Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil

An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 163; pp. 1588 - 1594
Main Authors Dai, Qiqi, Yang, Zifei, Li, Jin, Cao, Yang, Tang, Hongbiao, Wei, Xiaocui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the catalyst was characterized by XRD, SEM, FTIR and BET. Compare the activities of the three catalysts (through PSH/UiO-66, PSH/UiO-66NO2, PSH/UiO-66-NH2) experiments, the catalytic activity of PSH/UiO-66-NO2 was found to be the highest, and the conversion rates of Jatropha oil was 96.69%. The effect of methanol oil mole ratio, catalyst dosage, reaction temperature, and reaction time on the conversion of Jatropha oil to biodiesel was investigated, an orthogonal test determined the optimum reaction conditions of using PSH/UiO-66-NO2 catalyst. The optimal reaction conditions were obtained: reaction temperature was 343 K, catalyst dosage to oil was 4 wt%, methanol to oil ratio was 25:1, reaction time was 4 h, and the average conversion rates of Jatropha oil was 97.57%, the methyl ester rate was over 99.98%. The results showed that the four reaction factors had significant effects on the Jatropha oil conversion rates: reaction time > catalyst dosage > reaction temperature > methanol to oil ratio. •A desirable loading of ionic liquid was achieved due to UiOs the large surface area.•The novel PSH immobilization on UiOs has been synthesized, and the activity of PSH/UiO-66 is higher than the UiO-66 and PSH.•One-pot method produces biodiesel from jatropha oil, methyl ester rate was 99.98%.•Under the optimal conditions, a high conversion rates of Jatropha oil was 97.57% as obtained from jatropha oil. .
AbstractList An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H₂SO₄, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the catalyst was characterized by XRD, SEM, FTIR and BET. Compare the activities of the three catalysts (through PSH/UiO-66, PSH/UiO-66NO₂, PSH/UiO-66-NH₂) experiments, the catalytic activity of PSH/UiO-66-NO₂ was found to be the highest, and the conversion rates of Jatropha oil was 96.69%. The effect of methanol oil mole ratio, catalyst dosage, reaction temperature, and reaction time on the conversion of Jatropha oil to biodiesel was investigated, an orthogonal test determined the optimum reaction conditions of using PSH/UiO-66-NO₂ catalyst. The optimal reaction conditions were obtained: reaction temperature was 343 K, catalyst dosage to oil was 4 wt%, methanol to oil ratio was 25:1, reaction time was 4 h, and the average conversion rates of Jatropha oil was 97.57%, the methyl ester rate was over 99.98%. The results showed that the four reaction factors had significant effects on the Jatropha oil conversion rates: reaction time > catalyst dosage > reaction temperature > methanol to oil ratio.
An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the catalyst was characterized by XRD, SEM, FTIR and BET. Compare the activities of the three catalysts (through PSH/UiO-66, PSH/UiO-66NO2, PSH/UiO-66-NH2) experiments, the catalytic activity of PSH/UiO-66-NO2 was found to be the highest, and the conversion rates of Jatropha oil was 96.69%. The effect of methanol oil mole ratio, catalyst dosage, reaction temperature, and reaction time on the conversion of Jatropha oil to biodiesel was investigated, an orthogonal test determined the optimum reaction conditions of using PSH/UiO-66-NO2 catalyst. The optimal reaction conditions were obtained: reaction temperature was 343 K, catalyst dosage to oil was 4 wt%, methanol to oil ratio was 25:1, reaction time was 4 h, and the average conversion rates of Jatropha oil was 97.57%, the methyl ester rate was over 99.98%. The results showed that the four reaction factors had significant effects on the Jatropha oil conversion rates: reaction time > catalyst dosage > reaction temperature > methanol to oil ratio. •A desirable loading of ionic liquid was achieved due to UiOs the large surface area.•The novel PSH immobilization on UiOs has been synthesized, and the activity of PSH/UiO-66 is higher than the UiO-66 and PSH.•One-pot method produces biodiesel from jatropha oil, methyl ester rate was 99.98%.•Under the optimal conditions, a high conversion rates of Jatropha oil was 97.57% as obtained from jatropha oil. .
Author Wei, Xiaocui
Dai, Qiqi
Li, Jin
Cao, Yang
Tang, Hongbiao
Yang, Zifei
Author_xml – sequence: 1
  givenname: Qiqi
  surname: Dai
  fullname: Dai, Qiqi
  organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China
– sequence: 2
  givenname: Zifei
  surname: Yang
  fullname: Yang, Zifei
  organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China
– sequence: 3
  givenname: Jin
  surname: Li
  fullname: Li, Jin
  email: 316800681@qq.com
  organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China
– sequence: 4
  givenname: Yang
  surname: Cao
  fullname: Cao, Yang
  organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China
– sequence: 5
  givenname: Hongbiao
  surname: Tang
  fullname: Tang, Hongbiao
  organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China
– sequence: 6
  givenname: Xiaocui
  surname: Wei
  fullname: Wei, Xiaocui
  organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China
BookMark eNqFkE9rGzEQxUVxoXaSb5DDHnvZzejPar09FEKImwQXX5JLIAitNEtl5NVGWhecT1857qmHlDnMMPPeg_ktyGwIAxJySaGiQOXVtoo45KoYMKigrShjn8icLpu2BLlkMzKHVkJJxZJ-IYuUtgC0XjZiTl6eXTRhcPtd2emEtvi5WaXSB23z7PLBFN697p0tjZ60P7zl9Rhx1FFP-VyEvuhcsA4T-qKPYVc86CmG8ZcugvPn5HOvfcKLv_2MPK1uH2_uyvXmx_3N9bo0nLdT2RtZd6LthBXcgrAN8j6_IhouwcqOsY5RMF2LvNM1cuScyqZuJECNxzf4Gfl6yh1jeN1jmtTOJYPe6wHDPikmuRS0pRSyVJykJoaUIvZqjG6n40FRUEeaaqtONNWRpoJWZZrZ9u0fm3HTO4Ipauf_Z_5-MmNm8NthVMk4HAxaF9FMygb3ccAf9W2VPA
CitedBy_id crossref_primary_10_1016_j_cscee_2023_100328
crossref_primary_10_1021_acs_energyfuels_4c03555
crossref_primary_10_1016_j_envres_2025_121028
crossref_primary_10_1007_s13399_021_02092_7
crossref_primary_10_1016_j_fuel_2022_124096
crossref_primary_10_1007_s13399_024_06089_w
crossref_primary_10_1016_j_scp_2023_101344
crossref_primary_10_1007_s12274_024_6621_6
crossref_primary_10_1016_j_fuel_2024_131829
crossref_primary_10_1016_j_molliq_2024_124292
crossref_primary_10_3390_bioengineering9110700
crossref_primary_10_1016_j_reactfunctpolym_2024_106148
crossref_primary_10_1002_cjce_25018
crossref_primary_10_1016_j_cej_2024_153559
crossref_primary_10_6023_A24110333
crossref_primary_10_1515_revic_2022_0014
crossref_primary_10_1021_acs_energyfuels_3c04203
crossref_primary_10_1016_j_renene_2021_06_025
crossref_primary_10_1016_j_molliq_2022_118556
crossref_primary_10_1021_acs_chemrev_3c00391
crossref_primary_10_1016_j_indcrop_2024_118232
crossref_primary_10_3390_ijms232112877
crossref_primary_10_1016_j_cherd_2024_02_048
crossref_primary_10_1016_j_renene_2021_09_062
crossref_primary_10_1016_j_fuel_2024_130905
crossref_primary_10_1016_j_jclepro_2022_131955
crossref_primary_10_1016_j_renene_2024_120743
crossref_primary_10_1016_j_renene_2024_120742
crossref_primary_10_1016_j_psep_2024_04_144
crossref_primary_10_3390_molecules29174195
crossref_primary_10_3389_fchem_2022_882235
Cites_doi 10.1016/j.micromeso.2004.03.034
10.1016/j.fuel.2018.04.119
10.1016/j.jcat.2012.01.013
10.1021/acscatal.5b02243
10.1038/nature01650
10.1002/cplu.201200186
10.1021/ar100023y
10.1016/j.apenergy.2013.10.011
10.1021/cr9003924
10.1021/ic402194c
10.1016/j.rser.2012.01.071
10.1021/cs3005874
10.1039/C4CE00032C
10.1016/j.rser.2015.12.237
10.1016/j.rser.2012.03.004
10.1021/ie302419y
10.1016/j.micromeso.2013.08.040
10.1016/j.molcata.2014.04.002
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2020.09.122
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 1594
ExternalDocumentID 10_1016_j_renene_2020_09_122
S0960148120315470
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-fc65b49b4d43d04d7e3f20247360d6b22b210cb9e3ba5e3e33167576005e58743
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Tue Aug 05 11:06:05 EDT 2025
Tue Jul 01 03:20:15 EDT 2025
Thu Apr 24 23:12:12 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Catalysis
Zirconium-based MOFs
Biodiesel
Ionic liquid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-fc65b49b4d43d04d7e3f20247360d6b22b210cb9e3ba5e3e33167576005e58743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636419110
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2636419110
crossref_primary_10_1016_j_renene_2020_09_122
crossref_citationtrail_10_1016_j_renene_2020_09_122
elsevier_sciencedirect_doi_10_1016_j_renene_2020_09_122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nasalevich, Van, Kapteijn, Gascon (bib17) 2014; 16
Junhua, Xiang, Clalre (bib11) 2007; 8
Shih, Lo, Yang, Singco, Cheng, Wu (bib19) 2012; 77
Liu, Lu, Poon, Lin (bib15) 2014; 53
Wang, Wang, Lin (bib16) 2012; 2
Trens, Belarbi, Shepherd, Gonzalezl (bib12) 2014; 183
Yang, Yao, Xi, Gao (bib18) 2014; 390
Ramos-Fernandez, Pieters, Linden (bib14) 2012; 289
inophakun, Smultaneous (bib25) 2010; 53
Borges, Díaz (bib2) 2012; 16
Seoane, Castellanos, Dikhtiarenko, Kapteijn, Gascon (bib9) 2015; 307
Atadashi, Aroua, Aziz (bib1) 2012; 16
Gabriel, Jian, A Sameh, Yun, Pietro, H Yao (bib5) 2018; vol 227
Corma, García, Llabrés (bib13) 2010; 110
M Fauzi, Amin, Mat (bib27) 2014; 114
Liu, Lewis (bib3) 2015; 43
Cao, Zhou, Li, Kazmerski (bib21) 2016; 58
Yang, Cao, Li (bib24) 2019; 36
Islam, Taufiq-Yap, Chu (bib4) 2013; 91
Jian-Rong, Ryan, Zhou (bib10) 2009; 38
Zhang, Cui, Zhang, Wang, Wan, Guan (bib22) 2012; 51
Rowsell, Yaghi (bib7) 2004; 73
Qian, Chen, Xiang (bib8) 2010; 43
Yaghi, Keeffe, Ockwig, Chae, Eddaoudi, Kim (bib6) 2003; 423
Yang, Odoh, Borycz (bib23) 2016; 6
Han, Liu, Lil (bib20) 2016; 33
Atadashi (10.1016/j.renene.2020.09.122_bib1) 2012; 16
Shih (10.1016/j.renene.2020.09.122_bib19) 2012; 77
Yang (10.1016/j.renene.2020.09.122_bib23) 2016; 6
Ramos-Fernandez (10.1016/j.renene.2020.09.122_bib14) 2012; 289
Islam (10.1016/j.renene.2020.09.122_bib4) 2013; 91
Liu (10.1016/j.renene.2020.09.122_bib3) 2015; 43
Seoane (10.1016/j.renene.2020.09.122_bib9) 2015; 307
Junhua (10.1016/j.renene.2020.09.122_bib11) 2007; 8
Corma (10.1016/j.renene.2020.09.122_bib13) 2010; 110
Qian (10.1016/j.renene.2020.09.122_bib8) 2010; 43
inophakun (10.1016/j.renene.2020.09.122_bib25) 2010; 53
M Fauzi (10.1016/j.renene.2020.09.122_bib27) 2014; 114
Liu (10.1016/j.renene.2020.09.122_bib15) 2014; 53
Zhang (10.1016/j.renene.2020.09.122_bib22) 2012; 51
Nasalevich (10.1016/j.renene.2020.09.122_bib17) 2014; 16
Yaghi (10.1016/j.renene.2020.09.122_bib6) 2003; 423
Yang (10.1016/j.renene.2020.09.122_bib18) 2014; 390
Yang (10.1016/j.renene.2020.09.122_bib24) 2019; 36
Cao (10.1016/j.renene.2020.09.122_bib21) 2016; 58
Wang (10.1016/j.renene.2020.09.122_bib16) 2012; 2
Rowsell (10.1016/j.renene.2020.09.122_bib7) 2004; 73
Trens (10.1016/j.renene.2020.09.122_bib12) 2014; 183
Borges (10.1016/j.renene.2020.09.122_bib2) 2012; 16
Jian-Rong (10.1016/j.renene.2020.09.122_bib10) 2009; 38
Gabriel (10.1016/j.renene.2020.09.122_bib5) 2018; vol 227
Han (10.1016/j.renene.2020.09.122_bib20) 2016; 33
References_xml – volume: 114
  start-page: 809
  year: 2014
  end-page: 818
  ident: bib27
  article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study
  publication-title: Appl. Energy
– volume: 43
  start-page: 37
  year: 2015
  end-page: 42
  ident: bib3
  article-title: Acidic ionic liquid catalyzes the production of biodiesel from keratin oil
  publication-title: Adv. Chem. Mater.
– volume: 91
  year: 2013
  ident: bib4
  article-title: Studies on design of heterogeneous catalysts for biodiesel production
  publication-title: Process Saf. Environ. Protect.
– volume: 6
  start-page: 235
  year: 2016
  end-page: 247
  ident: bib23
  article-title: Tuning Zr6 MOFs nodes as catalyst supports: site densities and electron-donor properties influence molecular iridium complexes as ethylene conversion catalysts
  publication-title: ACS Catal.
– volume: 53
  start-page: 1916
  year: 2014
  end-page: 1924
  ident: bib15
  article-title: Metal–organic frameworks as sensory materials and imaging agents
  publication-title: Inorg. Chem.
– volume: 36
  start-page: 18
  year: 2019
  end-page: 22
  ident: bib24
  article-title: Br Ø nsted acidic ionic liquid catalyzed Jatropha curcas oil for biodiesel production
  publication-title: Fine Petrochem.
– volume: 307
  start-page: 147
  year: 2015
  end-page: 187
  ident: bib9
  article-title: Multi-scale crystal engineering of metal organic frameworks
  publication-title: Coord. Chem. Rev.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  ident: bib10
  article-title: Selective gas adsorption and separation in metal-organic frameworks
  publication-title: ChemInform
– volume: 16
  start-page: 2839
  year: 2012
  end-page: 2849
  ident: bib2
  article-title: Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 110
  start-page: 4606
  year: 2010
  end-page: 4655
  ident: bib13
  article-title: ChemInform abstract: engineering metal organic frameworks for heterogeneous catalysis
  publication-title: Chem. Rev.
– volume: 73
  start-page: 3
  year: 2004
  end-page: 14
  ident: bib7
  article-title: Metal–organic frameworks: a new class of porous materials
  publication-title: Microporous Mesoporous Mater.
– volume: 2
  start-page: 2630
  year: 2012
  end-page: 2640
  ident: bib16
  article-title: Metal–organic frameworks for light harvesting and photocatalysis
  publication-title: ACS Catal.
– volume: 53
  start-page: 73
  year: 2010
  end-page: 782
  ident: bib25
  article-title: Conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia
  publication-title: Top. Catal.
– volume: 289
  start-page: 42
  year: 2012
  end-page: 52
  ident: bib14
  article-title: Highly dispersed platinum in metal organic framework NH2 -MIL-101(Al) containing phosphotungstic acid – characterization and catalytic performance
  publication-title: J. Catal.
– volume: 33
  start-page: 367
  year: 2016
  end-page: 378
  ident: bib20
  article-title: Synthesis and application of high stability metal organic framework UiO-66
  publication-title: Appl. Chem.
– volume: 58
  start-page: 871
  year: 2016
  end-page: 875
  ident: bib21
  article-title: Preparation of a supported acidic ionic liquid on silica-gel and its application to the synthesis of biodiesel from waste cooking oil
  publication-title: Renew. Sustain. Energy Rev.
– volume: 43
  start-page: 1115
  year: 2010
  end-page: 1124
  ident: bib8
  article-title: Metal-organic frameworks with functional pores for recognition of small molecules
  publication-title: Acc. Chem. Res.
– volume: 77
  start-page: 982
  year: 2012
  end-page: 986
  ident: bib19
  article-title: Trypsin-immobilized metalâ organic framework as a biocatalyst in proteomics analysis
  publication-title: Chempluschem
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  ident: bib6
  article-title: Reticular synthesis and the design of new materials
  publication-title: Nature
– volume: 183
  start-page: 17
  year: 2014
  end-page: 22
  ident: bib12
  article-title: Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): an experimental and computational study
  publication-title: Microporous Mesoporous Mater.
– volume: 51
  start-page: 16590
  year: 2012
  end-page: 16596
  ident: bib22
  article-title: Biodiesel production by esterification of oleic acid over bronsted acidic ionic liquid supported onto fe-incorporated sba-15
  publication-title: Ind. Eng. Chem. Res.
– volume: 16
  start-page: 4919
  year: 2014
  ident: bib17
  article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges
  publication-title: CrystEngComm
– volume: 390
  start-page: 198
  year: 2014
  end-page: 205
  ident: bib18
  article-title: Amino-functionalized zr(iv) metal–organic framework as bifunctional acid–base catalyst for knoevenagel condensation
  publication-title: J. Mol. Catal. Chem.
– volume: vol 227
  start-page: 448
  year: 2018
  end-page: 456
  ident: bib5
  article-title: Evaluation of the kinematic viscosity in biodiesel production with waste vegetable oil, ultrasonic irradiation and enzymatic catalysis: a comparative study in two-reactors
  publication-title: Fuel
– volume: 8
  start-page: 840
  year: 2007
  end-page: 842
  ident: bib11
  article-title: Twelve-connected porous metal–organic frameworks with high H2 adsorption
  publication-title: Chem. Commun.
– volume: 16
  start-page: 3456
  year: 2012
  end-page: 3470
  ident: bib1
  article-title: The effects of water on biodiesel production and refining technologies: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 33
  start-page: 367
  issue: 4
  year: 2016
  ident: 10.1016/j.renene.2020.09.122_bib20
  article-title: Synthesis and application of high stability metal organic framework UiO-66
  publication-title: Appl. Chem.
– volume: 73
  start-page: 3
  issue: 1–2
  year: 2004
  ident: 10.1016/j.renene.2020.09.122_bib7
  article-title: Metal–organic frameworks: a new class of porous materials
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2004.03.034
– volume: 36
  start-page: 18
  issue: 2
  year: 2019
  ident: 10.1016/j.renene.2020.09.122_bib24
  article-title: Br Ø nsted acidic ionic liquid catalyzed Jatropha curcas oil for biodiesel production
  publication-title: Fine Petrochem.
– volume: 53
  start-page: 73
  issue: 11–12
  year: 2010
  ident: 10.1016/j.renene.2020.09.122_bib25
  article-title: Conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia
  publication-title: Top. Catal.
– volume: vol 227
  start-page: 448
  year: 2018
  ident: 10.1016/j.renene.2020.09.122_bib5
  article-title: Evaluation of the kinematic viscosity in biodiesel production with waste vegetable oil, ultrasonic irradiation and enzymatic catalysis: a comparative study in two-reactors
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.04.119
– volume: 289
  start-page: 42
  issue: 5
  year: 2012
  ident: 10.1016/j.renene.2020.09.122_bib14
  article-title: Highly dispersed platinum in metal organic framework NH2 -MIL-101(Al) containing phosphotungstic acid – characterization and catalytic performance
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.01.013
– volume: 6
  start-page: 235
  issue: 1
  year: 2016
  ident: 10.1016/j.renene.2020.09.122_bib23
  article-title: Tuning Zr6 MOFs nodes as catalyst supports: site densities and electron-donor properties influence molecular iridium complexes as ethylene conversion catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02243
– volume: 91
  issue: 1–2
  year: 2013
  ident: 10.1016/j.renene.2020.09.122_bib4
  article-title: Studies on design of heterogeneous catalysts for biodiesel production
  publication-title: Process Saf. Environ. Protect.
– volume: 423
  start-page: 705
  issue: 6941
  year: 2003
  ident: 10.1016/j.renene.2020.09.122_bib6
  article-title: Reticular synthesis and the design of new materials
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 77
  start-page: 982
  issue: 11
  year: 2012
  ident: 10.1016/j.renene.2020.09.122_bib19
  article-title: Trypsin-immobilized metalâ organic framework as a biocatalyst in proteomics analysis
  publication-title: Chempluschem
  doi: 10.1002/cplu.201200186
– volume: 43
  start-page: 1115
  issue: 8
  year: 2010
  ident: 10.1016/j.renene.2020.09.122_bib8
  article-title: Metal-organic frameworks with functional pores for recognition of small molecules
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100023y
– volume: 114
  start-page: 809
  year: 2014
  ident: 10.1016/j.renene.2020.09.122_bib27
  article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.10.011
– volume: 38
  start-page: 1477
  issue: 5
  year: 2009
  ident: 10.1016/j.renene.2020.09.122_bib10
  article-title: Selective gas adsorption and separation in metal-organic frameworks
  publication-title: ChemInform
– volume: 110
  start-page: 4606
  issue: 8
  year: 2010
  ident: 10.1016/j.renene.2020.09.122_bib13
  article-title: ChemInform abstract: engineering metal organic frameworks for heterogeneous catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr9003924
– volume: 53
  start-page: 1916
  issue: 4
  year: 2014
  ident: 10.1016/j.renene.2020.09.122_bib15
  article-title: Metal–organic frameworks as sensory materials and imaging agents
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402194c
– volume: 16
  start-page: 2839
  issue: 5
  year: 2012
  ident: 10.1016/j.renene.2020.09.122_bib2
  article-title: Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.01.071
– volume: 2
  start-page: 2630
  issue: 12
  year: 2012
  ident: 10.1016/j.renene.2020.09.122_bib16
  article-title: Metal–organic frameworks for light harvesting and photocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/cs3005874
– volume: 16
  start-page: 4919
  issue: 23
  year: 2014
  ident: 10.1016/j.renene.2020.09.122_bib17
  article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges
  publication-title: CrystEngComm
  doi: 10.1039/C4CE00032C
– volume: 58
  start-page: 871
  year: 2016
  ident: 10.1016/j.renene.2020.09.122_bib21
  article-title: Preparation of a supported acidic ionic liquid on silica-gel and its application to the synthesis of biodiesel from waste cooking oil
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.237
– volume: 16
  start-page: 3456
  issue: 5
  year: 2012
  ident: 10.1016/j.renene.2020.09.122_bib1
  article-title: The effects of water on biodiesel production and refining technologies: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.03.004
– volume: 51
  start-page: 16590
  issue: 51
  year: 2012
  ident: 10.1016/j.renene.2020.09.122_bib22
  article-title: Biodiesel production by esterification of oleic acid over bronsted acidic ionic liquid supported onto fe-incorporated sba-15
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302419y
– volume: 8
  start-page: 840
  issue: 8
  year: 2007
  ident: 10.1016/j.renene.2020.09.122_bib11
  article-title: Twelve-connected porous metal–organic frameworks with high H2 adsorption
  publication-title: Chem. Commun.
– volume: 307
  start-page: 147
  issue: 12
  year: 2015
  ident: 10.1016/j.renene.2020.09.122_bib9
  article-title: Multi-scale crystal engineering of metal organic frameworks
  publication-title: Coord. Chem. Rev.
– volume: 183
  start-page: 17
  issue: 1
  year: 2014
  ident: 10.1016/j.renene.2020.09.122_bib12
  article-title: Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): an experimental and computational study
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.08.040
– volume: 390
  start-page: 198
  year: 2014
  ident: 10.1016/j.renene.2020.09.122_bib18
  article-title: Amino-functionalized zr(iv) metal–organic framework as bifunctional acid–base catalyst for knoevenagel condensation
  publication-title: J. Mol. Catal. Chem.
  doi: 10.1016/j.molcata.2014.04.002
– volume: 43
  start-page: 37
  issue: 2
  year: 2015
  ident: 10.1016/j.renene.2020.09.122_bib3
  article-title: Acidic ionic liquid catalyzes the production of biodiesel from keratin oil
  publication-title: Adv. Chem. Mater.
SSID ssj0015874
Score 2.484026
Snippet An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into...
An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H₂SO₄, and successfully loaded B acidic ionic liquid into...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1588
SubjectTerms Biodiesel
Catalysis
catalysts
catalytic activity
Ionic liquid
ionic liquids
Jatropha
methanol
oils
temperature
Zirconium-based MOFs
Title Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil
URI https://dx.doi.org/10.1016/j.renene.2020.09.122
https://www.proquest.com/docview/2636419110
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7DeNGDuOK4EcFrnDZLY48iDqOiHnRABAlJmmKltuM4c9CDv928LqKCCN5KSEL7kr79fQ-h_SBMAOWOE-3tLsK9RkSMpJZIkTKrjdAyhYjuxWU0HPGzW3HbQcdtLQykVTa8v-bpFbduRvoNNfvjLOtfg_LtlfmQQqMCLsFu51zCLT94_0zzCMVhjcTsJxOY3ZbPVTlegBpZAFgmDQDtNKT0N_H0g1FX0mewhBYbtREf1W-2jDquWEELX8AEV9H9XTbxxm02eyIgmhJ8cTV4IXmpE_8MXleL8-x5liWkctm8vvnh8cTV2N9lgcsUm6yEpEKXY6g6wWfgJx8_aFxm-RoaDU5ujoekaZ5ALGPxlKQ2EobHhvuzSAKeSMdS_51csihIIkOp8caeNbFjRgvHHIOSeAFhOuGAZmwddYuycBsI69QCSFUcaq251Ic6kqkVQaKp3zrSoodYSzNlG2RxaHCRqzaF7FHVlFZAaRXEylO6h8jnqnGNrPHHfNkeh_p2Q5Rn_n-s3GtPT_mfByIiunDl7EXRiEXcW6xhsPnv3bfQPIU8l8ots42608nM7XhFZWp2q5u4i-aOTs-Hlx_t5-hV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA-ih7YH0dpSvyP0GncmHxPnKOKyWlcPVZBCCUkmQ6eMM-u6e9CDf7vvzYdYQYTehpCEzEvy8j5_j5DvUZwhyp1kFvQuJkEiYk5zz7TKhbdOWZ2jR3d8noyu5Om1ul4gR30uDIZVdry_5ekNt-5aBh01B5OiGPxE4RuE-ZhjoQKpQW9fknB9sYzB_uNznEesDlooZujNsHufP9cEeSFsZIVomTxCuNOY87fep1ecunl-hitkuZMb6WG7tFWyEKrP5NMLNME18vtXMQXttpjfMHybMjq-GN6xsrYZfKPZ1dOyuJ0XGWtsNvcP0DyZhhb8u65onVNX1BhVGEqKaSf0FA3lkz-W1kX5hVwNjy-PRqyrnsC8EOmM5T5RTqZOwmZkkcx0EDn8p9QiibLEce5A2_MuDcJZFUQQmBOv0E-nAtJMfCWLVV2Fb4Ta3CNKVRpba6W2BzbRuVdRZjlMnVi1TkRPM-M7aHGscFGaPobsr2kpbZDSJkoNUHqdsOdRkxZa453-ut8O888RMcD93xm51--egduDLhFbhXp-Z3giEgkqaxxt_Pfsu-TD6HJ8Zs5Ozn9sko8cg14aG80WWZxN52EbpJaZ22lO5RNLwenj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zirconium-based+MOFs-loaded+ionic+liquid-catalyzed+preparation+of+biodiesel+from+Jatropha+oil&rft.jtitle=Renewable+energy&rft.au=Dai%2C+Qiqi&rft.au=Yang%2C+Zifei&rft.au=Li%2C+Jin&rft.au=Cao%2C+Yang&rft.date=2021-01-01&rft.issn=0960-1481&rft.volume=163&rft.spage=1588&rft.epage=1594&rft_id=info:doi/10.1016%2Fj.renene.2020.09.122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2020_09_122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon