.104947
10.1016/j.neuro.2004.07.010
10.1017/S0317167100031826
10.1212/WNL.0b013e3181d76a93
10.1002/ana.20904
10.1073/pnas.93.5.1956
10.1016/S0079-6123(08)60776-1
10.1002/bdra.20118
10.1006/exnr.1997.6770
10.1073/pnas.1402134111
10.1096/fj.06-5864fje
10.1016/j.tins.2010.09.004
10.1046/j.1471-4159.2001.00096.x
10.3389/fncel.2021.658244
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/toxsci/kfad086
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1096-0929
EndPage 111
ExternalDocumentID PMC10613968
37607008
10_1093_toxsci_kfad086
10.1093/toxsci/kfad086
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: R01ES031237
– fundername: NIEHS NIH HHS
  grantid: R01 ES031237
– fundername: ;
  grantid: R01ES031237
GroupedDBID ---
--K
-E4
.2P
.I3
.ZR
0R~
123
18M
1B1
1TH
1~5
29Q
2WC
4.4
48X
4G.
53G
5RE
5VS
5WA
5WD
7-5
70D
A8Z
AABZA
AACTN
AACZT
AAEDT
AAHBH
AAIMJ
AAJKP
AAJQQ
AALRI
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAQXK
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXUO
ABEUO
ABIXL
ABJNI
ABKDP
ABMAC
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACMRT
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADMUD
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIJHB
AJEEA
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DM4
DU5
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
ELUNK
EMOBN
ESTFP
F5P
F9B
FDB
FEDTE
FGOYB
FHSFR
FIRID
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HH5
HVGLF
HW0
HZ~
I-F
IHE
IOX
J21
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
LG5
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NOYVH
NQ-
NTWIH
NU-
NVLIB
O-L
O0~
O9-
OAWHX
OBOKY
OCZFY
ODMLO
OHT
OJQWA
OJZSN
OK1
OPAEJ
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
Q1.
Q5Y
R2-
R44
RD5
RIG
RNI
ROL
ROX
RPZ
RUSNO
RW1
RXO
RZO
SSZ
SV3
TJX
TLC
TOX
TR2
UHS
W8F
WOQ
X7H
XPP
YAYTL
YCJ
YKOAZ
YXANX
ZGI
ZKX
ZMT
ZXP
~02
~91
AAYWO
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c3406-eb422d1c6055fa32d43b6a03e7f976db514b27bed45d2670d5833e06ffaac47f3
IEDL.DBID TOX
ISSN 1096-6080
1096-0929
IngestDate Thu Aug 21 18:36:48 EDT 2025
Thu Jul 10 23:11:42 EDT 2025
Wed Feb 19 02:06:16 EST 2025
Tue Jul 01 02:41:37 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Wed Aug 28 03:17:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Parkinson disease
dieldrin
alpha-synuclein
pesticides
dopamine
developmental neurotoxicity
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3406-eb422d1c6055fa32d43b6a03e7f976db514b27bed45d2670d5833e06ffaac47f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-7419-0329
0000-0002-6591-6269
0000-0001-7187-7684
0000-0003-2571-6753
0000-0003-0926-7396
0009-0006-3101-9574
0000-0002-5589-4318
0000-0003-1039-9484
0009-0005-5044-0623
0000-0001-7135-121X
OpenAccessLink https://dx.doi.org/10.1093/toxsci/kfad086
PMID 37607008
PQID 2854967479
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10613968
proquest_miscellaneous_2854967479
pubmed_primary_37607008
crossref_primary_10_1093_toxsci_kfad086
crossref_citationtrail_10_1093_toxsci_kfad086
oup_primary_10_1093_toxsci_kfad086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-30
PublicationDateYYYYMMDD 2023-10-30
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Toxicological sciences
PublicationTitleAlternate Toxicol Sci
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Gonzales (2023103009441965900_kfad086-B46) 2014; 126
Gezer (2023103009441965900_kfad086-B41) 2020; 141
Schneider (2023103009441965900_kfad086-B93) 2012; 9
Luk (2023103009441965900_kfad086-B68) 2012; 209
Mor (2023103009441965900_kfad086-B73) 2017; 20
Narahashi (2023103009441965900_kfad086-B77) 1995; 82-83
Ramsson (2023103009441965900_kfad086-B87) 2016; 61
Cory-Slechta (2023103009441965900_kfad086-B23) 2005; 73
Paladini (2023103009441965900_kfad086-B81) 1999; 32
Zhang (2023103009441965900_kfad086-B124) 1988; 461
Abeliovich (2023103009441965900_kfad086-B1) 2000; 25
Everett (2023103009441965900_kfad086-B34) 2022; 13
Bellani (2023103009441965900_kfad086-B8) 2010; 3
Gainetdinov (2023103009441965900_kfad086-B39) 1999; 20
Alter (2023103009441965900_kfad086-B4) 2013; 13
Kraft (2023103009441965900_kfad086-B61) 2016; 55
Hatcher (2023103009441965900_kfad086-B52) 2007; 204
Kang (2023103009441965900_kfad086-B56) 2021; 6
Taylor (2023103009441965900_kfad086-B107) 2009; 29
Uhl (2023103009441965900_kfad086-B112) 1998; 43
Wooten (2023103009441965900_kfad086-B119) 2004; 75
Zigmond (2023103009441965900_kfad086-B127) 1989; 10
Zigmond (2023103009441965900_kfad086-B126) 1997; 4
Ascherio (2023103009441965900_kfad086-B6) 2006; 60
Willis (2023103009441965900_kfad086-B117) 2022; 8
Lohr (2023103009441965900_kfad086-B65) 2015; 6
Tanner (2023103009441965900_kfad086-B106) 2011; 119
Murphy (2023103009441965900_kfad086-B75) 2000; 20
Wirdefeldt (2023103009441965900_kfad086-B118) 2011; 26(Suppl 1)
Ramsson (2023103009441965900_kfad086-B88) 2015; 10
Cicchetti (2023103009441965900_kfad086-B20) 2009; 30
Sulzer (2023103009441965900_kfad086-B102) 2016; 6
Zigmond (2023103009441965900_kfad086-B128) 1998; 14
Zigmond (2023103009441965900_kfad086-B129) 1984; 41
Yavich (2023103009441965900_kfad086-B122) 2004; 24
Kochmanski (2023103009441965900_kfad086-B60) 2019; 169
Baldereschi (2023103009441965900_kfad086-B7) 2000; 55
Cheng (2023103009441965900_kfad086-B17) 2010; 67
Le Couteur (2023103009441965900_kfad086-B24) 1999; 53
Georgiev (2023103009441965900_kfad086-B40) 2017; 136
Hatcher (2023103009441965900_kfad086-B51) 2008; 29
Yorgason (2023103009441965900_kfad086-B123) 2011; 202
Goldstein (2023103009441965900_kfad086-B44) 2013; 68
Priyadarshi (2023103009441965900_kfad086-B86) 2000; 21
Meijer (2023103009441965900_kfad086-B69) 2001; 35
Steenland (2023103009441965900_kfad086-B100) 2006; 17
Semchuk (2023103009441965900_kfad086-B94) 1992; 42
Cheng (2023103009441965900_kfad086-B18) 2011; 42
Jorgenson (2023103009441965900_kfad086-B55) 2001; 109(Suppl 1)
Gillies (2023103009441965900_kfad086-B42) 2014; 35
Weisskopf (2023103009441965900_kfad086-B116) 2010; 74
Tanner (2023103009441965900_kfad086-B105) 1990; 40
Kanthasamy (2023103009441965900_kfad086-B57) 2005; 26
Fleming (2023103009441965900_kfad086-B36) 2017; 4
Molina-Mateo (2023103009441965900_kfad086-B72) 2017; 1863
Lohr (2023103009441965900_kfad086-B66) 2014; 111
Lohr (2023103009441965900_kfad086-B64) 2016; 153
Meiser (2023103009441965900_kfad086-B70) 2013; 11
Liu (2023103009441965900_kfad086-B63) 1997; 17
Venda (2023103009441965900_kfad086-B114) 2010; 33
World Health Organization & International Programme on Chemical Safety (2023103009441965900_kfad086-B120) 1989
Ferris (2023103009441965900_kfad086-B35) 2014; 111
Miller (2023103009441965900_kfad086-B71) 2011; 2011
Fleming (2023103009441965900_kfad086-B37) 1994; 36
Brown (2023103009441965900_kfad086-B14) 2006; 114
Elbaz (2023103009441965900_kfad086-B33) 2009; 66
Kitazawa (2023103009441965900_kfad086-B59) 2003; 119
Davis (2023103009441965900_kfad086-B26) 2020; 15
Corrigan (2023103009441965900_kfad086-B21) 1998; 150
Roy (2023103009441965900_kfad086-B91) 2017; 20
Goldstein (2023103009441965900_kfad086-B43) 2012; 32
Hastings (2023103009441965900_kfad086-B50) 1996; 93
de Lau (2023103009441965900_kfad086-B28) 2006; 5
Ben-Shachar (2023103009441965900_kfad086-B9) 1995; 64
Sanchez-Ramos (2023103009441965900_kfad086-B92) 1998; 150
Xilouri (2023103009441965900_kfad086-B121) 2013; 47
Patterson (2023103009441965900_kfad086-B82) 2019; 2019
Goldstein (2023103009441965900_kfad086-B45) 2021; 22
Staal (2023103009441965900_kfad086-B99) 2000; 293
Caudle (2023103009441965900_kfad086-B15) 2012; 33
Elbaz (2023103009441965900_kfad086-B32) 2002; 55
Priyadarshi (2023103009441965900_kfad086-B85) 2001; 86
Bernstein (2023103009441965900_kfad086-B12) 2012; 209
Caudle (2023103009441965900_kfad086-B16) 2007; 27
Graham (2023103009441965900_kfad086-B47) 1978; 14
Sossi (2023103009441965900_kfad086-B98) 2022; 37
Snyder (2023103009441965900_kfad086-B96) 1990; 253
Kitazawa (2023103009441965900_kfad086-B58) 2001; 31
Guillot (2023103009441965900_kfad086-B48) 2008; 106
Perez (2023103009441965900_kfad086-B84) 2002; 22
Richardson (2023103009441965900_kfad086-B89) 2006; 20
Takmakov (2023103009441965900_kfad086-B103) 2010; 82
Zigmond (2023103009441965900_kfad086-B125) 1994; 100
Freire (2023103009441965900_kfad086-B38) 2012; 33
Dagra (2023103009441965900_kfad086-B25) 2021; 7
Adamson (2023103009441965900_kfad086-B2) 2022; 9
Dorsey (2023103009441965900_kfad086-B31) 2018; 17
Agency for Toxic Substances and Disease Registry (ATSDR) (2023103009441965900_kfad086-B3) 2022
Bernstein (2023103009441965900_kfad086-B11) 2023
Somayaji (2023103009441965900_kfad086-B97) 2020; 117
Ingelsson (2023103009441965900_kfad086-B54) 2016; 10
Ritz (2023103009441965900_kfad086-B90) 2000; 29
Volles (2023103009441965900_kfad086-B115) 2001; 40
De Miranda (2023103009441965900_kfad086-B30) 2022; 12
Alves (2023103009441965900_kfad086-B5) 2009; 80
Corrigan (2023103009441965900_kfad086-B22) 2000; 59
Semchuk (2023103009441965900_kfad086-B95) 1991; 18
Bezard (2023103009441965900_kfad086-B13) 1998; 55
Haaxma (2023103009441965900_kfad086-B49) 2007; 78
Onn (2023103009441965900_kfad086-B80) 1986; 376
Chun (2023103009441965900_kfad086-B19) 2001; 76
Nemani (2023103009441965900_kfad086-B78) 2010; 65
Sun (2023103009441965900_kfad086-B101) 2022; 32
Okada (2023103009441965900_kfad086-B79) 2004; 89
Moretto (2023103009441965900_kfad086-B74) 2011; 32
De Miranda (2023103009441965900_kfad086-B29) 2019; 170
Narahashi (2023103009441965900_kfad086-B76) 1996; 79
Iannitelli (2023103009441965900_kfad086-B53) 2023; 10
Lauder (2023103009441965900_kfad086-B62) 1998; 5
van den Eeden (2023103009441965900_kfad086-B113) 2003; 157
Taylor (2023103009441965900_kfad086-B108) 2007; 78
Trudeau (2023103009441965900_kfad086-B111) 2014; 211
Luk (2023103009441965900_kfad086-B67) 2012; 338
Bernstein (2023103009441965900_kfad086-B10) 2022
de Jong Geert (2023103009441965900_kfad086-B27) 1997; 54
Tehranian (2023103009441965900_kfad086-B109) 2006; 99
Peng (2023103009441965900_kfad086-B83) 2005; 118
Tanner (2023103009441965900_kfad086-B104) 2000; 13
Threlfell (2023103009441965900_kfad086-B110) 2021; 15
References_xml – volume: 5
  start-page: 247
  year: 1998
  ident: 2023103009441965900_kfad086-B62
  article-title: GABA as a trophic factor for developing monoamine neurons
  publication-title: Perspect Dev Neurobiol
– volume: 25
  start-page: 239
  year: 2000
  ident: 2023103009441965900_kfad086-B1
  article-title: Mice lacking a-synuclein display functional deficits in the nigrostriatal dopamine system
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80886-7
– year: 2023
  ident: 2023103009441965900_kfad086-B11
  doi: 10.5061/dryad.qz612jmmq
– volume: 47
  start-page: 537
  year: 2013
  ident: 2023103009441965900_kfad086-B121
  article-title: α-Synuclein and protein degradation systems: A reciprocal relationship
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-012-8341-2
– volume: 29
  start-page: 323
  year: 2000
  ident: 2023103009441965900_kfad086-B90
  article-title: Parkinson’s disease mortality and pesticide exposure in California 1984–1994
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/29.2.323
– volume: 10
  year: 2023
  ident: 2023103009441965900_kfad086-B53
  article-title: The neurotoxin DSP-4 dysregulates the locus Coeruleus-Norepinephrine system and recapitulates molecular and behavioral aspects of prodromal neurodegenerative disease
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0483-22.2022
– volume: 99
  start-page: 1188
  year: 2006
  ident: 2023103009441965900_kfad086-B109
  article-title: Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2006.04146.x
– volume: 13
  start-page: 1534
  year: 2022
  ident: 2023103009441965900_kfad086-B34
  article-title: Effectiveness and relationship between biased and unbiased measures of dopamine release and clearance
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.2c00033
– volume: 40
  start-page: 7812
  year: 2001
  ident: 2023103009441965900_kfad086-B115
  article-title: Vesicle permeabilization by protofibrillar α-synuclein: Implications for the pathogenesis and treatment of Parkinson’s disease
  publication-title: Biochemistry
  doi: 10.1021/bi0102398
– volume: 55
  start-page: 38
  year: 2016
  ident: 2023103009441965900_kfad086-B61
  article-title: Unmasking silent neurotoxicity following developmental exposure to environmental toxicants
  publication-title: Neurotoxicol. Teratol.
  doi: 10.1016/j.ntt.2016.03.005
– year: 1989
  ident: 2023103009441965900_kfad086-B120
– volume: 202
  start-page: 158
  year: 2011
  ident: 2023103009441965900_kfad086-B123
  article-title: Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures
  publication-title: J. Neurosci. Methods.
  doi: 10.1016/j.jneumeth.2011.03.001
– volume: 22
  start-page: 5999
  year: 2021
  ident: 2023103009441965900_kfad086-B45
  article-title: The catecholaldehyde hypothesis for the pathogenesis of catecholaminergic neurodegeneration: What we know and what we do not know
  publication-title: IJMS.
  doi: 10.3390/ijms22115999
– volume: 32
  start-page: e13036
  year: 2022
  ident: 2023103009441965900_kfad086-B101
  article-title: Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology
  publication-title: Brain Pathol.
  doi: 10.1111/bpa.13036
– volume: 6
  start-page: 790
  year: 2015
  ident: 2023103009441965900_kfad086-B65
  article-title: Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.5b00010
– volume: 17
  start-page: 939
  year: 2018
  ident: 2023103009441965900_kfad086-B31
  article-title: Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the global burden of disease study 2016
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30295-3
– volume: 461
  start-page: 335
  year: 1988
  ident: 2023103009441965900_kfad086-B124
  article-title: Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(88)90264-8
– volume: 22
  start-page: 3090
  year: 2002
  ident: 2023103009441965900_kfad086-B84
  article-title: A role for-Synuclein in the regulation of dopamine biosynthesis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-08-03090.2002
– volume: 32
  start-page: 661
  year: 2012
  ident: 2023103009441965900_kfad086-B43
  article-title: Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-011-9780-4
– volume: 33
  start-page: 178
  year: 2012
  ident: 2023103009441965900_kfad086-B15
  article-title: Industrial toxicants and Parkinson’s disease
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2012.01.010
– volume: 27
  start-page: 8138
  year: 2007
  ident: 2023103009441965900_kfad086-B16
  article-title: Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0319-07.2007
– volume: 15
  start-page: e0235407
  year: 2020
  ident: 2023103009441965900_kfad086-B26
  article-title: Enhancement of fast scan cyclic voltammetry detection of dopamine with tryptophan-modified electrodes
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0235407
– volume: 61
  start-page: 269
  year: 2016
  ident: 2023103009441965900_kfad086-B87
  article-title: A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times
  publication-title: Biotechniques.
  doi: 10.2144/000114476
– volume: 32
  start-page: 165
  year: 1999
  ident: 2023103009441965900_kfad086-B81
  article-title: GABA(A) and GABA(B) antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo
  publication-title: Synpase
  doi: 10.1002/(SICI)1098-2396(19990601)32:3<165::AID-SYN3>3.0.CO;2-N
– volume: 20
  start-page: 1514
  year: 2017
  ident: 2023103009441965900_kfad086-B91
  article-title: Synuclein and dopamine: The bonnie and clyde of parkinson’s disease
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4660
– volume: 4
  start-page: 247
  year: 1997
  ident: 2023103009441965900_kfad086-B126
  article-title: Do compensatory processes underlie the preclinical phase of neurodegenerative disease? Insights from an animal model of parkinsonism
  publication-title: Neurobiol. Dis.
  doi: 10.1006/nbdi.1997.0157
– volume: 79
  start-page: 1
  year: 1996
  ident: 2023103009441965900_kfad086-B76
  article-title: Neuronal ion channels as the target sites of insecticides
  publication-title: Pharmacol. Toxicol.
  doi: 10.1111/j.1600-0773.1996.tb00234.x
– volume: 119
  start-page: 866
  year: 2011
  ident: 2023103009441965900_kfad086-B106
  article-title: Rotenone, paraquat, and Parkinson’s disease
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1002839
– volume: 114
  start-page: 156
  year: 2006
  ident: 2023103009441965900_kfad086-B14
  article-title: Pesticides and parkinson’s disease—Is there a link?
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8095
– year: 2022
  ident: 2023103009441965900_kfad086-B10
  doi: 10.17605/OSF.IO/QV4YA
– volume: 54
  start-page: 702
  year: 1997
  ident: 2023103009441965900_kfad086-B27
  article-title: Mortality of workers exposed to dieldrin and aldrin: A retrospective cohort study
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oem.54.10.702
– volume: 80
  start-page: 851
  year: 2009
  ident: 2023103009441965900_kfad086-B5
  article-title: Incidence of parkinson’s disease in Norway: The Norwegian ParkWest study
  publication-title: J. Neurol. Neurosurg. Psychiatry.
  doi: 10.1136/jnnp.2008.168211
– volume: 153
  start-page: 79
  year: 2016
  ident: 2023103009441965900_kfad086-B64
  article-title: Vesicular monoamine transporter 2 (VMAT2) level regulates MPTP vulnerability and clearance of excess dopamine in mouse striatal terminals
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfw106
– volume: 9
  start-page: 563
  year: 2022
  ident: 2023103009441965900_kfad086-B2
  article-title: Sex differences in dopaminergic vulnerability to environmental toxicants—implications for Parkinson’s disease
  publication-title: Curr. Environ. Health Rep.
  doi: 10.1007/s40572-022-00380-6
– volume: 4
  start-page: 192
  year: 2017
  ident: 2023103009441965900_kfad086-B36
  article-title: Mechanisms of gene-environment interactions in Parkinson’s disease
  publication-title: Curr. Environ. Health Rep.
  doi: 10.1007/s40572-017-0143-2
– volume: 11
  start-page: 34
  year: 2013
  ident: 2023103009441965900_kfad086-B70
  article-title: Complexity of dopamine metabolism
  publication-title: Cell Commun. Signal.
  doi: 10.1186/1478-811X-11-34
– volume: 10
  start-page: 185
  year: 1989
  ident: 2023103009441965900_kfad086-B127
  article-title: Compensatory responses to nigrostriatal bundle injury. Studies WITH 6-hydroxydopamine in an animal model of parkinsonism
  publication-title: Mol. Chem. Neuropathol.
  doi: 10.1007/BF03159728
– volume: 86
  start-page: 122
  year: 2001
  ident: 2023103009441965900_kfad086-B85
  article-title: Environmental risk factors and parkinson’s disease: A metaanalysis
  publication-title: Environ. Res.
  doi: 10.1006/enrs.2001.4264
– volume: 204
  start-page: 619
  year: 2007
  ident: 2023103009441965900_kfad086-B52
  article-title: Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2006.12.020
– volume: 10
  start-page: 408
  year: 2016
  ident: 2023103009441965900_kfad086-B54
  article-title: Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other lewy body disorders
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00408
– volume: 157
  start-page: 1015
  year: 2003
  ident: 2023103009441965900_kfad086-B113
  article-title: Incidence of parkinson’s disease: Variation by age, gender, and race/ethnicity
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwg068
– volume: 211
  start-page: 141
  year: 2014
  ident: 2023103009441965900_kfad086-B111
  article-title: The multilingual nature of dopamine neurons
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-63425-2.00006-4
– volume: 170
  start-page: 133
  year: 2019
  ident: 2023103009441965900_kfad086-B29
  article-title: Sex differences in rotenone sensitivity reflect the male-to-female ratio in human Parkinson’s disease incidence
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfz082
– volume: 111
  start-page: E2751
  year: 2014
  ident: 2023103009441965900_kfad086-B35
  article-title: Dopamine transporters govern diurnal variation in extracellular dopamine tone
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1407935111
– volume: 20
  start-page: 3214
  year: 2000
  ident: 2023103009441965900_kfad086-B75
  article-title: Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-09-03214.2000
– volume: 29
  start-page: 8103
  year: 2009
  ident: 2023103009441965900_kfad086-B107
  article-title: Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1495-09.2009
– volume: 376
  start-page: 8
  year: 1986
  ident: 2023103009441965900_kfad086-B80
  article-title: Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: Histochemical and neurochemical analysis
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(86)90894-2
– volume: 35
  start-page: 370
  year: 2014
  ident: 2023103009441965900_kfad086-B42
  article-title: Sex differences in Parkinson’s disease
  publication-title: Front. Neuroendocrinol.
  doi: 10.1016/j.yfrne.2014.02.002
– volume: 14
  start-page: 644
  year: 1978
  ident: 2023103009441965900_kfad086-B47
  article-title: Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro
  publication-title: Mol Pharmacol
– volume: 8
  start-page: 170
  year: 2022
  ident: 2023103009441965900_kfad086-B117
  article-title: Incidence of Parkinson disease in North America
  publication-title: NPJ Parkinsons. Dis.
  doi: 10.1038/s41531-022-00410-y
– volume: 78
  start-page: 819
  year: 2007
  ident: 2023103009441965900_kfad086-B49
  article-title: Gender differences in Parkinson’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry.
  doi: 10.1136/jnnp.2006.103788
– volume: 68
  start-page: 235
  year: 2013
  ident: 2023103009441965900_kfad086-B44
  article-title: Biomarkers, mechanisms, and potential prevention of catecholamine neuron loss in arkinson disease
  publication-title: Adv. Pharmacol.
  doi: 10.1016/B978-0-12-411512-5.00012-9
– volume: 26(Suppl 1)
  start-page: S1
  year: 2011
  ident: 2023103009441965900_kfad086-B118
  article-title: Epidemiology and etiology of parkinson’s disease: A review of the evidence
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-011-9581-6
– volume: 3
  start-page: 106
  year: 2010
  ident: 2023103009441965900_kfad086-B8
  article-title: The regulation of synaptic function by α-synuclein
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.3.2.10964
– volume: 20
  start-page: 424
  year: 1999
  ident: 2023103009441965900_kfad086-B39
  article-title: Dopamine transporters and neuronal injury
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/S0165-6147(99)01379-6
– volume: 29
  start-page: 322
  year: 2008
  ident: 2023103009441965900_kfad086-B51
  article-title: Parkinson’s disease and pesticides: A toxicological perspective
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2008.03.007
– volume: 42
  start-page: 242
  year: 2011
  ident: 2023103009441965900_kfad086-B18
  article-title: The role of alpha-synuclein in neurotransmission and synaptic plasticity
  publication-title: J. Chem. Neuroanat.
  doi: 10.1016/j.jchemneu.2010.12.001
– volume: 117
  start-page: 32701
  year: 2020
  ident: 2023103009441965900_kfad086-B97
  article-title: A dual role for α-synuclein in facilitation and depression of dopamine release from substantia nigra neurons in vivo
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2013652117
– volume: 209
  start-page: 975
  year: 2012
  ident: 2023103009441965900_kfad086-B68
  article-title: Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20112457
– volume: 82
  start-page: 2020
  year: 2010
  ident: 2023103009441965900_kfad086-B103
  article-title: Carbon microelectrodes with a renewable surface
  publication-title: Anal. Chem.
  doi: 10.1021/ac902753x
– volume: 109(Suppl 1)
  start-page: 113
  year: 2001
  ident: 2023103009441965900_kfad086-B55
  article-title: Aldrin and dieldrin: A review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States
  publication-title: Environ. Health Perspect.
– volume: 14
  start-page: 57
  year: 1998
  ident: 2023103009441965900_kfad086-B128
  article-title: Role of excitatory amino acids in the regulation of dopamine synthesis and release in the neostriatum
  publication-title: Amino Acids.
  doi: 10.1007/BF01345243
– volume: 65
  start-page: 66
  year: 2010
  ident: 2023103009441965900_kfad086-B78
  article-title: Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.12.023
– volume: 33
  start-page: 947
  year: 2012
  ident: 2023103009441965900_kfad086-B38
  article-title: Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2012.05.011
– volume: 35
  start-page: 1989
  year: 2001
  ident: 2023103009441965900_kfad086-B69
  article-title: Organochlorine pesticide residues in archived UK soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0000955
– volume: 55
  start-page: 1358
  year: 2000
  ident: 2023103009441965900_kfad086-B7
  article-title: Parkinson’s disease and parkinsonism in a longitudinal study
  publication-title: Neurology
  doi: 10.1212/WNL.55.9.1358
– volume: 30
  start-page: 475
  year: 2009
  ident: 2023103009441965900_kfad086-B20
  article-title: Environmental toxins and Parkinson’s disease: What have we learned from pesticide-induced animal models?
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2009.06.005
– volume: 37
  start-page: 1739
  year: 2022
  ident: 2023103009441965900_kfad086-B98
  article-title: Dopaminergic positron emission tomography imaging in the Alpha-Synuclein preformed fibril model reveals similarities to early Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.29051
– volume: 293
  start-page: 329
  year: 2000
  ident: 2023103009441965900_kfad086-B99
  article-title: In vitro studies of striatal vesicles containing the vesicular monoamine transporter (VMAT2): Rat versus mouse differences in sequestration of 1-methyl-4-phenylpyridinium
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 66
  start-page: 494
  year: 2009
  ident: 2023103009441965900_kfad086-B33
  article-title: Professional exposure to pesticides and Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21717
– volume: 82-83
  start-page: 239
  year: 1995
  ident: 2023103009441965900_kfad086-B77
  article-title: Sodium channels and GABAA receptor-channel complex as targets of environmental toxicants
  publication-title: Toxicol. Lett.
  doi: 10.1016/0378-4274(95)03482-X
– volume: 17
  start-page: 8
  year: 2006
  ident: 2023103009441965900_kfad086-B100
  article-title: Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000190707.51536.2b
– volume: 5
  start-page: 525
  year: 2006
  ident: 2023103009441965900_kfad086-B28
  article-title: Epidemiology of Parkinson’s disease
  publication-title: Lancet. Neurol.
  doi: 10.1016/S1474-4422(06)70471-9
– volume: 13
  start-page: 362
  year: 2013
  ident: 2023103009441965900_kfad086-B4
  article-title: Vesicular integrity in parkinson’s disease
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-013-0362-3
– volume-title: Toxicological Profile for Aldrin and Dieldrin
  year: 2022
  ident: 2023103009441965900_kfad086-B3
– volume: 55
  start-page: 25
  year: 2002
  ident: 2023103009441965900_kfad086-B32
  article-title: Risk tables for parkinsonism and Parkinson’s disease
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(01)00425-5
– volume: 32
  start-page: 383
  year: 2011
  ident: 2023103009441965900_kfad086-B74
  article-title: Biochemical and toxicological evidence of neurological effects of pesticides: The example of Parkinson’s disease
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2011.03.004
– volume: 106
  start-page: 2205
  year: 2008
  ident: 2023103009441965900_kfad086-B48
  article-title: Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2008.05568.x
– volume: 53
  start-page: 122
  year: 1999
  ident: 2023103009441965900_kfad086-B24
  article-title: Pesticides and Parkinson’s disease
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/S0753-3322(99)80077-8
– volume: 78
  start-page: 905
  year: 2007
  ident: 2023103009441965900_kfad086-B108
  article-title: Heterogeneity in male to female risk for Parkinson’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry.
  doi: 10.1136/jnnp.2006.104695
– volume: 42
  start-page: 1328
  year: 1992
  ident: 2023103009441965900_kfad086-B94
  article-title: Parkinson’s disease and exposure to agricultural work and pesticide chemicals
  publication-title: Neurology
  doi: 10.1212/WNL.42.7.1328
– volume: 119
  start-page: 945
  year: 2003
  ident: 2023103009441965900_kfad086-B59
  article-title: Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cδ in dopaminergic cells: Relevance to oxidative stress and dopaminergic degeneration
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(03)00226-4
– volume: 10
  start-page: e0141340
  year: 2015
  ident: 2023103009441965900_kfad086-B88
  article-title: Characterization of fast-scan cyclic voltammetric electrodes using paraffin as an effective sealant with in vitro and in vivo applications
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0141340
– volume: 136
  start-page: 570
  year: 2017
  ident: 2023103009441965900_kfad086-B40
  article-title: Gender differences in Parkinson’s disease: A clinical perspective
  publication-title: Acta Neurol. Scand.
  doi: 10.1111/ane.12796
– volume: 338
  start-page: 949
  year: 2012
  ident: 2023103009441965900_kfad086-B67
  article-title: Pathological α-Synuclein transmission initiates Parkinson-like neurodegeneration in non-transgenic mice
  publication-title: Science
  doi: 10.1126/science.1227157
– volume: 6
  start-page: 123
  year: 2016
  ident: 2023103009441965900_kfad086-B102
  article-title: Striatal dopamine neurotransmission: Regulation of release and uptake
  publication-title: Basal Ganglia.
  doi: 10.1016/j.baga.2016.02.001
– volume: 43
  start-page: 555
  year: 1998
  ident: 2023103009441965900_kfad086-B112
  article-title: Hypothesis: The role of dopaminergic transporters inselective vulnerability of cells in parkinson’s disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410430503
– volume: 169
  start-page: 593
  year: 2019
  ident: 2023103009441965900_kfad086-B60
  article-title: Developmental dieldrin exposure alters DNA methylation at genes related to dopaminergic neuron development and Parkinson’s disease in mouse midbrain
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfz069
– volume: 24
  start-page: 11165
  year: 2004
  ident: 2023103009441965900_kfad086-B122
  article-title: Role of α-synuclein in presynaptic dopamine recruitment
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2559-04.2004
– volume: 2011
  start-page: 124165
  year: 2011
  ident: 2023103009441965900_kfad086-B71
  article-title: VMAT2-deficient mice display nigral and extranigral pathology and motor and nonmotor symptoms of Parkinson’s disease
  publication-title: Parkinsons. Dis.
– volume: 150
  start-page: 339
  year: 1998
  ident: 2023103009441965900_kfad086-B21
  article-title: Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1998.6776
– volume: 2019
  start-page: 1
  year: 2019
  ident: 2023103009441965900_kfad086-B82
  article-title: Generation of alpha-synuclein preformed fibrils from monomers and use in vivo
  publication-title: J Vis Exp
– volume: 13
  start-page: 427
  year: 2000
  ident: 2023103009441965900_kfad086-B104
  article-title: Epidemiology of parkinson’s disease and akinetic syndromes
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/00019052-200008000-00010
– volume: 17
  start-page: 2420
  year: 1997
  ident: 2023103009441965900_kfad086-B63
  article-title: GABA a receptors mediate trophic effects of GABA on embryonic brainstem monoamine neurons in vitro
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-07-02420.1997
– volume: 209
  start-page: 357
  year: 2012
  ident: 2023103009441965900_kfad086-B12
  article-title: A fluorescent-based assay for live cell, spatially resolved assessment of vesicular monoamine transporter 2-mediated neurotransmitter transport
  publication-title: J. Neurosci. Methods.
  doi: 10.1016/j.jneumeth.2012.06.002
– volume: 1863
  start-page: 2882
  year: 2017
  ident: 2023103009441965900_kfad086-B72
  article-title: Characterization of a presymptomatic stage in a Drosophila Parkinson’s disease model: Unveiling dopaminergic compensatory mechanisms
  publication-title: Biochim. Biophys. Acta. Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2017.07.013
– volume: 89
  start-page: 7
  year: 2004
  ident: 2023103009441965900_kfad086-B79
  article-title: Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2004.02271.x
– volume: 6
  start-page: 33599
  year: 2021
  ident: 2023103009441965900_kfad086-B56
  article-title: Enhanced dopamine sensitivity using steered fast-scan cyclic voltammetry
  publication-title: ACS Omega.
  doi: 10.1021/acsomega.1c04475
– volume: 36
  start-page: 100
  year: 1994
  ident: 2023103009441965900_kfad086-B37
  article-title: Parkinson’s disease and brain levels of organochlorine pesticides
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410360119
– volume: 55
  start-page: 93
  year: 1998
  ident: 2023103009441965900_kfad086-B13
  article-title: Compensatory mechanisms in experimental and human parkinsonism: Towards a dynamic approach
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(98)00006-9
– volume: 126
  start-page: 28
  year: 2014
  ident: 2023103009441965900_kfad086-B46
  article-title: Alternative method of oral administration by peanut butter pellet formulation results in target engagement of BACE1 and attenuation of gavage-induced stress responses in mice
  publication-title: Pharmacol. Biochem. Behav.
  doi: 10.1016/j.pbb.2014.08.010
– volume: 64
  start-page: 718
  year: 1995
  ident: 2023103009441965900_kfad086-B9
  article-title: Dopamine neurotoxicity: Inhibition of mitochondrial respiration
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1995.64020718.x
– volume: 7
  start-page: 76
  year: 2021
  ident: 2023103009441965900_kfad086-B25
  article-title: α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability
  publication-title: NPJ Parkinsons. Dis.
  doi: 10.1038/s41531-021-00210-w
– volume: 67
  start-page: 715
  year: 2010
  ident: 2023103009441965900_kfad086-B17
  article-title: Clinical progression in Parkinson disease and the neurobiology of axons
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.21995
– volume: 20
  start-page: 1560
  year: 2017
  ident: 2023103009441965900_kfad086-B73
  article-title: Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4641
– volume: 31
  start-page: 1473
  year: 2001
  ident: 2023103009441965900_kfad086-B58
  article-title: Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(01)00726-2
– volume: 40
  start-page: suppl 17
  year: 1990
  ident: 2023103009441965900_kfad086-B105
  article-title: Do environmental toxins cause Parkinson’s disease? A critical review
  publication-title: Neurology
– volume: 12
  start-page: 45
  year: 2022
  ident: 2023103009441965900_kfad086-B30
  article-title: Preventing Parkinson’s disease: An environmental agenda
  publication-title: J. Parkinsons. Dis.
  doi: 10.3233/JPD-212922
– volume: 75
  start-page: 637
  year: 2004
  ident: 2023103009441965900_kfad086-B119
  article-title: Are men at greater risk for Parkinson’s disease than women?
  publication-title: J. Neurol. Neurosurg. Psychiatry.
  doi: 10.1136/jnnp.2003.020982
– volume: 118
  start-page: 3523
  year: 2005
  ident: 2023103009441965900_kfad086-B83
  article-title: α-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02481
– volume: 9
  start-page: 671
  year: 2012
  ident: 2023103009441965900_kfad086-B93
  article-title: NIH image to ImageJ: 25 years of image analysis HHS public access
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.2089
– volume: 59
  start-page: 229
  year: 2000
  ident: 2023103009441965900_kfad086-B22
  article-title: Organochlorine insecticides in substantia nigra in Parkinson’s disease
  publication-title: J. Toxicol. Environ. Health. A.
  doi: 10.1080/009841000156907
– volume: 41
  start-page: 856
  year: 1984
  ident: 2023103009441965900_kfad086-B129
  article-title: Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonism
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1984.04050190062015
– volume: 141
  start-page: 104947
  year: 2020
  ident: 2023103009441965900_kfad086-B41
  article-title: Developmental exposure to the organochlorine pesticide dieldrin causes male-specific exacerbation of α-synuclein-preformed fibril-induced toxicity and motor deficits
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2020.104947
– volume: 26
  start-page: 701
  year: 2005
  ident: 2023103009441965900_kfad086-B57
  article-title: Dieldrin-induced neurotoxicity: Relevance to Parkinson’s disease pathogenesis
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2004.07.010
– volume: 18
  start-page: 279
  year: 1991
  ident: 2023103009441965900_kfad086-B95
  article-title: Parkinson’s disease and exposure to rural environmental factors: A population based Case-Control study
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/S0317167100031826
– volume: 74
  start-page: 1055
  year: 2010
  ident: 2023103009441965900_kfad086-B116
  article-title: Persistent organochlorine pesticides in serum and risk of Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181d76a93
– volume: 60
  start-page: 197
  year: 2006
  ident: 2023103009441965900_kfad086-B6
  article-title: Pesticide exposure and risk for Parkinson’s disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20904
– volume: 93
  start-page: 1956
  year: 1996
  ident: 2023103009441965900_kfad086-B50
  article-title: Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.5.1956
– volume: 100
  start-page: 115
  year: 1994
  ident: 2023103009441965900_kfad086-B125
  article-title: Chemical transmission in the brain: Homeostatic regulation and its functional implications homeostasis of neuronal function
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(08)60776-1
– volume: 73
  start-page: 136
  year: 2005
  ident: 2023103009441965900_kfad086-B23
  article-title: Developmental pesticide exposures and the Parkinson’s disease phenotype
  publication-title: Birth Defects Res. A Clin. Mol. Teratol.
  doi: 10.1002/bdra.20118
– volume: 150
  start-page: 263
  year: 1998
  ident: 2023103009441965900_kfad086-B92
  article-title: Toxicity of dieldrin for dopaminergic neurons in mesencephalic cultures
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1997.6770
– volume: 111
  start-page: 9977
  year: 2014
  ident: 2023103009441965900_kfad086-B66
  article-title: Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1402134111
– volume: 20
  start-page: 1695
  year: 2006
  ident: 2023103009441965900_kfad086-B89
  article-title: Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson’s disease
  publication-title: FASEB J.
  doi: 10.1096/fj.06-5864fje
– volume: 253
  start-page: 867
  year: 1990
  ident: 2023103009441965900_kfad086-B96
  article-title: Dopamine efflux from striatal slices after intracerebral 6-hydroxydopamine: Evidence for compensatory hyperactivity of residual terminals
  publication-title: J Pharmacol Exp Ther
– volume: 33
  start-page: 559
  year: 2010
  ident: 2023103009441965900_kfad086-B114
  article-title: α-Synuclein and dopamine at the crossroads of parkinson’s disease
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2010.09.004
– volume: 76
  start-page: 1010
  year: 2001
  ident: 2023103009441965900_kfad086-B19
  article-title: Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2001.00096.x
– volume: 21
  start-page: 435
  year: 2000
  ident: 2023103009441965900_kfad086-B86
  article-title: A meta-analysis of Parkinson’s disease and exposure to pesticides
  publication-title: Neurotoxicology
– volume: 15
  start-page: 658244
  year: 2021
  ident: 2023103009441965900_kfad086-B110
  article-title: Striatal dopamine transporter function is facilitated by converging biology of α-Synuclein and cholesterol
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2021.658244
SSID ssj0011609
Score 2.460206
Snippet Abstract Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently...
Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently...
Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms alpha-Synuclein - metabolism
Animals
Dieldrin - toxicity
Dopamine
Female
Male
Mice
Mice, Inbred C57BL
Neurotoxicology
Parkinson Disease
Pesticides - toxicity
Substantia Nigra - metabolism
Synaptic Transmission
Synucleinopathies
Vesicular Monoamine Transport Proteins
Title Developmental exposure to the Parkinson’s disease-associated organochlorine pesticide dieldrin alters dopamine neurotransmission in α-synuclein pre-formed fibril (PFF)-injected mice
URI https://www.ncbi.nlm.nih.gov/pubmed/37607008
https://www.proquest.com/docview/2854967479
https://pubmed.ncbi.nlm.nih.gov/PMC10613968
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NatwwEBYlh1IIod3-bZsGNZQ0gYjYliytj6V0SRvS7mEDezOyJZElG3upHcje8hp9jN76FH2IPklnZMfZDSnNcb1j2Vhjzzea-T4R8m6gVZDrWLGQC8NE6OCdcyJmgdaJFkrGCUeC8_FXeXgivkziSSsWXd1Rwk_4QV1eQjQ4OHPaAP6Gry1EYFTJH3-bdPWCUPpmDrCXTAII6uQZb5--En5WKG1LyPJ2g-RSxBk-JhstVKQfmrl9Qh7YokceHrfF8B7ZGTWy04t9Or5hUVX7dIeObgSpFz2y3qzN0YZy9JT8WuoUggvYy3mJ64S0LinAQYpEaM8J-3P1o6JtBYfpdh6toX4nqDI_9c17ls5RqCOfGgu2dmbgGPU1eDgXMvJzNPGqmTWGRXArXJ-jYPT7J6sWBeopww_sRkH8DMM7ZCHM6O5oONxj0wIXiuDoOXzRnpGT4afxx0PW7uDAcg5IgdlMRJEJc8iZYqd5ZATPpA64VQ5gkMkArWWRyqwRsYmkCgxywGwgndM6F8rx52StKAv7klAT6ZjL3ALiwpQ20RKV0gQMk4TOKtkn7Hpi07yVN8ddNmZpU2bnaeMIaesIffK-s583wh7_tNwGP_mv0dtrN0rhSWLVRRe2vKhSpKgmErK2pE9eNG7VjYUdSQpQWJ8MVhyuM0Dx79V_iumpFwHHVJ4ncvDqPnf3mjyKAJz5mBtskrX6-4V9A2CqzrYgjfh8tOXfpr-LVih4
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+exposure+to+the+Parkinson%27s+disease-associated+organochlorine+pesticide+dieldrin+alters+dopamine+neurotransmission+in+%CE%B1-synuclein+pre-formed+fibril+%28PFF%29-injected+mice&rft.jtitle=Toxicological+sciences&rft.au=Boyd%2C+Sierra+L&rft.au=Kuhn%2C+Nathan+C&rft.au=Patterson%2C+Joseph+R&rft.au=Stoll%2C+Anna+C&rft.date=2023-10-30&rft.issn=1096-0929&rft.eissn=1096-0929&rft.volume=196&rft.issue=1&rft.spage=99&rft_id=info:doi/10.1093%2Ftoxsci%2Fkfad086&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon