Developmental exposure to the Parkinson’s disease-associated organochlorine pesticide dieldrin alters dopamine neurotransmission in α-synuclein pre-formed fibril (PFF)-injected mice
Abstract Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persiste...
Saved in:
Published in | Toxicological sciences Vol. 196; no. 1; pp. 99 - 111 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
30.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration. |
---|---|
AbstractList | Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular
3
H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration. Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration. Abstract Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration. Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration.Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently industrialized areas, suggesting a role of environmental factors. Epidemiological, post-mortem, and mechanistic studies suggest that persistent organic pollutants, including the organochlorine pesticide dieldrin, increase PD risk. In mice, developmental dieldrin exposure causes male-specific exacerbation of neuronal susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and synucleinopathy. Specifically, in the α-synuclein (α-syn) pre-formed fibril (PFF) model, exposure leads to increased deficits in striatal dopamine (DA) turnover and motor deficits on the challenging beam. Here, we hypothesized that alterations in DA handling contribute to the observed changes and assessed vesicular monoamine transporter 2 (VMAT2) function and DA release in this dieldrin/PFF 2-hit model. Female C57BL/6 mice were exposed to 0.3 mg/kg dieldrin or vehicle every 3 days by feeding, starting at 8 weeks of age and continuing throughout breeding, gestation, and lactation. Male offspring from independent litters underwent unilateral, intrastriatal injections of α-syn PFFs at 12 weeks of age, and vesicular 3H-DA uptake assays and fast-scan cyclic voltammetry were performed 4 months post-PFF injection. Dieldrin-induced an increase in DA release in striatal slices in PFF-injected animals, but no change in VMAT2 activity. These results suggest that developmental dieldrin exposure increases a compensatory response to synucleinopathy-triggered striatal DA loss. These findings are consistent with silent neurotoxicity, where developmental exposure to dieldrin primes the nigrostriatal striatal system to have an exacerbated response to synucleinopathy in the absence of observable changes in typical markers of nigrostriatal dysfunction and degeneration. |
Author | Stoll, Anna C Kuhn, Nathan C Luk, Kelvin C Patterson, Joseph R Neubecker, Joseph J Zimmerman, Sydney A Boyd, Sierra L Kolanowski, Mason R Sortwell, Caryl E Bernstein, Alison I Ramsson, Eric S |
Author_xml | – sequence: 1 givenname: Sierra L orcidid: 0000-0003-1039-9484 surname: Boyd fullname: Boyd, Sierra L – sequence: 2 givenname: Nathan C surname: Kuhn fullname: Kuhn, Nathan C – sequence: 3 givenname: Joseph R orcidid: 0000-0003-0926-7396 surname: Patterson fullname: Patterson, Joseph R – sequence: 4 givenname: Anna C orcidid: 0000-0001-7135-121X surname: Stoll fullname: Stoll, Anna C – sequence: 5 givenname: Sydney A orcidid: 0009-0003-7419-0329 surname: Zimmerman fullname: Zimmerman, Sydney A – sequence: 6 givenname: Mason R orcidid: 0009-0006-3101-9574 surname: Kolanowski fullname: Kolanowski, Mason R – sequence: 7 givenname: Joseph J orcidid: 0009-0005-5044-0623 surname: Neubecker fullname: Neubecker, Joseph J – sequence: 8 givenname: Kelvin C orcidid: 0000-0002-6591-6269 surname: Luk fullname: Luk, Kelvin C – sequence: 9 givenname: Eric S orcidid: 0000-0001-7187-7684 surname: Ramsson fullname: Ramsson, Eric S – sequence: 10 givenname: Caryl E orcidid: 0000-0003-2571-6753 surname: Sortwell fullname: Sortwell, Caryl E – sequence: 11 givenname: Alison I orcidid: 0000-0002-5589-4318 surname: Bernstein fullname: Bernstein, Alison I email: bernstein.alison@rutgers.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37607008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1u1TAQjlAR_YEtS-Rlu0jrxImTrBBqKSBVogtYWxN73OfWsYPtVO2Oa3AMdpyCQ3AS_PQeFSAhVrbH38_48-wXO847LIrnFT2u6MBOkr-L0pzcaFC054-KvVzlJR3qYWe757Snu8V-jNeUVhWnw5Nil3WcdpT2e8W3M7xF6-cJXQJL8G72cQlIkidpheQSwo1x0bsfn79EokxEiFhCjF4aSKiID1fgvFxZH4xDMmNMRhqFGYtW5RoBmzBkrp9hWkMcLsGnAC5OJkbjHcmg71_LeO8WaTEf5oCl9mHK8tqMwVhyeHl-flQad41ybToZiU-LxxpsxGfb9aD4eP76w-nb8uL9m3enry5KyRrKSxybulaV5LRtNbBaNWzkQBl2eui4GtuqGetuRNW0quYdVW3PGFKuNYBsOs0Oipcb3XkZc0cy5xTAijmYCcK98GDEnzfOrMSVvxUV5RUbeJ8VDrcKwX9ackAiP1yiteDQL1HUfdsMvGu6IUNf_G724PLrvzLgeAOQwccYUD9AKirWAyE2AyG2A5EJzV8EaRKkHHtu1th_0442NL_M_7P4CVSZ1MI |
CitedBy_id | crossref_primary_10_3390_ijms242216233 crossref_primary_10_1111_ejn_16275 crossref_primary_10_1093_toxsci_kfae091 crossref_primary_10_1016_j_brainres_2023_148613 crossref_primary_10_1080_87559129_2024_2337766 crossref_primary_10_1007_s10571_024_01501_5 crossref_primary_10_1002_mds_30067 |
Cites_doi | 10.1016/S0896-6273(00)80886-7 10.5061/dryad.qz612jmmq 10.1007/s12035-012-8341-2 10.1093/ije/29.2.323 10.1523/ENEURO.0483-22.2022 10.1111/j.1471-4159.2006.04146.x 10.1021/acschemneuro.2c00033 10.1021/bi0102398 10.1016/j.ntt.2016.03.005 10.1016/j.jneumeth.2011.03.001 10.3390/ijms22115999 10.1111/bpa.13036 10.1021/acschemneuro.5b00010 10.1016/S1474-4422(18)30295-3 10.1016/0006-8993(88)90264-8 10.1523/JNEUROSCI.22-08-03090.2002 10.1007/s10571-011-9780-4 10.1016/j.neuro.2012.01.010 10.1523/JNEUROSCI.0319-07.2007 10.1371/journal.pone.0235407 10.2144/000114476 10.1002/(SICI)1098-2396(19990601)32:3<165::AID-SYN3>3.0.CO;2-N 10.1038/nn.4660 10.1006/nbdi.1997.0157 10.1111/j.1600-0773.1996.tb00234.x 10.1289/ehp.1002839 10.1289/ehp.8095 10.17605/OSF.IO/QV4YA 10.1136/oem.54.10.702 10.1136/jnnp.2008.168211 10.1093/toxsci/kfw106 10.1007/s40572-022-00380-6 10.1007/s40572-017-0143-2 10.1186/1478-811X-11-34 10.1007/BF03159728 10.1006/enrs.2001.4264 10.1016/j.expneurol.2006.12.020 10.3389/fnins.2016.00408 10.1093/aje/kwg068 10.1016/B978-0-444-63425-2.00006-4 10.1093/toxsci/kfz082 10.1073/pnas.1407935111 10.1523/JNEUROSCI.20-09-03214.2000 10.1523/JNEUROSCI.1495-09.2009 10.1016/0006-8993(86)90894-2 10.1016/j.yfrne.2014.02.002 10.1038/s41531-022-00410-y 10.1136/jnnp.2006.103788 10.1016/B978-0-12-411512-5.00012-9 10.1007/s10654-011-9581-6 10.4161/cib.3.2.10964 10.1016/S0165-6147(99)01379-6 10.1016/j.tips.2008.03.007 10.1016/j.jchemneu.2010.12.001 10.1073/pnas.2013652117 10.1084/jem.20112457 10.1021/ac902753x 10.1007/BF01345243 10.1016/j.neuron.2009.12.023 10.1016/j.neuro.2012.05.011 10.1021/es0000955 10.1212/WNL.55.9.1358 10.1016/j.tips.2009.06.005 10.1002/mds.29051 10.1002/ana.21717 10.1016/0378-4274(95)03482-X 10.1097/01.ede.0000190707.51536.2b 10.1016/S1474-4422(06)70471-9 10.1007/s11910-013-0362-3 10.1016/S0895-4356(01)00425-5 10.1016/j.neuro.2011.03.004 10.1111/j.1471-4159.2008.05568.x 10.1016/S0753-3322(99)80077-8 10.1136/jnnp.2006.104695 10.1212/WNL.42.7.1328 10.1016/S0306-4522(03)00226-4 10.1371/journal.pone.0141340 10.1111/ane.12796 10.1126/science.1227157 10.1016/j.baga.2016.02.001 10.1002/ana.410430503 10.1093/toxsci/kfz069 10.1523/JNEUROSCI.2559-04.2004 10.1006/exnr.1998.6776 10.1097/00019052-200008000-00010 10.1523/JNEUROSCI.17-07-02420.1997 10.1016/j.jneumeth.2012.06.002 10.1016/j.bbadis.2017.07.013 10.1111/j.1471-4159.2004.02271.x 10.1021/acsomega.1c04475 10.1002/ana.410360119 10.1016/S0301-0082(98)00006-9 10.1016/j.pbb.2014.08.010 10.1046/j.1471-4159.1995.64020718.x 10.1038/s41531-021-00210-w 10.1002/ana.21995 10.1038/nn.4641 10.1016/S0891-5849(01)00726-2 10.3233/JPD-212922 10.1136/jnnp.2003.020982 10.1242/jcs.02481 10.1038/nmeth.2089 10.1080/009841000156907 10.1001/archneur.1984.04050190062015 10.1016/j.nbd.2020.104947 10.1016/j.neuro.2004.07.010 10.1017/S0317167100031826 10.1212/WNL.0b013e3181d76a93 10.1002/ana.20904 10.1073/pnas.93.5.1956 10.1016/S0079-6123(08)60776-1 10.1002/bdra.20118 10.1006/exnr.1997.6770 10.1073/pnas.1402134111 10.1096/fj.06-5864fje 10.1016/j.tins.2010.09.004 10.1046/j.1471-4159.2001.00096.x 10.3389/fncel.2021.658244 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/toxsci/kfad086 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1096-0929 |
EndPage | 111 |
ExternalDocumentID | PMC10613968 37607008 10_1093_toxsci_kfad086 10.1093/toxsci/kfad086 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH HHS grantid: R01ES031237 – fundername: NIEHS NIH HHS grantid: R01 ES031237 – fundername: ; grantid: R01ES031237 |
GroupedDBID | --- --K -E4 .2P .I3 .ZR 0R~ 123 18M 1B1 1TH 1~5 29Q 2WC 4.4 48X 4G. 53G 5RE 5VS 5WA 5WD 7-5 70D A8Z AABZA AACTN AACZT AAEDT AAHBH AAIMJ AAJKP AAJQQ AALRI AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAQXK AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAWDT AAXUO ABEUO ABIXL ABJNI ABKDP ABMAC ABMNT ABNHQ ABNKS ABPTD ABQLI ABQTQ ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACMRT ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADMUD ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHXPO AIJHB AJEEA AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APWMN AQDSO ARIXL ASPBG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DM4 DU5 D~K E3Z EBD EBS EDH EE~ EJD ELUNK EMOBN ESTFP F5P F9B FDB FEDTE FGOYB FHSFR FIRID FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HH5 HVGLF HW0 HZ~ I-F IHE IOX J21 KAQDR KBUDW KC5 KOP KQ8 KSI KSN LG5 M-Z M49 N9A NGC NLBLG NOMLY NOYVH NQ- NTWIH NU- NVLIB O-L O0~ O9- OAWHX OBOKY OCZFY ODMLO OHT OJQWA OJZSN OK1 OPAEJ OWPYF O~Y P2P PAFKI PB- PEELM Q1. Q5Y R2- R44 RD5 RIG RNI ROL ROX RPZ RUSNO RW1 RXO RZO SSZ SV3 TJX TLC TOX TR2 UHS W8F WOQ X7H XPP YAYTL YCJ YKOAZ YXANX ZGI ZKX ZMT ZXP ~02 ~91 AAYWO AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AGORE AHGBF AHMMS AJBYB AJNCP ALXQX CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c3406-eb422d1c6055fa32d43b6a03e7f976db514b27bed45d2670d5833e06ffaac47f3 |
IEDL.DBID | TOX |
ISSN | 1096-6080 1096-0929 |
IngestDate | Thu Aug 21 18:36:48 EDT 2025 Thu Jul 10 23:11:42 EDT 2025 Wed Feb 19 02:06:16 EST 2025 Tue Jul 01 02:41:37 EDT 2025 Thu Apr 24 23:01:10 EDT 2025 Wed Aug 28 03:17:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Parkinson disease dieldrin alpha-synuclein pesticides dopamine developmental neurotoxicity |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2023. Published by Oxford University Press on behalf of the Society of Toxicology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3406-eb422d1c6055fa32d43b6a03e7f976db514b27bed45d2670d5833e06ffaac47f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0003-7419-0329 0000-0002-6591-6269 0000-0001-7187-7684 0000-0003-2571-6753 0000-0003-0926-7396 0009-0006-3101-9574 0000-0002-5589-4318 0000-0003-1039-9484 0009-0005-5044-0623 0000-0001-7135-121X |
OpenAccessLink | https://dx.doi.org/10.1093/toxsci/kfad086 |
PMID | 37607008 |
PQID | 2854967479 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10613968 proquest_miscellaneous_2854967479 pubmed_primary_37607008 crossref_primary_10_1093_toxsci_kfad086 crossref_citationtrail_10_1093_toxsci_kfad086 oup_primary_10_1093_toxsci_kfad086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-30 |
PublicationDateYYYYMMDD | 2023-10-30 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Toxicological sciences |
PublicationTitleAlternate | Toxicol Sci |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Gonzales (2023103009441965900_kfad086-B46) 2014; 126 Gezer (2023103009441965900_kfad086-B41) 2020; 141 Schneider (2023103009441965900_kfad086-B93) 2012; 9 Luk (2023103009441965900_kfad086-B68) 2012; 209 Mor (2023103009441965900_kfad086-B73) 2017; 20 Narahashi (2023103009441965900_kfad086-B77) 1995; 82-83 Ramsson (2023103009441965900_kfad086-B87) 2016; 61 Cory-Slechta (2023103009441965900_kfad086-B23) 2005; 73 Paladini (2023103009441965900_kfad086-B81) 1999; 32 Zhang (2023103009441965900_kfad086-B124) 1988; 461 Abeliovich (2023103009441965900_kfad086-B1) 2000; 25 Everett (2023103009441965900_kfad086-B34) 2022; 13 Bellani (2023103009441965900_kfad086-B8) 2010; 3 Gainetdinov (2023103009441965900_kfad086-B39) 1999; 20 Alter (2023103009441965900_kfad086-B4) 2013; 13 Kraft (2023103009441965900_kfad086-B61) 2016; 55 Hatcher (2023103009441965900_kfad086-B52) 2007; 204 Kang (2023103009441965900_kfad086-B56) 2021; 6 Taylor (2023103009441965900_kfad086-B107) 2009; 29 Uhl (2023103009441965900_kfad086-B112) 1998; 43 Wooten (2023103009441965900_kfad086-B119) 2004; 75 Zigmond (2023103009441965900_kfad086-B127) 1989; 10 Zigmond (2023103009441965900_kfad086-B126) 1997; 4 Ascherio (2023103009441965900_kfad086-B6) 2006; 60 Willis (2023103009441965900_kfad086-B117) 2022; 8 Lohr (2023103009441965900_kfad086-B65) 2015; 6 Tanner (2023103009441965900_kfad086-B106) 2011; 119 Murphy (2023103009441965900_kfad086-B75) 2000; 20 Wirdefeldt (2023103009441965900_kfad086-B118) 2011; 26(Suppl 1) Ramsson (2023103009441965900_kfad086-B88) 2015; 10 Cicchetti (2023103009441965900_kfad086-B20) 2009; 30 Sulzer (2023103009441965900_kfad086-B102) 2016; 6 Zigmond (2023103009441965900_kfad086-B128) 1998; 14 Zigmond (2023103009441965900_kfad086-B129) 1984; 41 Yavich (2023103009441965900_kfad086-B122) 2004; 24 Kochmanski (2023103009441965900_kfad086-B60) 2019; 169 Baldereschi (2023103009441965900_kfad086-B7) 2000; 55 Cheng (2023103009441965900_kfad086-B17) 2010; 67 Le Couteur (2023103009441965900_kfad086-B24) 1999; 53 Georgiev (2023103009441965900_kfad086-B40) 2017; 136 Hatcher (2023103009441965900_kfad086-B51) 2008; 29 Yorgason (2023103009441965900_kfad086-B123) 2011; 202 Goldstein (2023103009441965900_kfad086-B44) 2013; 68 Priyadarshi (2023103009441965900_kfad086-B86) 2000; 21 Meijer (2023103009441965900_kfad086-B69) 2001; 35 Steenland (2023103009441965900_kfad086-B100) 2006; 17 Semchuk (2023103009441965900_kfad086-B94) 1992; 42 Cheng (2023103009441965900_kfad086-B18) 2011; 42 Jorgenson (2023103009441965900_kfad086-B55) 2001; 109(Suppl 1) Gillies (2023103009441965900_kfad086-B42) 2014; 35 Weisskopf (2023103009441965900_kfad086-B116) 2010; 74 Tanner (2023103009441965900_kfad086-B105) 1990; 40 Kanthasamy (2023103009441965900_kfad086-B57) 2005; 26 Fleming (2023103009441965900_kfad086-B36) 2017; 4 Molina-Mateo (2023103009441965900_kfad086-B72) 2017; 1863 Lohr (2023103009441965900_kfad086-B66) 2014; 111 Lohr (2023103009441965900_kfad086-B64) 2016; 153 Meiser (2023103009441965900_kfad086-B70) 2013; 11 Liu (2023103009441965900_kfad086-B63) 1997; 17 Venda (2023103009441965900_kfad086-B114) 2010; 33 World Health Organization & International Programme on Chemical Safety (2023103009441965900_kfad086-B120) 1989 Ferris (2023103009441965900_kfad086-B35) 2014; 111 Miller (2023103009441965900_kfad086-B71) 2011; 2011 Fleming (2023103009441965900_kfad086-B37) 1994; 36 Brown (2023103009441965900_kfad086-B14) 2006; 114 Elbaz (2023103009441965900_kfad086-B33) 2009; 66 Kitazawa (2023103009441965900_kfad086-B59) 2003; 119 Davis (2023103009441965900_kfad086-B26) 2020; 15 Corrigan (2023103009441965900_kfad086-B21) 1998; 150 Roy (2023103009441965900_kfad086-B91) 2017; 20 Goldstein (2023103009441965900_kfad086-B43) 2012; 32 Hastings (2023103009441965900_kfad086-B50) 1996; 93 de Lau (2023103009441965900_kfad086-B28) 2006; 5 Ben-Shachar (2023103009441965900_kfad086-B9) 1995; 64 Sanchez-Ramos (2023103009441965900_kfad086-B92) 1998; 150 Xilouri (2023103009441965900_kfad086-B121) 2013; 47 Patterson (2023103009441965900_kfad086-B82) 2019; 2019 Goldstein (2023103009441965900_kfad086-B45) 2021; 22 Staal (2023103009441965900_kfad086-B99) 2000; 293 Caudle (2023103009441965900_kfad086-B15) 2012; 33 Elbaz (2023103009441965900_kfad086-B32) 2002; 55 Priyadarshi (2023103009441965900_kfad086-B85) 2001; 86 Bernstein (2023103009441965900_kfad086-B12) 2012; 209 Caudle (2023103009441965900_kfad086-B16) 2007; 27 Graham (2023103009441965900_kfad086-B47) 1978; 14 Sossi (2023103009441965900_kfad086-B98) 2022; 37 Snyder (2023103009441965900_kfad086-B96) 1990; 253 Kitazawa (2023103009441965900_kfad086-B58) 2001; 31 Guillot (2023103009441965900_kfad086-B48) 2008; 106 Perez (2023103009441965900_kfad086-B84) 2002; 22 Richardson (2023103009441965900_kfad086-B89) 2006; 20 Takmakov (2023103009441965900_kfad086-B103) 2010; 82 Zigmond (2023103009441965900_kfad086-B125) 1994; 100 Freire (2023103009441965900_kfad086-B38) 2012; 33 Dagra (2023103009441965900_kfad086-B25) 2021; 7 Adamson (2023103009441965900_kfad086-B2) 2022; 9 Dorsey (2023103009441965900_kfad086-B31) 2018; 17 Agency for Toxic Substances and Disease Registry (ATSDR) (2023103009441965900_kfad086-B3) 2022 Bernstein (2023103009441965900_kfad086-B11) 2023 Somayaji (2023103009441965900_kfad086-B97) 2020; 117 Ingelsson (2023103009441965900_kfad086-B54) 2016; 10 Ritz (2023103009441965900_kfad086-B90) 2000; 29 Volles (2023103009441965900_kfad086-B115) 2001; 40 De Miranda (2023103009441965900_kfad086-B30) 2022; 12 Alves (2023103009441965900_kfad086-B5) 2009; 80 Corrigan (2023103009441965900_kfad086-B22) 2000; 59 Semchuk (2023103009441965900_kfad086-B95) 1991; 18 Bezard (2023103009441965900_kfad086-B13) 1998; 55 Haaxma (2023103009441965900_kfad086-B49) 2007; 78 Onn (2023103009441965900_kfad086-B80) 1986; 376 Chun (2023103009441965900_kfad086-B19) 2001; 76 Nemani (2023103009441965900_kfad086-B78) 2010; 65 Sun (2023103009441965900_kfad086-B101) 2022; 32 Okada (2023103009441965900_kfad086-B79) 2004; 89 Moretto (2023103009441965900_kfad086-B74) 2011; 32 De Miranda (2023103009441965900_kfad086-B29) 2019; 170 Narahashi (2023103009441965900_kfad086-B76) 1996; 79 Iannitelli (2023103009441965900_kfad086-B53) 2023; 10 Lauder (2023103009441965900_kfad086-B62) 1998; 5 van den Eeden (2023103009441965900_kfad086-B113) 2003; 157 Taylor (2023103009441965900_kfad086-B108) 2007; 78 Trudeau (2023103009441965900_kfad086-B111) 2014; 211 Luk (2023103009441965900_kfad086-B67) 2012; 338 Bernstein (2023103009441965900_kfad086-B10) 2022 de Jong Geert (2023103009441965900_kfad086-B27) 1997; 54 Tehranian (2023103009441965900_kfad086-B109) 2006; 99 Peng (2023103009441965900_kfad086-B83) 2005; 118 Tanner (2023103009441965900_kfad086-B104) 2000; 13 Threlfell (2023103009441965900_kfad086-B110) 2021; 15 |
References_xml | – volume: 5 start-page: 247 year: 1998 ident: 2023103009441965900_kfad086-B62 article-title: GABA as a trophic factor for developing monoamine neurons publication-title: Perspect Dev Neurobiol – volume: 25 start-page: 239 year: 2000 ident: 2023103009441965900_kfad086-B1 article-title: Mice lacking a-synuclein display functional deficits in the nigrostriatal dopamine system publication-title: Neuron doi: 10.1016/S0896-6273(00)80886-7 – year: 2023 ident: 2023103009441965900_kfad086-B11 doi: 10.5061/dryad.qz612jmmq – volume: 47 start-page: 537 year: 2013 ident: 2023103009441965900_kfad086-B121 article-title: α-Synuclein and protein degradation systems: A reciprocal relationship publication-title: Mol. Neurobiol. doi: 10.1007/s12035-012-8341-2 – volume: 29 start-page: 323 year: 2000 ident: 2023103009441965900_kfad086-B90 article-title: Parkinson’s disease mortality and pesticide exposure in California 1984–1994 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/29.2.323 – volume: 10 year: 2023 ident: 2023103009441965900_kfad086-B53 article-title: The neurotoxin DSP-4 dysregulates the locus Coeruleus-Norepinephrine system and recapitulates molecular and behavioral aspects of prodromal neurodegenerative disease publication-title: eNeuro doi: 10.1523/ENEURO.0483-22.2022 – volume: 99 start-page: 1188 year: 2006 ident: 2023103009441965900_kfad086-B109 article-title: Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.04146.x – volume: 13 start-page: 1534 year: 2022 ident: 2023103009441965900_kfad086-B34 article-title: Effectiveness and relationship between biased and unbiased measures of dopamine release and clearance publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.2c00033 – volume: 40 start-page: 7812 year: 2001 ident: 2023103009441965900_kfad086-B115 article-title: Vesicle permeabilization by protofibrillar α-synuclein: Implications for the pathogenesis and treatment of Parkinson’s disease publication-title: Biochemistry doi: 10.1021/bi0102398 – volume: 55 start-page: 38 year: 2016 ident: 2023103009441965900_kfad086-B61 article-title: Unmasking silent neurotoxicity following developmental exposure to environmental toxicants publication-title: Neurotoxicol. Teratol. doi: 10.1016/j.ntt.2016.03.005 – year: 1989 ident: 2023103009441965900_kfad086-B120 – volume: 202 start-page: 158 year: 2011 ident: 2023103009441965900_kfad086-B123 article-title: Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures publication-title: J. Neurosci. Methods. doi: 10.1016/j.jneumeth.2011.03.001 – volume: 22 start-page: 5999 year: 2021 ident: 2023103009441965900_kfad086-B45 article-title: The catecholaldehyde hypothesis for the pathogenesis of catecholaminergic neurodegeneration: What we know and what we do not know publication-title: IJMS. doi: 10.3390/ijms22115999 – volume: 32 start-page: e13036 year: 2022 ident: 2023103009441965900_kfad086-B101 article-title: Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology publication-title: Brain Pathol. doi: 10.1111/bpa.13036 – volume: 6 start-page: 790 year: 2015 ident: 2023103009441965900_kfad086-B65 article-title: Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.5b00010 – volume: 17 start-page: 939 year: 2018 ident: 2023103009441965900_kfad086-B31 article-title: Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the global burden of disease study 2016 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(18)30295-3 – volume: 461 start-page: 335 year: 1988 ident: 2023103009441965900_kfad086-B124 article-title: Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage publication-title: Brain Res. doi: 10.1016/0006-8993(88)90264-8 – volume: 22 start-page: 3090 year: 2002 ident: 2023103009441965900_kfad086-B84 article-title: A role for-Synuclein in the regulation of dopamine biosynthesis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-08-03090.2002 – volume: 32 start-page: 661 year: 2012 ident: 2023103009441965900_kfad086-B43 article-title: Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-011-9780-4 – volume: 33 start-page: 178 year: 2012 ident: 2023103009441965900_kfad086-B15 article-title: Industrial toxicants and Parkinson’s disease publication-title: Neurotoxicology doi: 10.1016/j.neuro.2012.01.010 – volume: 27 start-page: 8138 year: 2007 ident: 2023103009441965900_kfad086-B16 article-title: Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0319-07.2007 – volume: 15 start-page: e0235407 year: 2020 ident: 2023103009441965900_kfad086-B26 article-title: Enhancement of fast scan cyclic voltammetry detection of dopamine with tryptophan-modified electrodes publication-title: PLoS One. doi: 10.1371/journal.pone.0235407 – volume: 61 start-page: 269 year: 2016 ident: 2023103009441965900_kfad086-B87 article-title: A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times publication-title: Biotechniques. doi: 10.2144/000114476 – volume: 32 start-page: 165 year: 1999 ident: 2023103009441965900_kfad086-B81 article-title: GABA(A) and GABA(B) antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo publication-title: Synpase doi: 10.1002/(SICI)1098-2396(19990601)32:3<165::AID-SYN3>3.0.CO;2-N – volume: 20 start-page: 1514 year: 2017 ident: 2023103009441965900_kfad086-B91 article-title: Synuclein and dopamine: The bonnie and clyde of parkinson’s disease publication-title: Nat. Neurosci. doi: 10.1038/nn.4660 – volume: 4 start-page: 247 year: 1997 ident: 2023103009441965900_kfad086-B126 article-title: Do compensatory processes underlie the preclinical phase of neurodegenerative disease? Insights from an animal model of parkinsonism publication-title: Neurobiol. Dis. doi: 10.1006/nbdi.1997.0157 – volume: 79 start-page: 1 year: 1996 ident: 2023103009441965900_kfad086-B76 article-title: Neuronal ion channels as the target sites of insecticides publication-title: Pharmacol. Toxicol. doi: 10.1111/j.1600-0773.1996.tb00234.x – volume: 119 start-page: 866 year: 2011 ident: 2023103009441965900_kfad086-B106 article-title: Rotenone, paraquat, and Parkinson’s disease publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1002839 – volume: 114 start-page: 156 year: 2006 ident: 2023103009441965900_kfad086-B14 article-title: Pesticides and parkinson’s disease—Is there a link? publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8095 – year: 2022 ident: 2023103009441965900_kfad086-B10 doi: 10.17605/OSF.IO/QV4YA – volume: 54 start-page: 702 year: 1997 ident: 2023103009441965900_kfad086-B27 article-title: Mortality of workers exposed to dieldrin and aldrin: A retrospective cohort study publication-title: Occup. Environ. Med. doi: 10.1136/oem.54.10.702 – volume: 80 start-page: 851 year: 2009 ident: 2023103009441965900_kfad086-B5 article-title: Incidence of parkinson’s disease in Norway: The Norwegian ParkWest study publication-title: J. Neurol. Neurosurg. Psychiatry. doi: 10.1136/jnnp.2008.168211 – volume: 153 start-page: 79 year: 2016 ident: 2023103009441965900_kfad086-B64 article-title: Vesicular monoamine transporter 2 (VMAT2) level regulates MPTP vulnerability and clearance of excess dopamine in mouse striatal terminals publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfw106 – volume: 9 start-page: 563 year: 2022 ident: 2023103009441965900_kfad086-B2 article-title: Sex differences in dopaminergic vulnerability to environmental toxicants—implications for Parkinson’s disease publication-title: Curr. Environ. Health Rep. doi: 10.1007/s40572-022-00380-6 – volume: 4 start-page: 192 year: 2017 ident: 2023103009441965900_kfad086-B36 article-title: Mechanisms of gene-environment interactions in Parkinson’s disease publication-title: Curr. Environ. Health Rep. doi: 10.1007/s40572-017-0143-2 – volume: 11 start-page: 34 year: 2013 ident: 2023103009441965900_kfad086-B70 article-title: Complexity of dopamine metabolism publication-title: Cell Commun. Signal. doi: 10.1186/1478-811X-11-34 – volume: 10 start-page: 185 year: 1989 ident: 2023103009441965900_kfad086-B127 article-title: Compensatory responses to nigrostriatal bundle injury. Studies WITH 6-hydroxydopamine in an animal model of parkinsonism publication-title: Mol. Chem. Neuropathol. doi: 10.1007/BF03159728 – volume: 86 start-page: 122 year: 2001 ident: 2023103009441965900_kfad086-B85 article-title: Environmental risk factors and parkinson’s disease: A metaanalysis publication-title: Environ. Res. doi: 10.1006/enrs.2001.4264 – volume: 204 start-page: 619 year: 2007 ident: 2023103009441965900_kfad086-B52 article-title: Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2006.12.020 – volume: 10 start-page: 408 year: 2016 ident: 2023103009441965900_kfad086-B54 article-title: Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other lewy body disorders publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00408 – volume: 157 start-page: 1015 year: 2003 ident: 2023103009441965900_kfad086-B113 article-title: Incidence of parkinson’s disease: Variation by age, gender, and race/ethnicity publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwg068 – volume: 211 start-page: 141 year: 2014 ident: 2023103009441965900_kfad086-B111 article-title: The multilingual nature of dopamine neurons publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-63425-2.00006-4 – volume: 170 start-page: 133 year: 2019 ident: 2023103009441965900_kfad086-B29 article-title: Sex differences in rotenone sensitivity reflect the male-to-female ratio in human Parkinson’s disease incidence publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfz082 – volume: 111 start-page: E2751 year: 2014 ident: 2023103009441965900_kfad086-B35 article-title: Dopamine transporters govern diurnal variation in extracellular dopamine tone publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1407935111 – volume: 20 start-page: 3214 year: 2000 ident: 2023103009441965900_kfad086-B75 article-title: Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-09-03214.2000 – volume: 29 start-page: 8103 year: 2009 ident: 2023103009441965900_kfad086-B107 article-title: Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1495-09.2009 – volume: 376 start-page: 8 year: 1986 ident: 2023103009441965900_kfad086-B80 article-title: Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: Histochemical and neurochemical analysis publication-title: Brain Res. doi: 10.1016/0006-8993(86)90894-2 – volume: 35 start-page: 370 year: 2014 ident: 2023103009441965900_kfad086-B42 article-title: Sex differences in Parkinson’s disease publication-title: Front. Neuroendocrinol. doi: 10.1016/j.yfrne.2014.02.002 – volume: 14 start-page: 644 year: 1978 ident: 2023103009441965900_kfad086-B47 article-title: Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro publication-title: Mol Pharmacol – volume: 8 start-page: 170 year: 2022 ident: 2023103009441965900_kfad086-B117 article-title: Incidence of Parkinson disease in North America publication-title: NPJ Parkinsons. Dis. doi: 10.1038/s41531-022-00410-y – volume: 78 start-page: 819 year: 2007 ident: 2023103009441965900_kfad086-B49 article-title: Gender differences in Parkinson’s disease publication-title: J. Neurol. Neurosurg. Psychiatry. doi: 10.1136/jnnp.2006.103788 – volume: 68 start-page: 235 year: 2013 ident: 2023103009441965900_kfad086-B44 article-title: Biomarkers, mechanisms, and potential prevention of catecholamine neuron loss in arkinson disease publication-title: Adv. Pharmacol. doi: 10.1016/B978-0-12-411512-5.00012-9 – volume: 26(Suppl 1) start-page: S1 year: 2011 ident: 2023103009441965900_kfad086-B118 article-title: Epidemiology and etiology of parkinson’s disease: A review of the evidence publication-title: Eur. J. Epidemiol. doi: 10.1007/s10654-011-9581-6 – volume: 3 start-page: 106 year: 2010 ident: 2023103009441965900_kfad086-B8 article-title: The regulation of synaptic function by α-synuclein publication-title: Commun. Integr. Biol. doi: 10.4161/cib.3.2.10964 – volume: 20 start-page: 424 year: 1999 ident: 2023103009441965900_kfad086-B39 article-title: Dopamine transporters and neuronal injury publication-title: Trends Pharmacol. Sci. doi: 10.1016/S0165-6147(99)01379-6 – volume: 29 start-page: 322 year: 2008 ident: 2023103009441965900_kfad086-B51 article-title: Parkinson’s disease and pesticides: A toxicological perspective publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2008.03.007 – volume: 42 start-page: 242 year: 2011 ident: 2023103009441965900_kfad086-B18 article-title: The role of alpha-synuclein in neurotransmission and synaptic plasticity publication-title: J. Chem. Neuroanat. doi: 10.1016/j.jchemneu.2010.12.001 – volume: 117 start-page: 32701 year: 2020 ident: 2023103009441965900_kfad086-B97 article-title: A dual role for α-synuclein in facilitation and depression of dopamine release from substantia nigra neurons in vivo publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2013652117 – volume: 209 start-page: 975 year: 2012 ident: 2023103009441965900_kfad086-B68 article-title: Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice publication-title: J. Exp. Med. doi: 10.1084/jem.20112457 – volume: 82 start-page: 2020 year: 2010 ident: 2023103009441965900_kfad086-B103 article-title: Carbon microelectrodes with a renewable surface publication-title: Anal. Chem. doi: 10.1021/ac902753x – volume: 109(Suppl 1) start-page: 113 year: 2001 ident: 2023103009441965900_kfad086-B55 article-title: Aldrin and dieldrin: A review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States publication-title: Environ. Health Perspect. – volume: 14 start-page: 57 year: 1998 ident: 2023103009441965900_kfad086-B128 article-title: Role of excitatory amino acids in the regulation of dopamine synthesis and release in the neostriatum publication-title: Amino Acids. doi: 10.1007/BF01345243 – volume: 65 start-page: 66 year: 2010 ident: 2023103009441965900_kfad086-B78 article-title: Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis publication-title: Neuron doi: 10.1016/j.neuron.2009.12.023 – volume: 33 start-page: 947 year: 2012 ident: 2023103009441965900_kfad086-B38 article-title: Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association publication-title: Neurotoxicology doi: 10.1016/j.neuro.2012.05.011 – volume: 35 start-page: 1989 year: 2001 ident: 2023103009441965900_kfad086-B69 article-title: Organochlorine pesticide residues in archived UK soil publication-title: Environ. Sci. Technol. doi: 10.1021/es0000955 – volume: 55 start-page: 1358 year: 2000 ident: 2023103009441965900_kfad086-B7 article-title: Parkinson’s disease and parkinsonism in a longitudinal study publication-title: Neurology doi: 10.1212/WNL.55.9.1358 – volume: 30 start-page: 475 year: 2009 ident: 2023103009441965900_kfad086-B20 article-title: Environmental toxins and Parkinson’s disease: What have we learned from pesticide-induced animal models? publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2009.06.005 – volume: 37 start-page: 1739 year: 2022 ident: 2023103009441965900_kfad086-B98 article-title: Dopaminergic positron emission tomography imaging in the Alpha-Synuclein preformed fibril model reveals similarities to early Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.29051 – volume: 293 start-page: 329 year: 2000 ident: 2023103009441965900_kfad086-B99 article-title: In vitro studies of striatal vesicles containing the vesicular monoamine transporter (VMAT2): Rat versus mouse differences in sequestration of 1-methyl-4-phenylpyridinium publication-title: J. Pharmacol. Exp. Ther. – volume: 66 start-page: 494 year: 2009 ident: 2023103009441965900_kfad086-B33 article-title: Professional exposure to pesticides and Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.21717 – volume: 82-83 start-page: 239 year: 1995 ident: 2023103009441965900_kfad086-B77 article-title: Sodium channels and GABAA receptor-channel complex as targets of environmental toxicants publication-title: Toxicol. Lett. doi: 10.1016/0378-4274(95)03482-X – volume: 17 start-page: 8 year: 2006 ident: 2023103009441965900_kfad086-B100 article-title: Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort publication-title: Epidemiology doi: 10.1097/01.ede.0000190707.51536.2b – volume: 5 start-page: 525 year: 2006 ident: 2023103009441965900_kfad086-B28 article-title: Epidemiology of Parkinson’s disease publication-title: Lancet. Neurol. doi: 10.1016/S1474-4422(06)70471-9 – volume: 13 start-page: 362 year: 2013 ident: 2023103009441965900_kfad086-B4 article-title: Vesicular integrity in parkinson’s disease publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-013-0362-3 – volume-title: Toxicological Profile for Aldrin and Dieldrin year: 2022 ident: 2023103009441965900_kfad086-B3 – volume: 55 start-page: 25 year: 2002 ident: 2023103009441965900_kfad086-B32 article-title: Risk tables for parkinsonism and Parkinson’s disease publication-title: J. Clin. Epidemiol. doi: 10.1016/S0895-4356(01)00425-5 – volume: 32 start-page: 383 year: 2011 ident: 2023103009441965900_kfad086-B74 article-title: Biochemical and toxicological evidence of neurological effects of pesticides: The example of Parkinson’s disease publication-title: Neurotoxicology doi: 10.1016/j.neuro.2011.03.004 – volume: 106 start-page: 2205 year: 2008 ident: 2023103009441965900_kfad086-B48 article-title: Reduced vesicular storage of dopamine exacerbates methamphetamine-induced neurodegeneration and astrogliosis publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2008.05568.x – volume: 53 start-page: 122 year: 1999 ident: 2023103009441965900_kfad086-B24 article-title: Pesticides and Parkinson’s disease publication-title: Biomed. Pharmacother. doi: 10.1016/S0753-3322(99)80077-8 – volume: 78 start-page: 905 year: 2007 ident: 2023103009441965900_kfad086-B108 article-title: Heterogeneity in male to female risk for Parkinson’s disease publication-title: J. Neurol. Neurosurg. Psychiatry. doi: 10.1136/jnnp.2006.104695 – volume: 42 start-page: 1328 year: 1992 ident: 2023103009441965900_kfad086-B94 article-title: Parkinson’s disease and exposure to agricultural work and pesticide chemicals publication-title: Neurology doi: 10.1212/WNL.42.7.1328 – volume: 119 start-page: 945 year: 2003 ident: 2023103009441965900_kfad086-B59 article-title: Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cδ in dopaminergic cells: Relevance to oxidative stress and dopaminergic degeneration publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00226-4 – volume: 10 start-page: e0141340 year: 2015 ident: 2023103009441965900_kfad086-B88 article-title: Characterization of fast-scan cyclic voltammetric electrodes using paraffin as an effective sealant with in vitro and in vivo applications publication-title: PLoS One. doi: 10.1371/journal.pone.0141340 – volume: 136 start-page: 570 year: 2017 ident: 2023103009441965900_kfad086-B40 article-title: Gender differences in Parkinson’s disease: A clinical perspective publication-title: Acta Neurol. Scand. doi: 10.1111/ane.12796 – volume: 338 start-page: 949 year: 2012 ident: 2023103009441965900_kfad086-B67 article-title: Pathological α-Synuclein transmission initiates Parkinson-like neurodegeneration in non-transgenic mice publication-title: Science doi: 10.1126/science.1227157 – volume: 6 start-page: 123 year: 2016 ident: 2023103009441965900_kfad086-B102 article-title: Striatal dopamine neurotransmission: Regulation of release and uptake publication-title: Basal Ganglia. doi: 10.1016/j.baga.2016.02.001 – volume: 43 start-page: 555 year: 1998 ident: 2023103009441965900_kfad086-B112 article-title: Hypothesis: The role of dopaminergic transporters inselective vulnerability of cells in parkinson’s disease publication-title: Ann. Neurol. doi: 10.1002/ana.410430503 – volume: 169 start-page: 593 year: 2019 ident: 2023103009441965900_kfad086-B60 article-title: Developmental dieldrin exposure alters DNA methylation at genes related to dopaminergic neuron development and Parkinson’s disease in mouse midbrain publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfz069 – volume: 24 start-page: 11165 year: 2004 ident: 2023103009441965900_kfad086-B122 article-title: Role of α-synuclein in presynaptic dopamine recruitment publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2559-04.2004 – volume: 2011 start-page: 124165 year: 2011 ident: 2023103009441965900_kfad086-B71 article-title: VMAT2-deficient mice display nigral and extranigral pathology and motor and nonmotor symptoms of Parkinson’s disease publication-title: Parkinsons. Dis. – volume: 150 start-page: 339 year: 1998 ident: 2023103009441965900_kfad086-B21 article-title: Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease publication-title: Exp. Neurol. doi: 10.1006/exnr.1998.6776 – volume: 2019 start-page: 1 year: 2019 ident: 2023103009441965900_kfad086-B82 article-title: Generation of alpha-synuclein preformed fibrils from monomers and use in vivo publication-title: J Vis Exp – volume: 13 start-page: 427 year: 2000 ident: 2023103009441965900_kfad086-B104 article-title: Epidemiology of parkinson’s disease and akinetic syndromes publication-title: Curr. Opin. Neurol. doi: 10.1097/00019052-200008000-00010 – volume: 17 start-page: 2420 year: 1997 ident: 2023103009441965900_kfad086-B63 article-title: GABA a receptors mediate trophic effects of GABA on embryonic brainstem monoamine neurons in vitro publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-07-02420.1997 – volume: 209 start-page: 357 year: 2012 ident: 2023103009441965900_kfad086-B12 article-title: A fluorescent-based assay for live cell, spatially resolved assessment of vesicular monoamine transporter 2-mediated neurotransmitter transport publication-title: J. Neurosci. Methods. doi: 10.1016/j.jneumeth.2012.06.002 – volume: 1863 start-page: 2882 year: 2017 ident: 2023103009441965900_kfad086-B72 article-title: Characterization of a presymptomatic stage in a Drosophila Parkinson’s disease model: Unveiling dopaminergic compensatory mechanisms publication-title: Biochim. Biophys. Acta. Mol. Basis Dis. doi: 10.1016/j.bbadis.2017.07.013 – volume: 89 start-page: 7 year: 2004 ident: 2023103009441965900_kfad086-B79 article-title: Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2004.02271.x – volume: 6 start-page: 33599 year: 2021 ident: 2023103009441965900_kfad086-B56 article-title: Enhanced dopamine sensitivity using steered fast-scan cyclic voltammetry publication-title: ACS Omega. doi: 10.1021/acsomega.1c04475 – volume: 36 start-page: 100 year: 1994 ident: 2023103009441965900_kfad086-B37 article-title: Parkinson’s disease and brain levels of organochlorine pesticides publication-title: Ann. Neurol. doi: 10.1002/ana.410360119 – volume: 55 start-page: 93 year: 1998 ident: 2023103009441965900_kfad086-B13 article-title: Compensatory mechanisms in experimental and human parkinsonism: Towards a dynamic approach publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(98)00006-9 – volume: 126 start-page: 28 year: 2014 ident: 2023103009441965900_kfad086-B46 article-title: Alternative method of oral administration by peanut butter pellet formulation results in target engagement of BACE1 and attenuation of gavage-induced stress responses in mice publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2014.08.010 – volume: 64 start-page: 718 year: 1995 ident: 2023103009441965900_kfad086-B9 article-title: Dopamine neurotoxicity: Inhibition of mitochondrial respiration publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1995.64020718.x – volume: 7 start-page: 76 year: 2021 ident: 2023103009441965900_kfad086-B25 article-title: α-Synuclein-induced dysregulation of neuronal activity contributes to murine dopamine neuron vulnerability publication-title: NPJ Parkinsons. Dis. doi: 10.1038/s41531-021-00210-w – volume: 67 start-page: 715 year: 2010 ident: 2023103009441965900_kfad086-B17 article-title: Clinical progression in Parkinson disease and the neurobiology of axons publication-title: Ann. Neurol. doi: 10.1002/ana.21995 – volume: 20 start-page: 1560 year: 2017 ident: 2023103009441965900_kfad086-B73 article-title: Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration publication-title: Nat. Neurosci. doi: 10.1038/nn.4641 – volume: 31 start-page: 1473 year: 2001 ident: 2023103009441965900_kfad086-B58 article-title: Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00726-2 – volume: 40 start-page: suppl 17 year: 1990 ident: 2023103009441965900_kfad086-B105 article-title: Do environmental toxins cause Parkinson’s disease? A critical review publication-title: Neurology – volume: 12 start-page: 45 year: 2022 ident: 2023103009441965900_kfad086-B30 article-title: Preventing Parkinson’s disease: An environmental agenda publication-title: J. Parkinsons. Dis. doi: 10.3233/JPD-212922 – volume: 75 start-page: 637 year: 2004 ident: 2023103009441965900_kfad086-B119 article-title: Are men at greater risk for Parkinson’s disease than women? publication-title: J. Neurol. Neurosurg. Psychiatry. doi: 10.1136/jnnp.2003.020982 – volume: 118 start-page: 3523 year: 2005 ident: 2023103009441965900_kfad086-B83 article-title: α-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells publication-title: J. Cell Sci. doi: 10.1242/jcs.02481 – volume: 9 start-page: 671 year: 2012 ident: 2023103009441965900_kfad086-B93 article-title: NIH image to ImageJ: 25 years of image analysis HHS public access publication-title: Nat. Methods. doi: 10.1038/nmeth.2089 – volume: 59 start-page: 229 year: 2000 ident: 2023103009441965900_kfad086-B22 article-title: Organochlorine insecticides in substantia nigra in Parkinson’s disease publication-title: J. Toxicol. Environ. Health. A. doi: 10.1080/009841000156907 – volume: 41 start-page: 856 year: 1984 ident: 2023103009441965900_kfad086-B129 article-title: Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonism publication-title: Arch. Neurol. doi: 10.1001/archneur.1984.04050190062015 – volume: 141 start-page: 104947 year: 2020 ident: 2023103009441965900_kfad086-B41 article-title: Developmental exposure to the organochlorine pesticide dieldrin causes male-specific exacerbation of α-synuclein-preformed fibril-induced toxicity and motor deficits publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.104947 – volume: 26 start-page: 701 year: 2005 ident: 2023103009441965900_kfad086-B57 article-title: Dieldrin-induced neurotoxicity: Relevance to Parkinson’s disease pathogenesis publication-title: Neurotoxicology doi: 10.1016/j.neuro.2004.07.010 – volume: 18 start-page: 279 year: 1991 ident: 2023103009441965900_kfad086-B95 article-title: Parkinson’s disease and exposure to rural environmental factors: A population based Case-Control study publication-title: Can. J. Neurol. Sci. doi: 10.1017/S0317167100031826 – volume: 74 start-page: 1055 year: 2010 ident: 2023103009441965900_kfad086-B116 article-title: Persistent organochlorine pesticides in serum and risk of Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e3181d76a93 – volume: 60 start-page: 197 year: 2006 ident: 2023103009441965900_kfad086-B6 article-title: Pesticide exposure and risk for Parkinson’s disease publication-title: Ann. Neurol. doi: 10.1002/ana.20904 – volume: 93 start-page: 1956 year: 1996 ident: 2023103009441965900_kfad086-B50 article-title: Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.5.1956 – volume: 100 start-page: 115 year: 1994 ident: 2023103009441965900_kfad086-B125 article-title: Chemical transmission in the brain: Homeostatic regulation and its functional implications homeostasis of neuronal function publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(08)60776-1 – volume: 73 start-page: 136 year: 2005 ident: 2023103009441965900_kfad086-B23 article-title: Developmental pesticide exposures and the Parkinson’s disease phenotype publication-title: Birth Defects Res. A Clin. Mol. Teratol. doi: 10.1002/bdra.20118 – volume: 150 start-page: 263 year: 1998 ident: 2023103009441965900_kfad086-B92 article-title: Toxicity of dieldrin for dopaminergic neurons in mesencephalic cultures publication-title: Exp. Neurol. doi: 10.1006/exnr.1997.6770 – volume: 111 start-page: 9977 year: 2014 ident: 2023103009441965900_kfad086-B66 article-title: Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1402134111 – volume: 20 start-page: 1695 year: 2006 ident: 2023103009441965900_kfad086-B89 article-title: Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson’s disease publication-title: FASEB J. doi: 10.1096/fj.06-5864fje – volume: 253 start-page: 867 year: 1990 ident: 2023103009441965900_kfad086-B96 article-title: Dopamine efflux from striatal slices after intracerebral 6-hydroxydopamine: Evidence for compensatory hyperactivity of residual terminals publication-title: J Pharmacol Exp Ther – volume: 33 start-page: 559 year: 2010 ident: 2023103009441965900_kfad086-B114 article-title: α-Synuclein and dopamine at the crossroads of parkinson’s disease publication-title: Trends Neurosci. doi: 10.1016/j.tins.2010.09.004 – volume: 76 start-page: 1010 year: 2001 ident: 2023103009441965900_kfad086-B19 article-title: Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2001.00096.x – volume: 21 start-page: 435 year: 2000 ident: 2023103009441965900_kfad086-B86 article-title: A meta-analysis of Parkinson’s disease and exposure to pesticides publication-title: Neurotoxicology – volume: 15 start-page: 658244 year: 2021 ident: 2023103009441965900_kfad086-B110 article-title: Striatal dopamine transporter function is facilitated by converging biology of α-Synuclein and cholesterol publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2021.658244 |
SSID | ssj0011609 |
Score | 2.460206 |
Snippet | Abstract
Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently... Parkinson’s disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently... Parkinson's disease (PD) is the fastest-growing neurological disease worldwide, with increases outpacing aging and occurring most rapidly in recently... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | alpha-Synuclein - metabolism Animals Dieldrin - toxicity Dopamine Female Male Mice Mice, Inbred C57BL Neurotoxicology Parkinson Disease Pesticides - toxicity Substantia Nigra - metabolism Synaptic Transmission Synucleinopathies Vesicular Monoamine Transport Proteins |
Title | Developmental exposure to the Parkinson’s disease-associated organochlorine pesticide dieldrin alters dopamine neurotransmission in α-synuclein pre-formed fibril (PFF)-injected mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37607008 https://www.proquest.com/docview/2854967479 https://pubmed.ncbi.nlm.nih.gov/PMC10613968 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NatwwEBYlh1IIod3-bZsGNZQ0gYjYliytj6V0SRvS7mEDezOyJZElG3upHcje8hp9jN76FH2IPklnZMfZDSnNcb1j2Vhjzzea-T4R8m6gVZDrWLGQC8NE6OCdcyJmgdaJFkrGCUeC8_FXeXgivkziSSsWXd1Rwk_4QV1eQjQ4OHPaAP6Gry1EYFTJH3-bdPWCUPpmDrCXTAII6uQZb5--En5WKG1LyPJ2g-RSxBk-JhstVKQfmrl9Qh7YokceHrfF8B7ZGTWy04t9Or5hUVX7dIeObgSpFz2y3qzN0YZy9JT8WuoUggvYy3mJ64S0LinAQYpEaM8J-3P1o6JtBYfpdh6toX4nqDI_9c17ls5RqCOfGgu2dmbgGPU1eDgXMvJzNPGqmTWGRXArXJ-jYPT7J6sWBeopww_sRkH8DMM7ZCHM6O5oONxj0wIXiuDoOXzRnpGT4afxx0PW7uDAcg5IgdlMRJEJc8iZYqd5ZATPpA64VQ5gkMkArWWRyqwRsYmkCgxywGwgndM6F8rx52StKAv7klAT6ZjL3ALiwpQ20RKV0gQMk4TOKtkn7Hpi07yVN8ddNmZpU2bnaeMIaesIffK-s583wh7_tNwGP_mv0dtrN0rhSWLVRRe2vKhSpKgmErK2pE9eNG7VjYUdSQpQWJ8MVhyuM0Dx79V_iumpFwHHVJ4ncvDqPnf3mjyKAJz5mBtskrX6-4V9A2CqzrYgjfh8tOXfpr-LVih4 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developmental+exposure+to+the+Parkinson%27s+disease-associated+organochlorine+pesticide+dieldrin+alters+dopamine+neurotransmission+in+%CE%B1-synuclein+pre-formed+fibril+%28PFF%29-injected+mice&rft.jtitle=Toxicological+sciences&rft.au=Boyd%2C+Sierra+L&rft.au=Kuhn%2C+Nathan+C&rft.au=Patterson%2C+Joseph+R&rft.au=Stoll%2C+Anna+C&rft.date=2023-10-30&rft.issn=1096-0929&rft.eissn=1096-0929&rft.volume=196&rft.issue=1&rft.spage=99&rft_id=info:doi/10.1093%2Ftoxsci%2Fkfad086&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon |