Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil
An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the...
Saved in:
Published in | Renewable energy Vol. 163; pp. 1588 - 1594 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the catalyst was characterized by XRD, SEM, FTIR and BET. Compare the activities of the three catalysts (through PSH/UiO-66, PSH/UiO-66NO2, PSH/UiO-66-NH2) experiments, the catalytic activity of PSH/UiO-66-NO2 was found to be the highest, and the conversion rates of Jatropha oil was 96.69%. The effect of methanol oil mole ratio, catalyst dosage, reaction temperature, and reaction time on the conversion of Jatropha oil to biodiesel was investigated, an orthogonal test determined the optimum reaction conditions of using PSH/UiO-66-NO2 catalyst. The optimal reaction conditions were obtained: reaction temperature was 343 K, catalyst dosage to oil was 4 wt%, methanol to oil ratio was 25:1, reaction time was 4 h, and the average conversion rates of Jatropha oil was 97.57%, the methyl ester rate was over 99.98%. The results showed that the four reaction factors had significant effects on the Jatropha oil conversion rates: reaction time > catalyst dosage > reaction temperature > methanol to oil ratio.
•A desirable loading of ionic liquid was achieved due to UiOs the large surface area.•The novel PSH immobilization on UiOs has been synthesized, and the activity of PSH/UiO-66 is higher than the UiO-66 and PSH.•One-pot method produces biodiesel from jatropha oil, methyl ester rate was 99.98%.•Under the optimal conditions, a high conversion rates of Jatropha oil was 97.57% as obtained from jatropha oil. . |
---|---|
AbstractList | An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H₂SO₄, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the catalyst was characterized by XRD, SEM, FTIR and BET. Compare the activities of the three catalysts (through PSH/UiO-66, PSH/UiO-66NO₂, PSH/UiO-66-NH₂) experiments, the catalytic activity of PSH/UiO-66-NO₂ was found to be the highest, and the conversion rates of Jatropha oil was 96.69%. The effect of methanol oil mole ratio, catalyst dosage, reaction temperature, and reaction time on the conversion of Jatropha oil to biodiesel was investigated, an orthogonal test determined the optimum reaction conditions of using PSH/UiO-66-NO₂ catalyst. The optimal reaction conditions were obtained: reaction temperature was 343 K, catalyst dosage to oil was 4 wt%, methanol to oil ratio was 25:1, reaction time was 4 h, and the average conversion rates of Jatropha oil was 97.57%, the methyl ester rate was over 99.98%. The results showed that the four reaction factors had significant effects on the Jatropha oil conversion rates: reaction time > catalyst dosage > reaction temperature > methanol to oil ratio. An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into three zirconium-based MOFs to synthesize the catalyst used to prepare biodiesel from Jatropha oil by impregnation method. The structure of the catalyst was characterized by XRD, SEM, FTIR and BET. Compare the activities of the three catalysts (through PSH/UiO-66, PSH/UiO-66NO2, PSH/UiO-66-NH2) experiments, the catalytic activity of PSH/UiO-66-NO2 was found to be the highest, and the conversion rates of Jatropha oil was 96.69%. The effect of methanol oil mole ratio, catalyst dosage, reaction temperature, and reaction time on the conversion of Jatropha oil to biodiesel was investigated, an orthogonal test determined the optimum reaction conditions of using PSH/UiO-66-NO2 catalyst. The optimal reaction conditions were obtained: reaction temperature was 343 K, catalyst dosage to oil was 4 wt%, methanol to oil ratio was 25:1, reaction time was 4 h, and the average conversion rates of Jatropha oil was 97.57%, the methyl ester rate was over 99.98%. The results showed that the four reaction factors had significant effects on the Jatropha oil conversion rates: reaction time > catalyst dosage > reaction temperature > methanol to oil ratio. •A desirable loading of ionic liquid was achieved due to UiOs the large surface area.•The novel PSH immobilization on UiOs has been synthesized, and the activity of PSH/UiO-66 is higher than the UiO-66 and PSH.•One-pot method produces biodiesel from jatropha oil, methyl ester rate was 99.98%.•Under the optimal conditions, a high conversion rates of Jatropha oil was 97.57% as obtained from jatropha oil. . |
Author | Wei, Xiaocui Dai, Qiqi Li, Jin Cao, Yang Tang, Hongbiao Yang, Zifei |
Author_xml | – sequence: 1 givenname: Qiqi surname: Dai fullname: Dai, Qiqi organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China – sequence: 2 givenname: Zifei surname: Yang fullname: Yang, Zifei organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China – sequence: 3 givenname: Jin surname: Li fullname: Li, Jin email: 316800681@qq.com organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China – sequence: 4 givenname: Yang surname: Cao fullname: Cao, Yang organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China – sequence: 5 givenname: Hongbiao surname: Tang fullname: Tang, Hongbiao organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China – sequence: 6 givenname: Xiaocui surname: Wei fullname: Wei, Xiaocui organization: College of Chemical Engineering and Technology, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China |
BookMark | eNqFkE9rGzEQxUVxoXaSb5DDHnvZzejPar09FEKImwQXX5JLIAitNEtl5NVGWhecT1857qmHlDnMMPPeg_ktyGwIAxJySaGiQOXVtoo45KoYMKigrShjn8icLpu2BLlkMzKHVkJJxZJ-IYuUtgC0XjZiTl6eXTRhcPtd2emEtvi5WaXSB23z7PLBFN697p0tjZ60P7zl9Rhx1FFP-VyEvuhcsA4T-qKPYVc86CmG8ZcugvPn5HOvfcKLv_2MPK1uH2_uyvXmx_3N9bo0nLdT2RtZd6LthBXcgrAN8j6_IhouwcqOsY5RMF2LvNM1cuScyqZuJECNxzf4Gfl6yh1jeN1jmtTOJYPe6wHDPikmuRS0pRSyVJykJoaUIvZqjG6n40FRUEeaaqtONNWRpoJWZZrZ9u0fm3HTO4Ipauf_Z_5-MmNm8NthVMk4HAxaF9FMygb3ccAf9W2VPA |
CitedBy_id | crossref_primary_10_1016_j_cscee_2023_100328 crossref_primary_10_1021_acs_energyfuels_4c03555 crossref_primary_10_1016_j_envres_2025_121028 crossref_primary_10_1007_s13399_021_02092_7 crossref_primary_10_1016_j_fuel_2022_124096 crossref_primary_10_1007_s13399_024_06089_w crossref_primary_10_1016_j_scp_2023_101344 crossref_primary_10_1007_s12274_024_6621_6 crossref_primary_10_1016_j_fuel_2024_131829 crossref_primary_10_1016_j_molliq_2024_124292 crossref_primary_10_3390_bioengineering9110700 crossref_primary_10_1016_j_reactfunctpolym_2024_106148 crossref_primary_10_1002_cjce_25018 crossref_primary_10_1016_j_cej_2024_153559 crossref_primary_10_6023_A24110333 crossref_primary_10_1515_revic_2022_0014 crossref_primary_10_1021_acs_energyfuels_3c04203 crossref_primary_10_1016_j_renene_2021_06_025 crossref_primary_10_1016_j_molliq_2022_118556 crossref_primary_10_1021_acs_chemrev_3c00391 crossref_primary_10_1016_j_indcrop_2024_118232 crossref_primary_10_3390_ijms232112877 crossref_primary_10_1016_j_cherd_2024_02_048 crossref_primary_10_1016_j_renene_2021_09_062 crossref_primary_10_1016_j_fuel_2024_130905 crossref_primary_10_1016_j_jclepro_2022_131955 crossref_primary_10_1016_j_renene_2024_120743 crossref_primary_10_1016_j_renene_2024_120742 crossref_primary_10_1016_j_psep_2024_04_144 crossref_primary_10_3390_molecules29174195 crossref_primary_10_3389_fchem_2022_882235 |
Cites_doi | 10.1016/j.micromeso.2004.03.034 10.1016/j.fuel.2018.04.119 10.1016/j.jcat.2012.01.013 10.1021/acscatal.5b02243 10.1038/nature01650 10.1002/cplu.201200186 10.1021/ar100023y 10.1016/j.apenergy.2013.10.011 10.1021/cr9003924 10.1021/ic402194c 10.1016/j.rser.2012.01.071 10.1021/cs3005874 10.1039/C4CE00032C 10.1016/j.rser.2015.12.237 10.1016/j.rser.2012.03.004 10.1021/ie302419y 10.1016/j.micromeso.2013.08.040 10.1016/j.molcata.2014.04.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2020.09.122 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 1594 |
ExternalDocumentID | 10_1016_j_renene_2020_09_122 S0960148120315470 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-fc65b49b4d43d04d7e3f20247360d6b22b210cb9e3ba5e3e33167576005e58743 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Tue Aug 05 11:06:05 EDT 2025 Tue Jul 01 03:20:15 EDT 2025 Thu Apr 24 23:12:12 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Catalysis Zirconium-based MOFs Biodiesel Ionic liquid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-fc65b49b4d43d04d7e3f20247360d6b22b210cb9e3ba5e3e33167576005e58743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636419110 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2636419110 crossref_primary_10_1016_j_renene_2020_09_122 crossref_citationtrail_10_1016_j_renene_2020_09_122 elsevier_sciencedirect_doi_10_1016_j_renene_2020_09_122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nasalevich, Van, Kapteijn, Gascon (bib17) 2014; 16 Junhua, Xiang, Clalre (bib11) 2007; 8 Shih, Lo, Yang, Singco, Cheng, Wu (bib19) 2012; 77 Liu, Lu, Poon, Lin (bib15) 2014; 53 Wang, Wang, Lin (bib16) 2012; 2 Trens, Belarbi, Shepherd, Gonzalezl (bib12) 2014; 183 Yang, Yao, Xi, Gao (bib18) 2014; 390 Ramos-Fernandez, Pieters, Linden (bib14) 2012; 289 inophakun, Smultaneous (bib25) 2010; 53 Borges, Díaz (bib2) 2012; 16 Seoane, Castellanos, Dikhtiarenko, Kapteijn, Gascon (bib9) 2015; 307 Atadashi, Aroua, Aziz (bib1) 2012; 16 Gabriel, Jian, A Sameh, Yun, Pietro, H Yao (bib5) 2018; vol 227 Corma, García, Llabrés (bib13) 2010; 110 M Fauzi, Amin, Mat (bib27) 2014; 114 Liu, Lewis (bib3) 2015; 43 Cao, Zhou, Li, Kazmerski (bib21) 2016; 58 Yang, Cao, Li (bib24) 2019; 36 Islam, Taufiq-Yap, Chu (bib4) 2013; 91 Jian-Rong, Ryan, Zhou (bib10) 2009; 38 Zhang, Cui, Zhang, Wang, Wan, Guan (bib22) 2012; 51 Rowsell, Yaghi (bib7) 2004; 73 Qian, Chen, Xiang (bib8) 2010; 43 Yaghi, Keeffe, Ockwig, Chae, Eddaoudi, Kim (bib6) 2003; 423 Yang, Odoh, Borycz (bib23) 2016; 6 Han, Liu, Lil (bib20) 2016; 33 Atadashi (10.1016/j.renene.2020.09.122_bib1) 2012; 16 Shih (10.1016/j.renene.2020.09.122_bib19) 2012; 77 Yang (10.1016/j.renene.2020.09.122_bib23) 2016; 6 Ramos-Fernandez (10.1016/j.renene.2020.09.122_bib14) 2012; 289 Islam (10.1016/j.renene.2020.09.122_bib4) 2013; 91 Liu (10.1016/j.renene.2020.09.122_bib3) 2015; 43 Seoane (10.1016/j.renene.2020.09.122_bib9) 2015; 307 Junhua (10.1016/j.renene.2020.09.122_bib11) 2007; 8 Corma (10.1016/j.renene.2020.09.122_bib13) 2010; 110 Qian (10.1016/j.renene.2020.09.122_bib8) 2010; 43 inophakun (10.1016/j.renene.2020.09.122_bib25) 2010; 53 M Fauzi (10.1016/j.renene.2020.09.122_bib27) 2014; 114 Liu (10.1016/j.renene.2020.09.122_bib15) 2014; 53 Zhang (10.1016/j.renene.2020.09.122_bib22) 2012; 51 Nasalevich (10.1016/j.renene.2020.09.122_bib17) 2014; 16 Yaghi (10.1016/j.renene.2020.09.122_bib6) 2003; 423 Yang (10.1016/j.renene.2020.09.122_bib18) 2014; 390 Yang (10.1016/j.renene.2020.09.122_bib24) 2019; 36 Cao (10.1016/j.renene.2020.09.122_bib21) 2016; 58 Wang (10.1016/j.renene.2020.09.122_bib16) 2012; 2 Rowsell (10.1016/j.renene.2020.09.122_bib7) 2004; 73 Trens (10.1016/j.renene.2020.09.122_bib12) 2014; 183 Borges (10.1016/j.renene.2020.09.122_bib2) 2012; 16 Jian-Rong (10.1016/j.renene.2020.09.122_bib10) 2009; 38 Gabriel (10.1016/j.renene.2020.09.122_bib5) 2018; vol 227 Han (10.1016/j.renene.2020.09.122_bib20) 2016; 33 |
References_xml | – volume: 114 start-page: 809 year: 2014 end-page: 818 ident: bib27 article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study publication-title: Appl. Energy – volume: 43 start-page: 37 year: 2015 end-page: 42 ident: bib3 article-title: Acidic ionic liquid catalyzes the production of biodiesel from keratin oil publication-title: Adv. Chem. Mater. – volume: 91 year: 2013 ident: bib4 article-title: Studies on design of heterogeneous catalysts for biodiesel production publication-title: Process Saf. Environ. Protect. – volume: 6 start-page: 235 year: 2016 end-page: 247 ident: bib23 article-title: Tuning Zr6 MOFs nodes as catalyst supports: site densities and electron-donor properties influence molecular iridium complexes as ethylene conversion catalysts publication-title: ACS Catal. – volume: 53 start-page: 1916 year: 2014 end-page: 1924 ident: bib15 article-title: Metal–organic frameworks as sensory materials and imaging agents publication-title: Inorg. Chem. – volume: 36 start-page: 18 year: 2019 end-page: 22 ident: bib24 article-title: Br Ø nsted acidic ionic liquid catalyzed Jatropha curcas oil for biodiesel production publication-title: Fine Petrochem. – volume: 307 start-page: 147 year: 2015 end-page: 187 ident: bib9 article-title: Multi-scale crystal engineering of metal organic frameworks publication-title: Coord. Chem. Rev. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 ident: bib10 article-title: Selective gas adsorption and separation in metal-organic frameworks publication-title: ChemInform – volume: 16 start-page: 2839 year: 2012 end-page: 2849 ident: bib2 article-title: Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review publication-title: Renew. Sustain. Energy Rev. – volume: 110 start-page: 4606 year: 2010 end-page: 4655 ident: bib13 article-title: ChemInform abstract: engineering metal organic frameworks for heterogeneous catalysis publication-title: Chem. Rev. – volume: 73 start-page: 3 year: 2004 end-page: 14 ident: bib7 article-title: Metal–organic frameworks: a new class of porous materials publication-title: Microporous Mesoporous Mater. – volume: 2 start-page: 2630 year: 2012 end-page: 2640 ident: bib16 article-title: Metal–organic frameworks for light harvesting and photocatalysis publication-title: ACS Catal. – volume: 53 start-page: 73 year: 2010 end-page: 782 ident: bib25 article-title: Conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia publication-title: Top. Catal. – volume: 289 start-page: 42 year: 2012 end-page: 52 ident: bib14 article-title: Highly dispersed platinum in metal organic framework NH2 -MIL-101(Al) containing phosphotungstic acid – characterization and catalytic performance publication-title: J. Catal. – volume: 33 start-page: 367 year: 2016 end-page: 378 ident: bib20 article-title: Synthesis and application of high stability metal organic framework UiO-66 publication-title: Appl. Chem. – volume: 58 start-page: 871 year: 2016 end-page: 875 ident: bib21 article-title: Preparation of a supported acidic ionic liquid on silica-gel and its application to the synthesis of biodiesel from waste cooking oil publication-title: Renew. Sustain. Energy Rev. – volume: 43 start-page: 1115 year: 2010 end-page: 1124 ident: bib8 article-title: Metal-organic frameworks with functional pores for recognition of small molecules publication-title: Acc. Chem. Res. – volume: 77 start-page: 982 year: 2012 end-page: 986 ident: bib19 article-title: Trypsin-immobilized metalâ organic framework as a biocatalyst in proteomics analysis publication-title: Chempluschem – volume: 423 start-page: 705 year: 2003 end-page: 714 ident: bib6 article-title: Reticular synthesis and the design of new materials publication-title: Nature – volume: 183 start-page: 17 year: 2014 end-page: 22 ident: bib12 article-title: Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): an experimental and computational study publication-title: Microporous Mesoporous Mater. – volume: 51 start-page: 16590 year: 2012 end-page: 16596 ident: bib22 article-title: Biodiesel production by esterification of oleic acid over bronsted acidic ionic liquid supported onto fe-incorporated sba-15 publication-title: Ind. Eng. Chem. Res. – volume: 16 start-page: 4919 year: 2014 ident: bib17 article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges publication-title: CrystEngComm – volume: 390 start-page: 198 year: 2014 end-page: 205 ident: bib18 article-title: Amino-functionalized zr(iv) metal–organic framework as bifunctional acid–base catalyst for knoevenagel condensation publication-title: J. Mol. Catal. Chem. – volume: vol 227 start-page: 448 year: 2018 end-page: 456 ident: bib5 article-title: Evaluation of the kinematic viscosity in biodiesel production with waste vegetable oil, ultrasonic irradiation and enzymatic catalysis: a comparative study in two-reactors publication-title: Fuel – volume: 8 start-page: 840 year: 2007 end-page: 842 ident: bib11 article-title: Twelve-connected porous metal–organic frameworks with high H2 adsorption publication-title: Chem. Commun. – volume: 16 start-page: 3456 year: 2012 end-page: 3470 ident: bib1 article-title: The effects of water on biodiesel production and refining technologies: a review publication-title: Renew. Sustain. Energy Rev. – volume: 33 start-page: 367 issue: 4 year: 2016 ident: 10.1016/j.renene.2020.09.122_bib20 article-title: Synthesis and application of high stability metal organic framework UiO-66 publication-title: Appl. Chem. – volume: 73 start-page: 3 issue: 1–2 year: 2004 ident: 10.1016/j.renene.2020.09.122_bib7 article-title: Metal–organic frameworks: a new class of porous materials publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2004.03.034 – volume: 36 start-page: 18 issue: 2 year: 2019 ident: 10.1016/j.renene.2020.09.122_bib24 article-title: Br Ø nsted acidic ionic liquid catalyzed Jatropha curcas oil for biodiesel production publication-title: Fine Petrochem. – volume: 53 start-page: 73 issue: 11–12 year: 2010 ident: 10.1016/j.renene.2020.09.122_bib25 article-title: Conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia publication-title: Top. Catal. – volume: vol 227 start-page: 448 year: 2018 ident: 10.1016/j.renene.2020.09.122_bib5 article-title: Evaluation of the kinematic viscosity in biodiesel production with waste vegetable oil, ultrasonic irradiation and enzymatic catalysis: a comparative study in two-reactors publication-title: Fuel doi: 10.1016/j.fuel.2018.04.119 – volume: 289 start-page: 42 issue: 5 year: 2012 ident: 10.1016/j.renene.2020.09.122_bib14 article-title: Highly dispersed platinum in metal organic framework NH2 -MIL-101(Al) containing phosphotungstic acid – characterization and catalytic performance publication-title: J. Catal. doi: 10.1016/j.jcat.2012.01.013 – volume: 6 start-page: 235 issue: 1 year: 2016 ident: 10.1016/j.renene.2020.09.122_bib23 article-title: Tuning Zr6 MOFs nodes as catalyst supports: site densities and electron-donor properties influence molecular iridium complexes as ethylene conversion catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.5b02243 – volume: 91 issue: 1–2 year: 2013 ident: 10.1016/j.renene.2020.09.122_bib4 article-title: Studies on design of heterogeneous catalysts for biodiesel production publication-title: Process Saf. Environ. Protect. – volume: 423 start-page: 705 issue: 6941 year: 2003 ident: 10.1016/j.renene.2020.09.122_bib6 article-title: Reticular synthesis and the design of new materials publication-title: Nature doi: 10.1038/nature01650 – volume: 77 start-page: 982 issue: 11 year: 2012 ident: 10.1016/j.renene.2020.09.122_bib19 article-title: Trypsin-immobilized metalâ organic framework as a biocatalyst in proteomics analysis publication-title: Chempluschem doi: 10.1002/cplu.201200186 – volume: 43 start-page: 1115 issue: 8 year: 2010 ident: 10.1016/j.renene.2020.09.122_bib8 article-title: Metal-organic frameworks with functional pores for recognition of small molecules publication-title: Acc. Chem. Res. doi: 10.1021/ar100023y – volume: 114 start-page: 809 year: 2014 ident: 10.1016/j.renene.2020.09.122_bib27 article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.011 – volume: 38 start-page: 1477 issue: 5 year: 2009 ident: 10.1016/j.renene.2020.09.122_bib10 article-title: Selective gas adsorption and separation in metal-organic frameworks publication-title: ChemInform – volume: 110 start-page: 4606 issue: 8 year: 2010 ident: 10.1016/j.renene.2020.09.122_bib13 article-title: ChemInform abstract: engineering metal organic frameworks for heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/cr9003924 – volume: 53 start-page: 1916 issue: 4 year: 2014 ident: 10.1016/j.renene.2020.09.122_bib15 article-title: Metal–organic frameworks as sensory materials and imaging agents publication-title: Inorg. Chem. doi: 10.1021/ic402194c – volume: 16 start-page: 2839 issue: 5 year: 2012 ident: 10.1016/j.renene.2020.09.122_bib2 article-title: Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.01.071 – volume: 2 start-page: 2630 issue: 12 year: 2012 ident: 10.1016/j.renene.2020.09.122_bib16 article-title: Metal–organic frameworks for light harvesting and photocatalysis publication-title: ACS Catal. doi: 10.1021/cs3005874 – volume: 16 start-page: 4919 issue: 23 year: 2014 ident: 10.1016/j.renene.2020.09.122_bib17 article-title: Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges publication-title: CrystEngComm doi: 10.1039/C4CE00032C – volume: 58 start-page: 871 year: 2016 ident: 10.1016/j.renene.2020.09.122_bib21 article-title: Preparation of a supported acidic ionic liquid on silica-gel and its application to the synthesis of biodiesel from waste cooking oil publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.237 – volume: 16 start-page: 3456 issue: 5 year: 2012 ident: 10.1016/j.renene.2020.09.122_bib1 article-title: The effects of water on biodiesel production and refining technologies: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.03.004 – volume: 51 start-page: 16590 issue: 51 year: 2012 ident: 10.1016/j.renene.2020.09.122_bib22 article-title: Biodiesel production by esterification of oleic acid over bronsted acidic ionic liquid supported onto fe-incorporated sba-15 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302419y – volume: 8 start-page: 840 issue: 8 year: 2007 ident: 10.1016/j.renene.2020.09.122_bib11 article-title: Twelve-connected porous metal–organic frameworks with high H2 adsorption publication-title: Chem. Commun. – volume: 307 start-page: 147 issue: 12 year: 2015 ident: 10.1016/j.renene.2020.09.122_bib9 article-title: Multi-scale crystal engineering of metal organic frameworks publication-title: Coord. Chem. Rev. – volume: 183 start-page: 17 issue: 1 year: 2014 ident: 10.1016/j.renene.2020.09.122_bib12 article-title: Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101(Cr): an experimental and computational study publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.08.040 – volume: 390 start-page: 198 year: 2014 ident: 10.1016/j.renene.2020.09.122_bib18 article-title: Amino-functionalized zr(iv) metal–organic framework as bifunctional acid–base catalyst for knoevenagel condensation publication-title: J. Mol. Catal. Chem. doi: 10.1016/j.molcata.2014.04.002 – volume: 43 start-page: 37 issue: 2 year: 2015 ident: 10.1016/j.renene.2020.09.122_bib3 article-title: Acidic ionic liquid catalyzes the production of biodiesel from keratin oil publication-title: Adv. Chem. Mater. |
SSID | ssj0015874 |
Score | 2.484026 |
Snippet | An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H2SO4, and successfully loaded B acidic ionic liquid into... An environmentally acidic ionic liquid was prepared with 1-methyl-imidazole, 1,3-propyl sultone and H₂SO₄, and successfully loaded B acidic ionic liquid into... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1588 |
SubjectTerms | Biodiesel Catalysis catalysts catalytic activity Ionic liquid ionic liquids Jatropha methanol oils temperature Zirconium-based MOFs |
Title | Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil |
URI | https://dx.doi.org/10.1016/j.renene.2020.09.122 https://www.proquest.com/docview/2636419110 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7DeNGDuOK4EcFrnDZLY48iDqOiHnRABAlJmmKltuM4c9CDv928LqKCCN5KSEL7kr79fQ-h_SBMAOWOE-3tLsK9RkSMpJZIkTKrjdAyhYjuxWU0HPGzW3HbQcdtLQykVTa8v-bpFbduRvoNNfvjLOtfg_LtlfmQQqMCLsFu51zCLT94_0zzCMVhjcTsJxOY3ZbPVTlegBpZAFgmDQDtNKT0N_H0g1FX0mewhBYbtREf1W-2jDquWEELX8AEV9H9XTbxxm02eyIgmhJ8cTV4IXmpE_8MXleL8-x5liWkctm8vvnh8cTV2N9lgcsUm6yEpEKXY6g6wWfgJx8_aFxm-RoaDU5ujoekaZ5ALGPxlKQ2EobHhvuzSAKeSMdS_51csihIIkOp8caeNbFjRgvHHIOSeAFhOuGAZmwddYuycBsI69QCSFUcaq251Ic6kqkVQaKp3zrSoodYSzNlG2RxaHCRqzaF7FHVlFZAaRXEylO6h8jnqnGNrPHHfNkeh_p2Q5Rn_n-s3GtPT_mfByIiunDl7EXRiEXcW6xhsPnv3bfQPIU8l8ots42608nM7XhFZWp2q5u4i-aOTs-Hlx_t5-hV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA-ih7YH0dpSvyP0GncmHxPnKOKyWlcPVZBCCUkmQ6eMM-u6e9CDf7vvzYdYQYTehpCEzEvy8j5_j5DvUZwhyp1kFvQuJkEiYk5zz7TKhbdOWZ2jR3d8noyu5Om1ul4gR30uDIZVdry_5ekNt-5aBh01B5OiGPxE4RuE-ZhjoQKpQW9fknB9sYzB_uNznEesDlooZujNsHufP9cEeSFsZIVomTxCuNOY87fep1ecunl-hitkuZMb6WG7tFWyEKrP5NMLNME18vtXMQXttpjfMHybMjq-GN6xsrYZfKPZ1dOyuJ0XGWtsNvcP0DyZhhb8u65onVNX1BhVGEqKaSf0FA3lkz-W1kX5hVwNjy-PRqyrnsC8EOmM5T5RTqZOwmZkkcx0EDn8p9QiibLEce5A2_MuDcJZFUQQmBOv0E-nAtJMfCWLVV2Fb4Ta3CNKVRpba6W2BzbRuVdRZjlMnVi1TkRPM-M7aHGscFGaPobsr2kpbZDSJkoNUHqdsOdRkxZa453-ut8O888RMcD93xm51--egduDLhFbhXp-Z3giEgkqaxxt_Pfsu-TD6HJ8Zs5Ozn9sko8cg14aG80WWZxN52EbpJaZ22lO5RNLwenj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zirconium-based+MOFs-loaded+ionic+liquid-catalyzed+preparation+of+biodiesel+from+Jatropha+oil&rft.jtitle=Renewable+energy&rft.au=Dai%2C+Qiqi&rft.au=Yang%2C+Zifei&rft.au=Li%2C+Jin&rft.au=Cao%2C+Yang&rft.date=2021-01-01&rft.issn=0960-1481&rft.volume=163&rft.spage=1588&rft.epage=1594&rft_id=info:doi/10.1016%2Fj.renene.2020.09.122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2020_09_122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |