Switching between the [2π+2σ] and Hetero‐[4π+2σ] Cycloaddition Reactivity of Bicyclobutanes with Lewis Acid Catalysts Enables the Synthesis of Spirocycles and Bridged Heterocycles

The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Le...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 29; pp. e202405222 - n/a
Main Authors Wang, Ji‐Jie, Tang, Lei, Xiao, Yuanjiu, Wu, Wen‐Biao, Wang, Guoqiang, Feng, Jian‐Jun
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 15.07.2024
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes have been achieved through a Lewis acid‐catalyzed cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives. Moreover, rapid access of S‐BCOs, which were not readily accessible by known methods, has been realized through Zn(OTf)2‐catalyzed uncommon [4π+2σ] cycloadditions of BCBs.
AbstractList The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes have been achieved through a Lewis acid‐catalyzed cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives. Moreover, rapid access of S‐BCOs, which were not readily accessible by known methods, has been realized through Zn(OTf)2‐catalyzed uncommon [4π+2σ] cycloadditions of BCBs.
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3-catalyzed [2 pi+2 sigma] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2 pi+2 sigma] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes have been achieved through a Lewis acid-catalyzed cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives. Moreover, rapid access of S-BCOs, which were not readily accessible by known methods, has been realized through Zn(OTf)2-catalyzed uncommon [4 pi+2 sigma] cycloadditions of BCBs. image
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf) , was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf) -catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism.
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism.Dedicated to Professor Yong Tang on the occasion of his 60th birthday
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf) 2 , was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf) 3 ‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E ‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism.
Author Xiao, Yuanjiu
Feng, Jian‐Jun
Wu, Wen‐Biao
Wang, Guoqiang
Tang, Lei
Wang, Ji‐Jie
Author_xml – sequence: 1
  givenname: Ji‐Jie
  orcidid: 0009-0007-8091-9728
  surname: Wang
  fullname: Wang, Ji‐Jie
  organization: Hunan University
– sequence: 2
  givenname: Lei
  orcidid: 0000-0003-1273-9040
  surname: Tang
  fullname: Tang, Lei
  organization: Hunan University
– sequence: 3
  givenname: Yuanjiu
  orcidid: 0000-0001-5155-9099
  surname: Xiao
  fullname: Xiao, Yuanjiu
  organization: Hunan University
– sequence: 4
  givenname: Wen‐Biao
  orcidid: 0009-0000-6598-2058
  surname: Wu
  fullname: Wu, Wen‐Biao
  organization: Hunan University
– sequence: 5
  givenname: Guoqiang
  orcidid: 0000-0001-9666-1919
  surname: Wang
  fullname: Wang, Guoqiang
  email: wangguoqiang710@nju.edu.cn
  organization: Nanjing University
– sequence: 6
  givenname: Jian‐Jun
  orcidid: 0000-0002-6094-3268
  surname: Feng
  fullname: Feng, Jian‐Jun
  email: jianjunfeng@hnu.edu.cn
  organization: Hunan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38729920$$D View this record in MEDLINE/PubMed
BookMark eNqNkstqGzEUhkVJaS7ttssi6DKMq8vcvHQGtwmYFup2Fcogac7EChPJlTQxswv0Bfo6eYq8Q56kGmynUCitNhI63___h8M5RgfGGkDoNSUTSgh7J4yGCSMsJRlj7Bk6ohmjCS8KfhDfKedJUWb0EB17fx35siT5C3TIy4JNp4wcofvlRge10uYKSwgbAIPDCvAle7g7ZQ8_vmFhGnwOAZx9vPt5me6_q0F1VjSNDtoa_BmECvpWhwHbFp9pNVZlH4QBj2PACi9goz2eKd3gSgTRDT54PDdCdpEYE5eDiZePUHRYrrWzo0ksjg2cOd1cwb6RbeElet6KzsOr3X2Cvr6ff6nOk8WnDxfVbJEonhKWMKnadgqSwJSpsqWUiowLnvO84YRmOc8kU6pp4nA4Ba4kE0rSXBLFciXylJ-gt1vftbPfe_Chvra9MzGy5qTI8zInjEbqzY7q5Q009drpG-GGej_pCJRbYAPStl5pMAqeMEIoS0tSFpzEQysdxDjYyvYmROnp_0sjnW5p5az3Dtpa7dyCE7qrKanHzanHzamfNifKJn_I9gF_FUx3XekOhn_Q9ezjxfy39hd2u9lP
CitedBy_id crossref_primary_10_1002_ange_202420831
crossref_primary_10_1002_anie_202416741
crossref_primary_10_1021_acscatal_4c04837
crossref_primary_10_1002_ange_202418239
crossref_primary_10_1039_D4SC02998D
crossref_primary_10_1021_acscatal_5c00303
crossref_primary_10_1055_a_2456_9789
crossref_primary_10_1039_D4QO01741B
crossref_primary_10_1021_jacs_4c10123
crossref_primary_10_1055_a_2406_3243
crossref_primary_10_1021_acs_orglett_4c03862
crossref_primary_10_1021_jacsau_4c00839
crossref_primary_10_1002_ange_202406548
crossref_primary_10_1055_a_2360_8218
crossref_primary_10_1038_s41467_024_50434_6
crossref_primary_10_1039_D4SC06334A
crossref_primary_10_1002_ange_202416741
crossref_primary_10_1002_anie_202418239
crossref_primary_10_1039_D4CC06133K
crossref_primary_10_1039_D4QO02226B
crossref_primary_10_1002_anie_202420831
crossref_primary_10_1002_anie_202408610
crossref_primary_10_1039_D4SC08280J
crossref_primary_10_1002_anie_202406548
crossref_primary_10_1002_chem_202402965
crossref_primary_10_1002_ange_202408610
crossref_primary_10_1039_D4SC03893B
crossref_primary_10_1039_D4SC02194K
crossref_primary_10_1021_acs_orglett_4c01512
crossref_primary_10_1021_jacs_4c10153
crossref_primary_10_1021_acscatal_4c05622
crossref_primary_10_1039_D4CC04730C
crossref_primary_10_1039_D4SC07243J
crossref_primary_10_1038_s41557_024_01710_x
crossref_primary_10_1055_a_2402_6920
Cites_doi 10.1002/ajoc.202400045
10.1021/jacs.2c11501
10.1007/s11030-015-9629-8
10.1021/jm901241e
10.1016/S0040-4020(01)87348-8
10.1021/acs.accounts.9b00549
10.1002/anie.201800167
10.1021/acscatal.8b03694
10.1021/jacs.3c12894
10.1002/anie.202004183
10.26434/chemrxiv-2024-t9dqq
10.1021/jacs.3c11563
10.1039/D2QO00167E
10.1021/cr300135y
10.1039/D0CS00125B
10.1039/D2SC03948F
10.1007/s11426-022-1471-2
10.1002/anie.201209266
10.1002/anie.202214507
10.1007/s11426-023-1533-y
10.1039/c2md20347b
10.1021/jacs.5b04429
10.1039/D3CC04234K
10.1126/science.287.5460.1964
10.1016/j.ejmech.2017.04.003
10.1126/science.adh9737
10.1021/jacs.3c02961
10.1021/jacs.1c10541
10.1039/p19930001835
10.1021/acs.accounts.2c00771
10.1021/ja00443a002
10.1021/jacs.2c02976
10.1021/acscatal.3c00305
10.1038/s41557-020-0503-7
10.1021/jo00336a038
10.1002/anie.201508818
10.1021/jacs.2c13740
10.1021/jacs.2c09248
10.1038/s41586-022-04636-x
10.1039/C7CS00508C
10.1016/j.trechm.2023.10.002
10.1007/BF03246223
10.1038/s41586-022-05290-z
10.1002/anie.202305450
10.1002/anie.200600723
10.1002/anie.202310066
10.1021/jacs.2c09733
10.1039/D0QO01085E
10.1002/anie.201609608
10.1002/anie.202204719
10.1016/j.ejmech.2014.06.056
10.1039/D0CC01771J
10.1021/acs.orglett.2c03606
10.1021/ol050104k
10.1039/c0cc03620j
10.1021/ja00955a021
10.1039/C8CC02364F
10.1021/acs.orglett.3c03222
10.1039/C7OB02686B
10.1021/ar500437h
10.1021/jacs.3c09789
10.1016/j.ejmech.2019.111691
10.1021/cs401172r
10.1002/anie.202308606
10.1039/C8OB02812E
10.1002/adsc.202100714
10.1039/D1QO00220A
10.1021/acs.orglett.4c00421
10.1021/acs.orglett.1c04071
10.1038/s41557-023-01135-y
10.1002/chem.201905539
10.1021/jo00221a003
10.1038/s42004-022-00811-3
10.1515/pac-2019-1007
10.1039/C8CS00532J
10.26434/chemrxiv-2024-r9c2g
10.1002/anie.200300626
10.1039/D3SC03083K
10.1002/ejoc.202300935
10.1002/anie.202304771
10.1002/anie.202317304
10.1039/d0cc01771j
10.1021/jacs.3c08404
10.1039/d3sc03083k
10.1039/c8ob02812e
10.1039/c8cc02364f
10.1039/d0qo01085e
10.1039/c7ob02686b
10.1039/d1qo00220a
10.1039/c8cs00532j
10.1039/d2sc03948f
10.1039/c7cs00508c
10.1039/d2qo00167e
10.1039/d3cc04234k
10.1039/d0cs00125b
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
BLEPL
DTL
EGQ
NPM
7TM
K9.
DOI 10.1002/anie.202405222
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38729920
001248087300001
10_1002_anie_202405222
ANIE202405222
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22273035
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 020514380295
– fundername: Nanjing University
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 22273035
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 020514380295
– fundername: National Natural Science Foundation of China
  grantid: 22273035
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_WEB_OF_SCIENCE
NPM
7TM
K9.
ID FETCH-LOGICAL-c3402-2bcff9eb0e92c8f111a53a3636d3015635b2ccdd00231e3cb2acb16b0c26ca643
IEDL.DBID DR2
ISICitedReferencesCount 32
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001248087300001
ISSN 1433-7851
IngestDate Fri Jul 25 12:01:36 EDT 2025
Mon Jul 21 06:02:29 EDT 2025
Wed Jul 09 18:32:05 EDT 2025
Fri Aug 29 15:56:39 EDT 2025
Tue Jul 01 01:47:38 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Wed Jan 22 17:18:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords Spirooxindoles
Heterocycles
Cycloaddition
Strained molecules
STRAIN-RELEASE
ANNULATION
COMPLEXITY
Bicyclic compounds
CHEMISTRY
DIVERSITY
Language English
License 2024 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3402-2bcff9eb0e92c8f111a53a3636d3015635b2ccdd00231e3cb2acb16b0c26ca643
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6094-3268
0009-0000-6598-2058
0000-0001-5155-9099
0009-0007-8091-9728
0000-0003-1273-9040
0000-0001-9666-1919
PMID 38729920
PQID 3076686021
PQPubID 946352
PageCount 6
ParticipantIDs webofscience_primary_001248087300001
pubmed_primary_38729920
webofscience_primary_001248087300001CitationCount
proquest_journals_3076686021
wiley_primary_10_1002_anie_202405222_ANIE202405222
crossref_citationtrail_10_1002_anie_202405222
crossref_primary_10_1002_anie_202405222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 15, 2024
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: July 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2013; 4
2023; 5
2023; 6
2023; 381
2023; 145
2019; 17
2022; 24
1981; 46
2020; 59
2020; 12
2020; 56
2024; 146
2024
2021; 363
2022; 611
2018; 47
2015; 48
2023; 62
2009; 52
2014; 4
2023; 25
2023; 66
2015; 137
2020; 53
1986; 42
2020; 92
2013; 52
2020; 49
2000; 287
2022; 605
1985; 50
2024; 26
2004; 43
2021; 8
2019; 9
2023; 13
2019; 4
2023; 14
2023; 56
2023; 15
2023; 59
2015; 97
1993
2021; 143
2017; 134
2019; 183
2011; 8
2016; 55
2022; 144
2012; 112
2010; 46
2006; 45
2023
2022; 61
2022; 9
2017; 56
2016; 20
2022; 13
2005; 7
2020; 26
1977; 99
2018; 54
1966; 88
2018; 16
2018; 57
e_1_2_3_50_2
e_1_2_3_92_2
Liang Y. (e_1_2_3_53_2) 2023
Alonso R. (e_1_2_3_105_1) 2019; 4
Liang Y. (e_1_2_3_85_2) 2024
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_39_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_58_2
e_1_2_3_77_2
e_1_2_3_35_2
e_1_2_3_54_2
e_1_2_3_73_2
e_1_2_3_96_2
e_1_2_3_31_2
e_1_2_3_81_2
Zhang J. (e_1_2_3_84_2) 2024
e_1_2_3_102_2
e_1_2_3_28_2
e_1_2_3_24_1
e_1_2_3_47_2
e_1_2_3_66_2
e_1_2_3_89_2
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_62_2
e_1_2_3_95_1
e_1_2_3_72_2
e_1_2_3_91_2
e_1_2_3_19_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_3_2
e_1_2_3_11_2
e_1_2_3_34_1
e_1_2_3_7_2
e_1_2_3_57_2
e_1_2_3_99_2
e_1_2_3_76_1
e_1_2_3_30_2
e_1_2_3_61_2
e_1_2_3_80_2
e_1_2_3_103_1
e_1_2_3_27_1
e_1_2_3_23_2
e_1_2_3_69_2
e_1_2_3_46_2
e_1_2_3_88_2
e_1_2_3_65_2
e_1_2_3_42_2
e_1_2_3_71_2
e_1_2_3_94_2
e_1_2_3_90_2
e_1_2_3_37_2
e_1_2_3_18_1
e_1_2_3_2_2
e_1_2_3_56_2
e_1_2_3_33_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_79_1
e_1_2_3_52_1
e_1_2_3_98_1
e_1_2_3_10_2
e_1_2_3_83_1
e_1_2_3_60_1
e_1_2_3_104_1
e_1_2_3_26_2
e_1_2_3_49_1
e_1_2_3_100_2
e_1_2_3_22_2
e_1_2_3_45_2
e_1_2_3_68_1
e_1_2_3_64_2
Semeno V. V. (e_1_2_3_75_1) 2023
e_1_2_3_87_1
e_1_2_3_93_2
e_1_2_3_70_2
e_1_2_3_1_1
e_1_2_3_5_2
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_9_1
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_78_2
e_1_2_3_51_2
e_1_2_3_97_2
e_1_2_3_32_2
e_1_2_3_55_1
e_1_2_3_74_2
e_1_2_3_82_2
e_1_2_3_101_2
Robichon M. (e_1_2_3_41_2) 2023; 145
e_1_2_3_29_2
e_1_2_3_44_2
e_1_2_3_25_2
Radhoff N. (e_1_2_3_48_1) 2023
e_1_2_3_67_2
e_1_2_3_40_2
e_1_2_3_21_1
e_1_2_3_63_1
e_1_2_3_86_1
Nguyen, TVT (WOS:001108433000001) 2023; 145
Burke, MD (WOS:000187736300005) 2004; 43
Tang, L (WOS:001088127300001) 2023; 62
Ni, Dongshun (MEDLINE:37583090) 2023; 62
Wan, YC (WOS:000498308700004) 2019; 183
Wang, YC (WOS:000652257400001) 2021; 8
CAIRNCROSS, A (WOS:A19667263600021) 1966; 88
Li, JL (WOS:000693118200001) 2021; 363
Sujansky, SJ (WOS:001182464800001) 2024; 13
Radhoff, N (WOS:001008962500001) 2023; 62
Zhu, CZ (WOS:000394997700031) 2017; 56
Zheng, YX (WOS:000903236700001) 2022; 144
Yin, ZS (WOS:000451657800013) 2018; 47
Lovering, F (WOS:000315355800005) 2013; 4
Lovering, F (WOS:000271427900027) 2009; 52
Xu, M (WOS:000890467600001) 2022; 61
Pan, Q (WOS:000924423200001) 2023; 56
Alonso, R. (001248087300001.85) 2019; 4
Garcia-Castro, M (WOS:000383252900003) 2016; 55
Wang, M (WOS:000766792000001) 2022; 9
Liang, Y (WOS:001162736700001) 2024; 63
Pavlovska, TL (WOS:000368639600015) 2016; 20
Liu, Y (WOS:000971587200001) 2023; 13
Ren, HS (WOS:001173670200001) 2024; 26
Rigotti, T (WOS:000890722600001) 2022
Liang, Y. (001248087300001.44) 2023
Schreiber, SL (WOS:000085902800047) 2000; 287
Turkowska, J (WOS:000537959100028) 2020; 56
Moghaddam, FM (WOS:000288131900026) 2011; 8
Dutta, S (WOS:001166548000001) 2024; 146
Yang, LC (WOS:000553626700001) 2020; 12
Su, J.-Y. (001248087300001.40) 2024
Zhao, N (WOS:000427235600017) 2018; 57
Woelk, KJ (WOS:001096963000001) 2023; 59
Dhake, K (WOS:000790027100001) 2022; 61
Chadha, N (WOS:000401677500016) 2017; 134
Yan, HP (WOS:001141270800001) 2023; 25
Walczak, MAA (WOS:000353429400026) 2015; 48
Xia, WJ (WOS:000227921200030) 2005; 7
Harmata, M (WOS:000284482100001) 2010; 46
Golfmann, M (WOS:000913525100001) 2023; 6
Wang, HM (WOS:001030999200030) 2023; 381
Mei, GJ (WOS:000436029000011) 2018; 54
Kleinmans, R (WOS:000793701100001) 2022; 605
Beletskaya, IP (WOS:000575023000009) 2020; 49
Ke, Y (WOS:000983882900003) 2023; 66
Shu, DX (WOS:000316340700033) 2013; 52
Fawcett, A (WOS:000537416000006) 2020; 92
de Robichon, M (WOS:001105544400001) 2023; 145
Cheng, DJ (WOS:000332756700005) 2014; 4
Iida, T (WOS:000883756300001) 2022; 144
Reinhold, M (WOS:001058076900001) 2023; 14
Wang, LT (WOS:001134486500001) 2023; 5
Wipf, P (WOS:000238718500022) 2006; 45
GLEITER, R (WOS:A1977CR84000002) 1977; 99
Schwartz, BD (WOS:000743540500001) 2022; 24
Kelly, CB (WOS:000848123300001) 2022; 13
Zhang, YC (WOS:000514759600013) 2020; 53
Zhang, JY (WOS:001028700800001) 2023; 62
Liang, YJ (WOS:000887076900001) 2022; 144
Xu, PW (WOS:000460600600024) 2019; 9
THOMPSON, AM (WOS:A1993LU72300005) 1993
Zhang, J. (001248087300001.68) 2024
Dutta, S (WOS:001155529700001) 2024; 146
Mykhailiuk, PK (WOS:000461223700026) 2019; 17
Fang, X (WOS:000433442900001) 2018; 16
Wang, J.-J. (001248087300001.39) 2024
Boddy, AJ (WOS:000627716000018) 2021; 8
Harmata, AS (WOS:000731578000001) 2021; 143
Xu, H (WOS:000357436300012) 2015; 137
Guo, RY (WOS:000799180800007) 2022; 144
Kleinmans, R (WOS:001005914100001) 2023; 145
Yu, B (WOS:000356734600049) 2015; 97
Yu, T (WOS:000932632200001) 2023
Bariwal, J (WOS:000434489200006) 2018; 47
Singh, GS (WOS:000311239600016) 2012; 112
Smyrnov, O (WOS:001110664800001) 2024; 27
Agasti, S (WOS:000933339300001) 2023; 15
DEMEIJERE, A (WOS:A1986A540600007) 1986; 42
Denisenko, A (WOS:000560930500001) 2020; 59
Frank, N (WOS:000869346300001) 2022; 611
Schwartz, BD (WOS:000514689800001) 2020; 26
Romn, L. U. (001248087300001.63) 1985; 50
Tan, W (WOS:000934181500001) 2023; 66
WARNER, PM (WOS:A1981MP25400038) 1981; 46
References_xml – volume: 47
  start-page: 3831
  year: 2018
  end-page: 3848
  publication-title: Chem. Soc. Rev.
– volume: 145
  start-page: 25411
  year: 2023
  end-page: 25421
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 3237
  year: 2013
  end-page: 3240
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 515
  year: 2013
  publication-title: MedChemComm
– volume: 24
  start-page: 1268
  year: 2022
  end-page: 1273
  publication-title: Org. Lett.
– volume: 112
  start-page: 6104
  year: 2012
  end-page: 6155
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1315
  year: 2005
  end-page: 1318
  publication-title: Org. Lett.
– volume: 4
  start-page: 9
  year: 2019
  end-page: 30
  publication-title: Core Evidence
– volume: 46
  start-page: 4795
  year: 1981
  end-page: 4797
  publication-title: J. Org. Chem.
– volume: 8
  start-page: 265
  year: 2011
  end-page: 271
  publication-title: J. Iran. Chem. Soc.
– volume: 66
  start-page: 966
  year: 2023
  end-page: 992
  publication-title: Sci. China Chem.
– volume: 54
  start-page: 6607
  year: 2018
  end-page: 6621
  publication-title: Chem. Commun.
– volume: 56
  start-page: 1351
  year: 2017
  end-page: 1355
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 5718
  year: 2020
  end-page: 5734
  publication-title: Chem. Commun.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 2149
  year: 2022
  end-page: 2153
  publication-title: Org. Chem. Front.
– volume: 88
  start-page: 496
  year: 1966
  end-page: 504
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 3386
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 146
  start-page: 2789
  year: 2024
  end-page: 2797
  publication-title: J. Am. Chem. Soc.
– start-page: 1835
  year: 1993
  end-page: 1837
  publication-title: J. Chem. Soc. Perkin Trans. 1.
– volume: 183
  year: 2019
  publication-title: Eur. J. Med. Chem.
– volume: 15
  start-page: 535
  year: 2023
  end-page: 541
  publication-title: Nat. Chem.
– volume: 45
  start-page: 4172
  year: 2006
  end-page: 4175
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 1291
  year: 1986
  end-page: 1297
  publication-title: Tetrahedron
– volume: 12
  start-page: 860
  year: 2020
  end-page: 268
  publication-title: Nat. Chem.
– volume: 26
  start-page: 1745
  year: 2024
  end-page: 1750
  publication-title: Org. Lett.
– volume: 99
  start-page: 8
  year: 1977
  end-page: 12
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 5096
  year: 2023
  end-page: 5103
  publication-title: ACS Catal.
– volume: 59
  start-page: 13847
  year: 2023
  end-page: 13850
  publication-title: Chem. Commun.
– volume: 144
  start-page: 21848
  year: 2022
  end-page: 21852
  publication-title: J. Am. Chem. Soc.
– volume: 605
  start-page: 477
  year: 2022
  end-page: 482
  publication-title: Nature
– volume: 145
  start-page: 24466
  year: 2023
  end-page: 24470
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 9
  year: 2023
  publication-title: Commun. Chem.
– year: 2024
  publication-title: Asian J. Org. Chem.
– volume: 66
  start-page: 2951
  year: 2023
  end-page: 2976
  publication-title: Sci. China Chem.
– volume: 43
  start-page: 46
  year: 2004
  end-page: 58
  publication-title: Angew. Chem. Int. Ed.
– volume: 48
  start-page: 1149
  year: 2015
  end-page: 1158
  publication-title: Acc. Chem. Res.
– volume: 55
  start-page: 7586
  year: 2016
  end-page: 7605
  publication-title: Angew. Chem. Int. Ed.
– volume: 20
  start-page: 299
  year: 2016
  end-page: 344
  publication-title: Mol. Diversity
– volume: 5
  start-page: 906
  year: 2023
  end-page: 919
  publication-title: Trends Chem.
– volume: 8
  start-page: 4315
  year: 2021
  end-page: 4348
  publication-title: Org. Chem. Front.
– volume: 26
  start-page: 2808
  year: 2020
  end-page: 2812
  publication-title: Chem. Eur. J.
– volume: 145
  start-page: 12324
  year: 2023
  end-page: 12332
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1820
  year: 2019
  end-page: 1882
  publication-title: ACS Catal.
– volume: 287
  start-page: 1964
  year: 2000
  end-page: 1969
  publication-title: Science
– volume: 17
  start-page: 2839
  year: 2019
  end-page: 2849
  publication-title: Org. Biomol. Chem.
– volume: 46
  start-page: 8886
  year: 2010
  end-page: 8903
  publication-title: Chem. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 145
  start-page: 4304
  year: 2023
  end-page: 4310
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 159
  year: 2017
  end-page: 184
  publication-title: Eur. J. Med. Chem.
– volume: 25
  start-page: 8116
  year: 2023
  end-page: 8120
  publication-title: Org. Lett.
– volume: 16
  start-page: 2591
  year: 2018
  end-page: 2601
  publication-title: Org. Biomol. Chem.
– volume: 56
  start-page: 515
  year: 2023
  end-page: 535
  publication-title: Acc. Chem. Res.
– volume: 59
  start-page: 20515
  year: 2020
  end-page: 20521
  publication-title: Angew. Chem. Int. Ed.
– year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 7101
  year: 2020
  end-page: 7166
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 21223
  year: 2021
  end-page: 21228
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1026
  year: 2021
  end-page: 1084
  publication-title: Org. Chem. Front.
– volume: 24
  start-page: 8821
  year: 2022
  end-page: 8825
  publication-title: Org. Lett.
– volume: 92
  start-page: 751
  year: 2020
  end-page: 765
  publication-title: Pure Appl. Chem.
– volume: 97
  start-page: 673
  year: 2015
  end-page: 698
  publication-title: Eur. J. Med. Chem.
– year: 2023
  publication-title: Chem. Eur. J.
– volume: 47
  start-page: 8881
  year: 2018
  end-page: 8924
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 8006
  year: 2015
  end-page: 8009
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 9885
  year: 2023
  end-page: 9891
  publication-title: Chem. Sci.
– volume: 144
  start-page: 23685
  year: 2022
  end-page: 23690
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 7988
  year: 2022
  end-page: 7994
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 20207
  year: 2022
  end-page: 20213
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 11721
  year: 2022
  end-page: 11737
  publication-title: Chem. Sci.
– volume: 611
  start-page: 721
  year: 2022
  end-page: 726
  publication-title: Nature
– volume: 4
  start-page: 743
  year: 2014
  end-page: 762
  publication-title: ACS Catal.
– year: 2024
  publication-title: ChemRxiv preprint
– volume: 52
  start-page: 6752
  year: 2009
  publication-title: J. Med. Chem.
– volume: 50
  start-page: 3965
  year: 1985
  end-page: 3972
  publication-title: J. Org. Chem.
– year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 425
  year: 2020
  end-page: 446
  publication-title: Acc. Chem. Res.
– volume: 146
  start-page: 5232
  year: 2024
  end-page: 5241
  publication-title: J. Am. Chem. Soc.
– volume: 363
  start-page: 4497
  year: 2021
  end-page: 4515
  publication-title: Adv. Synth. Catal.
– volume: 381
  start-page: 75
  year: 2023
  end-page: 81
  publication-title: Science
– ident: e_1_2_3_33_2
  doi: 10.1002/ajoc.202400045
– ident: e_1_2_3_72_2
  doi: 10.1021/jacs.2c11501
– ident: e_1_2_3_20_2
  doi: 10.1007/s11030-015-9629-8
– ident: e_1_2_3_22_2
  doi: 10.1021/jm901241e
– ident: e_1_2_3_36_2
  doi: 10.1016/S0040-4020(01)87348-8
– ident: e_1_2_3_60_1
– ident: e_1_2_3_99_2
  doi: 10.1021/acs.accounts.9b00549
– ident: e_1_2_3_78_2
  doi: 10.1002/anie.201800167
– year: 2023
  ident: e_1_2_3_48_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_3_87_1
– ident: e_1_2_3_12_2
  doi: 10.1021/acscatal.8b03694
– ident: e_1_2_3_57_2
  doi: 10.1021/jacs.3c12894
– ident: e_1_2_3_64_2
  doi: 10.1002/anie.202004183
– ident: e_1_2_3_47_2
  doi: 10.26434/chemrxiv-2024-t9dqq
– ident: e_1_2_3_26_2
  doi: 10.1021/jacs.3c11563
– ident: e_1_2_3_62_2
  doi: 10.1039/D2QO00167E
– year: 2024
  ident: e_1_2_3_85_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_3_17_2
  doi: 10.1021/cr300135y
– ident: e_1_2_3_5_2
  doi: 10.1039/D0CS00125B
– ident: e_1_2_3_29_2
  doi: 10.1039/D2SC03948F
– ident: e_1_2_3_88_2
  doi: 10.1007/s11426-022-1471-2
– ident: e_1_2_3_92_2
  doi: 10.1002/anie.201209266
– ident: e_1_2_3_27_1
– ident: e_1_2_3_44_2
  doi: 10.1002/anie.202214507
– ident: e_1_2_3_3_2
  doi: 10.1007/s11426-023-1533-y
– ident: e_1_2_3_23_2
  doi: 10.1039/c2md20347b
– ident: e_1_2_3_93_2
  doi: 10.1021/jacs.5b04429
– ident: e_1_2_3_24_1
– ident: e_1_2_3_51_2
  doi: 10.1039/D3CC04234K
– ident: e_1_2_3_8_2
  doi: 10.1126/science.287.5460.1964
– ident: e_1_2_3_102_2
  doi: 10.1016/j.ejmech.2017.04.003
– ident: e_1_2_3_86_1
  doi: 10.1126/science.adh9737
– year: 2024
  ident: e_1_2_3_84_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_3_56_2
  doi: 10.1021/jacs.3c02961
– ident: e_1_2_3_68_1
– ident: e_1_2_3_69_2
  doi: 10.1021/jacs.1c10541
– year: 2023
  ident: e_1_2_3_75_1
  publication-title: Chem. Eur. J.
– ident: e_1_2_3_96_2
  doi: 10.1039/p19930001835
– ident: e_1_2_3_2_2
  doi: 10.1021/acs.accounts.2c00771
– ident: e_1_2_3_80_2
  doi: 10.1021/ja00443a002
– ident: e_1_2_3_39_2
  doi: 10.1021/jacs.2c02976
– ident: e_1_2_3_45_2
  doi: 10.1021/acscatal.3c00305
– ident: e_1_2_3_25_2
  doi: 10.1038/s41557-020-0503-7
– ident: e_1_2_3_81_2
  doi: 10.1021/jo00336a038
– ident: e_1_2_3_6_2
  doi: 10.1002/anie.201508818
– ident: e_1_2_3_52_1
– ident: e_1_2_3_9_1
– ident: e_1_2_3_74_2
  doi: 10.1021/jacs.2c13740
– ident: e_1_2_3_55_1
– ident: e_1_2_3_54_2
  doi: 10.1021/jacs.2c09248
– ident: e_1_2_3_38_2
  doi: 10.1038/s41586-022-04636-x
– ident: e_1_2_3_14_2
  doi: 10.1039/C7CS00508C
– ident: e_1_2_3_18_1
– ident: e_1_2_3_4_2
  doi: 10.1016/j.trechm.2023.10.002
– ident: e_1_2_3_49_1
– ident: e_1_2_3_97_2
  doi: 10.1007/BF03246223
– ident: e_1_2_3_34_1
– ident: e_1_2_3_79_1
– ident: e_1_2_3_70_2
  doi: 10.1038/s41586-022-05290-z
– ident: e_1_2_3_91_2
  doi: 10.1002/anie.202305450
– ident: e_1_2_3_37_2
  doi: 10.1002/anie.200600723
– year: 2023
  ident: e_1_2_3_53_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_3_59_2
  doi: 10.1002/anie.202310066
– ident: e_1_2_3_95_1
– ident: e_1_2_3_71_2
  doi: 10.1021/jacs.2c09733
– ident: e_1_2_3_11_2
  doi: 10.1039/D0QO01085E
– ident: e_1_2_3_94_2
  doi: 10.1002/anie.201609608
– ident: e_1_2_3_50_2
  doi: 10.1002/anie.202204719
– volume: 145
  start-page: 24466
  year: 2023
  ident: e_1_2_3_41_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_3_83_1
– ident: e_1_2_3_19_2
  doi: 10.1016/j.ejmech.2014.06.056
– ident: e_1_2_3_31_2
  doi: 10.1039/D0CC01771J
– ident: e_1_2_3_65_2
  doi: 10.1021/acs.orglett.2c03606
– ident: e_1_2_3_82_2
  doi: 10.1021/ol050104k
– ident: e_1_2_3_90_2
  doi: 10.1039/c0cc03620j
– ident: e_1_2_3_35_2
  doi: 10.1021/ja00955a021
– ident: e_1_2_3_15_2
  doi: 10.1039/C8CC02364F
– volume: 4
  start-page: 9
  year: 2019
  ident: e_1_2_3_105_1
  publication-title: Core Evidence
– ident: e_1_2_3_40_2
  doi: 10.1021/acs.orglett.3c03222
– ident: e_1_2_3_21_1
– ident: e_1_2_3_1_1
– ident: e_1_2_3_13_2
  doi: 10.1039/C7OB02686B
– ident: e_1_2_3_32_2
  doi: 10.1021/ar500437h
– ident: e_1_2_3_73_2
  doi: 10.1021/jacs.3c09789
– ident: e_1_2_3_101_2
  doi: 10.1016/j.ejmech.2019.111691
– ident: e_1_2_3_16_2
  doi: 10.1021/cs401172r
– ident: e_1_2_3_58_2
  doi: 10.1002/anie.202308606
– ident: e_1_2_3_67_2
  doi: 10.1039/C8OB02812E
– ident: e_1_2_3_76_1
– ident: e_1_2_3_98_1
– ident: e_1_2_3_100_2
  doi: 10.1002/adsc.202100714
– ident: e_1_2_3_10_2
  doi: 10.1039/D1QO00220A
– ident: e_1_2_3_43_2
  doi: 10.1021/acs.orglett.4c00421
– ident: e_1_2_3_61_2
  doi: 10.1021/acs.orglett.1c04071
– ident: e_1_2_3_103_1
– ident: e_1_2_3_42_2
  doi: 10.1038/s41557-023-01135-y
– ident: e_1_2_3_104_1
  doi: 10.1002/chem.201905539
– ident: e_1_2_3_77_2
  doi: 10.1021/jo00221a003
– ident: e_1_2_3_28_2
  doi: 10.1038/s42004-022-00811-3
– ident: e_1_2_3_63_1
– ident: e_1_2_3_30_2
  doi: 10.1515/pac-2019-1007
– ident: e_1_2_3_89_2
  doi: 10.1039/C8CS00532J
– ident: e_1_2_3_46_2
  doi: 10.26434/chemrxiv-2024-r9c2g
– ident: e_1_2_3_7_2
  doi: 10.1002/anie.200300626
– ident: e_1_2_3_66_2
  doi: 10.1039/D3SC03083K
– volume: 5
  start-page: 906
  year: 2023
  ident: WOS:001134486500001
  article-title: Radical strategies for chemodivergent cyclization reactions
  publication-title: TRENDS IN CHEMISTRY
  doi: 10.1016/j.trechm.2023.10.002
– volume: 25
  start-page: 8116
  year: 2023
  ident: WOS:001141270800001
  article-title: Hantzsch Esters Enabled [2π+2σ] Cycloadditions of Bicyclo [1.1.0] butanes and Alkenes under Photo Conditions
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.3c03222
– volume: 59
  start-page: 20515
  year: 2020
  ident: WOS:000560930500001
  article-title: Saturated Bioisosteres ofortho-Substituted Benzenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202004183
– volume: 26
  start-page: 2808
  year: 2020
  ident: WOS:000514689800001
  article-title: Structurally Diverse Acyl Bicyclobutanes: Valuable Strained Electrophiles
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201905539
– volume: 27
  year: 2024
  ident: WOS:001110664800001
  article-title: α-CF3-Substituted Saturated Bicyclic Amines: Advanced Building Blocks for Medicinal Chemistry
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202300935
– volume: 287
  start-page: 1964
  year: 2000
  ident: WOS:000085902800047
  article-title: Target-oriented and diversity-oriented organic synthesis in drug discovery
  publication-title: SCIENCE
– volume: 62
  year: 2023
  ident: WOS:001008962500001
  article-title: Lewis Acid Catalyzed Formal (3+2)-Cycloaddition of Bicyclo[1.1.0]butanes with Ketenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202304771
– volume: 46
  start-page: 4795
  year: 1981
  ident: WOS:A1981MP25400038
  article-title: A GENERAL-APPROACH TO THE SYNTHESIS OF BRIDGEHEAD-BRIDGEHEAD DISUBSTITUTED BICYCLO[N.1.1]ALKANES
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
– volume: 137
  start-page: 8006
  year: 2015
  ident: WOS:000357436300012
  article-title: Asymmetric Annulation of Donor-Acceptor Cyclopropanes with Dienes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b04429
– volume: 112
  start-page: 6104
  year: 2012
  ident: WOS:000311239600016
  article-title: Isatins As Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr300135y
– volume: 183
  start-page: ARTN 111691
  year: 2019
  ident: WOS:000498308700004
  article-title: Indole: A privileged scaffold for the design of anti-cancer agents
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1016/j.ejmech.2019.111691
– volume: 63
  year: 2024
  ident: WOS:001162736700001
  article-title: Biodegradable Monometallic Aluminum as a Biotuner for Tumor Pyroptosis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202317304
– volume: 144
  start-page: 23685
  year: 2022
  ident: WOS:000903236700001
  article-title: Photochemical Intermolecular [3Σ+2Σ]-Cycloaddition for the Construction of Aminobicyclo[3.1.1]heptanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c11501
– volume: 144
  start-page: 7988
  year: 2022
  ident: WOS:000799180800007
  article-title: Strain-Release [2π+2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c02976
– year: 2023
  ident: 001248087300001.44
  publication-title: Angew. Chem. Int. Ed
– volume: 56
  start-page: 5718
  year: 2020
  ident: WOS:000537959100028
  article-title: Strain release - an old tool for new transformations
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d0cc01771j
– volume: 145
  start-page: 24466
  year: 2023
  ident: WOS:001105544400001
  article-title: Enantioselective, Intermolecular [π2+σ2] Photocycloaddition Reactions of 2(1H)-Quinolones and Bicyclo[1.1.0]butanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.3c08404
– volume: 14
  start-page: 9885
  year: 2023
  ident: WOS:001058076900001
  article-title: Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d3sc03083k
– volume: 62
  year: 2023
  ident: WOS:001088127300001
  article-title: Silver-Catalyzed Dearomative [2π+2σ] Cycloadditions of Indoles with Bicyclobutanes: Access to Indoline Fused Bicyclo[2.1.1]hexanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202310066
– volume: 611
  start-page: 721
  year: 2022
  ident: WOS:000869346300001
  article-title: Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane
  publication-title: NATURE
  doi: 10.1038/s41586-022-05290-z
– volume: 20
  start-page: 299
  year: 2016
  ident: WOS:000368639600015
  article-title: Molecular diversity of spirooxindoles. Synthesis and biological activity
  publication-title: MOLECULAR DIVERSITY
  doi: 10.1007/s11030-015-9629-8
– volume: 144
  start-page: 20207
  year: 2022
  ident: WOS:000887076900001
  article-title: Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible- Light-Induced Energy Transfer
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c09248
– volume: 15
  start-page: 535
  year: 2023
  ident: WOS:000933339300001
  article-title: A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-023-01135-y
– volume: 45
  start-page: 4172
  year: 2006
  ident: WOS:000238718500022
  article-title: Pericyclic cascade reactions of (bicyclo[1.1.0]butylmethyl)amines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200600723
– volume: 143
  start-page: 21223
  year: 2021
  ident: WOS:000731578000001
  article-title: Photochemical Formal (4+2)-Cycloaddition of Imine-Substituted Bicyclo[1.1.1]pentanes and Alkenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c10541
– volume: 13
  year: 2024
  ident: WOS:001182464800001
  article-title: Reaction Paradigms that Leverage Cycloaddition and Ring Strain to Construction Bicyclic Aryl Bioisosteres from Bicyclo[1.1.0]butanes
  publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ajoc.202400045
– volume: 17
  start-page: 2839
  year: 2019
  ident: WOS:000461223700026
  article-title: Saturated bioisosteres of benzene: where to go next?
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c8ob02812e
– volume: 46
  start-page: 8886
  year: 2010
  ident: WOS:000284482100001
  article-title: The (4+3)-cycloaddition reaction: simple allylic cations as dienophiles
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c0cc03620j
– volume: 54
  start-page: 6607
  year: 2018
  ident: WOS:000436029000011
  article-title: Catalytic asymmetric synthesis of spirooxindoles: recent developments
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c8cc02364f
– volume: 605
  start-page: 477
  year: 2022
  ident: WOS:000793701100001
  article-title: Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer
  publication-title: NATURE
  doi: 10.1038/s41586-022-04636-x
– volume: 145
  start-page: 25411
  year: 2023
  ident: WOS:001108433000001
  article-title: Photocatalyzed [2σ+2σ] and [2σ+2π] Cycloadditions for the Synthesis of Bicyclo[3.1.1]heptanes and 5-or 6-Membered Carbocycles
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.3c09789
– volume: 8
  start-page: 1026
  year: 2021
  ident: WOS:000627716000018
  article-title: Stereoselective synthesis and applications of spirocyclic oxindoles
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d0qo01085e
– volume: 66
  start-page: 966
  year: 2023
  ident: WOS:000934181500001
  article-title: Progress in organocatalytic asymmetric (4+3) cycloadditions for the enantioselective construction of seven-membered rings
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-022-1471-2
– volume: 57
  start-page: 3386
  year: 2018
  ident: WOS:000427235600017
  article-title: Total Synthesis of Astellatol
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201800167
– year: 2024
  ident: 001248087300001.39
  publication-title: ChemRxiv
– volume: 61
  year: 2022
  ident: WOS:000890467600001
  article-title: Diboron(4)-Catalyzed Remote [3+2] Cycloaddition of Cyclopropanes via Dearomative/Rearomative Radical Transmission through Pyridine
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202214507
– start-page: 1835
  year: 1993
  ident: WOS:A1993LU72300005
  article-title: FACILE DIMERIZATION OF 3-BENZYLIDENEINDOLINE-2-THIONES
  publication-title: JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1
– volume: 56
  start-page: 515
  year: 2023
  ident: WOS:000924423200001
  article-title: Nickel-Catalyzed Ligand-Controlled Selective Reductive Cyclization/Cross-Couplings
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.2c00771
– volume: 66
  start-page: 2951
  year: 2023
  ident: WOS:000983882900003
  article-title: Ni-catalyzed ligand-controlled divergent and selective synthesis
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-023-1533-y
– volume: 97
  start-page: 673
  year: 2015
  ident: WOS:000356734600049
  article-title: Spirooxindoles: Promising scaffolds for anticancer agents
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1016/j.ejmech.2014.06.056
– volume: 8
  start-page: 265
  year: 2011
  ident: WOS:000288131900026
  article-title: An Efficient Synthesis of Fused Polycyclic Indole Derivatives via Aldol-Hetero Diels-Alder Reaction of α,β-Unsaturated Thio-oxindoles with Various Dienophiles
  publication-title: JOURNAL OF THE IRANIAN CHEMICAL SOCIETY
– volume: 48
  start-page: 1149
  year: 2015
  ident: WOS:000353429400026
  article-title: Ring-Strain-Enabled Reaction Discovery: New Heterocycles from Bicyclo[1.1.0]butanes
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar500437h
– volume: 6
  start-page: ARTN 9
  year: 2023
  ident: WOS:000913525100001
  article-title: Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis
  publication-title: COMMUNICATIONS CHEMISTRY
  doi: 10.1038/s42004-022-00811-3
– volume: 4
  start-page: 9
  year: 2019
  ident: 001248087300001.85
  publication-title: Core Evidence
– volume: 56
  start-page: 1351
  year: 2017
  ident: WOS:000394997700031
  article-title: Rhodium( I)-Catalyzed Intermolecular Aza-[4+3] Cycloaddition of Vinyl Aziridines and Dienes: Atom-Economical Synthesis of Enantiomerically Enriched Functionalized Azepines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201609608
– volume: 146
  start-page: 5232
  year: 2024
  ident: WOS:001166548000001
  article-title: Double Strain-Release [2π+2σ]-Photocycloaddition
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.3c11563
– volume: 61
  start-page: ARTN e202204719
  year: 2022
  ident: WOS:000790027100001
  article-title: Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202204719
– volume: 50
  start-page: 3965
  year: 1985
  ident: 001248087300001.63
  publication-title: J. Org. Chem
– volume: 16
  start-page: 2591
  year: 2018
  ident: WOS:000433442900001
  article-title: Catalytic asymmetric construction of spiropyrrolidines via 1,3-dipolar cycloaddition of azomethine ylides
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/c7ob02686b
– volume: 53
  start-page: 425
  year: 2020
  ident: WOS:000514759600013
  article-title: Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.9b00549
– year: 2023
  ident: WOS:000932632200001
  article-title: Selective [2σ+2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c13740
– volume: 134
  start-page: 159
  year: 2017
  ident: WOS:000401677500016
  article-title: Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1016/j.ejmech.2017.04.003
– volume: 62
  year: 2023
  ident: WOS:001028700800001
  article-title: Asymmetric (4+n) Cycloadditions of Indolyldimethanols for the Synthesis of Enantioenriched Indole-Fused Rings
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202305450
– volume: 8
  start-page: 4315
  year: 2021
  ident: WOS:000652257400001
  article-title: Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d1qo00220a
– volume: 144
  start-page: 21848
  year: 2022
  ident: WOS:000883756300001
  article-title: Practical and Facile Access to Bicyclo[3.1.1]heptanes: Potent Bioisosteres of meta-Substituted Benzenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.2c09733
– year: 2024
  ident: 001248087300001.68
  publication-title: Angew. Chem. Int. Ed
– volume: 47
  start-page: 8881
  year: 2018
  ident: WOS:000451657800013
  article-title: Application of (4+3) cycloaddition strategies in the synthesis of natural products
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c8cs00532j
– volume: 88
  start-page: 496
  year: 1966
  ident: WOS:A19667263600021
  article-title: BICYCLO[1.1.0]BUTANE CHEMISTRY .2. CYCLOADDITION REACTIONS OF 3-METHYLBICYCLO[1.1.0]BUTANECARBONITRILES . FORMATION OF BICYCLO[2.1.1]HEXANES
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 99
  start-page: 8
  year: 1977
  ident: WOS:A1977CR84000002
  article-title: CONJUGATIVE INTERACTION BETWEEN 2 AND CYCLOBUTANE ORBITALS - SYNTHESIS AND ELECTRONIC-STRUCTURE OF BICYCLO[4.1.1]OCTA-2,4-DIENE
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 7
  start-page: 1315
  year: 2005
  ident: WOS:000227921200030
  article-title: Photochemistry of 1-isopropylcycloalkyl aryl ketones: Ring size effects, medium effects, and asymmetric induction
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol050104k
– volume: 13
  start-page: 11721
  year: 2022
  ident: WOS:000848123300001
  article-title: Bicyclobutanes: from curiosities to versatile reagents and covalent warheads
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/d2sc03948f
– volume: 4
  start-page: 743
  year: 2014
  ident: WOS:000332756700005
  article-title: Organocatalytic Asymmetric Assembly Reactions: Synthesis of Spirooxindoles via Organocascade Strategies
  publication-title: ACS CATALYSIS
  doi: 10.1021/cs401172r
– volume: 62
  start-page: e202308606
  year: 2023
  ident: MEDLINE:37583090
  article-title: Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis.
  publication-title: Angewandte Chemie (International ed. in English)
  doi: 10.1002/anie.202308606
– volume: 47
  start-page: 3831
  year: 2018
  ident: WOS:000434489200006
  article-title: Recent advances in spirocyclization of indole derivatives
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c7cs00508c
– year: 2024
  ident: 001248087300001.40
  publication-title: ChemRxiv
– volume: 145
  start-page: 12324
  year: 2023
  ident: WOS:001005914100001
  article-title: ortho-Selective Dearomative [2π+2σ] Photocycloadditions of Bicyclic Aza-Arenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.3c02961
– volume: 381
  start-page: 75
  year: 2023
  ident: WOS:001030999200030
  article-title: Dearomative ring expansion of thiophenes by bicyclobutane insertion
  publication-title: SCIENCE
  doi: 10.1126/science.adh9737
– volume: 55
  start-page: 7586
  year: 2016
  ident: WOS:000383252900003
  article-title: Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201508818
– volume: 9
  start-page: 2149
  year: 2022
  ident: WOS:000766792000001
  article-title: Diastereoselective synthesis of 1,1,3,3-tetrasubstituted cyclobutanes enabled by cycloaddition of bicyclo[1.1.0]butanes
  publication-title: ORGANIC CHEMISTRY FRONTIERS
  doi: 10.1039/d2qo00167e
– year: 2022
  ident: WOS:000890722600001
  article-title: Bicyclo[2.1.1]hexanes by Visible Light-Driven Intramolecular Crossed [2+2] Photocycloadditions
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.2c03606
– volume: 9
  start-page: 1820
  year: 2019
  ident: WOS:000460600600024
  article-title: Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.8b03694
– volume: 59
  start-page: 13847
  year: 2023
  ident: WOS:001096963000001
  article-title: Enolate addition to bicyclobutanes enables expedient access to 2-oxo-bicyclohexane scaffolds
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/d3cc04234k
– volume: 363
  start-page: 4497
  year: 2021
  ident: WOS:000693118200001
  article-title: Construction of Indole-Fused Heterocycles Starting from 2-Thioxoindolines, Iminoindolines, and Their Derivatives
  publication-title: ADVANCED SYNTHESIS & CATALYSIS
  doi: 10.1002/adsc.202100714
– volume: 13
  start-page: 5096
  year: 2023
  ident: WOS:000971587200001
  article-title: Pyridine-Boryl Radical-Catalyzed [2?+2?] Cycloaddition of with Alkenes
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.3c00305
– volume: 146
  start-page: 2789
  year: 2024
  ident: WOS:001155529700001
  article-title: Photoredox-Enabled Dearomative [2π+2σ] Cycloaddition of Phenols
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.3c12894
– volume: 26
  start-page: 1745
  year: 2024
  ident: WOS:001173670200001
  article-title: Ti-Catalyzed Formal [2π+2σ] Cycloadditions of Bicyclo[1.1.0]butanes with 2-Azadienes to Access Aminobicyclo[2.1.1]hexanes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.4c00421
– volume: 92
  start-page: 751
  year: 2020
  ident: WOS:000537416000006
  article-title: Recent advances in the chemistry of bicyclo- and 1-azabicyclo[1.1.0]butanes
  publication-title: PURE AND APPLIED CHEMISTRY
  doi: 10.1515/pac-2019-1007
– volume: 49
  start-page: 7101
  year: 2020
  ident: WOS:000575023000009
  article-title: Chemodivergent reactions
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs00125b
– volume: 52
  start-page: 3237
  year: 2013
  ident: WOS:000316340700033
  article-title: Rhodium- and Platinum-Catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[b]indoles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201209266
– volume: 12
  start-page: 860
  year: 2020
  ident: WOS:000553626700001
  article-title: Stereoselective access to [5.5.0] and [4.4.1] bicyclic compounds through Pd-catalysed divergent higher-order cycloadditions
  publication-title: NATURE CHEMISTRY
  doi: 10.1038/s41557-020-0503-7
– volume: 42
  start-page: 1291
  year: 1986
  ident: WOS:A1986A540600007
  article-title: CYCLOADDITIONS OF METHYLENECYCLOPROPANES AND STRAINED BICYCLO[N.1.0]ALKANES TO RADICOPHILIC OLEFINS
  publication-title: TETRAHEDRON
– volume: 4
  start-page: 515
  year: 2013
  ident: WOS:000315355800005
  article-title: Escape from Flatland 2: complexity and promiscuity
  publication-title: MEDCHEMCOMM
  doi: 10.1039/c2md20347b
– volume: 24
  start-page: 1268
  year: 2022
  ident: WOS:000743540500001
  article-title: Investigating Bicyclobutane-Triazolinedione Cycloadditions as a Tool for Peptide Modification
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.1c04071
– volume: 52
  start-page: 6752
  year: 2009
  ident: WOS:000271427900027
  article-title: Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm901241e
– volume: 43
  start-page: 46
  year: 2004
  ident: WOS:000187736300005
  article-title: A planning strategy for diversity-oriented synthesis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200300626
SSID ssj0028806
Score 2.5761333
Snippet The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the...
Source Web of Science
SourceID proquest
pubmed
webofscience
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202405222
SubjectTerms Alkanes
Alkenes
Benzene
Bicyclic compounds
Catalysts
Chemical synthesis
Chemistry
Chemistry, Multidisciplinary
Cycloaddition
Heterocycles
Hexanes
Lewis acid
Octanes
Physical Sciences
Science & Technology
Spirooxindoles
Stereoselectivity
Strained molecules
Substrates
Title Switching between the [2π+2σ] and Hetero‐[4π+2σ] Cycloaddition Reactivity of Bicyclobutanes with Lewis Acid Catalysts Enables the Synthesis of Spirocycles and Bridged Heterocycles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202405222
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001248087300001
https://www.ncbi.nlm.nih.gov/pubmed/38729920
https://www.proquest.com/docview/3076686021
Volume 63
WOS 001248087300001
WOSCitedRecordID wos001248087300001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYll_bS_x-3adEh0ENxYku2Yh83ZsO2lByyDQRCMdJYBtPgDbWXsDkF-gJ9nT5F3qFP0hn5p9mU0tKyh7VXslfCo5nPYub7GNvSpgzAQOoXIir9qCxIDZD0TXQqNIYfHYJLkD1Qs6Po3XF8fK2Kv-OHGDfcaGU4f00LXJtm5ydpKFVg4_sdRiSEEOSEKWGLUNHhyB8l0Di78iIpfVKhH1gbA7Gzfvl6VPoFat6ISutA1kWi_XtMD3PoElA-bS9bsw0XN-gd_2eS99ndHqbySWdXD9gtWz9kt7NBHe4R-zY_r1qXh8n7VC-OUJKfiKvLN-Lqy0eu64LPKNdm8f3y60k0_Jyt4HRBSUxkEPzQUl0FyVfwRcn3KqBWs0TAahtOW8T8vT2vGj6BquAZ7TStmrbhU1fw1bh_nK9q_GqwE95hflZhQF5Rpp8bwJ4rRxsG0jU8Zkf70w_ZzO9lIHyQERWPGyjL1JrApgKSEp2zjqWWSqpCUiG4jI0AKAqCH6GVYIQGEyoTgFCgEXE9YRv1orbPGI-1UFYZ_CAM1GGg7W4Q2zABRJGFsoHH_MEMcug50kmq4zTv2J1FTg8kHx-Ix16P_c86dpDf9twcrCrvvUSTo39VikTAQo897SxtvI1M8LUnFTikreumN7YTTo2SICG9ATz2WPg33bJ-UkR40HpMONv7w9DzycHb6Xj2_F8uesHu0DHtiYfxJttoPy_tSwRzrXnlFuwPLqpEPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcigXCuUvUKgPlTigtImdmOS4jbbalmUP3VZCqlBkO44UUWWrJqtqOVXqC_R1eIq-A0_CjPMDW4RAoBw2iZ2srYxnPo9m5iNkW6rc00rHbsaC3A3yDNkAkd9ExkyC-ZG-tgGyEzE6CQ4_hl00IebCNPUheocbrgyrr3GBo0N690fVUEzBhg0emCTAEKCF7yGtt91VHfUVpBiIZ5NgxLmLPPRd3UaP7S4_v2yXfgGbd-zSMpS1tmh_nahuFk0Iyuedea129Jc7BR7_a5oPyYMWqdJBI1qPyIopN8ha0hHEPSZfp5dFbUMxaRvtRQFN0lN2e_WW3V5_orLM6AjDbWbfrm5Og-52stBnM4xjQpmgRwZTK5DBgs5yuldobFVzwKymouglpmNzWVR0oIuMJuhsWlR1RYc256uy_zhdlPBTQSd4w_S8AJu8wGA_O4A9m5HWDaRpeEJO9ofHychtmSBczQPMH1c6z2OjPBMzHeWgn2XIJRdcZBxzwXmomNZZhgjEN1wrJrXyhfI0E1oC6HpKVstZaZ4TGkomjFBwABKUvifNOy80fqQBSGbCeA5xOzlIdVsmHdk6ztKmwDNL8YOk_QdxyJu-_3lTIOS3PTc7sUpbRVGloGKFQB4w3yHPGlHrX8Mj2PnEDIa0_bPs9e0IVYPIi5ByAM4d4v9Nt6SdFNY8qB3CrPD9YejpYHIw7K9e_MtDW2RtdPxhnI4PJu9fkvt4H13kfrhJVuuLuXkF2K5Wr-3q_Q5JVkhX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFB6kgnrjvzW16lwUvJC0yUwyTS636S5bLYt0LRSKhJnJBIIlu5gsZb0q-AK-jk_Rd_BJPGfyY7ciirIXu8lMsjPkzDlfhnO-j5AtqXJPKx27GQtyN8gzVANEfRMZMwnhR_raJshOxPg4eHMSnlyp4m_4IfoNN1wZ1l_jAp9n-c5P0lCswIb3O4hIACHACd8MhBehXe8f9QRSDKyzqS_i3EUZ-o620WM7q9evhqVfsOa1sLSKZG0oGt0jsptEk4HycXtRq239-Rq_4__M8j652-JUOmgM6wG5YcqH5HbSycM9It-m50VtEzFpm-tFAUvSU3Z58ZpdfvlAZZnRMSbbzL5ffD0NutPJUp_NMIsJLYIeGSysQP0KOsvpXqGxVS0AsZqK4h4xPTTnRUUHushogltNy6qu6NBWfFX2H6fLEr4q6AR3mM4LiMhLTPWzA9iz9WjdQJqGx-R4NHyfjN1WB8LVPMDqcaXzPDbKMzHTUQ7eWYZccsFFxrESnIeKaZ1liD98w7ViUitfKE8zoSVAridkrZyV5imhoWTCCAUfwIHS96TZ9ULjRxpgZCaM5xC3M4NUtyTpqNVxljb0zizFB5L2D8Qhr_r-84Ye5Lc9NzurSls3UaXgYIVAFTDfIeuNpfW34RG898QMhrR11fT6dgSqQeRFKDgAvx3i_023pJ0UMh7UDmHW9v4w9HQwORj2Rxv_ctFLcuvd_ig9PJi8fUbu4GncH_fDTbJWf1qY5wDsavXCrt0fWj5HDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+between+the+and+Hetero%E2%80%90+Cycloaddition+Reactivity+of+Bicyclobutanes+with+Lewis+Acid+Catalysts+Enables+the+Synthesis+of+Spirocycles+and+Bridged+Heterocycles&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ji%E2%80%90Jie+Wang&rft.au=Tang%2C+Lei&rft.au=Xiao%2C+Yuanjiu&rft.au=Wen%E2%80%90Biao+Wu&rft.date=2024-07-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=29&rft_id=info:doi/10.1002%2Fanie.202405222&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon