CFD analysis for the geometry effect of disc-type membrane module on separation performance
A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H 2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 34; no. 9; pp. 2366 - 2373 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2017
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-017-0159-1 |
Cover
Abstract | A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H
2
flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by
ca
. 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H
2
flux where the geometries in cases 1–3 were combined clearly revealed that most of the membrane area was used to permeate H
2
; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity. |
---|---|
AbstractList | A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by ca. 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H2 flux where the geometries in cases 1-3 were combined clearly revealed that most of the membrane area was used to permeate H2; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity. KCI Citation Count: 1 A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by ca. 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H2 flux where the geometries in cases 1–3 were combined clearly revealed that most of the membrane area was used to permeate H2; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity. A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H 2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by ca . 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H 2 flux where the geometries in cases 1–3 were combined clearly revealed that most of the membrane area was used to permeate H 2 ; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity. |
Author | Hwang, Kyung-Ran Park, Myung-June Lee, Geunjeong Park, Jong-Soo |
Author_xml | – sequence: 1 givenname: Geunjeong surname: Lee fullname: Lee, Geunjeong organization: Department of Energy Systems Research, Ajou University – sequence: 2 givenname: Kyung-Ran surname: Hwang fullname: Hwang, Kyung-Ran organization: Clean Fuel Department, Korea Institute of Energy Research – sequence: 3 givenname: Jong-Soo surname: Park fullname: Park, Jong-Soo organization: Energy Materials Center, Korea Institute of Energy Research – sequence: 4 givenname: Myung-June surname: Park fullname: Park, Myung-June email: mjpark@ajou.ac.kr organization: Department of Energy Systems Research, Ajou University, Department of Chemical Engineering, Ajou University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002250345$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kDFPwzAQhS1UJFrgB7BZYmIw3MVx0oxVoVCpEhIqE4PlOnZJ28TBTof8e1zCwIJ0p7vhe093b0JGjWsMITcI9wiQPwTEKaYMMI8tCoZnZIxFLlieJDAiY0hExhBRXJBJCDsAIbIExuRjvnikqlGHPlSBWudp92no1rjadL6nxlqjO-osLaugWde3htam3njVxMWVx4OhrqHBtMqrropra3x0qVWjzRU5t-oQzPXvvCTvi6f1_IWtXp-X89mKac6LjlkV70SVAWZZWUA-RV2AtaUo-UYVKaYcoEys3nAsE41TUcSjUmWzfKqUAM0vyd3g23gr97qSTlU_c-vk3svZ23opMRUcsySytwPbevd1NKGTO3f08f8gseBpHgt4pHCgtHcheGNl66ta-V4iyFPecshbxrzlKW-JUZMMmhDZZmv8H-d_Rd8k6IPr |
Cites_doi | 10.1007/s11814-016-0076-8 10.1016/j.jhazmat.2009.06.026 10.1016/j.fuproc.2012.07.013 10.1007/s11814-013-0042-7 10.1016/j.ijhydene.2011.08.043 10.1021/acs.iecr.6b01247 10.1016/j.memsci.2005.04.035 10.1016/j.ijhydene.2012.01.048 10.1016/j.jallcom.2016.05.205 10.1016/j.ijhydene.2012.08.114 10.1016/j.memsci.2008.06.050 10.1021/ie8019032 10.1007/s11814-014-0346-2 10.1016/j.ijggc.2010.04.001 10.1039/c3ra43965h 10.1016/j.ijhydene.2015.11.054 10.1016/j.enconman.2016.04.073 10.1016/j.memsci.2009.11.040 10.1205/cherd05049 10.1016/S0376-7388(98)00256-7 10.1016/j.ijhydene.2016.08.172 10.1007/978-1-4757-3658-8 10.1016/j.memsci.2014.08.034 10.1016/j.memsci.2005.12.002 10.1016/j.memsci.2004.09.038 10.1016/j.memsci.2015.08.061 10.1016/j.cattod.2005.12.010 10.1016/j.egypro.2013.05.198 10.1016/j.cej.2005.06.010 10.1016/j.ijhydene.2011.07.109 10.1016/j.memsci.2016.12.033 |
ContentType | Journal Article |
Copyright | Korean Institute of Chemical Engineers, Seoul, Korea 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Korean Institute of Chemical Engineers, Seoul, Korea 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-017-0159-1 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 2373 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1453162 10_1007_s11814_017_0159_1 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c339t-fa9751a60166d90781c90ffd5d3ba9414300d2fcb31d2c1859ffe4af678aa50c3 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:41 EST 2024 Sat Sep 13 14:50:41 EDT 2025 Tue Jul 01 03:29:34 EDT 2025 Fri Feb 21 02:35:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Membrane Geometry Computational Fluid Dynamics Model Hydrogen Flux Disc-type Membrane Scale-up |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-fa9751a60166d90781c90ffd5d3ba9414300d2fcb31d2c1859ffe4af678aa50c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1934734703 |
PQPubID | 2044390 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1453162 proquest_journals_1934734703 crossref_primary_10_1007_s11814_017_0159_1 springer_journals_10_1007_s11814_017_0159_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | BernardoP.DrioliE.GolemmeG.Ind. Eng. Chem. Res.20094846381:CAS:528:DC%2BD1MXkvVGgs74%3D10.1021/ie8019032 RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy20133876051:CAS:528:DC%2BC38XhsVamsLbE10.1016/j.ijhydene.2012.08.114 ShinD. Y.HwangK. R.ParkJ. S.ParkM. J.Korean J. Chem. Eng.20153214141:CAS:528:DC%2BC2MXjsVGhtb0%3D10.1007/s11814-014-0346-2 BoonJ.PieterseJ. A. Z.DijkstraJ. W.Van DelftY. C.VeenstraP.JansenD.Energy Procedia20133710201:CAS:528:DC%2BC3sXhs1Cltb%2FK10.1016/j.egypro.2013.05.198 XieF.LiuJ.WangJ.ChenW.Korean J. Chem. Eng.20163321691:CAS:528:DC%2BC28Xos1GksLY%3D10.1007/s11814-016-0076-8 LiuL.LiL.DingZ.MaR.YangZ.J. Membr. Sci.20052641131:CAS:528:DC%2BD2MXhtVCksL7M10.1016/j.memsci.2005.04.035 WardT. L.DaoT.J. Membr. Sci.19991532111:CAS:528:DyaK1MXht1Sltg%3D%3D10.1016/S0376-7388(98)00256-7 HwangK.-R.LeeS.-W.OhD.-K.LeeC.-B.ParkJ.-S.J. Alloys Compd.20166853371:CAS:528:DC%2BC28Xps1SntLw%3D10.1016/j.jallcom.2016.05.205 ScholesC. A.SmithK. H.KentishS. E.StevensG. W.Int. J. Greenhouse Gas Control201047391:CAS:528:DC%2BC3cXhtVSisr7K10.1016/j.ijggc.2010.04.001 Ramírez-SantosÁ A. A.CastelC.FavreE.J. Membr. Sci.201752619110.1016/j.memsci.2016.12.033 SpallinaV.PandolfoD.BattistellaA.RomanoM. C.Van Sint AnnalandM.GallucciF.Energy Convers. Manage.20161202571:CAS:528:DC%2BC28XnsVektbg%3D10.1016/j.enconman.2016.04.073 ChenW.-H.SyuW.-Z.HungC.-I.Int. J. Hydrogen Energy201136147341:CAS:528:DC%2BC3MXhtlagsLvO10.1016/j.ijhydene.2011.08.043 SteeneveldtR.BergerB.TorpT. A.Chem. Eng. Res. Des.2006847391:CAS:528:DC%2BD28XhtFSjtLzP10.1205/cherd05049 ShafieeA.ArabM.LaiZ.LiuZ.AbbasA.Int. J. Hydrogen Energy201641190811:CAS:528:DC%2BC28XhsV2itr7P10.1016/j.ijhydene.2016.08.172 GuazzoneF.EngwallE. E.MaY. H.Catal. Today2006118241:CAS:528:DC%2BD28XhtVWqtbrM10.1016/j.cattod.2005.12.010 BrunettiA.ScuraF.BarbieriG.DrioliE.J. Membr. Sci.20103591151:CAS:528:DC%2BC3cXnvFWrtb8%3D10.1016/j.memsci.2009.11.040 ChoiJ. H.ParkM.-J.KimJ.KoY.LeeS.-H.BaekI.Korean J. Chem. Eng.20133011871:CAS:528:DC%2BC3sXosFKnu7c%3D10.1007/s11814-013-0042-7 DaiZ.AnsaloniL.DengL.Ind. Eng. Chem. Res.20165559831:CAS:528:DC%2BC28XmvFylt78%3D10.1021/acs.iecr.6b01247 LiangW.HughesR.Chem. Eng. J.2005112811:CAS:528:DC%2BD2MXhtVWit7zM10.1016/j.cej.2005.06.010 MansourizadehA.IsmailA. F.J. Hazard. Mater.2009171381:CAS:528:DC%2BD1MXhtFOru7%2FL10.1016/j.jhazmat.2009.06.026 HwangK.-R.LeeC.-B.RyiS.-K.ParkJ.-S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048 HwangK.-R.LeeS.-W.RyiS.-K.KimD.-K.KimT.-H.ParkJ.-S.Fuel Process. Technol.20131061331:CAS:528:DC%2BC38XhslKnurjL10.1016/j.fuproc.2012.07.013 GrahnM.HedlundJ.J. Membr. Sci.20144713281:CAS:528:DC%2BC2cXhsVGnsL%2FJ10.1016/j.memsci.2014.08.034 BrennerS. C.ScottL. R.The mathematical theory of finite element methods2002New YorkSpringer-Verlag10.1007/978-1-4757-3658-8 JaffrinM. Y.J. Membr. Sci.200832471:CAS:528:DC%2BD1cXhtVOnsL3P10.1016/j.memsci.2008.06.050 AhmadN. A.LeoC. P.AhmadA. L.MohammadA. W.Int. J. Hydrogen Energy20164148551:CAS:528:DC%2BC2MXhvFWhtbvK10.1016/j.ijhydene.2015.11.054 TakabaH.NakaoS.-iJ. Membr. Sci.2005249831:CAS:528:DC%2BD2MXht1Cku70%3D10.1016/j.memsci.2004.09.038 GielensF. C.KnibbelerR. J. J.DuysinxP. F. J.TongH. D.VorstmanM. A. G.KeurentjesJ. T. F.J. Membr. Sci.20062791761:CAS:528:DC%2BD28XlsVyrs7g%3D10.1016/j.memsci.2005.12.002 KenarsariS. D.YangD.JiangG.ZhangS.WangJ.RussellA. G.WeiQ.FanM.RSC Adv.20133227391:CAS:528:DC%2BC3sXhs1yltLrK10.1039/c3ra43965h BoonJ.PieterseJ. A. Z.van BerkelF. P. F.van DelftY. C.van Sint AnnalandM.J. Membr. Sci.20154963441:CAS:528:DC%2BC2MXhsFGlurnP10.1016/j.memsci.2015.08.061 RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy201136137691:CAS:528:DC%2BC3MXht1ajtrbJ10.1016/j.ijhydene.2011.07.109 HwangK. R.LeeC. B.RyiS. K.ParkJ. S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048 M. Y. Jaffrin (159_CR12) 2008; 324 J. H. Choi (159_CR26) 2013; 30 A. Mansourizadeh (159_CR3) 2009; 171 R. Steeneveldt (159_CR1) 2006; 84 W.-H. Chen (159_CR16) 2011; 36 S.-K. Ryi (159_CR25) 2011; 36 L. Liu (159_CR11) 2005; 264 N. A. Ahmad (159_CR5) 2016; 41 K.-R. Hwang (159_CR31) 2016; 685 Á A. A. Ramírez-Santos (159_CR19) 2017; 526 J. Boon (159_CR15) 2015; 496 J. Boon (159_CR22) 2013; 37 H. Takaba (159_CR17) 2005; 249 V. Spallina (159_CR21) 2016; 120 A. Brunetti (159_CR6) 2010; 359 D. Y. Shin (159_CR24) 2015; 32 S. D. Kenarsari (159_CR7) 2013; 3 K.-R. Hwang (159_CR13) 2012; 37 W. Liang (159_CR30) 2005; 112 F. Guazzone (159_CR29) 2006; 118 C. A. Scholes (159_CR2) 2010; 4 Z. Dai (159_CR4) 2016; 55 M. Grahn (159_CR18) 2014; 471 S. C. Brenner (159_CR27) 2002 A. Shafiee (159_CR20) 2016; 41 F. Xie (159_CR23) 2016; 33 T. L. Ward (159_CR9) 1999; 153 P. Bernardo (159_CR8) 2009; 48 S.-K. Ryi (159_CR28) 2013; 38 F. C. Gielens (159_CR10) 2006; 279 K.-R. Hwang (159_CR14) 2013; 106 K. R. Hwang (159_CR32) 2012; 37 |
References_xml | – reference: ChenW.-H.SyuW.-Z.HungC.-I.Int. J. Hydrogen Energy201136147341:CAS:528:DC%2BC3MXhtlagsLvO10.1016/j.ijhydene.2011.08.043 – reference: HwangK.-R.LeeS.-W.OhD.-K.LeeC.-B.ParkJ.-S.J. Alloys Compd.20166853371:CAS:528:DC%2BC28Xps1SntLw%3D10.1016/j.jallcom.2016.05.205 – reference: LiangW.HughesR.Chem. Eng. J.2005112811:CAS:528:DC%2BD2MXhtVWit7zM10.1016/j.cej.2005.06.010 – reference: ShinD. Y.HwangK. R.ParkJ. S.ParkM. J.Korean J. Chem. Eng.20153214141:CAS:528:DC%2BC2MXjsVGhtb0%3D10.1007/s11814-014-0346-2 – reference: TakabaH.NakaoS.-iJ. Membr. Sci.2005249831:CAS:528:DC%2BD2MXht1Cku70%3D10.1016/j.memsci.2004.09.038 – reference: SteeneveldtR.BergerB.TorpT. A.Chem. Eng. Res. Des.2006847391:CAS:528:DC%2BD28XhtFSjtLzP10.1205/cherd05049 – reference: GielensF. C.KnibbelerR. J. J.DuysinxP. F. J.TongH. D.VorstmanM. A. G.KeurentjesJ. T. F.J. Membr. Sci.20062791761:CAS:528:DC%2BD28XlsVyrs7g%3D10.1016/j.memsci.2005.12.002 – reference: GrahnM.HedlundJ.J. Membr. Sci.20144713281:CAS:528:DC%2BC2cXhsVGnsL%2FJ10.1016/j.memsci.2014.08.034 – reference: GuazzoneF.EngwallE. E.MaY. H.Catal. Today2006118241:CAS:528:DC%2BD28XhtVWqtbrM10.1016/j.cattod.2005.12.010 – reference: BrunettiA.ScuraF.BarbieriG.DrioliE.J. Membr. Sci.20103591151:CAS:528:DC%2BC3cXnvFWrtb8%3D10.1016/j.memsci.2009.11.040 – reference: XieF.LiuJ.WangJ.ChenW.Korean J. Chem. Eng.20163321691:CAS:528:DC%2BC28Xos1GksLY%3D10.1007/s11814-016-0076-8 – reference: JaffrinM. Y.J. Membr. Sci.200832471:CAS:528:DC%2BD1cXhtVOnsL3P10.1016/j.memsci.2008.06.050 – reference: HwangK.-R.LeeS.-W.RyiS.-K.KimD.-K.KimT.-H.ParkJ.-S.Fuel Process. Technol.20131061331:CAS:528:DC%2BC38XhslKnurjL10.1016/j.fuproc.2012.07.013 – reference: MansourizadehA.IsmailA. F.J. Hazard. Mater.2009171381:CAS:528:DC%2BD1MXhtFOru7%2FL10.1016/j.jhazmat.2009.06.026 – reference: AhmadN. A.LeoC. P.AhmadA. L.MohammadA. W.Int. J. Hydrogen Energy20164148551:CAS:528:DC%2BC2MXhvFWhtbvK10.1016/j.ijhydene.2015.11.054 – reference: BoonJ.PieterseJ. A. Z.van BerkelF. P. F.van DelftY. C.van Sint AnnalandM.J. Membr. Sci.20154963441:CAS:528:DC%2BC2MXhsFGlurnP10.1016/j.memsci.2015.08.061 – reference: HwangK.-R.LeeC.-B.RyiS.-K.ParkJ.-S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048 – reference: BrennerS. C.ScottL. R.The mathematical theory of finite element methods2002New YorkSpringer-Verlag10.1007/978-1-4757-3658-8 – reference: WardT. L.DaoT.J. Membr. Sci.19991532111:CAS:528:DyaK1MXht1Sltg%3D%3D10.1016/S0376-7388(98)00256-7 – reference: Ramírez-SantosÁ A. A.CastelC.FavreE.J. Membr. Sci.201752619110.1016/j.memsci.2016.12.033 – reference: ScholesC. A.SmithK. H.KentishS. E.StevensG. W.Int. J. Greenhouse Gas Control201047391:CAS:528:DC%2BC3cXhtVSisr7K10.1016/j.ijggc.2010.04.001 – reference: RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy20133876051:CAS:528:DC%2BC38XhsVamsLbE10.1016/j.ijhydene.2012.08.114 – reference: DaiZ.AnsaloniL.DengL.Ind. Eng. Chem. Res.20165559831:CAS:528:DC%2BC28XmvFylt78%3D10.1021/acs.iecr.6b01247 – reference: LiuL.LiL.DingZ.MaR.YangZ.J. Membr. Sci.20052641131:CAS:528:DC%2BD2MXhtVCksL7M10.1016/j.memsci.2005.04.035 – reference: SpallinaV.PandolfoD.BattistellaA.RomanoM. C.Van Sint AnnalandM.GallucciF.Energy Convers. Manage.20161202571:CAS:528:DC%2BC28XnsVektbg%3D10.1016/j.enconman.2016.04.073 – reference: ShafieeA.ArabM.LaiZ.LiuZ.AbbasA.Int. J. Hydrogen Energy201641190811:CAS:528:DC%2BC28XhsV2itr7P10.1016/j.ijhydene.2016.08.172 – reference: BernardoP.DrioliE.GolemmeG.Ind. Eng. Chem. Res.20094846381:CAS:528:DC%2BD1MXkvVGgs74%3D10.1021/ie8019032 – reference: BoonJ.PieterseJ. A. Z.DijkstraJ. W.Van DelftY. C.VeenstraP.JansenD.Energy Procedia20133710201:CAS:528:DC%2BC3sXhs1Cltb%2FK10.1016/j.egypro.2013.05.198 – reference: RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy201136137691:CAS:528:DC%2BC3MXht1ajtrbJ10.1016/j.ijhydene.2011.07.109 – reference: KenarsariS. D.YangD.JiangG.ZhangS.WangJ.RussellA. G.WeiQ.FanM.RSC Adv.20133227391:CAS:528:DC%2BC3sXhs1yltLrK10.1039/c3ra43965h – reference: HwangK. R.LeeC. B.RyiS. K.ParkJ. S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048 – reference: ChoiJ. H.ParkM.-J.KimJ.KoY.LeeS.-H.BaekI.Korean J. Chem. Eng.20133011871:CAS:528:DC%2BC3sXosFKnu7c%3D10.1007/s11814-013-0042-7 – volume: 33 start-page: 2169 year: 2016 ident: 159_CR23 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-016-0076-8 – volume: 171 start-page: 38 year: 2009 ident: 159_CR3 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.06.026 – volume: 106 start-page: 133 year: 2013 ident: 159_CR14 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2012.07.013 – volume: 30 start-page: 1187 year: 2013 ident: 159_CR26 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-013-0042-7 – volume: 36 start-page: 14734 year: 2011 ident: 159_CR16 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.08.043 – volume: 55 start-page: 5983 year: 2016 ident: 159_CR4 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b01247 – volume: 264 start-page: 113 year: 2005 ident: 159_CR11 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.04.035 – volume: 37 start-page: 6626 year: 2012 ident: 159_CR13 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.01.048 – volume: 685 start-page: 337 year: 2016 ident: 159_CR31 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.05.205 – volume: 38 start-page: 7605 year: 2013 ident: 159_CR28 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.08.114 – volume: 324 start-page: 7 year: 2008 ident: 159_CR12 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.06.050 – volume: 48 start-page: 4638 year: 2009 ident: 159_CR8 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie8019032 – volume: 32 start-page: 1414 year: 2015 ident: 159_CR24 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-014-0346-2 – volume: 4 start-page: 739 year: 2010 ident: 159_CR2 publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2010.04.001 – volume: 3 start-page: 22739 year: 2013 ident: 159_CR7 publication-title: RSC Adv. doi: 10.1039/c3ra43965h – volume: 41 start-page: 4855 year: 2016 ident: 159_CR5 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.11.054 – volume: 120 start-page: 257 year: 2016 ident: 159_CR21 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.04.073 – volume: 359 start-page: 115 year: 2010 ident: 159_CR6 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.11.040 – volume: 84 start-page: 739 year: 2006 ident: 159_CR1 publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd05049 – volume: 153 start-page: 211 year: 1999 ident: 159_CR9 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00256-7 – volume: 41 start-page: 19081 year: 2016 ident: 159_CR20 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.172 – volume-title: The mathematical theory of finite element methods year: 2002 ident: 159_CR27 doi: 10.1007/978-1-4757-3658-8 – volume: 471 start-page: 328 year: 2014 ident: 159_CR18 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.08.034 – volume: 279 start-page: 176 year: 2006 ident: 159_CR10 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.12.002 – volume: 249 start-page: 83 year: 2005 ident: 159_CR17 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2004.09.038 – volume: 496 start-page: 344 year: 2015 ident: 159_CR15 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.08.061 – volume: 118 start-page: 24 year: 2006 ident: 159_CR29 publication-title: Catal. Today doi: 10.1016/j.cattod.2005.12.010 – volume: 37 start-page: 1020 year: 2013 ident: 159_CR22 publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.05.198 – volume: 112 start-page: 81 year: 2005 ident: 159_CR30 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2005.06.010 – volume: 37 start-page: 6626 year: 2012 ident: 159_CR32 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.01.048 – volume: 36 start-page: 13769 year: 2011 ident: 159_CR25 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.109 – volume: 526 start-page: 191 year: 2017 ident: 159_CR19 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.12.033 |
SSID | ssj0055620 |
Score | 2.1142597 |
Snippet | A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 2366 |
SubjectTerms | Biotechnology Catalysis Chemistry Chemistry and Materials Science Computational fluid dynamics Computer simulation Flow velocity Flux Fourier transforms Gold Industrial Chemistry/Chemical Engineering Materials Science Mathematical models Palladium Separation Simulation Transport Phenomena Utilization 화학공학 |
Title | CFD analysis for the geometry effect of disc-type membrane module on separation performance |
URI | https://link.springer.com/article/10.1007/s11814-017-0159-1 https://www.proquest.com/docview/1934734703 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002250345 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2017, 34(9), 210, pp.2366-2373 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6WIJ4UirdJm02x3V1faEnFxQPIU0TkXVb2cfFX-9k27AqehAKDTS0aSbJfJOZ-QJwFFmhHfVToDTaqoxnYSBaTATMGIPq0kZGO4_u3X1y1WM3j_Fjlcc98tHu3iU5XalnyW6ojFzEhAuVjEWAJs9C3GyJVg0W2pdPtxd-AY5RpZdbK45iDxGPd2b-9pJv6mg-H9pvSPOHc3Sqc7qr8OBbW4aa9E8n4_RUf_wgcvzn76zBSoVBSbscNOswZ_INWOz4o982YPkLS-EmPHe650RV5CUEQS5B0EheTDEwWJuUESGksMRl-AZuT5cMzACt8BwLRTZ5M6TIyciULONYfJ8lK2xBr3vx0LkKqjMZAk2pGAdWCR43lSNxSTLhmIK0CK3N4oymSjBEX2GYRVantJlFGsGAwEYwZVEnKhWHmm5DLS9yswMkwdlvuGqllMUsYWlKraJplHDOteKU1-HYi0a-l9Qbckay7HpPYu9J13uyWYdDFJ7s61fpCLPd_aWQ_aFEs-Aa7RtcapKoDvtetrKaqiOJCJZxvEJahxMvqi-P__ri7r9q78FSNJW1i07bh9p4ODEHCGfGaQOHb_fs7L5RDeMGzPei9ifgOOvy |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6DOJJqXSbtDFHWV3X52kFxUNI02SRdVvZx8Vf72TbsCp6EAoNNLRpJsl8k5n5AnAUWaEd9VOgNNqqjGdhIM6YCJgxBtWljYx2Ht37h6T9yG6e4qcqj3voo929S3KyUk-T3VAZuYgJFyoZiwBNnjmGJnhYg7nzq-fbS78Ax6jSy60VR7GHiMc7M397yTd1NJsP7Dek-cM5OtE5rWXo-NaWoSa90_EoPdUfP4gc__k7K7BUYVByXg6aVZgx-RrMN_3Rb2uw-IWlcB1emq0LoiryEoIglyBoJF1T9A3WJmVECCkscRm-gdvTJX3TRys8x0KRjd8MKXIyNCXLOBbfp8kKG_DYuuw020F1JkOgKRWjwCrB44ZyJC5JJhxTkBahtVmc0VQJhugrDLPI6pQ2skgjGBDYCKYs6kSl4lDTTajlRW62gCQ4-w1XZyllMUtYmlKraBolnHOtOOV1OPaike8l9Yackiy73pPYe9L1nmzU4RCFJ3v6VTrCbHfvFrI3kGgWXKN9g0tNEtVh18tWVlN1KBHBMo5XSOtw4kX15fFfX9z-V-0DmG937u_k3fXD7Q4sRBO5u0i1XaiNBmOzh9BmlO5XQ_kT-Ajsag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AD8exE-sn0F8Usq6Jm2Wx7E5_Bw-OBB8CGmaDJlrxzb_fy9ry6bog1BooKEtd0nud7m7XwAuQyu0o37ylUZflfE08EWDCZ8ZY9Bc2tBoF9F96sa3PXb_Gr2W55xOqmz3KiRZ1DQ4lqZsWhultjYvfEPD5LInXNpkJHx0f1ZxNa67gd4Lm9VSHKFxLzZZHNkeYp8qrPnbK74ZpuVsbL9hzh9h0pn16WzDVgkbSbPQ8w4smWwX1lvVaW27sLlALLgHb61Om6iSb4QgLiWI80jf5EODvUmRxEFyS1xRru-2YcnQDNFxzrCRp58fhuQZmZiCGBybo3l9wT70OjcvrVu_PEbB15SKqW-V4FFdOd6VOBWO3EeLwNo0SmmiBEPAFARpaHVC62mo0X4L_AmmLJoxpaJA0wNYyfLMHAKJccIarhoJZRGLWZJQq2gSxpxzrTjlHlxVMpSjgi1DznmRncAlClw6gcu6BxcoZTnQ79JxXLt7P5eDsUQkf4cuCa4OcejBSaUEWc6uiUTQyTheAfXgulLMwuO_vnj0r97nsPbc7sjHu-7DMWyEs5HicstOYGU6_jSnCEamydlswH0BuubT6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+analysis+for+the+geometry+effect+of+disc-type+membrane+module+on+separation+performance&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Lee%2C+Geunjeong&rft.au=Kyung-Ran+Hwang&rft.au=Jong-Soo%2C+Park&rft.au=Myung-June+Park&rft.date=2017-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=34&rft.issue=9&rft.spage=2366&rft.epage=2373&rft_id=info:doi/10.1007%2Fs11814-017-0159-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |