Switching between the [2π+2σ] and Hetero‐[4π+2σ] Cycloaddition Reactivity of Bicyclobutanes with Lewis Acid Catalysts Enables the Synthesis of Spirocycles and Bridged Heterocycles
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Le...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 29; pp. e202405222 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
15.07.2024
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism.
Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes have been achieved through a Lewis acid‐catalyzed cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives. Moreover, rapid access of S‐BCOs, which were not readily accessible by known methods, has been realized through Zn(OTf)2‐catalyzed uncommon [4π+2σ] cycloadditions of BCBs. |
---|---|
AbstractList | The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism.
Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes have been achieved through a Lewis acid‐catalyzed cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives. Moreover, rapid access of S‐BCOs, which were not readily accessible by known methods, has been realized through Zn(OTf)2‐catalyzed uncommon [4π+2σ] cycloadditions of BCBs. The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3-catalyzed [2 pi+2 sigma] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2 pi+2 sigma] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes have been achieved through a Lewis acid-catalyzed cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives. Moreover, rapid access of S-BCOs, which were not readily accessible by known methods, has been realized through Zn(OTf)2-catalyzed uncommon [4 pi+2 sigma] cycloadditions of BCBs. image The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf) , was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf) -catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism. The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism.Dedicated to Professor Yong Tang on the occasion of his 60th birthday The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S‐BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid‐catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3‐benzylideneindoline‐2‐thione derivatives have been established. The first hetero‐(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf) 2 , was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf) 3 ‐catalyzed [2π+2σ] reaction with 1,1,2‐trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E ‐1,1,2‐trisubstituted alkenes. Additionally, the hetero‐(4+3) cycloaddition may involve a concerted nucleophilic ring‐opening mechanism. |
Author | Xiao, Yuanjiu Feng, Jian‐Jun Wu, Wen‐Biao Wang, Guoqiang Tang, Lei Wang, Ji‐Jie |
Author_xml | – sequence: 1 givenname: Ji‐Jie orcidid: 0009-0007-8091-9728 surname: Wang fullname: Wang, Ji‐Jie organization: Hunan University – sequence: 2 givenname: Lei orcidid: 0000-0003-1273-9040 surname: Tang fullname: Tang, Lei organization: Hunan University – sequence: 3 givenname: Yuanjiu orcidid: 0000-0001-5155-9099 surname: Xiao fullname: Xiao, Yuanjiu organization: Hunan University – sequence: 4 givenname: Wen‐Biao orcidid: 0009-0000-6598-2058 surname: Wu fullname: Wu, Wen‐Biao organization: Hunan University – sequence: 5 givenname: Guoqiang orcidid: 0000-0001-9666-1919 surname: Wang fullname: Wang, Guoqiang email: wangguoqiang710@nju.edu.cn organization: Nanjing University – sequence: 6 givenname: Jian‐Jun orcidid: 0000-0002-6094-3268 surname: Feng fullname: Feng, Jian‐Jun email: jianjunfeng@hnu.edu.cn organization: Hunan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38729920$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstqGzEUhkVJaS7ttssi6DKMq8vcvHQGtwmYFup2Fcogac7EChPJlTQxswv0Bfo6eYq8Q56kGmynUCitNhI63___h8M5RgfGGkDoNSUTSgh7J4yGCSMsJRlj7Bk6ohmjCS8KfhDfKedJUWb0EB17fx35siT5C3TIy4JNp4wcofvlRge10uYKSwgbAIPDCvAle7g7ZQ8_vmFhGnwOAZx9vPt5me6_q0F1VjSNDtoa_BmECvpWhwHbFp9pNVZlH4QBj2PACi9goz2eKd3gSgTRDT54PDdCdpEYE5eDiZePUHRYrrWzo0ksjg2cOd1cwb6RbeElet6KzsOr3X2Cvr6ff6nOk8WnDxfVbJEonhKWMKnadgqSwJSpsqWUiowLnvO84YRmOc8kU6pp4nA4Ba4kE0rSXBLFciXylJ-gt1vftbPfe_Chvra9MzGy5qTI8zInjEbqzY7q5Q009drpG-GGej_pCJRbYAPStl5pMAqeMEIoS0tSFpzEQysdxDjYyvYmROnp_0sjnW5p5az3Dtpa7dyCE7qrKanHzanHzamfNifKJn_I9gF_FUx3XekOhn_Q9ezjxfy39hd2u9lP |
CitedBy_id | crossref_primary_10_1002_ange_202420831 crossref_primary_10_1002_anie_202416741 crossref_primary_10_1021_acscatal_4c04837 crossref_primary_10_1002_ange_202418239 crossref_primary_10_1039_D4SC02998D crossref_primary_10_1021_acscatal_5c00303 crossref_primary_10_1055_a_2456_9789 crossref_primary_10_1039_D4QO01741B crossref_primary_10_1021_jacs_4c10123 crossref_primary_10_1055_a_2406_3243 crossref_primary_10_1021_acs_orglett_4c03862 crossref_primary_10_1021_jacsau_4c00839 crossref_primary_10_1002_ange_202406548 crossref_primary_10_1055_a_2360_8218 crossref_primary_10_1038_s41467_024_50434_6 crossref_primary_10_1039_D4SC06334A crossref_primary_10_1002_ange_202416741 crossref_primary_10_1002_anie_202418239 crossref_primary_10_1039_D4CC06133K crossref_primary_10_1039_D4QO02226B crossref_primary_10_1002_anie_202420831 crossref_primary_10_1002_anie_202408610 crossref_primary_10_1039_D4SC08280J crossref_primary_10_1002_anie_202406548 crossref_primary_10_1002_chem_202402965 crossref_primary_10_1002_ange_202408610 crossref_primary_10_1039_D4SC03893B crossref_primary_10_1039_D4SC02194K crossref_primary_10_1021_acs_orglett_4c01512 crossref_primary_10_1021_jacs_4c10153 crossref_primary_10_1021_acscatal_4c05622 crossref_primary_10_1039_D4CC04730C crossref_primary_10_1039_D4SC07243J crossref_primary_10_1038_s41557_024_01710_x crossref_primary_10_1055_a_2402_6920 |
Cites_doi | 10.1002/ajoc.202400045 10.1021/jacs.2c11501 10.1007/s11030-015-9629-8 10.1021/jm901241e 10.1016/S0040-4020(01)87348-8 10.1021/acs.accounts.9b00549 10.1002/anie.201800167 10.1021/acscatal.8b03694 10.1021/jacs.3c12894 10.1002/anie.202004183 10.26434/chemrxiv-2024-t9dqq 10.1021/jacs.3c11563 10.1039/D2QO00167E 10.1021/cr300135y 10.1039/D0CS00125B 10.1039/D2SC03948F 10.1007/s11426-022-1471-2 10.1002/anie.201209266 10.1002/anie.202214507 10.1007/s11426-023-1533-y 10.1039/c2md20347b 10.1021/jacs.5b04429 10.1039/D3CC04234K 10.1126/science.287.5460.1964 10.1016/j.ejmech.2017.04.003 10.1126/science.adh9737 10.1021/jacs.3c02961 10.1021/jacs.1c10541 10.1039/p19930001835 10.1021/acs.accounts.2c00771 10.1021/ja00443a002 10.1021/jacs.2c02976 10.1021/acscatal.3c00305 10.1038/s41557-020-0503-7 10.1021/jo00336a038 10.1002/anie.201508818 10.1021/jacs.2c13740 10.1021/jacs.2c09248 10.1038/s41586-022-04636-x 10.1039/C7CS00508C 10.1016/j.trechm.2023.10.002 10.1007/BF03246223 10.1038/s41586-022-05290-z 10.1002/anie.202305450 10.1002/anie.200600723 10.1002/anie.202310066 10.1021/jacs.2c09733 10.1039/D0QO01085E 10.1002/anie.201609608 10.1002/anie.202204719 10.1016/j.ejmech.2014.06.056 10.1039/D0CC01771J 10.1021/acs.orglett.2c03606 10.1021/ol050104k 10.1039/c0cc03620j 10.1021/ja00955a021 10.1039/C8CC02364F 10.1021/acs.orglett.3c03222 10.1039/C7OB02686B 10.1021/ar500437h 10.1021/jacs.3c09789 10.1016/j.ejmech.2019.111691 10.1021/cs401172r 10.1002/anie.202308606 10.1039/C8OB02812E 10.1002/adsc.202100714 10.1039/D1QO00220A 10.1021/acs.orglett.4c00421 10.1021/acs.orglett.1c04071 10.1038/s41557-023-01135-y 10.1002/chem.201905539 10.1021/jo00221a003 10.1038/s42004-022-00811-3 10.1515/pac-2019-1007 10.1039/C8CS00532J 10.26434/chemrxiv-2024-r9c2g 10.1002/anie.200300626 10.1039/D3SC03083K 10.1002/ejoc.202300935 10.1002/anie.202304771 10.1002/anie.202317304 10.1039/d0cc01771j 10.1021/jacs.3c08404 10.1039/d3sc03083k 10.1039/c8ob02812e 10.1039/c8cc02364f 10.1039/d0qo01085e 10.1039/c7ob02686b 10.1039/d1qo00220a 10.1039/c8cs00532j 10.1039/d2sc03948f 10.1039/c7cs00508c 10.1039/d2qo00167e 10.1039/d3cc04234k 10.1039/d0cs00125b |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN BLEPL DTL EGQ NPM 7TM K9. |
DOI | 10.1002/anie.202405222 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | Web of Science PubMed ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38729920 001248087300001 10_1002_anie_202405222 ANIE202405222 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22273035 – fundername: Fundamental Research Funds for the Central Universities funderid: 020514380295 – fundername: Nanjing University – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 22273035 – fundername: Fundamental Research Funds for the Central Universities – fundername: Fundamental Research Funds for the Central Universities grantid: 020514380295 – fundername: National Natural Science Foundation of China grantid: 22273035 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE NPM 7TM K9. |
ID | FETCH-LOGICAL-c3402-2bcff9eb0e92c8f111a53a3636d3015635b2ccdd00231e3cb2acb16b0c26ca643 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 32 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=001248087300001 |
ISSN | 1433-7851 |
IngestDate | Fri Jul 25 12:01:36 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Wed Jul 09 18:32:05 EDT 2025 Fri Aug 29 15:56:39 EDT 2025 Tue Jul 01 01:47:38 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Wed Jan 22 17:18:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | Spirooxindoles Heterocycles Cycloaddition Strained molecules STRAIN-RELEASE ANNULATION COMPLEXITY Bicyclic compounds CHEMISTRY DIVERSITY |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c3402-2bcff9eb0e92c8f111a53a3636d3015635b2ccdd00231e3cb2acb16b0c26ca643 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6094-3268 0009-0000-6598-2058 0000-0001-5155-9099 0009-0007-8091-9728 0000-0003-1273-9040 0000-0001-9666-1919 |
PMID | 38729920 |
PQID | 3076686021 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | webofscience_primary_001248087300001 pubmed_primary_38729920 webofscience_primary_001248087300001CitationCount proquest_journals_3076686021 wiley_primary_10_1002_anie_202405222_ANIE202405222 crossref_citationtrail_10_1002_anie_202405222 crossref_primary_10_1002_anie_202405222 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 15, 2024 |
PublicationDateYYYYMMDD | 2024-07-15 |
PublicationDate_xml | – month: 07 year: 2024 text: July 15, 2024 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2013; 4 2023; 5 2023; 6 2023; 381 2023; 145 2019; 17 2022; 24 1981; 46 2020; 59 2020; 12 2020; 56 2024; 146 2024 2021; 363 2022; 611 2018; 47 2015; 48 2023; 62 2009; 52 2014; 4 2023; 25 2023; 66 2015; 137 2020; 53 1986; 42 2020; 92 2013; 52 2020; 49 2000; 287 2022; 605 1985; 50 2024; 26 2004; 43 2021; 8 2019; 9 2023; 13 2019; 4 2023; 14 2023; 56 2023; 15 2023; 59 2015; 97 1993 2021; 143 2017; 134 2019; 183 2011; 8 2016; 55 2022; 144 2012; 112 2010; 46 2006; 45 2023 2022; 61 2022; 9 2017; 56 2016; 20 2022; 13 2005; 7 2020; 26 1977; 99 2018; 54 1966; 88 2018; 16 2018; 57 e_1_2_3_50_2 e_1_2_3_92_2 Liang Y. (e_1_2_3_53_2) 2023 Alonso R. (e_1_2_3_105_1) 2019; 4 Liang Y. (e_1_2_3_85_2) 2024 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_39_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_58_2 e_1_2_3_77_2 e_1_2_3_35_2 e_1_2_3_54_2 e_1_2_3_73_2 e_1_2_3_96_2 e_1_2_3_31_2 e_1_2_3_81_2 Zhang J. (e_1_2_3_84_2) 2024 e_1_2_3_102_2 e_1_2_3_28_2 e_1_2_3_24_1 e_1_2_3_47_2 e_1_2_3_66_2 e_1_2_3_89_2 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_62_2 e_1_2_3_95_1 e_1_2_3_72_2 e_1_2_3_91_2 e_1_2_3_19_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_3_2 e_1_2_3_11_2 e_1_2_3_34_1 e_1_2_3_7_2 e_1_2_3_57_2 e_1_2_3_99_2 e_1_2_3_76_1 e_1_2_3_30_2 e_1_2_3_61_2 e_1_2_3_80_2 e_1_2_3_103_1 e_1_2_3_27_1 e_1_2_3_23_2 e_1_2_3_69_2 e_1_2_3_46_2 e_1_2_3_88_2 e_1_2_3_65_2 e_1_2_3_42_2 e_1_2_3_71_2 e_1_2_3_94_2 e_1_2_3_90_2 e_1_2_3_37_2 e_1_2_3_18_1 e_1_2_3_2_2 e_1_2_3_56_2 e_1_2_3_33_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_79_1 e_1_2_3_52_1 e_1_2_3_98_1 e_1_2_3_10_2 e_1_2_3_83_1 e_1_2_3_60_1 e_1_2_3_104_1 e_1_2_3_26_2 e_1_2_3_49_1 e_1_2_3_100_2 e_1_2_3_22_2 e_1_2_3_45_2 e_1_2_3_68_1 e_1_2_3_64_2 Semeno V. V. (e_1_2_3_75_1) 2023 e_1_2_3_87_1 e_1_2_3_93_2 e_1_2_3_70_2 e_1_2_3_1_1 e_1_2_3_5_2 e_1_2_3_17_2 e_1_2_3_59_2 e_1_2_3_9_1 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_78_2 e_1_2_3_51_2 e_1_2_3_97_2 e_1_2_3_32_2 e_1_2_3_55_1 e_1_2_3_74_2 e_1_2_3_82_2 e_1_2_3_101_2 Robichon M. (e_1_2_3_41_2) 2023; 145 e_1_2_3_29_2 e_1_2_3_44_2 e_1_2_3_25_2 Radhoff N. (e_1_2_3_48_1) 2023 e_1_2_3_67_2 e_1_2_3_40_2 e_1_2_3_21_1 e_1_2_3_63_1 e_1_2_3_86_1 Nguyen, TVT (WOS:001108433000001) 2023; 145 Burke, MD (WOS:000187736300005) 2004; 43 Tang, L (WOS:001088127300001) 2023; 62 Ni, Dongshun (MEDLINE:37583090) 2023; 62 Wan, YC (WOS:000498308700004) 2019; 183 Wang, YC (WOS:000652257400001) 2021; 8 CAIRNCROSS, A (WOS:A19667263600021) 1966; 88 Li, JL (WOS:000693118200001) 2021; 363 Sujansky, SJ (WOS:001182464800001) 2024; 13 Radhoff, N (WOS:001008962500001) 2023; 62 Zhu, CZ (WOS:000394997700031) 2017; 56 Zheng, YX (WOS:000903236700001) 2022; 144 Yin, ZS (WOS:000451657800013) 2018; 47 Lovering, F (WOS:000315355800005) 2013; 4 Lovering, F (WOS:000271427900027) 2009; 52 Xu, M (WOS:000890467600001) 2022; 61 Pan, Q (WOS:000924423200001) 2023; 56 Alonso, R. (001248087300001.85) 2019; 4 Garcia-Castro, M (WOS:000383252900003) 2016; 55 Wang, M (WOS:000766792000001) 2022; 9 Liang, Y (WOS:001162736700001) 2024; 63 Pavlovska, TL (WOS:000368639600015) 2016; 20 Liu, Y (WOS:000971587200001) 2023; 13 Ren, HS (WOS:001173670200001) 2024; 26 Rigotti, T (WOS:000890722600001) 2022 Liang, Y. (001248087300001.44) 2023 Schreiber, SL (WOS:000085902800047) 2000; 287 Turkowska, J (WOS:000537959100028) 2020; 56 Moghaddam, FM (WOS:000288131900026) 2011; 8 Dutta, S (WOS:001166548000001) 2024; 146 Yang, LC (WOS:000553626700001) 2020; 12 Su, J.-Y. (001248087300001.40) 2024 Zhao, N (WOS:000427235600017) 2018; 57 Woelk, KJ (WOS:001096963000001) 2023; 59 Dhake, K (WOS:000790027100001) 2022; 61 Chadha, N (WOS:000401677500016) 2017; 134 Yan, HP (WOS:001141270800001) 2023; 25 Walczak, MAA (WOS:000353429400026) 2015; 48 Xia, WJ (WOS:000227921200030) 2005; 7 Harmata, M (WOS:000284482100001) 2010; 46 Golfmann, M (WOS:000913525100001) 2023; 6 Wang, HM (WOS:001030999200030) 2023; 381 Mei, GJ (WOS:000436029000011) 2018; 54 Kleinmans, R (WOS:000793701100001) 2022; 605 Beletskaya, IP (WOS:000575023000009) 2020; 49 Ke, Y (WOS:000983882900003) 2023; 66 Shu, DX (WOS:000316340700033) 2013; 52 Fawcett, A (WOS:000537416000006) 2020; 92 de Robichon, M (WOS:001105544400001) 2023; 145 Cheng, DJ (WOS:000332756700005) 2014; 4 Iida, T (WOS:000883756300001) 2022; 144 Reinhold, M (WOS:001058076900001) 2023; 14 Wang, LT (WOS:001134486500001) 2023; 5 Wipf, P (WOS:000238718500022) 2006; 45 GLEITER, R (WOS:A1977CR84000002) 1977; 99 Schwartz, BD (WOS:000743540500001) 2022; 24 Kelly, CB (WOS:000848123300001) 2022; 13 Zhang, YC (WOS:000514759600013) 2020; 53 Zhang, JY (WOS:001028700800001) 2023; 62 Liang, YJ (WOS:000887076900001) 2022; 144 Xu, PW (WOS:000460600600024) 2019; 9 THOMPSON, AM (WOS:A1993LU72300005) 1993 Zhang, J. (001248087300001.68) 2024 Dutta, S (WOS:001155529700001) 2024; 146 Mykhailiuk, PK (WOS:000461223700026) 2019; 17 Fang, X (WOS:000433442900001) 2018; 16 Wang, J.-J. (001248087300001.39) 2024 Boddy, AJ (WOS:000627716000018) 2021; 8 Harmata, AS (WOS:000731578000001) 2021; 143 Xu, H (WOS:000357436300012) 2015; 137 Guo, RY (WOS:000799180800007) 2022; 144 Kleinmans, R (WOS:001005914100001) 2023; 145 Yu, B (WOS:000356734600049) 2015; 97 Yu, T (WOS:000932632200001) 2023 Bariwal, J (WOS:000434489200006) 2018; 47 Singh, GS (WOS:000311239600016) 2012; 112 Smyrnov, O (WOS:001110664800001) 2024; 27 Agasti, S (WOS:000933339300001) 2023; 15 DEMEIJERE, A (WOS:A1986A540600007) 1986; 42 Denisenko, A (WOS:000560930500001) 2020; 59 Frank, N (WOS:000869346300001) 2022; 611 Schwartz, BD (WOS:000514689800001) 2020; 26 Romn, L. U. (001248087300001.63) 1985; 50 Tan, W (WOS:000934181500001) 2023; 66 WARNER, PM (WOS:A1981MP25400038) 1981; 46 |
References_xml | – volume: 47 start-page: 3831 year: 2018 end-page: 3848 publication-title: Chem. Soc. Rev. – volume: 145 start-page: 25411 year: 2023 end-page: 25421 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 3237 year: 2013 end-page: 3240 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 515 year: 2013 publication-title: MedChemComm – volume: 24 start-page: 1268 year: 2022 end-page: 1273 publication-title: Org. Lett. – volume: 112 start-page: 6104 year: 2012 end-page: 6155 publication-title: Chem. Rev. – volume: 7 start-page: 1315 year: 2005 end-page: 1318 publication-title: Org. Lett. – volume: 4 start-page: 9 year: 2019 end-page: 30 publication-title: Core Evidence – volume: 46 start-page: 4795 year: 1981 end-page: 4797 publication-title: J. Org. Chem. – volume: 8 start-page: 265 year: 2011 end-page: 271 publication-title: J. Iran. Chem. Soc. – volume: 66 start-page: 966 year: 2023 end-page: 992 publication-title: Sci. China Chem. – volume: 54 start-page: 6607 year: 2018 end-page: 6621 publication-title: Chem. Commun. – volume: 56 start-page: 1351 year: 2017 end-page: 1355 publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 5718 year: 2020 end-page: 5734 publication-title: Chem. Commun. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2149 year: 2022 end-page: 2153 publication-title: Org. Chem. Front. – volume: 88 start-page: 496 year: 1966 end-page: 504 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 3386 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 146 start-page: 2789 year: 2024 end-page: 2797 publication-title: J. Am. Chem. Soc. – start-page: 1835 year: 1993 end-page: 1837 publication-title: J. Chem. Soc. Perkin Trans. 1. – volume: 183 year: 2019 publication-title: Eur. J. Med. Chem. – volume: 15 start-page: 535 year: 2023 end-page: 541 publication-title: Nat. Chem. – volume: 45 start-page: 4172 year: 2006 end-page: 4175 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 1291 year: 1986 end-page: 1297 publication-title: Tetrahedron – volume: 12 start-page: 860 year: 2020 end-page: 268 publication-title: Nat. Chem. – volume: 26 start-page: 1745 year: 2024 end-page: 1750 publication-title: Org. Lett. – volume: 99 start-page: 8 year: 1977 end-page: 12 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 5096 year: 2023 end-page: 5103 publication-title: ACS Catal. – volume: 59 start-page: 13847 year: 2023 end-page: 13850 publication-title: Chem. Commun. – volume: 144 start-page: 21848 year: 2022 end-page: 21852 publication-title: J. Am. Chem. Soc. – volume: 605 start-page: 477 year: 2022 end-page: 482 publication-title: Nature – volume: 145 start-page: 24466 year: 2023 end-page: 24470 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 9 year: 2023 publication-title: Commun. Chem. – year: 2024 publication-title: Asian J. Org. Chem. – volume: 66 start-page: 2951 year: 2023 end-page: 2976 publication-title: Sci. China Chem. – volume: 43 start-page: 46 year: 2004 end-page: 58 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 1149 year: 2015 end-page: 1158 publication-title: Acc. Chem. Res. – volume: 55 start-page: 7586 year: 2016 end-page: 7605 publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 299 year: 2016 end-page: 344 publication-title: Mol. Diversity – volume: 5 start-page: 906 year: 2023 end-page: 919 publication-title: Trends Chem. – volume: 8 start-page: 4315 year: 2021 end-page: 4348 publication-title: Org. Chem. Front. – volume: 26 start-page: 2808 year: 2020 end-page: 2812 publication-title: Chem. Eur. J. – volume: 145 start-page: 12324 year: 2023 end-page: 12332 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1820 year: 2019 end-page: 1882 publication-title: ACS Catal. – volume: 287 start-page: 1964 year: 2000 end-page: 1969 publication-title: Science – volume: 17 start-page: 2839 year: 2019 end-page: 2849 publication-title: Org. Biomol. Chem. – volume: 46 start-page: 8886 year: 2010 end-page: 8903 publication-title: Chem. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 145 start-page: 4304 year: 2023 end-page: 4310 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 159 year: 2017 end-page: 184 publication-title: Eur. J. Med. Chem. – volume: 25 start-page: 8116 year: 2023 end-page: 8120 publication-title: Org. Lett. – volume: 16 start-page: 2591 year: 2018 end-page: 2601 publication-title: Org. Biomol. Chem. – volume: 56 start-page: 515 year: 2023 end-page: 535 publication-title: Acc. Chem. Res. – volume: 59 start-page: 20515 year: 2020 end-page: 20521 publication-title: Angew. Chem. Int. Ed. – year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 7101 year: 2020 end-page: 7166 publication-title: Chem. Soc. Rev. – volume: 143 start-page: 21223 year: 2021 end-page: 21228 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1026 year: 2021 end-page: 1084 publication-title: Org. Chem. Front. – volume: 24 start-page: 8821 year: 2022 end-page: 8825 publication-title: Org. Lett. – volume: 92 start-page: 751 year: 2020 end-page: 765 publication-title: Pure Appl. Chem. – volume: 97 start-page: 673 year: 2015 end-page: 698 publication-title: Eur. J. Med. Chem. – year: 2023 publication-title: Chem. Eur. J. – volume: 47 start-page: 8881 year: 2018 end-page: 8924 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 8006 year: 2015 end-page: 8009 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 9885 year: 2023 end-page: 9891 publication-title: Chem. Sci. – volume: 144 start-page: 23685 year: 2022 end-page: 23690 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 7988 year: 2022 end-page: 7994 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 20207 year: 2022 end-page: 20213 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 11721 year: 2022 end-page: 11737 publication-title: Chem. Sci. – volume: 611 start-page: 721 year: 2022 end-page: 726 publication-title: Nature – volume: 4 start-page: 743 year: 2014 end-page: 762 publication-title: ACS Catal. – year: 2024 publication-title: ChemRxiv preprint – volume: 52 start-page: 6752 year: 2009 publication-title: J. Med. Chem. – volume: 50 start-page: 3965 year: 1985 end-page: 3972 publication-title: J. Org. Chem. – year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 425 year: 2020 end-page: 446 publication-title: Acc. Chem. Res. – volume: 146 start-page: 5232 year: 2024 end-page: 5241 publication-title: J. Am. Chem. Soc. – volume: 363 start-page: 4497 year: 2021 end-page: 4515 publication-title: Adv. Synth. Catal. – volume: 381 start-page: 75 year: 2023 end-page: 81 publication-title: Science – ident: e_1_2_3_33_2 doi: 10.1002/ajoc.202400045 – ident: e_1_2_3_72_2 doi: 10.1021/jacs.2c11501 – ident: e_1_2_3_20_2 doi: 10.1007/s11030-015-9629-8 – ident: e_1_2_3_22_2 doi: 10.1021/jm901241e – ident: e_1_2_3_36_2 doi: 10.1016/S0040-4020(01)87348-8 – ident: e_1_2_3_60_1 – ident: e_1_2_3_99_2 doi: 10.1021/acs.accounts.9b00549 – ident: e_1_2_3_78_2 doi: 10.1002/anie.201800167 – year: 2023 ident: e_1_2_3_48_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_3_87_1 – ident: e_1_2_3_12_2 doi: 10.1021/acscatal.8b03694 – ident: e_1_2_3_57_2 doi: 10.1021/jacs.3c12894 – ident: e_1_2_3_64_2 doi: 10.1002/anie.202004183 – ident: e_1_2_3_47_2 doi: 10.26434/chemrxiv-2024-t9dqq – ident: e_1_2_3_26_2 doi: 10.1021/jacs.3c11563 – ident: e_1_2_3_62_2 doi: 10.1039/D2QO00167E – year: 2024 ident: e_1_2_3_85_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_3_17_2 doi: 10.1021/cr300135y – ident: e_1_2_3_5_2 doi: 10.1039/D0CS00125B – ident: e_1_2_3_29_2 doi: 10.1039/D2SC03948F – ident: e_1_2_3_88_2 doi: 10.1007/s11426-022-1471-2 – ident: e_1_2_3_92_2 doi: 10.1002/anie.201209266 – ident: e_1_2_3_27_1 – ident: e_1_2_3_44_2 doi: 10.1002/anie.202214507 – ident: e_1_2_3_3_2 doi: 10.1007/s11426-023-1533-y – ident: e_1_2_3_23_2 doi: 10.1039/c2md20347b – ident: e_1_2_3_93_2 doi: 10.1021/jacs.5b04429 – ident: e_1_2_3_24_1 – ident: e_1_2_3_51_2 doi: 10.1039/D3CC04234K – ident: e_1_2_3_8_2 doi: 10.1126/science.287.5460.1964 – ident: e_1_2_3_102_2 doi: 10.1016/j.ejmech.2017.04.003 – ident: e_1_2_3_86_1 doi: 10.1126/science.adh9737 – year: 2024 ident: e_1_2_3_84_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_3_56_2 doi: 10.1021/jacs.3c02961 – ident: e_1_2_3_68_1 – ident: e_1_2_3_69_2 doi: 10.1021/jacs.1c10541 – year: 2023 ident: e_1_2_3_75_1 publication-title: Chem. Eur. J. – ident: e_1_2_3_96_2 doi: 10.1039/p19930001835 – ident: e_1_2_3_2_2 doi: 10.1021/acs.accounts.2c00771 – ident: e_1_2_3_80_2 doi: 10.1021/ja00443a002 – ident: e_1_2_3_39_2 doi: 10.1021/jacs.2c02976 – ident: e_1_2_3_45_2 doi: 10.1021/acscatal.3c00305 – ident: e_1_2_3_25_2 doi: 10.1038/s41557-020-0503-7 – ident: e_1_2_3_81_2 doi: 10.1021/jo00336a038 – ident: e_1_2_3_6_2 doi: 10.1002/anie.201508818 – ident: e_1_2_3_52_1 – ident: e_1_2_3_9_1 – ident: e_1_2_3_74_2 doi: 10.1021/jacs.2c13740 – ident: e_1_2_3_55_1 – ident: e_1_2_3_54_2 doi: 10.1021/jacs.2c09248 – ident: e_1_2_3_38_2 doi: 10.1038/s41586-022-04636-x – ident: e_1_2_3_14_2 doi: 10.1039/C7CS00508C – ident: e_1_2_3_18_1 – ident: e_1_2_3_4_2 doi: 10.1016/j.trechm.2023.10.002 – ident: e_1_2_3_49_1 – ident: e_1_2_3_97_2 doi: 10.1007/BF03246223 – ident: e_1_2_3_34_1 – ident: e_1_2_3_79_1 – ident: e_1_2_3_70_2 doi: 10.1038/s41586-022-05290-z – ident: e_1_2_3_91_2 doi: 10.1002/anie.202305450 – ident: e_1_2_3_37_2 doi: 10.1002/anie.200600723 – year: 2023 ident: e_1_2_3_53_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_3_59_2 doi: 10.1002/anie.202310066 – ident: e_1_2_3_95_1 – ident: e_1_2_3_71_2 doi: 10.1021/jacs.2c09733 – ident: e_1_2_3_11_2 doi: 10.1039/D0QO01085E – ident: e_1_2_3_94_2 doi: 10.1002/anie.201609608 – ident: e_1_2_3_50_2 doi: 10.1002/anie.202204719 – volume: 145 start-page: 24466 year: 2023 ident: e_1_2_3_41_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_3_83_1 – ident: e_1_2_3_19_2 doi: 10.1016/j.ejmech.2014.06.056 – ident: e_1_2_3_31_2 doi: 10.1039/D0CC01771J – ident: e_1_2_3_65_2 doi: 10.1021/acs.orglett.2c03606 – ident: e_1_2_3_82_2 doi: 10.1021/ol050104k – ident: e_1_2_3_90_2 doi: 10.1039/c0cc03620j – ident: e_1_2_3_35_2 doi: 10.1021/ja00955a021 – ident: e_1_2_3_15_2 doi: 10.1039/C8CC02364F – volume: 4 start-page: 9 year: 2019 ident: e_1_2_3_105_1 publication-title: Core Evidence – ident: e_1_2_3_40_2 doi: 10.1021/acs.orglett.3c03222 – ident: e_1_2_3_21_1 – ident: e_1_2_3_1_1 – ident: e_1_2_3_13_2 doi: 10.1039/C7OB02686B – ident: e_1_2_3_32_2 doi: 10.1021/ar500437h – ident: e_1_2_3_73_2 doi: 10.1021/jacs.3c09789 – ident: e_1_2_3_101_2 doi: 10.1016/j.ejmech.2019.111691 – ident: e_1_2_3_16_2 doi: 10.1021/cs401172r – ident: e_1_2_3_58_2 doi: 10.1002/anie.202308606 – ident: e_1_2_3_67_2 doi: 10.1039/C8OB02812E – ident: e_1_2_3_76_1 – ident: e_1_2_3_98_1 – ident: e_1_2_3_100_2 doi: 10.1002/adsc.202100714 – ident: e_1_2_3_10_2 doi: 10.1039/D1QO00220A – ident: e_1_2_3_43_2 doi: 10.1021/acs.orglett.4c00421 – ident: e_1_2_3_61_2 doi: 10.1021/acs.orglett.1c04071 – ident: e_1_2_3_103_1 – ident: e_1_2_3_42_2 doi: 10.1038/s41557-023-01135-y – ident: e_1_2_3_104_1 doi: 10.1002/chem.201905539 – ident: e_1_2_3_77_2 doi: 10.1021/jo00221a003 – ident: e_1_2_3_28_2 doi: 10.1038/s42004-022-00811-3 – ident: e_1_2_3_63_1 – ident: e_1_2_3_30_2 doi: 10.1515/pac-2019-1007 – ident: e_1_2_3_89_2 doi: 10.1039/C8CS00532J – ident: e_1_2_3_46_2 doi: 10.26434/chemrxiv-2024-r9c2g – ident: e_1_2_3_7_2 doi: 10.1002/anie.200300626 – ident: e_1_2_3_66_2 doi: 10.1039/D3SC03083K – volume: 5 start-page: 906 year: 2023 ident: WOS:001134486500001 article-title: Radical strategies for chemodivergent cyclization reactions publication-title: TRENDS IN CHEMISTRY doi: 10.1016/j.trechm.2023.10.002 – volume: 25 start-page: 8116 year: 2023 ident: WOS:001141270800001 article-title: Hantzsch Esters Enabled [2π+2σ] Cycloadditions of Bicyclo [1.1.0] butanes and Alkenes under Photo Conditions publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.3c03222 – volume: 59 start-page: 20515 year: 2020 ident: WOS:000560930500001 article-title: Saturated Bioisosteres ofortho-Substituted Benzenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202004183 – volume: 26 start-page: 2808 year: 2020 ident: WOS:000514689800001 article-title: Structurally Diverse Acyl Bicyclobutanes: Valuable Strained Electrophiles publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201905539 – volume: 27 year: 2024 ident: WOS:001110664800001 article-title: α-CF3-Substituted Saturated Bicyclic Amines: Advanced Building Blocks for Medicinal Chemistry publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.202300935 – volume: 287 start-page: 1964 year: 2000 ident: WOS:000085902800047 article-title: Target-oriented and diversity-oriented organic synthesis in drug discovery publication-title: SCIENCE – volume: 62 year: 2023 ident: WOS:001008962500001 article-title: Lewis Acid Catalyzed Formal (3+2)-Cycloaddition of Bicyclo[1.1.0]butanes with Ketenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202304771 – volume: 46 start-page: 4795 year: 1981 ident: WOS:A1981MP25400038 article-title: A GENERAL-APPROACH TO THE SYNTHESIS OF BRIDGEHEAD-BRIDGEHEAD DISUBSTITUTED BICYCLO[N.1.1]ALKANES publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 137 start-page: 8006 year: 2015 ident: WOS:000357436300012 article-title: Asymmetric Annulation of Donor-Acceptor Cyclopropanes with Dienes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b04429 – volume: 112 start-page: 6104 year: 2012 ident: WOS:000311239600016 article-title: Isatins As Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300135y – volume: 183 start-page: ARTN 111691 year: 2019 ident: WOS:000498308700004 article-title: Indole: A privileged scaffold for the design of anti-cancer agents publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1016/j.ejmech.2019.111691 – volume: 63 year: 2024 ident: WOS:001162736700001 article-title: Biodegradable Monometallic Aluminum as a Biotuner for Tumor Pyroptosis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202317304 – volume: 144 start-page: 23685 year: 2022 ident: WOS:000903236700001 article-title: Photochemical Intermolecular [3Σ+2Σ]-Cycloaddition for the Construction of Aminobicyclo[3.1.1]heptanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c11501 – volume: 144 start-page: 7988 year: 2022 ident: WOS:000799180800007 article-title: Strain-Release [2π+2σ] Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c02976 – year: 2023 ident: 001248087300001.44 publication-title: Angew. Chem. Int. Ed – volume: 56 start-page: 5718 year: 2020 ident: WOS:000537959100028 article-title: Strain release - an old tool for new transformations publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d0cc01771j – volume: 145 start-page: 24466 year: 2023 ident: WOS:001105544400001 article-title: Enantioselective, Intermolecular [π2+σ2] Photocycloaddition Reactions of 2(1H)-Quinolones and Bicyclo[1.1.0]butanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.3c08404 – volume: 14 start-page: 9885 year: 2023 ident: WOS:001058076900001 article-title: Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space publication-title: CHEMICAL SCIENCE doi: 10.1039/d3sc03083k – volume: 62 year: 2023 ident: WOS:001088127300001 article-title: Silver-Catalyzed Dearomative [2π+2σ] Cycloadditions of Indoles with Bicyclobutanes: Access to Indoline Fused Bicyclo[2.1.1]hexanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202310066 – volume: 611 start-page: 721 year: 2022 ident: WOS:000869346300001 article-title: Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane publication-title: NATURE doi: 10.1038/s41586-022-05290-z – volume: 20 start-page: 299 year: 2016 ident: WOS:000368639600015 article-title: Molecular diversity of spirooxindoles. Synthesis and biological activity publication-title: MOLECULAR DIVERSITY doi: 10.1007/s11030-015-9629-8 – volume: 144 start-page: 20207 year: 2022 ident: WOS:000887076900001 article-title: Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible- Light-Induced Energy Transfer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c09248 – volume: 15 start-page: 535 year: 2023 ident: WOS:000933339300001 article-title: A catalytic alkene insertion approach to bicyclo[2.1.1]hexane bioisosteres publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-023-01135-y – volume: 45 start-page: 4172 year: 2006 ident: WOS:000238718500022 article-title: Pericyclic cascade reactions of (bicyclo[1.1.0]butylmethyl)amines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200600723 – volume: 143 start-page: 21223 year: 2021 ident: WOS:000731578000001 article-title: Photochemical Formal (4+2)-Cycloaddition of Imine-Substituted Bicyclo[1.1.1]pentanes and Alkenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c10541 – volume: 13 year: 2024 ident: WOS:001182464800001 article-title: Reaction Paradigms that Leverage Cycloaddition and Ring Strain to Construction Bicyclic Aryl Bioisosteres from Bicyclo[1.1.0]butanes publication-title: ASIAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ajoc.202400045 – volume: 17 start-page: 2839 year: 2019 ident: WOS:000461223700026 article-title: Saturated bioisosteres of benzene: where to go next? publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c8ob02812e – volume: 46 start-page: 8886 year: 2010 ident: WOS:000284482100001 article-title: The (4+3)-cycloaddition reaction: simple allylic cations as dienophiles publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c0cc03620j – volume: 54 start-page: 6607 year: 2018 ident: WOS:000436029000011 article-title: Catalytic asymmetric synthesis of spirooxindoles: recent developments publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c8cc02364f – volume: 605 start-page: 477 year: 2022 ident: WOS:000793701100001 article-title: Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer publication-title: NATURE doi: 10.1038/s41586-022-04636-x – volume: 145 start-page: 25411 year: 2023 ident: WOS:001108433000001 article-title: Photocatalyzed [2σ+2σ] and [2σ+2π] Cycloadditions for the Synthesis of Bicyclo[3.1.1]heptanes and 5-or 6-Membered Carbocycles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.3c09789 – volume: 8 start-page: 1026 year: 2021 ident: WOS:000627716000018 article-title: Stereoselective synthesis and applications of spirocyclic oxindoles publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d0qo01085e – volume: 66 start-page: 966 year: 2023 ident: WOS:000934181500001 article-title: Progress in organocatalytic asymmetric (4+3) cycloadditions for the enantioselective construction of seven-membered rings publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-022-1471-2 – volume: 57 start-page: 3386 year: 2018 ident: WOS:000427235600017 article-title: Total Synthesis of Astellatol publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201800167 – year: 2024 ident: 001248087300001.39 publication-title: ChemRxiv – volume: 61 year: 2022 ident: WOS:000890467600001 article-title: Diboron(4)-Catalyzed Remote [3+2] Cycloaddition of Cyclopropanes via Dearomative/Rearomative Radical Transmission through Pyridine publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202214507 – start-page: 1835 year: 1993 ident: WOS:A1993LU72300005 article-title: FACILE DIMERIZATION OF 3-BENZYLIDENEINDOLINE-2-THIONES publication-title: JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1 – volume: 56 start-page: 515 year: 2023 ident: WOS:000924423200001 article-title: Nickel-Catalyzed Ligand-Controlled Selective Reductive Cyclization/Cross-Couplings publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.2c00771 – volume: 66 start-page: 2951 year: 2023 ident: WOS:000983882900003 article-title: Ni-catalyzed ligand-controlled divergent and selective synthesis publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-023-1533-y – volume: 97 start-page: 673 year: 2015 ident: WOS:000356734600049 article-title: Spirooxindoles: Promising scaffolds for anticancer agents publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1016/j.ejmech.2014.06.056 – volume: 8 start-page: 265 year: 2011 ident: WOS:000288131900026 article-title: An Efficient Synthesis of Fused Polycyclic Indole Derivatives via Aldol-Hetero Diels-Alder Reaction of α,β-Unsaturated Thio-oxindoles with Various Dienophiles publication-title: JOURNAL OF THE IRANIAN CHEMICAL SOCIETY – volume: 48 start-page: 1149 year: 2015 ident: WOS:000353429400026 article-title: Ring-Strain-Enabled Reaction Discovery: New Heterocycles from Bicyclo[1.1.0]butanes publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar500437h – volume: 6 start-page: ARTN 9 year: 2023 ident: WOS:000913525100001 article-title: Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis publication-title: COMMUNICATIONS CHEMISTRY doi: 10.1038/s42004-022-00811-3 – volume: 4 start-page: 9 year: 2019 ident: 001248087300001.85 publication-title: Core Evidence – volume: 56 start-page: 1351 year: 2017 ident: WOS:000394997700031 article-title: Rhodium( I)-Catalyzed Intermolecular Aza-[4+3] Cycloaddition of Vinyl Aziridines and Dienes: Atom-Economical Synthesis of Enantiomerically Enriched Functionalized Azepines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201609608 – volume: 146 start-page: 5232 year: 2024 ident: WOS:001166548000001 article-title: Double Strain-Release [2π+2σ]-Photocycloaddition publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.3c11563 – volume: 61 start-page: ARTN e202204719 year: 2022 ident: WOS:000790027100001 article-title: Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202204719 – volume: 50 start-page: 3965 year: 1985 ident: 001248087300001.63 publication-title: J. Org. Chem – volume: 16 start-page: 2591 year: 2018 ident: WOS:000433442900001 article-title: Catalytic asymmetric construction of spiropyrrolidines via 1,3-dipolar cycloaddition of azomethine ylides publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c7ob02686b – volume: 53 start-page: 425 year: 2020 ident: WOS:000514759600013 article-title: Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00549 – year: 2023 ident: WOS:000932632200001 article-title: Selective [2σ+2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c13740 – volume: 134 start-page: 159 year: 2017 ident: WOS:000401677500016 article-title: Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1016/j.ejmech.2017.04.003 – volume: 62 year: 2023 ident: WOS:001028700800001 article-title: Asymmetric (4+n) Cycloadditions of Indolyldimethanols for the Synthesis of Enantioenriched Indole-Fused Rings publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202305450 – volume: 8 start-page: 4315 year: 2021 ident: WOS:000652257400001 article-title: Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d1qo00220a – volume: 144 start-page: 21848 year: 2022 ident: WOS:000883756300001 article-title: Practical and Facile Access to Bicyclo[3.1.1]heptanes: Potent Bioisosteres of meta-Substituted Benzenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.2c09733 – year: 2024 ident: 001248087300001.68 publication-title: Angew. Chem. Int. Ed – volume: 47 start-page: 8881 year: 2018 ident: WOS:000451657800013 article-title: Application of (4+3) cycloaddition strategies in the synthesis of natural products publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00532j – volume: 88 start-page: 496 year: 1966 ident: WOS:A19667263600021 article-title: BICYCLO[1.1.0]BUTANE CHEMISTRY .2. CYCLOADDITION REACTIONS OF 3-METHYLBICYCLO[1.1.0]BUTANECARBONITRILES . FORMATION OF BICYCLO[2.1.1]HEXANES publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 99 start-page: 8 year: 1977 ident: WOS:A1977CR84000002 article-title: CONJUGATIVE INTERACTION BETWEEN 2 AND CYCLOBUTANE ORBITALS - SYNTHESIS AND ELECTRONIC-STRUCTURE OF BICYCLO[4.1.1]OCTA-2,4-DIENE publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 7 start-page: 1315 year: 2005 ident: WOS:000227921200030 article-title: Photochemistry of 1-isopropylcycloalkyl aryl ketones: Ring size effects, medium effects, and asymmetric induction publication-title: ORGANIC LETTERS doi: 10.1021/ol050104k – volume: 13 start-page: 11721 year: 2022 ident: WOS:000848123300001 article-title: Bicyclobutanes: from curiosities to versatile reagents and covalent warheads publication-title: CHEMICAL SCIENCE doi: 10.1039/d2sc03948f – volume: 4 start-page: 743 year: 2014 ident: WOS:000332756700005 article-title: Organocatalytic Asymmetric Assembly Reactions: Synthesis of Spirooxindoles via Organocascade Strategies publication-title: ACS CATALYSIS doi: 10.1021/cs401172r – volume: 62 start-page: e202308606 year: 2023 ident: MEDLINE:37583090 article-title: Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis. publication-title: Angewandte Chemie (International ed. in English) doi: 10.1002/anie.202308606 – volume: 47 start-page: 3831 year: 2018 ident: WOS:000434489200006 article-title: Recent advances in spirocyclization of indole derivatives publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c7cs00508c – year: 2024 ident: 001248087300001.40 publication-title: ChemRxiv – volume: 145 start-page: 12324 year: 2023 ident: WOS:001005914100001 article-title: ortho-Selective Dearomative [2π+2σ] Photocycloadditions of Bicyclic Aza-Arenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.3c02961 – volume: 381 start-page: 75 year: 2023 ident: WOS:001030999200030 article-title: Dearomative ring expansion of thiophenes by bicyclobutane insertion publication-title: SCIENCE doi: 10.1126/science.adh9737 – volume: 55 start-page: 7586 year: 2016 ident: WOS:000383252900003 article-title: Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201508818 – volume: 9 start-page: 2149 year: 2022 ident: WOS:000766792000001 article-title: Diastereoselective synthesis of 1,1,3,3-tetrasubstituted cyclobutanes enabled by cycloaddition of bicyclo[1.1.0]butanes publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/d2qo00167e – year: 2022 ident: WOS:000890722600001 article-title: Bicyclo[2.1.1]hexanes by Visible Light-Driven Intramolecular Crossed [2+2] Photocycloadditions publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.2c03606 – volume: 9 start-page: 1820 year: 2019 ident: WOS:000460600600024 article-title: Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters publication-title: ACS CATALYSIS doi: 10.1021/acscatal.8b03694 – volume: 59 start-page: 13847 year: 2023 ident: WOS:001096963000001 article-title: Enolate addition to bicyclobutanes enables expedient access to 2-oxo-bicyclohexane scaffolds publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/d3cc04234k – volume: 363 start-page: 4497 year: 2021 ident: WOS:000693118200001 article-title: Construction of Indole-Fused Heterocycles Starting from 2-Thioxoindolines, Iminoindolines, and Their Derivatives publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.202100714 – volume: 13 start-page: 5096 year: 2023 ident: WOS:000971587200001 article-title: Pyridine-Boryl Radical-Catalyzed [2?+2?] Cycloaddition of with Alkenes publication-title: ACS CATALYSIS doi: 10.1021/acscatal.3c00305 – volume: 146 start-page: 2789 year: 2024 ident: WOS:001155529700001 article-title: Photoredox-Enabled Dearomative [2π+2σ] Cycloaddition of Phenols publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.3c12894 – volume: 26 start-page: 1745 year: 2024 ident: WOS:001173670200001 article-title: Ti-Catalyzed Formal [2π+2σ] Cycloadditions of Bicyclo[1.1.0]butanes with 2-Azadienes to Access Aminobicyclo[2.1.1]hexanes publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.4c00421 – volume: 92 start-page: 751 year: 2020 ident: WOS:000537416000006 article-title: Recent advances in the chemistry of bicyclo- and 1-azabicyclo[1.1.0]butanes publication-title: PURE AND APPLIED CHEMISTRY doi: 10.1515/pac-2019-1007 – volume: 49 start-page: 7101 year: 2020 ident: WOS:000575023000009 article-title: Chemodivergent reactions publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00125b – volume: 52 start-page: 3237 year: 2013 ident: WOS:000316340700033 article-title: Rhodium- and Platinum-Catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[b]indoles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201209266 – volume: 12 start-page: 860 year: 2020 ident: WOS:000553626700001 article-title: Stereoselective access to [5.5.0] and [4.4.1] bicyclic compounds through Pd-catalysed divergent higher-order cycloadditions publication-title: NATURE CHEMISTRY doi: 10.1038/s41557-020-0503-7 – volume: 42 start-page: 1291 year: 1986 ident: WOS:A1986A540600007 article-title: CYCLOADDITIONS OF METHYLENECYCLOPROPANES AND STRAINED BICYCLO[N.1.0]ALKANES TO RADICOPHILIC OLEFINS publication-title: TETRAHEDRON – volume: 4 start-page: 515 year: 2013 ident: WOS:000315355800005 article-title: Escape from Flatland 2: complexity and promiscuity publication-title: MEDCHEMCOMM doi: 10.1039/c2md20347b – volume: 24 start-page: 1268 year: 2022 ident: WOS:000743540500001 article-title: Investigating Bicyclobutane-Triazolinedione Cycloadditions as a Tool for Peptide Modification publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.1c04071 – volume: 52 start-page: 6752 year: 2009 ident: WOS:000271427900027 article-title: Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm901241e – volume: 43 start-page: 46 year: 2004 ident: WOS:000187736300005 article-title: A planning strategy for diversity-oriented synthesis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200300626 |
SSID | ssj0028806 |
Score | 2.5761333 |
Snippet | The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202405222 |
SubjectTerms | Alkanes Alkenes Benzene Bicyclic compounds Catalysts Chemical synthesis Chemistry Chemistry, Multidisciplinary Cycloaddition Heterocycles Hexanes Lewis acid Octanes Physical Sciences Science & Technology Spirooxindoles Stereoselectivity Strained molecules Substrates |
Title | Switching between the [2π+2σ] and Hetero‐[4π+2σ] Cycloaddition Reactivity of Bicyclobutanes with Lewis Acid Catalysts Enables the Synthesis of Spirocycles and Bridged Heterocycles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202405222 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=001248087300001 https://www.ncbi.nlm.nih.gov/pubmed/38729920 https://www.proquest.com/docview/3076686021 |
Volume | 63 |
WOS | 001248087300001 |
WOSCitedRecordID | wos001248087300001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYll_bS_x-3adEh0ENxYku2Yh83ZsO2lByyDQRCMdJYBtPgDbWXsDkF-gJ9nT5F3qFP0hn5p9mU0tKyh7VXslfCo5nPYub7GNvSpgzAQOoXIir9qCxIDZD0TXQqNIYfHYJLkD1Qs6Po3XF8fK2Kv-OHGDfcaGU4f00LXJtm5ydpKFVg4_sdRiSEEOSEKWGLUNHhyB8l0Di78iIpfVKhH1gbA7Gzfvl6VPoFat6ISutA1kWi_XtMD3PoElA-bS9bsw0XN-gd_2eS99ndHqbySWdXD9gtWz9kt7NBHe4R-zY_r1qXh8n7VC-OUJKfiKvLN-Lqy0eu64LPKNdm8f3y60k0_Jyt4HRBSUxkEPzQUl0FyVfwRcn3KqBWs0TAahtOW8T8vT2vGj6BquAZ7TStmrbhU1fw1bh_nK9q_GqwE95hflZhQF5Rpp8bwJ4rRxsG0jU8Zkf70w_ZzO9lIHyQERWPGyjL1JrApgKSEp2zjqWWSqpCUiG4jI0AKAqCH6GVYIQGEyoTgFCgEXE9YRv1orbPGI-1UFYZ_CAM1GGg7W4Q2zABRJGFsoHH_MEMcug50kmq4zTv2J1FTg8kHx-Ix16P_c86dpDf9twcrCrvvUSTo39VikTAQo897SxtvI1M8LUnFTikreumN7YTTo2SICG9ATz2WPg33bJ-UkR40HpMONv7w9DzycHb6Xj2_F8uesHu0DHtiYfxJttoPy_tSwRzrXnlFuwPLqpEPA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcigXCuUvUKgPlTigtImdmOS4jbbalmUP3VZCqlBkO44UUWWrJqtqOVXqC_R1eIq-A0_CjPMDW4RAoBw2iZ2srYxnPo9m5iNkW6rc00rHbsaC3A3yDNkAkd9ExkyC-ZG-tgGyEzE6CQ4_hl00IebCNPUheocbrgyrr3GBo0N690fVUEzBhg0emCTAEKCF7yGtt91VHfUVpBiIZ5NgxLmLPPRd3UaP7S4_v2yXfgGbd-zSMpS1tmh_nahuFk0Iyuedea129Jc7BR7_a5oPyYMWqdJBI1qPyIopN8ha0hHEPSZfp5dFbUMxaRvtRQFN0lN2e_WW3V5_orLM6AjDbWbfrm5Og-52stBnM4xjQpmgRwZTK5DBgs5yuldobFVzwKymouglpmNzWVR0oIuMJuhsWlR1RYc256uy_zhdlPBTQSd4w_S8AJu8wGA_O4A9m5HWDaRpeEJO9ofHychtmSBczQPMH1c6z2OjPBMzHeWgn2XIJRdcZBxzwXmomNZZhgjEN1wrJrXyhfI0E1oC6HpKVstZaZ4TGkomjFBwABKUvifNOy80fqQBSGbCeA5xOzlIdVsmHdk6ztKmwDNL8YOk_QdxyJu-_3lTIOS3PTc7sUpbRVGloGKFQB4w3yHPGlHrX8Mj2PnEDIa0_bPs9e0IVYPIi5ByAM4d4v9Nt6SdFNY8qB3CrPD9YejpYHIw7K9e_MtDW2RtdPxhnI4PJu9fkvt4H13kfrhJVuuLuXkF2K5Wr-3q_Q5JVkhX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datRAFB6kgnrjvzW16lwUvJC0yUwyTS636S5bLYt0LRSKhJnJBIIlu5gsZb0q-AK-jk_Rd_BJPGfyY7ciirIXu8lMsjPkzDlfhnO-j5AtqXJPKx27GQtyN8gzVANEfRMZMwnhR_raJshOxPg4eHMSnlyp4m_4IfoNN1wZ1l_jAp9n-c5P0lCswIb3O4hIACHACd8MhBehXe8f9QRSDKyzqS_i3EUZ-o620WM7q9evhqVfsOa1sLSKZG0oGt0jsptEk4HycXtRq239-Rq_4__M8j652-JUOmgM6wG5YcqH5HbSycM9It-m50VtEzFpm-tFAUvSU3Z58ZpdfvlAZZnRMSbbzL5ffD0NutPJUp_NMIsJLYIeGSysQP0KOsvpXqGxVS0AsZqK4h4xPTTnRUUHushogltNy6qu6NBWfFX2H6fLEr4q6AR3mM4LiMhLTPWzA9iz9WjdQJqGx-R4NHyfjN1WB8LVPMDqcaXzPDbKMzHTUQ7eWYZccsFFxrESnIeKaZ1liD98w7ViUitfKE8zoSVAridkrZyV5imhoWTCCAUfwIHS96TZ9ULjRxpgZCaM5xC3M4NUtyTpqNVxljb0zizFB5L2D8Qhr_r-84Ye5Lc9NzurSls3UaXgYIVAFTDfIeuNpfW34RG898QMhrR11fT6dgSqQeRFKDgAvx3i_023pJ0UMh7UDmHW9v4w9HQwORj2Rxv_ctFLcuvd_ig9PJi8fUbu4GncH_fDTbJWf1qY5wDsavXCrt0fWj5HDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switching+between+the+and+Hetero%E2%80%90+Cycloaddition+Reactivity+of+Bicyclobutanes+with+Lewis+Acid+Catalysts+Enables+the+Synthesis+of+Spirocycles+and+Bridged+Heterocycles&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ji%E2%80%90Jie+Wang&rft.au=Tang%2C+Lei&rft.au=Xiao%2C+Yuanjiu&rft.au=Wen%E2%80%90Biao+Wu&rft.date=2024-07-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=29&rft_id=info:doi/10.1002%2Fanie.202405222&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |