CFD analysis for the geometry effect of disc-type membrane module on separation performance

A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H 2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 34; no. 9; pp. 2366 - 2373
Main Authors Lee, Geunjeong, Hwang, Kyung-Ran, Park, Jong-Soo, Park, Myung-June
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2017
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-017-0159-1

Cover

Abstract A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H 2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by ca . 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H 2 flux where the geometries in cases 1–3 were combined clearly revealed that most of the membrane area was used to permeate H 2 ; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity.
AbstractList A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by ca. 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H2 flux where the geometries in cases 1-3 were combined clearly revealed that most of the membrane area was used to permeate H2; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity. KCI Citation Count: 1
A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by ca. 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H2 flux where the geometries in cases 1–3 were combined clearly revealed that most of the membrane area was used to permeate H2; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity.
A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the distribution of H 2 flux over the membrane. When the membrane size was increased to develop a module with a large separation capacity, the feed flow rate per unit membrane area decreased, indicating loss of utilization of the membrane area. To increase the utilization, the sizes of the feed inlet tube and retentate tube were varied (cases 1 and 2, respectively). The CFD simulation showed that the feed flow rates per unit membrane area increased by ca . 8% and 10%, respectively, whereas a change in the geometry from circular to a rectangle with rounded edges (case 3) resulted in an increase of approximately 19%. A change in the ratio of the edges (case 4) had a slight influence on the separation performance. The distribution of H 2 flux where the geometries in cases 1–3 were combined clearly revealed that most of the membrane area was used to permeate H 2 ; as a result, the number of membranes decreased by approximately 88% upon increasing their size, while the total membrane area remained the same. This indicated improved utilization of the membrane. The proposed approach is expected to be useful for acquiring valuable information on the design of a membrane module with a large separation capacity.
Author Hwang, Kyung-Ran
Park, Myung-June
Lee, Geunjeong
Park, Jong-Soo
Author_xml – sequence: 1
  givenname: Geunjeong
  surname: Lee
  fullname: Lee, Geunjeong
  organization: Department of Energy Systems Research, Ajou University
– sequence: 2
  givenname: Kyung-Ran
  surname: Hwang
  fullname: Hwang, Kyung-Ran
  organization: Clean Fuel Department, Korea Institute of Energy Research
– sequence: 3
  givenname: Jong-Soo
  surname: Park
  fullname: Park, Jong-Soo
  organization: Energy Materials Center, Korea Institute of Energy Research
– sequence: 4
  givenname: Myung-June
  surname: Park
  fullname: Park, Myung-June
  email: mjpark@ajou.ac.kr
  organization: Department of Energy Systems Research, Ajou University, Department of Chemical Engineering, Ajou University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002250345$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kDFPwzAQhS1UJFrgB7BZYmIw3MVx0oxVoVCpEhIqE4PlOnZJ28TBTof8e1zCwIJ0p7vhe093b0JGjWsMITcI9wiQPwTEKaYMMI8tCoZnZIxFLlieJDAiY0hExhBRXJBJCDsAIbIExuRjvnikqlGHPlSBWudp92no1rjadL6nxlqjO-osLaugWde3htam3njVxMWVx4OhrqHBtMqrropra3x0qVWjzRU5t-oQzPXvvCTvi6f1_IWtXp-X89mKac6LjlkV70SVAWZZWUA-RV2AtaUo-UYVKaYcoEys3nAsE41TUcSjUmWzfKqUAM0vyd3g23gr97qSTlU_c-vk3svZ23opMRUcsySytwPbevd1NKGTO3f08f8gseBpHgt4pHCgtHcheGNl66ta-V4iyFPecshbxrzlKW-JUZMMmhDZZmv8H-d_Rd8k6IPr
Cites_doi 10.1007/s11814-016-0076-8
10.1016/j.jhazmat.2009.06.026
10.1016/j.fuproc.2012.07.013
10.1007/s11814-013-0042-7
10.1016/j.ijhydene.2011.08.043
10.1021/acs.iecr.6b01247
10.1016/j.memsci.2005.04.035
10.1016/j.ijhydene.2012.01.048
10.1016/j.jallcom.2016.05.205
10.1016/j.ijhydene.2012.08.114
10.1016/j.memsci.2008.06.050
10.1021/ie8019032
10.1007/s11814-014-0346-2
10.1016/j.ijggc.2010.04.001
10.1039/c3ra43965h
10.1016/j.ijhydene.2015.11.054
10.1016/j.enconman.2016.04.073
10.1016/j.memsci.2009.11.040
10.1205/cherd05049
10.1016/S0376-7388(98)00256-7
10.1016/j.ijhydene.2016.08.172
10.1007/978-1-4757-3658-8
10.1016/j.memsci.2014.08.034
10.1016/j.memsci.2005.12.002
10.1016/j.memsci.2004.09.038
10.1016/j.memsci.2015.08.061
10.1016/j.cattod.2005.12.010
10.1016/j.egypro.2013.05.198
10.1016/j.cej.2005.06.010
10.1016/j.ijhydene.2011.07.109
10.1016/j.memsci.2016.12.033
ContentType Journal Article
Copyright Korean Institute of Chemical Engineers, Seoul, Korea 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Korean Institute of Chemical Engineers, Seoul, Korea 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-017-0159-1
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 2373
ExternalDocumentID oai_kci_go_kr_ARTI_1453162
10_1007_s11814_017_0159_1
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c339t-fa9751a60166d90781c90ffd5d3ba9414300d2fcb31d2c1859ffe4af678aa50c3
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:41 EST 2024
Sat Sep 13 14:50:41 EDT 2025
Tue Jul 01 03:29:34 EDT 2025
Fri Feb 21 02:35:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Membrane Geometry
Computational Fluid Dynamics Model
Hydrogen Flux
Disc-type Membrane
Scale-up
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-fa9751a60166d90781c90ffd5d3ba9414300d2fcb31d2c1859ffe4af678aa50c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1934734703
PQPubID 2044390
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1453162
proquest_journals_1934734703
crossref_primary_10_1007_s11814_017_0159_1
springer_journals_10_1007_s11814_017_0159_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References BernardoP.DrioliE.GolemmeG.Ind. Eng. Chem. Res.20094846381:CAS:528:DC%2BD1MXkvVGgs74%3D10.1021/ie8019032
RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy20133876051:CAS:528:DC%2BC38XhsVamsLbE10.1016/j.ijhydene.2012.08.114
ShinD. Y.HwangK. R.ParkJ. S.ParkM. J.Korean J. Chem. Eng.20153214141:CAS:528:DC%2BC2MXjsVGhtb0%3D10.1007/s11814-014-0346-2
BoonJ.PieterseJ. A. Z.DijkstraJ. W.Van DelftY. C.VeenstraP.JansenD.Energy Procedia20133710201:CAS:528:DC%2BC3sXhs1Cltb%2FK10.1016/j.egypro.2013.05.198
XieF.LiuJ.WangJ.ChenW.Korean J. Chem. Eng.20163321691:CAS:528:DC%2BC28Xos1GksLY%3D10.1007/s11814-016-0076-8
LiuL.LiL.DingZ.MaR.YangZ.J. Membr. Sci.20052641131:CAS:528:DC%2BD2MXhtVCksL7M10.1016/j.memsci.2005.04.035
WardT. L.DaoT.J. Membr. Sci.19991532111:CAS:528:DyaK1MXht1Sltg%3D%3D10.1016/S0376-7388(98)00256-7
HwangK.-R.LeeS.-W.OhD.-K.LeeC.-B.ParkJ.-S.J. Alloys Compd.20166853371:CAS:528:DC%2BC28Xps1SntLw%3D10.1016/j.jallcom.2016.05.205
ScholesC. A.SmithK. H.KentishS. E.StevensG. W.Int. J. Greenhouse Gas Control201047391:CAS:528:DC%2BC3cXhtVSisr7K10.1016/j.ijggc.2010.04.001
Ramírez-SantosÁ A. A.CastelC.FavreE.J. Membr. Sci.201752619110.1016/j.memsci.2016.12.033
SpallinaV.PandolfoD.BattistellaA.RomanoM. C.Van Sint AnnalandM.GallucciF.Energy Convers. Manage.20161202571:CAS:528:DC%2BC28XnsVektbg%3D10.1016/j.enconman.2016.04.073
ChenW.-H.SyuW.-Z.HungC.-I.Int. J. Hydrogen Energy201136147341:CAS:528:DC%2BC3MXhtlagsLvO10.1016/j.ijhydene.2011.08.043
SteeneveldtR.BergerB.TorpT. A.Chem. Eng. Res. Des.2006847391:CAS:528:DC%2BD28XhtFSjtLzP10.1205/cherd05049
ShafieeA.ArabM.LaiZ.LiuZ.AbbasA.Int. J. Hydrogen Energy201641190811:CAS:528:DC%2BC28XhsV2itr7P10.1016/j.ijhydene.2016.08.172
GuazzoneF.EngwallE. E.MaY. H.Catal. Today2006118241:CAS:528:DC%2BD28XhtVWqtbrM10.1016/j.cattod.2005.12.010
BrunettiA.ScuraF.BarbieriG.DrioliE.J. Membr. Sci.20103591151:CAS:528:DC%2BC3cXnvFWrtb8%3D10.1016/j.memsci.2009.11.040
ChoiJ. H.ParkM.-J.KimJ.KoY.LeeS.-H.BaekI.Korean J. Chem. Eng.20133011871:CAS:528:DC%2BC3sXosFKnu7c%3D10.1007/s11814-013-0042-7
DaiZ.AnsaloniL.DengL.Ind. Eng. Chem. Res.20165559831:CAS:528:DC%2BC28XmvFylt78%3D10.1021/acs.iecr.6b01247
LiangW.HughesR.Chem. Eng. J.2005112811:CAS:528:DC%2BD2MXhtVWit7zM10.1016/j.cej.2005.06.010
MansourizadehA.IsmailA. F.J. Hazard. Mater.2009171381:CAS:528:DC%2BD1MXhtFOru7%2FL10.1016/j.jhazmat.2009.06.026
HwangK.-R.LeeC.-B.RyiS.-K.ParkJ.-S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048
HwangK.-R.LeeS.-W.RyiS.-K.KimD.-K.KimT.-H.ParkJ.-S.Fuel Process. Technol.20131061331:CAS:528:DC%2BC38XhslKnurjL10.1016/j.fuproc.2012.07.013
GrahnM.HedlundJ.J. Membr. Sci.20144713281:CAS:528:DC%2BC2cXhsVGnsL%2FJ10.1016/j.memsci.2014.08.034
BrennerS. C.ScottL. R.The mathematical theory of finite element methods2002New YorkSpringer-Verlag10.1007/978-1-4757-3658-8
JaffrinM. Y.J. Membr. Sci.200832471:CAS:528:DC%2BD1cXhtVOnsL3P10.1016/j.memsci.2008.06.050
AhmadN. A.LeoC. P.AhmadA. L.MohammadA. W.Int. J. Hydrogen Energy20164148551:CAS:528:DC%2BC2MXhvFWhtbvK10.1016/j.ijhydene.2015.11.054
TakabaH.NakaoS.-iJ. Membr. Sci.2005249831:CAS:528:DC%2BD2MXht1Cku70%3D10.1016/j.memsci.2004.09.038
GielensF. C.KnibbelerR. J. J.DuysinxP. F. J.TongH. D.VorstmanM. A. G.KeurentjesJ. T. F.J. Membr. Sci.20062791761:CAS:528:DC%2BD28XlsVyrs7g%3D10.1016/j.memsci.2005.12.002
KenarsariS. D.YangD.JiangG.ZhangS.WangJ.RussellA. G.WeiQ.FanM.RSC Adv.20133227391:CAS:528:DC%2BC3sXhs1yltLrK10.1039/c3ra43965h
BoonJ.PieterseJ. A. Z.van BerkelF. P. F.van DelftY. C.van Sint AnnalandM.J. Membr. Sci.20154963441:CAS:528:DC%2BC2MXhsFGlurnP10.1016/j.memsci.2015.08.061
RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy201136137691:CAS:528:DC%2BC3MXht1ajtrbJ10.1016/j.ijhydene.2011.07.109
HwangK. R.LeeC. B.RyiS. K.ParkJ. S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048
M. Y. Jaffrin (159_CR12) 2008; 324
J. H. Choi (159_CR26) 2013; 30
A. Mansourizadeh (159_CR3) 2009; 171
R. Steeneveldt (159_CR1) 2006; 84
W.-H. Chen (159_CR16) 2011; 36
S.-K. Ryi (159_CR25) 2011; 36
L. Liu (159_CR11) 2005; 264
N. A. Ahmad (159_CR5) 2016; 41
K.-R. Hwang (159_CR31) 2016; 685
Á A. A. Ramírez-Santos (159_CR19) 2017; 526
J. Boon (159_CR15) 2015; 496
J. Boon (159_CR22) 2013; 37
H. Takaba (159_CR17) 2005; 249
V. Spallina (159_CR21) 2016; 120
A. Brunetti (159_CR6) 2010; 359
D. Y. Shin (159_CR24) 2015; 32
S. D. Kenarsari (159_CR7) 2013; 3
K.-R. Hwang (159_CR13) 2012; 37
W. Liang (159_CR30) 2005; 112
F. Guazzone (159_CR29) 2006; 118
C. A. Scholes (159_CR2) 2010; 4
Z. Dai (159_CR4) 2016; 55
M. Grahn (159_CR18) 2014; 471
S. C. Brenner (159_CR27) 2002
A. Shafiee (159_CR20) 2016; 41
F. Xie (159_CR23) 2016; 33
T. L. Ward (159_CR9) 1999; 153
P. Bernardo (159_CR8) 2009; 48
S.-K. Ryi (159_CR28) 2013; 38
F. C. Gielens (159_CR10) 2006; 279
K.-R. Hwang (159_CR14) 2013; 106
K. R. Hwang (159_CR32) 2012; 37
References_xml – reference: ChenW.-H.SyuW.-Z.HungC.-I.Int. J. Hydrogen Energy201136147341:CAS:528:DC%2BC3MXhtlagsLvO10.1016/j.ijhydene.2011.08.043
– reference: HwangK.-R.LeeS.-W.OhD.-K.LeeC.-B.ParkJ.-S.J. Alloys Compd.20166853371:CAS:528:DC%2BC28Xps1SntLw%3D10.1016/j.jallcom.2016.05.205
– reference: LiangW.HughesR.Chem. Eng. J.2005112811:CAS:528:DC%2BD2MXhtVWit7zM10.1016/j.cej.2005.06.010
– reference: ShinD. Y.HwangK. R.ParkJ. S.ParkM. J.Korean J. Chem. Eng.20153214141:CAS:528:DC%2BC2MXjsVGhtb0%3D10.1007/s11814-014-0346-2
– reference: TakabaH.NakaoS.-iJ. Membr. Sci.2005249831:CAS:528:DC%2BD2MXht1Cku70%3D10.1016/j.memsci.2004.09.038
– reference: SteeneveldtR.BergerB.TorpT. A.Chem. Eng. Res. Des.2006847391:CAS:528:DC%2BD28XhtFSjtLzP10.1205/cherd05049
– reference: GielensF. C.KnibbelerR. J. J.DuysinxP. F. J.TongH. D.VorstmanM. A. G.KeurentjesJ. T. F.J. Membr. Sci.20062791761:CAS:528:DC%2BD28XlsVyrs7g%3D10.1016/j.memsci.2005.12.002
– reference: GrahnM.HedlundJ.J. Membr. Sci.20144713281:CAS:528:DC%2BC2cXhsVGnsL%2FJ10.1016/j.memsci.2014.08.034
– reference: GuazzoneF.EngwallE. E.MaY. H.Catal. Today2006118241:CAS:528:DC%2BD28XhtVWqtbrM10.1016/j.cattod.2005.12.010
– reference: BrunettiA.ScuraF.BarbieriG.DrioliE.J. Membr. Sci.20103591151:CAS:528:DC%2BC3cXnvFWrtb8%3D10.1016/j.memsci.2009.11.040
– reference: XieF.LiuJ.WangJ.ChenW.Korean J. Chem. Eng.20163321691:CAS:528:DC%2BC28Xos1GksLY%3D10.1007/s11814-016-0076-8
– reference: JaffrinM. Y.J. Membr. Sci.200832471:CAS:528:DC%2BD1cXhtVOnsL3P10.1016/j.memsci.2008.06.050
– reference: HwangK.-R.LeeS.-W.RyiS.-K.KimD.-K.KimT.-H.ParkJ.-S.Fuel Process. Technol.20131061331:CAS:528:DC%2BC38XhslKnurjL10.1016/j.fuproc.2012.07.013
– reference: MansourizadehA.IsmailA. F.J. Hazard. Mater.2009171381:CAS:528:DC%2BD1MXhtFOru7%2FL10.1016/j.jhazmat.2009.06.026
– reference: AhmadN. A.LeoC. P.AhmadA. L.MohammadA. W.Int. J. Hydrogen Energy20164148551:CAS:528:DC%2BC2MXhvFWhtbvK10.1016/j.ijhydene.2015.11.054
– reference: BoonJ.PieterseJ. A. Z.van BerkelF. P. F.van DelftY. C.van Sint AnnalandM.J. Membr. Sci.20154963441:CAS:528:DC%2BC2MXhsFGlurnP10.1016/j.memsci.2015.08.061
– reference: HwangK.-R.LeeC.-B.RyiS.-K.ParkJ.-S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048
– reference: BrennerS. C.ScottL. R.The mathematical theory of finite element methods2002New YorkSpringer-Verlag10.1007/978-1-4757-3658-8
– reference: WardT. L.DaoT.J. Membr. Sci.19991532111:CAS:528:DyaK1MXht1Sltg%3D%3D10.1016/S0376-7388(98)00256-7
– reference: Ramírez-SantosÁ A. A.CastelC.FavreE.J. Membr. Sci.201752619110.1016/j.memsci.2016.12.033
– reference: ScholesC. A.SmithK. H.KentishS. E.StevensG. W.Int. J. Greenhouse Gas Control201047391:CAS:528:DC%2BC3cXhtVSisr7K10.1016/j.ijggc.2010.04.001
– reference: RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy20133876051:CAS:528:DC%2BC38XhsVamsLbE10.1016/j.ijhydene.2012.08.114
– reference: DaiZ.AnsaloniL.DengL.Ind. Eng. Chem. Res.20165559831:CAS:528:DC%2BC28XmvFylt78%3D10.1021/acs.iecr.6b01247
– reference: LiuL.LiL.DingZ.MaR.YangZ.J. Membr. Sci.20052641131:CAS:528:DC%2BD2MXhtVCksL7M10.1016/j.memsci.2005.04.035
– reference: SpallinaV.PandolfoD.BattistellaA.RomanoM. C.Van Sint AnnalandM.GallucciF.Energy Convers. Manage.20161202571:CAS:528:DC%2BC28XnsVektbg%3D10.1016/j.enconman.2016.04.073
– reference: ShafieeA.ArabM.LaiZ.LiuZ.AbbasA.Int. J. Hydrogen Energy201641190811:CAS:528:DC%2BC28XhsV2itr7P10.1016/j.ijhydene.2016.08.172
– reference: BernardoP.DrioliE.GolemmeG.Ind. Eng. Chem. Res.20094846381:CAS:528:DC%2BD1MXkvVGgs74%3D10.1021/ie8019032
– reference: BoonJ.PieterseJ. A. Z.DijkstraJ. W.Van DelftY. C.VeenstraP.JansenD.Energy Procedia20133710201:CAS:528:DC%2BC3sXhs1Cltb%2FK10.1016/j.egypro.2013.05.198
– reference: RyiS.-K.ParkJ.-S.HwangK.-R.LeeC.-B.LeeS.-W.Int. J. Hydrogen Energy201136137691:CAS:528:DC%2BC3MXht1ajtrbJ10.1016/j.ijhydene.2011.07.109
– reference: KenarsariS. D.YangD.JiangG.ZhangS.WangJ.RussellA. G.WeiQ.FanM.RSC Adv.20133227391:CAS:528:DC%2BC3sXhs1yltLrK10.1039/c3ra43965h
– reference: HwangK. R.LeeC. B.RyiS. K.ParkJ. S.Int. J. Hydrogen Energy20123766261:CAS:528:DC%2BC38XivFWrt7g%3D10.1016/j.ijhydene.2012.01.048
– reference: ChoiJ. H.ParkM.-J.KimJ.KoY.LeeS.-H.BaekI.Korean J. Chem. Eng.20133011871:CAS:528:DC%2BC3sXosFKnu7c%3D10.1007/s11814-013-0042-7
– volume: 33
  start-page: 2169
  year: 2016
  ident: 159_CR23
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-016-0076-8
– volume: 171
  start-page: 38
  year: 2009
  ident: 159_CR3
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.06.026
– volume: 106
  start-page: 133
  year: 2013
  ident: 159_CR14
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2012.07.013
– volume: 30
  start-page: 1187
  year: 2013
  ident: 159_CR26
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-013-0042-7
– volume: 36
  start-page: 14734
  year: 2011
  ident: 159_CR16
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.08.043
– volume: 55
  start-page: 5983
  year: 2016
  ident: 159_CR4
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b01247
– volume: 264
  start-page: 113
  year: 2005
  ident: 159_CR11
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.04.035
– volume: 37
  start-page: 6626
  year: 2012
  ident: 159_CR13
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.01.048
– volume: 685
  start-page: 337
  year: 2016
  ident: 159_CR31
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.05.205
– volume: 38
  start-page: 7605
  year: 2013
  ident: 159_CR28
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.08.114
– volume: 324
  start-page: 7
  year: 2008
  ident: 159_CR12
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.06.050
– volume: 48
  start-page: 4638
  year: 2009
  ident: 159_CR8
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie8019032
– volume: 32
  start-page: 1414
  year: 2015
  ident: 159_CR24
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-014-0346-2
– volume: 4
  start-page: 739
  year: 2010
  ident: 159_CR2
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2010.04.001
– volume: 3
  start-page: 22739
  year: 2013
  ident: 159_CR7
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43965h
– volume: 41
  start-page: 4855
  year: 2016
  ident: 159_CR5
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.11.054
– volume: 120
  start-page: 257
  year: 2016
  ident: 159_CR21
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.04.073
– volume: 359
  start-page: 115
  year: 2010
  ident: 159_CR6
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.11.040
– volume: 84
  start-page: 739
  year: 2006
  ident: 159_CR1
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd05049
– volume: 153
  start-page: 211
  year: 1999
  ident: 159_CR9
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00256-7
– volume: 41
  start-page: 19081
  year: 2016
  ident: 159_CR20
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.172
– volume-title: The mathematical theory of finite element methods
  year: 2002
  ident: 159_CR27
  doi: 10.1007/978-1-4757-3658-8
– volume: 471
  start-page: 328
  year: 2014
  ident: 159_CR18
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.08.034
– volume: 279
  start-page: 176
  year: 2006
  ident: 159_CR10
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.12.002
– volume: 249
  start-page: 83
  year: 2005
  ident: 159_CR17
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2004.09.038
– volume: 496
  start-page: 344
  year: 2015
  ident: 159_CR15
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.08.061
– volume: 118
  start-page: 24
  year: 2006
  ident: 159_CR29
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.12.010
– volume: 37
  start-page: 1020
  year: 2013
  ident: 159_CR22
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.05.198
– volume: 112
  start-page: 81
  year: 2005
  ident: 159_CR30
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2005.06.010
– volume: 37
  start-page: 6626
  year: 2012
  ident: 159_CR32
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.01.048
– volume: 36
  start-page: 13769
  year: 2011
  ident: 159_CR25
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.07.109
– volume: 526
  start-page: 191
  year: 2017
  ident: 159_CR19
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.12.033
SSID ssj0055620
Score 2.1142597
Snippet A disc-type Pd-Au membrane module was considered, and a computational fluid dynamics (CFD) model was developed to describe the actual flow dynamics and the...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 2366
SubjectTerms Biotechnology
Catalysis
Chemistry
Chemistry and Materials Science
Computational fluid dynamics
Computer simulation
Flow velocity
Flux
Fourier transforms
Gold
Industrial Chemistry/Chemical Engineering
Materials Science
Mathematical models
Palladium
Separation
Simulation
Transport Phenomena
Utilization
화학공학
Title CFD analysis for the geometry effect of disc-type membrane module on separation performance
URI https://link.springer.com/article/10.1007/s11814-017-0159-1
https://www.proquest.com/docview/1934734703
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002250345
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2017, 34(9), 210, pp.2366-2373
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6WIJ4UirdJm02x3V1faEnFxQPIU0TkXVb2cfFX-9k27AqehAKDTS0aSbJfJOZ-QJwFFmhHfVToDTaqoxnYSBaTATMGIPq0kZGO4_u3X1y1WM3j_Fjlcc98tHu3iU5XalnyW6ojFzEhAuVjEWAJs9C3GyJVg0W2pdPtxd-AY5RpZdbK45iDxGPd2b-9pJv6mg-H9pvSPOHc3Sqc7qr8OBbW4aa9E8n4_RUf_wgcvzn76zBSoVBSbscNOswZ_INWOz4o982YPkLS-EmPHe650RV5CUEQS5B0EheTDEwWJuUESGksMRl-AZuT5cMzACt8BwLRTZ5M6TIyciULONYfJ8lK2xBr3vx0LkKqjMZAk2pGAdWCR43lSNxSTLhmIK0CK3N4oymSjBEX2GYRVantJlFGsGAwEYwZVEnKhWHmm5DLS9yswMkwdlvuGqllMUsYWlKraJplHDOteKU1-HYi0a-l9Qbckay7HpPYu9J13uyWYdDFJ7s61fpCLPd_aWQ_aFEs-Aa7RtcapKoDvtetrKaqiOJCJZxvEJahxMvqi-P__ri7r9q78FSNJW1i07bh9p4ODEHCGfGaQOHb_fs7L5RDeMGzPei9ifgOOvy
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50PagH3-L6DOJJqXSbtDFHWV3X52kFxUNI02SRdVvZx8Vf72TbsCp6EAoNNLRpJsl8k5n5AnAUWaEd9VOgNNqqjGdhIM6YCJgxBtWljYx2Ht37h6T9yG6e4qcqj3voo929S3KyUk-T3VAZuYgJFyoZiwBNnjmGJnhYg7nzq-fbS78Ax6jSy60VR7GHiMc7M397yTd1NJsP7Dek-cM5OtE5rWXo-NaWoSa90_EoPdUfP4gc__k7K7BUYVByXg6aVZgx-RrMN_3Rb2uw-IWlcB1emq0LoiryEoIglyBoJF1T9A3WJmVECCkscRm-gdvTJX3TRys8x0KRjd8MKXIyNCXLOBbfp8kKG_DYuuw020F1JkOgKRWjwCrB44ZyJC5JJhxTkBahtVmc0VQJhugrDLPI6pQ2skgjGBDYCKYs6kSl4lDTTajlRW62gCQ4-w1XZyllMUtYmlKraBolnHOtOOV1OPaike8l9Yackiy73pPYe9L1nmzU4RCFJ3v6VTrCbHfvFrI3kGgWXKN9g0tNEtVh18tWVlN1KBHBMo5XSOtw4kX15fFfX9z-V-0DmG937u_k3fXD7Q4sRBO5u0i1XaiNBmOzh9BmlO5XQ_kT-Ajsag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AD8exE-sn0F8Usq6Jm2Wx7E5_Bw-OBB8CGmaDJlrxzb_fy9ry6bog1BooKEtd0nud7m7XwAuQyu0o37ylUZflfE08EWDCZ8ZY9Bc2tBoF9F96sa3PXb_Gr2W55xOqmz3KiRZ1DQ4lqZsWhultjYvfEPD5LInXNpkJHx0f1ZxNa67gd4Lm9VSHKFxLzZZHNkeYp8qrPnbK74ZpuVsbL9hzh9h0pn16WzDVgkbSbPQ8w4smWwX1lvVaW27sLlALLgHb61Om6iSb4QgLiWI80jf5EODvUmRxEFyS1xRru-2YcnQDNFxzrCRp58fhuQZmZiCGBybo3l9wT70OjcvrVu_PEbB15SKqW-V4FFdOd6VOBWO3EeLwNo0SmmiBEPAFARpaHVC62mo0X4L_AmmLJoxpaJA0wNYyfLMHAKJccIarhoJZRGLWZJQq2gSxpxzrTjlHlxVMpSjgi1DznmRncAlClw6gcu6BxcoZTnQ79JxXLt7P5eDsUQkf4cuCa4OcejBSaUEWc6uiUTQyTheAfXgulLMwuO_vnj0r97nsPbc7sjHu-7DMWyEs5HicstOYGU6_jSnCEamydlswH0BuubT6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+analysis+for+the+geometry+effect+of+disc-type+membrane+module+on+separation+performance&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Lee%2C+Geunjeong&rft.au=Kyung-Ran+Hwang&rft.au=Jong-Soo%2C+Park&rft.au=Myung-June+Park&rft.date=2017-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=34&rft.issue=9&rft.spage=2366&rft.epage=2373&rft_id=info:doi/10.1007%2Fs11814-017-0159-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon