Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system
In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m2 and an air-source heat pump with a maxim...
Saved in:
Published in | Renewable energy Vol. 180; pp. 637 - 657 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m2 and an air-source heat pump with a maximum capacity of 2 kW was established to evaluate the adaptability of the phase-change material to the solar-heat pump and the feasibility of the heating system. A comparative study was carried out to investigate the effects of the operation modes on the system thermal performance and explore optimal operating parameters. Compared to the single heating mode, the overall efficiency of the system was enhanced by about 57.5% under the combined heating mode due to the introduction of solar energy. The coefficient of performance of the heat pump significantly increased from 2.09 to 2.60 when the flow rate increased from 0.010 L/s to 0.038 L/s. However, an increase in the flow rate could not significantly improve the overall efficiency of the entire heating system due to the higher power consumption of the pump. The storage unit exhibits a great storage density of about 211.13 MJ/m3 with a volume saving rate of 21%.
•The solar-heat pump latent heat storage performance was experimentally evaluated.•The efficiency under the coupled mode was enhanced by 57.5% compared to the HP one.•The HP COP was improved by 24%, with flow rate increased from 0.010 to 0.038 L/s.•The higher flow rate contributed less to the system overall efficiency enhancement.•The volume storage density of the storage unit increased to about 211.13 MJ/m3. |
---|---|
AbstractList | In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m2 and an air-source heat pump with a maximum capacity of 2 kW was established to evaluate the adaptability of the phase-change material to the solar-heat pump and the feasibility of the heating system. A comparative study was carried out to investigate the effects of the operation modes on the system thermal performance and explore optimal operating parameters. Compared to the single heating mode, the overall efficiency of the system was enhanced by about 57.5% under the combined heating mode due to the introduction of solar energy. The coefficient of performance of the heat pump significantly increased from 2.09 to 2.60 when the flow rate increased from 0.010 L/s to 0.038 L/s. However, an increase in the flow rate could not significantly improve the overall efficiency of the entire heating system due to the higher power consumption of the pump. The storage unit exhibits a great storage density of about 211.13 MJ/m3 with a volume saving rate of 21%.
•The solar-heat pump latent heat storage performance was experimentally evaluated.•The efficiency under the coupled mode was enhanced by 57.5% compared to the HP one.•The HP COP was improved by 24%, with flow rate increased from 0.010 to 0.038 L/s.•The higher flow rate contributed less to the system overall efficiency enhancement.•The volume storage density of the storage unit increased to about 211.13 MJ/m3. In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m² and an air-source heat pump with a maximum capacity of 2 kW was established to evaluate the adaptability of the phase-change material to the solar-heat pump and the feasibility of the heating system. A comparative study was carried out to investigate the effects of the operation modes on the system thermal performance and explore optimal operating parameters. Compared to the single heating mode, the overall efficiency of the system was enhanced by about 57.5% under the combined heating mode due to the introduction of solar energy. The coefficient of performance of the heat pump significantly increased from 2.09 to 2.60 when the flow rate increased from 0.010 L/s to 0.038 L/s. However, an increase in the flow rate could not significantly improve the overall efficiency of the entire heating system due to the higher power consumption of the pump. The storage unit exhibits a great storage density of about 211.13 MJ/m³ with a volume saving rate of 21%. |
Author | Huang, Gongsheng Lai, Alvin CK Zhang, Huihui Jin, Xin |
Author_xml | – sequence: 1 givenname: Xin surname: Jin fullname: Jin, Xin email: cindyjin2-c@my.cityu.edu.hk – sequence: 2 givenname: Huihui orcidid: 0000-0002-5316-5533 surname: Zhang fullname: Zhang, Huihui email: hhzhang6-c@my.cityu.edu.hk – sequence: 3 givenname: Gongsheng surname: Huang fullname: Huang, Gongsheng email: gongsheng.huang@cityu.edu.hk – sequence: 4 givenname: Alvin CK orcidid: 0000-0002-6202-1988 surname: Lai fullname: Lai, Alvin CK email: alvinlai@cityu.edu.hk |
BookMark | eNqFkc1u3CAUhVGVSJ38vEEXLLuxC_4B00WlKkraSpG6adboDr5MGGHjAhN1niUvWyZuNl20Aokr9J0DOueCnM1hRkLecVZzxsWHfR1xLqtuWMNrNtRMyDdkwwepKiaG5oxsmBKs4t3A35KLlPaM8X6Q3YY83_5aMLoJ5wyeuvkJU3Y7yC7MtOz8iHQ8zjA5c5rjVKDC21Cm2SAN9gVZIIL36GkKHmIFKbmUcaTgYpXCIRbyESHT5TAt1EMur60Xr57l83F3pCmHCDuk6Vjk0xU5t-ATXv85L8nD3e2Pm6_V_fcv324-31embVWurDKd6VvYjnIrjRk72VsUo2Vqq4RQRnXMCCVakLLprUQQbdegRS6kVdtetJfk_eq7xPDzUALQk0sGvYcZwyHpRrRCSNWotqDdipoYUopo9VLCg3jUnOlTF3qv1y70qQvNBl26KLKPf8mMyy8h5wjO_0_8aRVjyeDJYdTJOCzpjy6iyXoM7t8GvwFOga8w |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2022_119706 crossref_primary_10_1016_j_renene_2023_119195 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126159 crossref_primary_10_1016_j_seja_2022_100020 crossref_primary_10_1016_j_energy_2024_131008 crossref_primary_10_1016_j_renene_2024_121112 crossref_primary_10_1080_15567036_2024_2368506 crossref_primary_10_1016_j_applthermaleng_2024_124778 crossref_primary_10_1016_j_enbuild_2023_113657 crossref_primary_10_1016_j_energy_2023_128035 crossref_primary_10_1016_j_renene_2023_119905 crossref_primary_10_1016_j_ijft_2024_100783 crossref_primary_10_1016_j_rser_2022_113139 crossref_primary_10_1016_j_solener_2022_02_054 crossref_primary_10_1016_j_enconman_2022_115789 crossref_primary_10_1016_j_ijrefrig_2024_11_029 crossref_primary_10_1016_j_applthermaleng_2024_124652 crossref_primary_10_1016_j_apenergy_2024_123893 crossref_primary_10_1016_j_rser_2024_114291 crossref_primary_10_1016_j_est_2022_105744 crossref_primary_10_1016_j_applthermaleng_2022_119337 crossref_primary_10_1016_j_applthermaleng_2022_119259 crossref_primary_10_1016_j_applthermaleng_2022_119851 crossref_primary_10_1016_j_applthermaleng_2023_120884 crossref_primary_10_1016_j_est_2022_105076 crossref_primary_10_1039_D4EE02350A crossref_primary_10_1093_ijlct_ctac102 crossref_primary_10_1039_D4NR00501E crossref_primary_10_1016_j_renene_2025_122710 crossref_primary_10_1016_j_seta_2022_102794 crossref_primary_10_2298_TSCI2302151H crossref_primary_10_1016_j_energy_2025_134627 crossref_primary_10_1016_j_ecmx_2024_100788 crossref_primary_10_1007_s11431_024_2761_4 crossref_primary_10_1016_j_cej_2022_140701 crossref_primary_10_1109_ACCESS_2023_3321916 crossref_primary_10_1016_j_est_2024_111272 crossref_primary_10_1016_j_seta_2022_102409 crossref_primary_10_1016_j_est_2023_107114 crossref_primary_10_1016_j_est_2023_107259 crossref_primary_10_1016_j_enconman_2021_115190 |
Cites_doi | 10.1016/j.renene.2019.05.050 10.1016/S0360-5442(02)00010-5 10.3390/en12112170 10.1016/j.enconman.2018.12.027 10.1016/j.applthermaleng.2019.114650 10.1016/j.enconman.2020.113423 10.1016/j.apenergy.2020.115950 10.1016/j.apenergy.2017.08.209 10.1016/j.enconman.2020.112679 10.1016/j.applthermaleng.2018.08.103 10.1016/j.apenergy.2019.114102 10.1016/j.csite.2020.100743 10.1016/j.rser.2020.109900 10.1016/j.renene.2019.10.008 10.1016/j.rser.2018.03.059 10.1016/j.solmat.2018.10.025 10.1016/j.enbuild.2007.05.001 10.1016/j.energy.2020.119211 10.1016/j.rser.2020.110287 10.1016/j.rser.2009.01.024 10.1016/j.energy.2018.09.065 10.1016/j.solmat.2019.110066 10.1007/s10973-018-7937-9 10.1016/j.apenergy.2017.10.095 10.1016/j.applthermaleng.2018.06.087 10.1002/er.4124 10.1016/j.energy.2020.117764 10.1016/j.solener.2020.01.002 10.1016/j.enconman.2020.113488 10.1016/j.applthermaleng.2020.116493 10.1016/j.est.2020.101270 10.1016/j.enconman.2019.01.085 10.1016/j.renene.2020.05.061 10.1016/j.enconman.2019.111796 10.1016/j.enconman.2017.10.019 10.1016/j.energy.2016.09.014 10.1016/j.enconman.2020.113624 10.1016/j.apenergy.2019.113993 10.1016/j.ijheatmasstransfer.2020.119778 10.1016/j.renene.2020.01.090 10.1016/j.enbuild.2015.03.006 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2021.08.067 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 657 |
ExternalDocumentID | 10_1016_j_renene_2021_08_067 S0960148121012337 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-f9c4c53abd7b7ccd475fe6df09b9669c940c6963a7725f7ea6342efe167f9b563 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 08:24:18 EDT 2025 Thu Apr 24 22:56:36 EDT 2025 Tue Jul 01 03:20:24 EDT 2025 Fri Feb 23 02:42:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar-heat pump Energy efficiency Phase-change material Latent heat thermal energy storage Dynamic thermal performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-f9c4c53abd7b7ccd475fe6df09b9669c940c6963a7725f7ea6342efe167f9b563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5316-5533 0000-0002-6202-1988 |
PQID | 2636679293 |
PQPubID | 24069 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2636679293 crossref_primary_10_1016_j_renene_2021_08_067 crossref_citationtrail_10_1016_j_renene_2021_08_067 elsevier_sciencedirect_doi_10_1016_j_renene_2021_08_067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dehaj, Mohiabadi (bib45) 2019; 191 Conti, Holtberg, Diefenderfer, LaRose, Turnure (bib2) 2016 Li, Lin, Sun, Wu, Xu, Wu, Zhou, Wang, Liu (bib13) 2020; 157 Tawfik, Tonnellier, Sansom (bib24) 2018; 90 Jo, Kim, Kim (bib46) 2019; 181 Li, Huang, Xu, Liu, Wu (bib43) 2018; 209 (bib26) 1978 Yao, Xu, Dai, Huang (bib37) 2020; 197 Shukla, Buddhi, Sawhney (bib6) 2009; 13 Long, Xia, Zhong, Lu, Yongga (bib10) 2021; 229 Yandri (bib28) 2019; 201 Chen, Diao, Zhao, Wang, Liang, Wang, Zhu, Ma (bib42) 2020; 202 Yeh, Ho, Hou (bib27) 2002; 27 Materials, Numerical, Bayomy, Davies, Saghir (bib20) 2019; 12 Gasia, Maldonado, Galati, De Simone, Cabeza (bib35) 2019; 184 Long, Zhu (bib19) 2008; 40 Kumar, Nagarajan, Chidambaram, Kumaresan, Ding, Velraj (bib31) 2016; 115 Zhao, Zhao, Markides, Wang, Li (bib11) 2020; 280 Guo, Goumba (bib9) 2018; 164 Xu, Xu, Chen (bib33) 2020; 156 Li, Zhang, Ding (bib15) 2020; 28 Tiari, Mahdavi, Qiu (bib30) 2017; 153 Lin, Wang, Fang, Gao, Zhang (bib16) 2018; 144 Kutlu, Zhang, Elmer, Su, Riffat (bib38) 2020; 152 Fathi, Srinivasan, Fenner, Fathi (bib1) 2020; 133 Zou, Ma, Liu, Zheng, Cai, Huang, Guo, Liu (bib18) 2017; 206 Wang, Yu, Ling (bib36) 2019; 198 Lin, Ling, Fang, Zhang (bib40) 2021; 186 Lerch, Heinz, Heimrath (bib7) 2015; 100 Zhang, Li, Chen (bib14) 2020; 259 Benakopoulos, Tunzi, Salenbien, Vanhoudt, Svendsen (bib3) 2021; 215 Wu, You, Zhang, Wang, Wei, Jiang, Jiang, Sha (bib5) 2020; 223 Li (bib22) 2016 Eltaweel, Abdel-Rehim, Attia (bib34) 2020; 22 Kosmadakis, Arpagaus, Neofytou, Bertsch (bib39) 2020; 226 Diao, Zhao, Wang, Liang, Chi (bib41) 2018; 42 Pomianowski, Johra, Marszal-Pomianowska, Zhang (bib4) 2020; 128 Fathabadi (bib32) 2020; 148 Salih, Jalil, Najim (bib25) 2019; 143 Vega, Cuevas (bib8) 2020; 166 Mahdi, Mohammed, Hashim, Talebizadehsardari, Nsofor (bib12) 2020; 257 (bib23) 2009 Wu, Feng, Liu, Li (bib17) 2018; 142 Karami, Kamkari (bib29) 2020; 210 Kumar, Mylsamy (bib21) 2019; 136 (10.1016/j.renene.2021.08.067_bib26) 1978 Wang (10.1016/j.renene.2021.08.067_bib36) 2019; 198 Li (10.1016/j.renene.2021.08.067_bib22) 2016 Wu (10.1016/j.renene.2021.08.067_bib17) 2018; 142 Zou (10.1016/j.renene.2021.08.067_bib18) 2017; 206 Fathabadi (10.1016/j.renene.2021.08.067_bib32) 2020; 148 Long (10.1016/j.renene.2021.08.067_bib10) 2021; 229 Lin (10.1016/j.renene.2021.08.067_bib16) 2018; 144 Tiari (10.1016/j.renene.2021.08.067_bib30) 2017; 153 Li (10.1016/j.renene.2021.08.067_bib43) 2018; 209 Tawfik (10.1016/j.renene.2021.08.067_bib24) 2018; 90 Gasia (10.1016/j.renene.2021.08.067_bib35) 2019; 184 Karami (10.1016/j.renene.2021.08.067_bib29) 2020; 210 Guo (10.1016/j.renene.2021.08.067_bib9) 2018; 164 Xu (10.1016/j.renene.2021.08.067_bib33) 2020; 156 Eltaweel (10.1016/j.renene.2021.08.067_bib34) 2020; 22 Pomianowski (10.1016/j.renene.2021.08.067_bib4) 2020; 128 Diao (10.1016/j.renene.2021.08.067_bib41) 2018; 42 Lin (10.1016/j.renene.2021.08.067_bib40) 2021; 186 Shukla (10.1016/j.renene.2021.08.067_bib6) 2009; 13 Kosmadakis (10.1016/j.renene.2021.08.067_bib39) 2020; 226 Materials (10.1016/j.renene.2021.08.067_bib20) 2019; 12 Yeh (10.1016/j.renene.2021.08.067_bib27) 2002; 27 Kumar (10.1016/j.renene.2021.08.067_bib21) 2019; 136 Zhang (10.1016/j.renene.2021.08.067_bib14) 2020; 259 Benakopoulos (10.1016/j.renene.2021.08.067_bib3) 2021; 215 Chen (10.1016/j.renene.2021.08.067_bib42) 2020; 202 Jo (10.1016/j.renene.2021.08.067_bib46) 2019; 181 Yandri (10.1016/j.renene.2021.08.067_bib28) 2019; 201 Long (10.1016/j.renene.2021.08.067_bib19) 2008; 40 Yao (10.1016/j.renene.2021.08.067_bib37) 2020; 197 Li (10.1016/j.renene.2021.08.067_bib13) 2020; 157 Mahdi (10.1016/j.renene.2021.08.067_bib12) 2020; 257 Lerch (10.1016/j.renene.2021.08.067_bib7) 2015; 100 Li (10.1016/j.renene.2021.08.067_bib15) 2020; 28 Dehaj (10.1016/j.renene.2021.08.067_bib45) 2019; 191 Salih (10.1016/j.renene.2021.08.067_bib25) 2019; 143 Kutlu (10.1016/j.renene.2021.08.067_bib38) 2020; 152 (10.1016/j.renene.2021.08.067_bib23) 2009 Vega (10.1016/j.renene.2021.08.067_bib8) 2020; 166 Kumar (10.1016/j.renene.2021.08.067_bib31) 2016; 115 Wu (10.1016/j.renene.2021.08.067_bib5) 2020; 223 Zhao (10.1016/j.renene.2021.08.067_bib11) 2020; 280 Conti (10.1016/j.renene.2021.08.067_bib2) 2016 Fathi (10.1016/j.renene.2021.08.067_bib1) 2020; 133 |
References_xml | – volume: 13 start-page: 2119 year: 2009 end-page: 2125 ident: bib6 article-title: Solar water heaters with phase change material thermal energy storage medium : a review publication-title: Renew. Sustain. Energy Rev. – year: 2009 ident: bib23 publication-title: National Technical Measures for Design of Civil Construction Water Supply and Drainage – volume: 166 start-page: 114650 year: 2020 ident: bib8 article-title: Parallel vs series configurations in combined solar and heat pump systems: a control system analysis publication-title: Appl. Therm. Eng. – year: 2016 ident: bib2 article-title: International Energy Outlook 2016 with Projections to 2040 – year: 1978 ident: bib26 publication-title: Methods of Testing to Determine the Thermal Performance of Solar Collectors – volume: 181 start-page: 331 year: 2019 end-page: 341 ident: bib46 article-title: Experimental investigations of heat transfer mechanisms of a pulsating heat pipe publication-title: Energy Convers. Manag. – volume: 164 start-page: 794 year: 2018 end-page: 802 ident: bib9 article-title: Air source heat pump for domestic hot water supply: performance comparison between individual and building scale installations publication-title: Energy – volume: 280 year: 2020 ident: bib11 article-title: Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: a technical review publication-title: Appl. Energy – volume: 156 year: 2020 ident: bib33 article-title: Heat transfer study in solar collector with energy storage publication-title: Int. J. Heat Mass Tran. – volume: 128 start-page: 109900 year: 2020 ident: bib4 article-title: Sustainable and energy-efficient domestic hot water systems: a review publication-title: Renew. Sustain. Energy Rev. – volume: 90 start-page: 802 year: 2018 end-page: 813 ident: bib24 article-title: Light source selection for a solar simulator for thermal applications: a review publication-title: Renew. Sustain. Energy Rev. – volume: 191 start-page: 91 year: 2019 end-page: 99 ident: bib45 article-title: Experimental investigation of heat pipe solar collector using MgO nanofluids publication-title: Sol. Energy Mater. Sol. Cells – volume: 22 start-page: 100743 year: 2020 ident: bib34 article-title: Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT/water nanofluid publication-title: Case Stud. Therm. Eng. – volume: 186 start-page: 116493 year: 2021 ident: bib40 article-title: Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material publication-title: Appl. Therm. Eng. – volume: 201 start-page: 110066 year: 2019 ident: bib28 article-title: Development and experiment on the performance of polymeric hybrid Photovoltaic Thermal (PVT) collector with halogen solar simulator publication-title: Sol. Energy Mater. Sol. Cells – volume: 226 start-page: 113488 year: 2020 ident: bib39 article-title: Techno-economic analysis of high-temperature heat pumps with low-global warming potential refrigerants for upgrading waste heat up to 150 °C publication-title: Energy Convers. Manag. – volume: 206 start-page: 784 year: 2017 end-page: 792 ident: bib18 article-title: Experimental research of an air-source heat pump water heater using water-PCM for heat storage publication-title: Appl. Energy – volume: 42 start-page: 4070 year: 2018 end-page: 4084 ident: bib41 article-title: Experimental and numerical investigations of a lauric acid - multichannel flat tube latent thermal storage unit publication-title: Int. J. Energy Res. – volume: 142 start-page: 644 year: 2018 end-page: 655 ident: bib17 article-title: Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater publication-title: Appl. Therm. Eng. – volume: 210 start-page: 112679 year: 2020 ident: bib29 article-title: Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems publication-title: Energy Convers. Manag. – volume: 148 start-page: 1165 year: 2020 end-page: 1173 ident: bib32 article-title: Novel solar collector: evaluating the impact of nanoparticles added to the collector's working fluid, heat transfer fluid temperature and flow rate publication-title: Renew. Energy – volume: 12 start-page: 2170 year: 2019 ident: bib20 article-title: Domestic hot water storage tank utilizing phase publication-title: Energies – volume: 257 start-page: 113993 year: 2020 ident: bib12 article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system publication-title: Appl. Energy – volume: 136 start-page: 121 year: 2019 end-page: 132 ident: bib21 article-title: Experimental investigation of solar water heater integrated with a nanocomposite phase change material Energetic and exergetic approach publication-title: J. Therm. Anal. Calorim. – volume: 144 start-page: 836 year: 2018 end-page: 844 ident: bib16 article-title: Experimental and numerical investigation on the novel latent heat exchanger with paraffin/expanded graphite composite publication-title: Appl. Therm. Eng. – volume: 197 start-page: 279 year: 2020 end-page: 291 ident: bib37 article-title: Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel publication-title: Sol. Energy – volume: 215 start-page: 119211 year: 2021 ident: bib3 article-title: Low return temperature from domestic hot-water system based on instantaneous heat exchanger with chemical-based disinfection solution publication-title: Energy – volume: 259 start-page: 114102 year: 2020 ident: bib14 article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins publication-title: Appl. Energy – volume: 157 start-page: 670 year: 2020 end-page: 677 ident: bib13 article-title: Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems publication-title: Renew. Energy – volume: 184 start-page: 530 year: 2019 end-page: 538 ident: bib35 article-title: Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system publication-title: Energy Convers. Manag. – volume: 143 start-page: 1053 year: 2019 end-page: 1066 ident: bib25 article-title: Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM publication-title: Renew. Energy – volume: 198 start-page: 111796 year: 2019 ident: bib36 article-title: Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system publication-title: Energy Convers. Manag. – volume: 202 year: 2020 ident: bib42 article-title: Thermal performance of a closed collector e storage solar air heating system with latent thermal storage: an experimental study publication-title: Energy – volume: 28 start-page: 101270 year: 2020 ident: bib15 article-title: Investigation on the energy performance of using air-source heat pump to charge PCM storage tank publication-title: J. Energy Storage. – volume: 100 start-page: 34 year: 2015 end-page: 42 ident: bib7 article-title: Direct use of solar energy as heat source for a heat pump in comparison to a conventional parallel solar air heat pump system publication-title: Energy Build. – volume: 223 start-page: 113423 year: 2020 ident: bib5 article-title: Performance analysis and optimization for a novel air-source gas-fired absorption heat pump publication-title: Energy Convers. Manag. – year: 2016 ident: bib22 article-title: Numerical Study and Analysis on the Performance of the Series-type and Parallel-type Heating Systems of Solar Assisted Air Source Heat Pump in Lanzhou Region – volume: 133 start-page: 110287 year: 2020 ident: bib1 article-title: Machine learning applications in urban building energy performance forecasting : a systematic review publication-title: Renew. Sustain. Energy Rev. – volume: 229 start-page: 113624 year: 2021 ident: bib10 article-title: Study on energy-saving operation of a combined heating system of solar hot water and air source heat pump publication-title: Energy Convers. Manag. – volume: 40 start-page: 666 year: 2008 end-page: 672 ident: bib19 article-title: Numerical and experimental study on heat pump water heater with PCM for thermal storage publication-title: Energy Build. – volume: 27 start-page: 715 year: 2002 end-page: 727 ident: bib27 article-title: Collector efficiency of double-flow solar air heaters with fins attached publication-title: Energy – volume: 152 start-page: 601 year: 2020 end-page: 612 ident: bib38 article-title: A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs publication-title: Renew. Energy – volume: 209 start-page: 224 year: 2018 end-page: 235 ident: bib43 article-title: Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool publication-title: Appl. Energy – volume: 153 start-page: 362 year: 2017 end-page: 373 ident: bib30 article-title: Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network publication-title: Energy Convers. Manag. – volume: 115 start-page: 1168 year: 2016 end-page: 1178 ident: bib31 article-title: Role of PCM addition on strati fi cation behaviour in a thermal storage tank e an experimental study publication-title: Energy – volume: 143 start-page: 1053 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib25 article-title: Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM publication-title: Renew. Energy doi: 10.1016/j.renene.2019.05.050 – volume: 27 start-page: 715 year: 2002 ident: 10.1016/j.renene.2021.08.067_bib27 article-title: Collector efficiency of double-flow solar air heaters with fins attached publication-title: Energy doi: 10.1016/S0360-5442(02)00010-5 – year: 2009 ident: 10.1016/j.renene.2021.08.067_bib23 – volume: 12 start-page: 2170 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib20 article-title: Domestic hot water storage tank utilizing phase publication-title: Energies doi: 10.3390/en12112170 – volume: 181 start-page: 331 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib46 article-title: Experimental investigations of heat transfer mechanisms of a pulsating heat pipe publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.12.027 – volume: 166 start-page: 114650 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib8 article-title: Parallel vs series configurations in combined solar and heat pump systems: a control system analysis publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114650 – volume: 223 start-page: 113423 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib5 article-title: Performance analysis and optimization for a novel air-source gas-fired absorption heat pump publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113423 – volume: 280 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib11 article-title: Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: a technical review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115950 – volume: 206 start-page: 784 year: 2017 ident: 10.1016/j.renene.2021.08.067_bib18 article-title: Experimental research of an air-source heat pump water heater using water-PCM for heat storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.209 – year: 2016 ident: 10.1016/j.renene.2021.08.067_bib22 – volume: 210 start-page: 112679 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib29 article-title: Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112679 – volume: 144 start-page: 836 year: 2018 ident: 10.1016/j.renene.2021.08.067_bib16 article-title: Experimental and numerical investigation on the novel latent heat exchanger with paraffin/expanded graphite composite publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.08.103 – volume: 259 start-page: 114102 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib14 article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114102 – volume: 22 start-page: 100743 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib34 article-title: Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT/water nanofluid publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2020.100743 – volume: 128 start-page: 109900 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib4 article-title: Sustainable and energy-efficient domestic hot water systems: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109900 – volume: 148 start-page: 1165 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib32 article-title: Novel solar collector: evaluating the impact of nanoparticles added to the collector's working fluid, heat transfer fluid temperature and flow rate publication-title: Renew. Energy doi: 10.1016/j.renene.2019.10.008 – year: 2016 ident: 10.1016/j.renene.2021.08.067_bib2 – volume: 90 start-page: 802 year: 2018 ident: 10.1016/j.renene.2021.08.067_bib24 article-title: Light source selection for a solar simulator for thermal applications: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.059 – volume: 191 start-page: 91 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib45 article-title: Experimental investigation of heat pipe solar collector using MgO nanofluids publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.10.025 – volume: 40 start-page: 666 year: 2008 ident: 10.1016/j.renene.2021.08.067_bib19 article-title: Numerical and experimental study on heat pump water heater with PCM for thermal storage publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.05.001 – year: 1978 ident: 10.1016/j.renene.2021.08.067_bib26 – volume: 215 start-page: 119211 year: 2021 ident: 10.1016/j.renene.2021.08.067_bib3 article-title: Low return temperature from domestic hot-water system based on instantaneous heat exchanger with chemical-based disinfection solution publication-title: Energy doi: 10.1016/j.energy.2020.119211 – volume: 133 start-page: 110287 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib1 article-title: Machine learning applications in urban building energy performance forecasting : a systematic review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110287 – volume: 13 start-page: 2119 year: 2009 ident: 10.1016/j.renene.2021.08.067_bib6 article-title: Solar water heaters with phase change material thermal energy storage medium : a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.01.024 – volume: 164 start-page: 794 year: 2018 ident: 10.1016/j.renene.2021.08.067_bib9 article-title: Air source heat pump for domestic hot water supply: performance comparison between individual and building scale installations publication-title: Energy doi: 10.1016/j.energy.2018.09.065 – volume: 201 start-page: 110066 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib28 article-title: Development and experiment on the performance of polymeric hybrid Photovoltaic Thermal (PVT) collector with halogen solar simulator publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110066 – volume: 136 start-page: 121 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib21 article-title: Experimental investigation of solar water heater integrated with a nanocomposite phase change material Energetic and exergetic approach publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7937-9 – volume: 209 start-page: 224 year: 2018 ident: 10.1016/j.renene.2021.08.067_bib43 article-title: Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.10.095 – volume: 142 start-page: 644 year: 2018 ident: 10.1016/j.renene.2021.08.067_bib17 article-title: Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.087 – volume: 42 start-page: 4070 year: 2018 ident: 10.1016/j.renene.2021.08.067_bib41 article-title: Experimental and numerical investigations of a lauric acid - multichannel flat tube latent thermal storage unit publication-title: Int. J. Energy Res. doi: 10.1002/er.4124 – volume: 202 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib42 article-title: Thermal performance of a closed collector e storage solar air heating system with latent thermal storage: an experimental study publication-title: Energy doi: 10.1016/j.energy.2020.117764 – volume: 197 start-page: 279 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib37 article-title: Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel publication-title: Sol. Energy doi: 10.1016/j.solener.2020.01.002 – volume: 226 start-page: 113488 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib39 article-title: Techno-economic analysis of high-temperature heat pumps with low-global warming potential refrigerants for upgrading waste heat up to 150 °C publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113488 – volume: 186 start-page: 116493 year: 2021 ident: 10.1016/j.renene.2021.08.067_bib40 article-title: Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116493 – volume: 28 start-page: 101270 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib15 article-title: Investigation on the energy performance of using air-source heat pump to charge PCM storage tank publication-title: J. Energy Storage. doi: 10.1016/j.est.2020.101270 – volume: 184 start-page: 530 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib35 article-title: Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.01.085 – volume: 157 start-page: 670 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib13 article-title: Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems publication-title: Renew. Energy doi: 10.1016/j.renene.2020.05.061 – volume: 198 start-page: 111796 year: 2019 ident: 10.1016/j.renene.2021.08.067_bib36 article-title: Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111796 – volume: 153 start-page: 362 year: 2017 ident: 10.1016/j.renene.2021.08.067_bib30 article-title: Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.10.019 – volume: 115 start-page: 1168 year: 2016 ident: 10.1016/j.renene.2021.08.067_bib31 article-title: Role of PCM addition on strati fi cation behaviour in a thermal storage tank e an experimental study publication-title: Energy doi: 10.1016/j.energy.2016.09.014 – volume: 229 start-page: 113624 year: 2021 ident: 10.1016/j.renene.2021.08.067_bib10 article-title: Study on energy-saving operation of a combined heating system of solar hot water and air source heat pump publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113624 – volume: 257 start-page: 113993 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib12 article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113993 – volume: 156 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib33 article-title: Heat transfer study in solar collector with energy storage publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.119778 – volume: 152 start-page: 601 year: 2020 ident: 10.1016/j.renene.2021.08.067_bib38 article-title: A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs publication-title: Renew. Energy doi: 10.1016/j.renene.2020.01.090 – volume: 100 start-page: 34 year: 2015 ident: 10.1016/j.renene.2021.08.067_bib7 article-title: Direct use of solar energy as heat source for a heat pump in comparison to a conventional parallel solar air heat pump system publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.03.006 |
SSID | ssj0015874 |
Score | 2.5618882 |
Snippet | In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 637 |
SubjectTerms | comparative study Dynamic thermal performance Energy efficiency energy use and consumption heat heat pumps latent heat Latent heat thermal energy storage Phase-change material solar energy Solar-heat pump thermal energy |
Title | Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system |
URI | https://dx.doi.org/10.1016/j.renene.2021.08.067 https://www.proquest.com/docview/2636679293 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX_RBvOJ1RPA1bl3aZH0cwzEVfNHB3kKSJjAp3djl1T_in_Wcpt1UkIHQh7YkofScfvmSnvMdQu50ZKyW2jOhcbcqgzMjhWFd1DrreoBDXUb5vojhKH4aJ-Md0q9zYTCsssL-gOklWld3WtXbbM0mk9Yrkm8g86iABfDLMaM8jiV6-f3HOswjSrpBiRkaM2xdp8-VMV6oGlmgWGanEvKUf01Pv4C6nH0Gh-Sgoo20F57siOy44pjsfxMTPCGfD9_E-ulko58xLSgcQPRoFsrP4zngcU5nm6wBOvVlE5QCz3OX0wWueRlQa_SDjOrJnIWNforwTWfgBjQHolosw416TFcmE1IMugSookEp-pSMBg9v_SGrSi8wy3m6ZD61sU24Npk00toslol3IvPt1MD6KLVp3LYCvl0N5Dzx0mnB447zLhLSpyYR_Iw0imnhzgnN4kR3Mwk0s-3BPpGJHCxhgCYCF-qYdnpBeP3Gla10ybE8Rq7qALR3Feyk0E4Kq2YKeUHYutcs6HJsaS9rY6of_qVg6tjS87a2vYJPD_-n6MJNVwvVEVwICfySX_579Cuyh1chQOaaNJbzlbsBmrM0zdKPm2S39_g8fPkC224BjA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YlvI3gN-0ibbI-LKOtrLyp4C0mawErpLrr-Gv-sM027PkAEoYfQJqFkki9fksk3AGema51RJnBpaLcqx5RV0vI-aZ31A8Khqbx8R3L4mFw_pU8LcN7chSG3yhr7I6ZXaF2_adet2Z6Ox-17It9I5kkBC-FXqEVYInWqtAVLg6ub4Wh-mJD2oxgz5udUoLlBV7l5kXBkSXqZvVrLU_02Q_3A6moCulyHtZo5skH8uQ1Y8OUmrH7RE9yC94svev1s_CmhMSkZPsj1WB4j0FMaIblg08-LA2wSqiykBl4UvmCvtOzlyK6pK-TMjF943OtnhOBsij2BFchVy1l80dTpq_uEjPwuEa1YFIvehsfLi4fzIa-jL3AnRDbjIXOJS4WxubLKuRxbNniZh05mcYmUuSzpOInD1yA_T4PyRoqk54PvShUym0qxA61yUvpdYHmSmn6ukGl2QoLmt12PqxhkikiHeraT7YFoWly7WpqcImQUuvFBe9bRTprspClwplR7wOelplGa44_8qjGm_tbFNM4ef5Q8bWyvcfTRkYop_eTtVfekkFIhxRT7_679BJaHD3e3-vZqdHMAK_Ql-sscQmv28uaPkPXM7HHdqz8AnkkEPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+the+dynamic+thermal+performance+of+the+parallel+solar-assisted+air-source+heat+pump+latent+heat+thermal+energy+storage+system&rft.jtitle=Renewable+energy&rft.au=Jin%2C+Xin&rft.au=Zhang%2C+Huihui&rft.au=Huang%2C+Gongsheng&rft.au=Lai%2C+Alvin+CK&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=180&rft.spage=637&rft.epage=657&rft_id=info:doi/10.1016%2Fj.renene.2021.08.067&rft.externalDocID=S0960148121012337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |