Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system

In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m2 and an air-source heat pump with a maxim...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 180; pp. 637 - 657
Main Authors Jin, Xin, Zhang, Huihui, Huang, Gongsheng, Lai, Alvin CK
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m2 and an air-source heat pump with a maximum capacity of 2 kW was established to evaluate the adaptability of the phase-change material to the solar-heat pump and the feasibility of the heating system. A comparative study was carried out to investigate the effects of the operation modes on the system thermal performance and explore optimal operating parameters. Compared to the single heating mode, the overall efficiency of the system was enhanced by about 57.5% under the combined heating mode due to the introduction of solar energy. The coefficient of performance of the heat pump significantly increased from 2.09 to 2.60 when the flow rate increased from 0.010 L/s to 0.038 L/s. However, an increase in the flow rate could not significantly improve the overall efficiency of the entire heating system due to the higher power consumption of the pump. The storage unit exhibits a great storage density of about 211.13 MJ/m3 with a volume saving rate of 21%. •The solar-heat pump latent heat storage performance was experimentally evaluated.•The efficiency under the coupled mode was enhanced by 57.5% compared to the HP one.•The HP COP was improved by 24%, with flow rate increased from 0.010 to 0.038 L/s.•The higher flow rate contributed less to the system overall efficiency enhancement.•The volume storage density of the storage unit increased to about 211.13 MJ/m3.
AbstractList In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m2 and an air-source heat pump with a maximum capacity of 2 kW was established to evaluate the adaptability of the phase-change material to the solar-heat pump and the feasibility of the heating system. A comparative study was carried out to investigate the effects of the operation modes on the system thermal performance and explore optimal operating parameters. Compared to the single heating mode, the overall efficiency of the system was enhanced by about 57.5% under the combined heating mode due to the introduction of solar energy. The coefficient of performance of the heat pump significantly increased from 2.09 to 2.60 when the flow rate increased from 0.010 L/s to 0.038 L/s. However, an increase in the flow rate could not significantly improve the overall efficiency of the entire heating system due to the higher power consumption of the pump. The storage unit exhibits a great storage density of about 211.13 MJ/m3 with a volume saving rate of 21%. •The solar-heat pump latent heat storage performance was experimentally evaluated.•The efficiency under the coupled mode was enhanced by 57.5% compared to the HP one.•The HP COP was improved by 24%, with flow rate increased from 0.010 to 0.038 L/s.•The higher flow rate contributed less to the system overall efficiency enhancement.•The volume storage density of the storage unit increased to about 211.13 MJ/m3.
In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy sources. An experimental setup mainly consisting of a solar heat collector with a gross area of 2 m² and an air-source heat pump with a maximum capacity of 2 kW was established to evaluate the adaptability of the phase-change material to the solar-heat pump and the feasibility of the heating system. A comparative study was carried out to investigate the effects of the operation modes on the system thermal performance and explore optimal operating parameters. Compared to the single heating mode, the overall efficiency of the system was enhanced by about 57.5% under the combined heating mode due to the introduction of solar energy. The coefficient of performance of the heat pump significantly increased from 2.09 to 2.60 when the flow rate increased from 0.010 L/s to 0.038 L/s. However, an increase in the flow rate could not significantly improve the overall efficiency of the entire heating system due to the higher power consumption of the pump. The storage unit exhibits a great storage density of about 211.13 MJ/m³ with a volume saving rate of 21%.
Author Huang, Gongsheng
Lai, Alvin CK
Zhang, Huihui
Jin, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Jin
  fullname: Jin, Xin
  email: cindyjin2-c@my.cityu.edu.hk
– sequence: 2
  givenname: Huihui
  orcidid: 0000-0002-5316-5533
  surname: Zhang
  fullname: Zhang, Huihui
  email: hhzhang6-c@my.cityu.edu.hk
– sequence: 3
  givenname: Gongsheng
  surname: Huang
  fullname: Huang, Gongsheng
  email: gongsheng.huang@cityu.edu.hk
– sequence: 4
  givenname: Alvin CK
  orcidid: 0000-0002-6202-1988
  surname: Lai
  fullname: Lai, Alvin CK
  email: alvinlai@cityu.edu.hk
BookMark eNqFkc1u3CAUhVGVSJ38vEEXLLuxC_4B00WlKkraSpG6adboDr5MGGHjAhN1niUvWyZuNl20Aokr9J0DOueCnM1hRkLecVZzxsWHfR1xLqtuWMNrNtRMyDdkwwepKiaG5oxsmBKs4t3A35KLlPaM8X6Q3YY83_5aMLoJ5wyeuvkJU3Y7yC7MtOz8iHQ8zjA5c5rjVKDC21Cm2SAN9gVZIIL36GkKHmIFKbmUcaTgYpXCIRbyESHT5TAt1EMur60Xr57l83F3pCmHCDuk6Vjk0xU5t-ATXv85L8nD3e2Pm6_V_fcv324-31embVWurDKd6VvYjnIrjRk72VsUo2Vqq4RQRnXMCCVakLLprUQQbdegRS6kVdtetJfk_eq7xPDzUALQk0sGvYcZwyHpRrRCSNWotqDdipoYUopo9VLCg3jUnOlTF3qv1y70qQvNBl26KLKPf8mMyy8h5wjO_0_8aRVjyeDJYdTJOCzpjy6iyXoM7t8GvwFOga8w
CitedBy_id crossref_primary_10_1016_j_apenergy_2022_119706
crossref_primary_10_1016_j_renene_2023_119195
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126159
crossref_primary_10_1016_j_seja_2022_100020
crossref_primary_10_1016_j_energy_2024_131008
crossref_primary_10_1016_j_renene_2024_121112
crossref_primary_10_1080_15567036_2024_2368506
crossref_primary_10_1016_j_applthermaleng_2024_124778
crossref_primary_10_1016_j_enbuild_2023_113657
crossref_primary_10_1016_j_energy_2023_128035
crossref_primary_10_1016_j_renene_2023_119905
crossref_primary_10_1016_j_ijft_2024_100783
crossref_primary_10_1016_j_rser_2022_113139
crossref_primary_10_1016_j_solener_2022_02_054
crossref_primary_10_1016_j_enconman_2022_115789
crossref_primary_10_1016_j_ijrefrig_2024_11_029
crossref_primary_10_1016_j_applthermaleng_2024_124652
crossref_primary_10_1016_j_apenergy_2024_123893
crossref_primary_10_1016_j_rser_2024_114291
crossref_primary_10_1016_j_est_2022_105744
crossref_primary_10_1016_j_applthermaleng_2022_119337
crossref_primary_10_1016_j_applthermaleng_2022_119259
crossref_primary_10_1016_j_applthermaleng_2022_119851
crossref_primary_10_1016_j_applthermaleng_2023_120884
crossref_primary_10_1016_j_est_2022_105076
crossref_primary_10_1039_D4EE02350A
crossref_primary_10_1093_ijlct_ctac102
crossref_primary_10_1039_D4NR00501E
crossref_primary_10_1016_j_renene_2025_122710
crossref_primary_10_1016_j_seta_2022_102794
crossref_primary_10_2298_TSCI2302151H
crossref_primary_10_1016_j_energy_2025_134627
crossref_primary_10_1016_j_ecmx_2024_100788
crossref_primary_10_1007_s11431_024_2761_4
crossref_primary_10_1016_j_cej_2022_140701
crossref_primary_10_1109_ACCESS_2023_3321916
crossref_primary_10_1016_j_est_2024_111272
crossref_primary_10_1016_j_seta_2022_102409
crossref_primary_10_1016_j_est_2023_107114
crossref_primary_10_1016_j_est_2023_107259
crossref_primary_10_1016_j_enconman_2021_115190
Cites_doi 10.1016/j.renene.2019.05.050
10.1016/S0360-5442(02)00010-5
10.3390/en12112170
10.1016/j.enconman.2018.12.027
10.1016/j.applthermaleng.2019.114650
10.1016/j.enconman.2020.113423
10.1016/j.apenergy.2020.115950
10.1016/j.apenergy.2017.08.209
10.1016/j.enconman.2020.112679
10.1016/j.applthermaleng.2018.08.103
10.1016/j.apenergy.2019.114102
10.1016/j.csite.2020.100743
10.1016/j.rser.2020.109900
10.1016/j.renene.2019.10.008
10.1016/j.rser.2018.03.059
10.1016/j.solmat.2018.10.025
10.1016/j.enbuild.2007.05.001
10.1016/j.energy.2020.119211
10.1016/j.rser.2020.110287
10.1016/j.rser.2009.01.024
10.1016/j.energy.2018.09.065
10.1016/j.solmat.2019.110066
10.1007/s10973-018-7937-9
10.1016/j.apenergy.2017.10.095
10.1016/j.applthermaleng.2018.06.087
10.1002/er.4124
10.1016/j.energy.2020.117764
10.1016/j.solener.2020.01.002
10.1016/j.enconman.2020.113488
10.1016/j.applthermaleng.2020.116493
10.1016/j.est.2020.101270
10.1016/j.enconman.2019.01.085
10.1016/j.renene.2020.05.061
10.1016/j.enconman.2019.111796
10.1016/j.enconman.2017.10.019
10.1016/j.energy.2016.09.014
10.1016/j.enconman.2020.113624
10.1016/j.apenergy.2019.113993
10.1016/j.ijheatmasstransfer.2020.119778
10.1016/j.renene.2020.01.090
10.1016/j.enbuild.2015.03.006
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2021.08.067
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 657
ExternalDocumentID 10_1016_j_renene_2021_08_067
S0960148121012337
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-f9c4c53abd7b7ccd475fe6df09b9669c940c6963a7725f7ea6342efe167f9b563
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Fri Jul 11 08:24:18 EDT 2025
Thu Apr 24 22:56:36 EDT 2025
Tue Jul 01 03:20:24 EDT 2025
Fri Feb 23 02:42:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Solar-heat pump
Energy efficiency
Phase-change material
Latent heat thermal energy storage
Dynamic thermal performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-f9c4c53abd7b7ccd475fe6df09b9669c940c6963a7725f7ea6342efe167f9b563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5316-5533
0000-0002-6202-1988
PQID 2636679293
PQPubID 24069
PageCount 21
ParticipantIDs proquest_miscellaneous_2636679293
crossref_primary_10_1016_j_renene_2021_08_067
crossref_citationtrail_10_1016_j_renene_2021_08_067
elsevier_sciencedirect_doi_10_1016_j_renene_2021_08_067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dehaj, Mohiabadi (bib45) 2019; 191
Conti, Holtberg, Diefenderfer, LaRose, Turnure (bib2) 2016
Li, Lin, Sun, Wu, Xu, Wu, Zhou, Wang, Liu (bib13) 2020; 157
Tawfik, Tonnellier, Sansom (bib24) 2018; 90
Jo, Kim, Kim (bib46) 2019; 181
Li, Huang, Xu, Liu, Wu (bib43) 2018; 209
(bib26) 1978
Yao, Xu, Dai, Huang (bib37) 2020; 197
Shukla, Buddhi, Sawhney (bib6) 2009; 13
Long, Xia, Zhong, Lu, Yongga (bib10) 2021; 229
Yandri (bib28) 2019; 201
Chen, Diao, Zhao, Wang, Liang, Wang, Zhu, Ma (bib42) 2020; 202
Yeh, Ho, Hou (bib27) 2002; 27
Materials, Numerical, Bayomy, Davies, Saghir (bib20) 2019; 12
Gasia, Maldonado, Galati, De Simone, Cabeza (bib35) 2019; 184
Long, Zhu (bib19) 2008; 40
Kumar, Nagarajan, Chidambaram, Kumaresan, Ding, Velraj (bib31) 2016; 115
Zhao, Zhao, Markides, Wang, Li (bib11) 2020; 280
Guo, Goumba (bib9) 2018; 164
Xu, Xu, Chen (bib33) 2020; 156
Li, Zhang, Ding (bib15) 2020; 28
Tiari, Mahdavi, Qiu (bib30) 2017; 153
Lin, Wang, Fang, Gao, Zhang (bib16) 2018; 144
Kutlu, Zhang, Elmer, Su, Riffat (bib38) 2020; 152
Fathi, Srinivasan, Fenner, Fathi (bib1) 2020; 133
Zou, Ma, Liu, Zheng, Cai, Huang, Guo, Liu (bib18) 2017; 206
Wang, Yu, Ling (bib36) 2019; 198
Lin, Ling, Fang, Zhang (bib40) 2021; 186
Lerch, Heinz, Heimrath (bib7) 2015; 100
Zhang, Li, Chen (bib14) 2020; 259
Benakopoulos, Tunzi, Salenbien, Vanhoudt, Svendsen (bib3) 2021; 215
Wu, You, Zhang, Wang, Wei, Jiang, Jiang, Sha (bib5) 2020; 223
Li (bib22) 2016
Eltaweel, Abdel-Rehim, Attia (bib34) 2020; 22
Kosmadakis, Arpagaus, Neofytou, Bertsch (bib39) 2020; 226
Diao, Zhao, Wang, Liang, Chi (bib41) 2018; 42
Pomianowski, Johra, Marszal-Pomianowska, Zhang (bib4) 2020; 128
Fathabadi (bib32) 2020; 148
Salih, Jalil, Najim (bib25) 2019; 143
Vega, Cuevas (bib8) 2020; 166
Mahdi, Mohammed, Hashim, Talebizadehsardari, Nsofor (bib12) 2020; 257
(bib23) 2009
Wu, Feng, Liu, Li (bib17) 2018; 142
Karami, Kamkari (bib29) 2020; 210
Kumar, Mylsamy (bib21) 2019; 136
(10.1016/j.renene.2021.08.067_bib26) 1978
Wang (10.1016/j.renene.2021.08.067_bib36) 2019; 198
Li (10.1016/j.renene.2021.08.067_bib22) 2016
Wu (10.1016/j.renene.2021.08.067_bib17) 2018; 142
Zou (10.1016/j.renene.2021.08.067_bib18) 2017; 206
Fathabadi (10.1016/j.renene.2021.08.067_bib32) 2020; 148
Long (10.1016/j.renene.2021.08.067_bib10) 2021; 229
Lin (10.1016/j.renene.2021.08.067_bib16) 2018; 144
Tiari (10.1016/j.renene.2021.08.067_bib30) 2017; 153
Li (10.1016/j.renene.2021.08.067_bib43) 2018; 209
Tawfik (10.1016/j.renene.2021.08.067_bib24) 2018; 90
Gasia (10.1016/j.renene.2021.08.067_bib35) 2019; 184
Karami (10.1016/j.renene.2021.08.067_bib29) 2020; 210
Guo (10.1016/j.renene.2021.08.067_bib9) 2018; 164
Xu (10.1016/j.renene.2021.08.067_bib33) 2020; 156
Eltaweel (10.1016/j.renene.2021.08.067_bib34) 2020; 22
Pomianowski (10.1016/j.renene.2021.08.067_bib4) 2020; 128
Diao (10.1016/j.renene.2021.08.067_bib41) 2018; 42
Lin (10.1016/j.renene.2021.08.067_bib40) 2021; 186
Shukla (10.1016/j.renene.2021.08.067_bib6) 2009; 13
Kosmadakis (10.1016/j.renene.2021.08.067_bib39) 2020; 226
Materials (10.1016/j.renene.2021.08.067_bib20) 2019; 12
Yeh (10.1016/j.renene.2021.08.067_bib27) 2002; 27
Kumar (10.1016/j.renene.2021.08.067_bib21) 2019; 136
Zhang (10.1016/j.renene.2021.08.067_bib14) 2020; 259
Benakopoulos (10.1016/j.renene.2021.08.067_bib3) 2021; 215
Chen (10.1016/j.renene.2021.08.067_bib42) 2020; 202
Jo (10.1016/j.renene.2021.08.067_bib46) 2019; 181
Yandri (10.1016/j.renene.2021.08.067_bib28) 2019; 201
Long (10.1016/j.renene.2021.08.067_bib19) 2008; 40
Yao (10.1016/j.renene.2021.08.067_bib37) 2020; 197
Li (10.1016/j.renene.2021.08.067_bib13) 2020; 157
Mahdi (10.1016/j.renene.2021.08.067_bib12) 2020; 257
Lerch (10.1016/j.renene.2021.08.067_bib7) 2015; 100
Li (10.1016/j.renene.2021.08.067_bib15) 2020; 28
Dehaj (10.1016/j.renene.2021.08.067_bib45) 2019; 191
Salih (10.1016/j.renene.2021.08.067_bib25) 2019; 143
Kutlu (10.1016/j.renene.2021.08.067_bib38) 2020; 152
(10.1016/j.renene.2021.08.067_bib23) 2009
Vega (10.1016/j.renene.2021.08.067_bib8) 2020; 166
Kumar (10.1016/j.renene.2021.08.067_bib31) 2016; 115
Wu (10.1016/j.renene.2021.08.067_bib5) 2020; 223
Zhao (10.1016/j.renene.2021.08.067_bib11) 2020; 280
Conti (10.1016/j.renene.2021.08.067_bib2) 2016
Fathi (10.1016/j.renene.2021.08.067_bib1) 2020; 133
References_xml – volume: 13
  start-page: 2119
  year: 2009
  end-page: 2125
  ident: bib6
  article-title: Solar water heaters with phase change material thermal energy storage medium : a review
  publication-title: Renew. Sustain. Energy Rev.
– year: 2009
  ident: bib23
  publication-title: National Technical Measures for Design of Civil Construction Water Supply and Drainage
– volume: 166
  start-page: 114650
  year: 2020
  ident: bib8
  article-title: Parallel vs series configurations in combined solar and heat pump systems: a control system analysis
  publication-title: Appl. Therm. Eng.
– year: 2016
  ident: bib2
  article-title: International Energy Outlook 2016 with Projections to 2040
– year: 1978
  ident: bib26
  publication-title: Methods of Testing to Determine the Thermal Performance of Solar Collectors
– volume: 181
  start-page: 331
  year: 2019
  end-page: 341
  ident: bib46
  article-title: Experimental investigations of heat transfer mechanisms of a pulsating heat pipe
  publication-title: Energy Convers. Manag.
– volume: 164
  start-page: 794
  year: 2018
  end-page: 802
  ident: bib9
  article-title: Air source heat pump for domestic hot water supply: performance comparison between individual and building scale installations
  publication-title: Energy
– volume: 280
  year: 2020
  ident: bib11
  article-title: Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: a technical review
  publication-title: Appl. Energy
– volume: 156
  year: 2020
  ident: bib33
  article-title: Heat transfer study in solar collector with energy storage
  publication-title: Int. J. Heat Mass Tran.
– volume: 128
  start-page: 109900
  year: 2020
  ident: bib4
  article-title: Sustainable and energy-efficient domestic hot water systems: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 90
  start-page: 802
  year: 2018
  end-page: 813
  ident: bib24
  article-title: Light source selection for a solar simulator for thermal applications: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 191
  start-page: 91
  year: 2019
  end-page: 99
  ident: bib45
  article-title: Experimental investigation of heat pipe solar collector using MgO nanofluids
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 22
  start-page: 100743
  year: 2020
  ident: bib34
  article-title: Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT/water nanofluid
  publication-title: Case Stud. Therm. Eng.
– volume: 186
  start-page: 116493
  year: 2021
  ident: bib40
  article-title: Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material
  publication-title: Appl. Therm. Eng.
– volume: 201
  start-page: 110066
  year: 2019
  ident: bib28
  article-title: Development and experiment on the performance of polymeric hybrid Photovoltaic Thermal (PVT) collector with halogen solar simulator
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 226
  start-page: 113488
  year: 2020
  ident: bib39
  article-title: Techno-economic analysis of high-temperature heat pumps with low-global warming potential refrigerants for upgrading waste heat up to 150 °C
  publication-title: Energy Convers. Manag.
– volume: 206
  start-page: 784
  year: 2017
  end-page: 792
  ident: bib18
  article-title: Experimental research of an air-source heat pump water heater using water-PCM for heat storage
  publication-title: Appl. Energy
– volume: 42
  start-page: 4070
  year: 2018
  end-page: 4084
  ident: bib41
  article-title: Experimental and numerical investigations of a lauric acid - multichannel flat tube latent thermal storage unit
  publication-title: Int. J. Energy Res.
– volume: 142
  start-page: 644
  year: 2018
  end-page: 655
  ident: bib17
  article-title: Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater
  publication-title: Appl. Therm. Eng.
– volume: 210
  start-page: 112679
  year: 2020
  ident: bib29
  article-title: Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems
  publication-title: Energy Convers. Manag.
– volume: 148
  start-page: 1165
  year: 2020
  end-page: 1173
  ident: bib32
  article-title: Novel solar collector: evaluating the impact of nanoparticles added to the collector's working fluid, heat transfer fluid temperature and flow rate
  publication-title: Renew. Energy
– volume: 12
  start-page: 2170
  year: 2019
  ident: bib20
  article-title: Domestic hot water storage tank utilizing phase
  publication-title: Energies
– volume: 257
  start-page: 113993
  year: 2020
  ident: bib12
  article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system
  publication-title: Appl. Energy
– volume: 136
  start-page: 121
  year: 2019
  end-page: 132
  ident: bib21
  article-title: Experimental investigation of solar water heater integrated with a nanocomposite phase change material Energetic and exergetic approach
  publication-title: J. Therm. Anal. Calorim.
– volume: 144
  start-page: 836
  year: 2018
  end-page: 844
  ident: bib16
  article-title: Experimental and numerical investigation on the novel latent heat exchanger with paraffin/expanded graphite composite
  publication-title: Appl. Therm. Eng.
– volume: 197
  start-page: 279
  year: 2020
  end-page: 291
  ident: bib37
  article-title: Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel
  publication-title: Sol. Energy
– volume: 215
  start-page: 119211
  year: 2021
  ident: bib3
  article-title: Low return temperature from domestic hot-water system based on instantaneous heat exchanger with chemical-based disinfection solution
  publication-title: Energy
– volume: 259
  start-page: 114102
  year: 2020
  ident: bib14
  article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins
  publication-title: Appl. Energy
– volume: 157
  start-page: 670
  year: 2020
  end-page: 677
  ident: bib13
  article-title: Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems
  publication-title: Renew. Energy
– volume: 184
  start-page: 530
  year: 2019
  end-page: 538
  ident: bib35
  article-title: Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system
  publication-title: Energy Convers. Manag.
– volume: 143
  start-page: 1053
  year: 2019
  end-page: 1066
  ident: bib25
  article-title: Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM
  publication-title: Renew. Energy
– volume: 198
  start-page: 111796
  year: 2019
  ident: bib36
  article-title: Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system
  publication-title: Energy Convers. Manag.
– volume: 202
  year: 2020
  ident: bib42
  article-title: Thermal performance of a closed collector e storage solar air heating system with latent thermal storage: an experimental study
  publication-title: Energy
– volume: 28
  start-page: 101270
  year: 2020
  ident: bib15
  article-title: Investigation on the energy performance of using air-source heat pump to charge PCM storage tank
  publication-title: J. Energy Storage.
– volume: 100
  start-page: 34
  year: 2015
  end-page: 42
  ident: bib7
  article-title: Direct use of solar energy as heat source for a heat pump in comparison to a conventional parallel solar air heat pump system
  publication-title: Energy Build.
– volume: 223
  start-page: 113423
  year: 2020
  ident: bib5
  article-title: Performance analysis and optimization for a novel air-source gas-fired absorption heat pump
  publication-title: Energy Convers. Manag.
– year: 2016
  ident: bib22
  article-title: Numerical Study and Analysis on the Performance of the Series-type and Parallel-type Heating Systems of Solar Assisted Air Source Heat Pump in Lanzhou Region
– volume: 133
  start-page: 110287
  year: 2020
  ident: bib1
  article-title: Machine learning applications in urban building energy performance forecasting : a systematic review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 229
  start-page: 113624
  year: 2021
  ident: bib10
  article-title: Study on energy-saving operation of a combined heating system of solar hot water and air source heat pump
  publication-title: Energy Convers. Manag.
– volume: 40
  start-page: 666
  year: 2008
  end-page: 672
  ident: bib19
  article-title: Numerical and experimental study on heat pump water heater with PCM for thermal storage
  publication-title: Energy Build.
– volume: 27
  start-page: 715
  year: 2002
  end-page: 727
  ident: bib27
  article-title: Collector efficiency of double-flow solar air heaters with fins attached
  publication-title: Energy
– volume: 152
  start-page: 601
  year: 2020
  end-page: 612
  ident: bib38
  article-title: A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs
  publication-title: Renew. Energy
– volume: 209
  start-page: 224
  year: 2018
  end-page: 235
  ident: bib43
  article-title: Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool
  publication-title: Appl. Energy
– volume: 153
  start-page: 362
  year: 2017
  end-page: 373
  ident: bib30
  article-title: Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network
  publication-title: Energy Convers. Manag.
– volume: 115
  start-page: 1168
  year: 2016
  end-page: 1178
  ident: bib31
  article-title: Role of PCM addition on strati fi cation behaviour in a thermal storage tank e an experimental study
  publication-title: Energy
– volume: 143
  start-page: 1053
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib25
  article-title: Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.05.050
– volume: 27
  start-page: 715
  year: 2002
  ident: 10.1016/j.renene.2021.08.067_bib27
  article-title: Collector efficiency of double-flow solar air heaters with fins attached
  publication-title: Energy
  doi: 10.1016/S0360-5442(02)00010-5
– year: 2009
  ident: 10.1016/j.renene.2021.08.067_bib23
– volume: 12
  start-page: 2170
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib20
  article-title: Domestic hot water storage tank utilizing phase
  publication-title: Energies
  doi: 10.3390/en12112170
– volume: 181
  start-page: 331
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib46
  article-title: Experimental investigations of heat transfer mechanisms of a pulsating heat pipe
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.12.027
– volume: 166
  start-page: 114650
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib8
  article-title: Parallel vs series configurations in combined solar and heat pump systems: a control system analysis
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114650
– volume: 223
  start-page: 113423
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib5
  article-title: Performance analysis and optimization for a novel air-source gas-fired absorption heat pump
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113423
– volume: 280
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib11
  article-title: Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: a technical review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115950
– volume: 206
  start-page: 784
  year: 2017
  ident: 10.1016/j.renene.2021.08.067_bib18
  article-title: Experimental research of an air-source heat pump water heater using water-PCM for heat storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.209
– year: 2016
  ident: 10.1016/j.renene.2021.08.067_bib22
– volume: 210
  start-page: 112679
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib29
  article-title: Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112679
– volume: 144
  start-page: 836
  year: 2018
  ident: 10.1016/j.renene.2021.08.067_bib16
  article-title: Experimental and numerical investigation on the novel latent heat exchanger with paraffin/expanded graphite composite
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.08.103
– volume: 259
  start-page: 114102
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib14
  article-title: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114102
– volume: 22
  start-page: 100743
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib34
  article-title: Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT/water nanofluid
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100743
– volume: 128
  start-page: 109900
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib4
  article-title: Sustainable and energy-efficient domestic hot water systems: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109900
– volume: 148
  start-page: 1165
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib32
  article-title: Novel solar collector: evaluating the impact of nanoparticles added to the collector's working fluid, heat transfer fluid temperature and flow rate
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.10.008
– year: 2016
  ident: 10.1016/j.renene.2021.08.067_bib2
– volume: 90
  start-page: 802
  year: 2018
  ident: 10.1016/j.renene.2021.08.067_bib24
  article-title: Light source selection for a solar simulator for thermal applications: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.059
– volume: 191
  start-page: 91
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib45
  article-title: Experimental investigation of heat pipe solar collector using MgO nanofluids
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.10.025
– volume: 40
  start-page: 666
  year: 2008
  ident: 10.1016/j.renene.2021.08.067_bib19
  article-title: Numerical and experimental study on heat pump water heater with PCM for thermal storage
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.05.001
– year: 1978
  ident: 10.1016/j.renene.2021.08.067_bib26
– volume: 215
  start-page: 119211
  year: 2021
  ident: 10.1016/j.renene.2021.08.067_bib3
  article-title: Low return temperature from domestic hot-water system based on instantaneous heat exchanger with chemical-based disinfection solution
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119211
– volume: 133
  start-page: 110287
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib1
  article-title: Machine learning applications in urban building energy performance forecasting : a systematic review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110287
– volume: 13
  start-page: 2119
  year: 2009
  ident: 10.1016/j.renene.2021.08.067_bib6
  article-title: Solar water heaters with phase change material thermal energy storage medium : a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2009.01.024
– volume: 164
  start-page: 794
  year: 2018
  ident: 10.1016/j.renene.2021.08.067_bib9
  article-title: Air source heat pump for domestic hot water supply: performance comparison between individual and building scale installations
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.065
– volume: 201
  start-page: 110066
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib28
  article-title: Development and experiment on the performance of polymeric hybrid Photovoltaic Thermal (PVT) collector with halogen solar simulator
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110066
– volume: 136
  start-page: 121
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib21
  article-title: Experimental investigation of solar water heater integrated with a nanocomposite phase change material Energetic and exergetic approach
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7937-9
– volume: 209
  start-page: 224
  year: 2018
  ident: 10.1016/j.renene.2021.08.067_bib43
  article-title: Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.095
– volume: 142
  start-page: 644
  year: 2018
  ident: 10.1016/j.renene.2021.08.067_bib17
  article-title: Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.087
– volume: 42
  start-page: 4070
  year: 2018
  ident: 10.1016/j.renene.2021.08.067_bib41
  article-title: Experimental and numerical investigations of a lauric acid - multichannel flat tube latent thermal storage unit
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4124
– volume: 202
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib42
  article-title: Thermal performance of a closed collector e storage solar air heating system with latent thermal storage: an experimental study
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117764
– volume: 197
  start-page: 279
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib37
  article-title: Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.01.002
– volume: 226
  start-page: 113488
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib39
  article-title: Techno-economic analysis of high-temperature heat pumps with low-global warming potential refrigerants for upgrading waste heat up to 150 °C
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113488
– volume: 186
  start-page: 116493
  year: 2021
  ident: 10.1016/j.renene.2021.08.067_bib40
  article-title: Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116493
– volume: 28
  start-page: 101270
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib15
  article-title: Investigation on the energy performance of using air-source heat pump to charge PCM storage tank
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2020.101270
– volume: 184
  start-page: 530
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib35
  article-title: Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.01.085
– volume: 157
  start-page: 670
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib13
  article-title: Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.05.061
– volume: 198
  start-page: 111796
  year: 2019
  ident: 10.1016/j.renene.2021.08.067_bib36
  article-title: Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111796
– volume: 153
  start-page: 362
  year: 2017
  ident: 10.1016/j.renene.2021.08.067_bib30
  article-title: Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.10.019
– volume: 115
  start-page: 1168
  year: 2016
  ident: 10.1016/j.renene.2021.08.067_bib31
  article-title: Role of PCM addition on strati fi cation behaviour in a thermal storage tank e an experimental study
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.014
– volume: 229
  start-page: 113624
  year: 2021
  ident: 10.1016/j.renene.2021.08.067_bib10
  article-title: Study on energy-saving operation of a combined heating system of solar hot water and air source heat pump
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113624
– volume: 257
  start-page: 113993
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib12
  article-title: Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113993
– volume: 156
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib33
  article-title: Heat transfer study in solar collector with energy storage
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.119778
– volume: 152
  start-page: 601
  year: 2020
  ident: 10.1016/j.renene.2021.08.067_bib38
  article-title: A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.01.090
– volume: 100
  start-page: 34
  year: 2015
  ident: 10.1016/j.renene.2021.08.067_bib7
  article-title: Direct use of solar energy as heat source for a heat pump in comparison to a conventional parallel solar air heat pump system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.03.006
SSID ssj0015874
Score 2.5618882
Snippet In this study, a dual-source solar-heat pump latent heat thermal energy storage system for hot-water supply was proposed to take advantage of renewable energy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 637
SubjectTerms comparative study
Dynamic thermal performance
Energy efficiency
energy use and consumption
heat
heat pumps
latent heat
Latent heat thermal energy storage
Phase-change material
solar energy
Solar-heat pump
thermal energy
Title Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system
URI https://dx.doi.org/10.1016/j.renene.2021.08.067
https://www.proquest.com/docview/2636679293
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yX_RBvOJ1RPA1bl3aZH0cwzEVfNHB3kKSJjAp3djl1T_in_Wcpt1UkIHQh7YkofScfvmSnvMdQu50ZKyW2jOhcbcqgzMjhWFd1DrreoBDXUb5vojhKH4aJ-Md0q9zYTCsssL-gOklWld3WtXbbM0mk9Yrkm8g86iABfDLMaM8jiV6-f3HOswjSrpBiRkaM2xdp8-VMV6oGlmgWGanEvKUf01Pv4C6nH0Gh-Sgoo20F57siOy44pjsfxMTPCGfD9_E-ulko58xLSgcQPRoFsrP4zngcU5nm6wBOvVlE5QCz3OX0wWueRlQa_SDjOrJnIWNforwTWfgBjQHolosw416TFcmE1IMugSookEp-pSMBg9v_SGrSi8wy3m6ZD61sU24Npk00toslol3IvPt1MD6KLVp3LYCvl0N5Dzx0mnB447zLhLSpyYR_Iw0imnhzgnN4kR3Mwk0s-3BPpGJHCxhgCYCF-qYdnpBeP3Gla10ybE8Rq7qALR3Feyk0E4Kq2YKeUHYutcs6HJsaS9rY6of_qVg6tjS87a2vYJPD_-n6MJNVwvVEVwICfySX_579Cuyh1chQOaaNJbzlbsBmrM0zdKPm2S39_g8fPkC224BjA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YlvI3gN-0ibbI-LKOtrLyp4C0mawErpLrr-Gv-sM027PkAEoYfQJqFkki9fksk3AGema51RJnBpaLcqx5RV0vI-aZ31A8Khqbx8R3L4mFw_pU8LcN7chSG3yhr7I6ZXaF2_adet2Z6Ox-17It9I5kkBC-FXqEVYInWqtAVLg6ub4Wh-mJD2oxgz5udUoLlBV7l5kXBkSXqZvVrLU_02Q_3A6moCulyHtZo5skH8uQ1Y8OUmrH7RE9yC94svev1s_CmhMSkZPsj1WB4j0FMaIblg08-LA2wSqiykBl4UvmCvtOzlyK6pK-TMjF943OtnhOBsij2BFchVy1l80dTpq_uEjPwuEa1YFIvehsfLi4fzIa-jL3AnRDbjIXOJS4WxubLKuRxbNniZh05mcYmUuSzpOInD1yA_T4PyRoqk54PvShUym0qxA61yUvpdYHmSmn6ukGl2QoLmt12PqxhkikiHeraT7YFoWly7WpqcImQUuvFBe9bRTprspClwplR7wOelplGa44_8qjGm_tbFNM4ef5Q8bWyvcfTRkYop_eTtVfekkFIhxRT7_679BJaHD3e3-vZqdHMAK_Ql-sscQmv28uaPkPXM7HHdqz8AnkkEPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+the+dynamic+thermal+performance+of+the+parallel+solar-assisted+air-source+heat+pump+latent+heat+thermal+energy+storage+system&rft.jtitle=Renewable+energy&rft.au=Jin%2C+Xin&rft.au=Zhang%2C+Huihui&rft.au=Huang%2C+Gongsheng&rft.au=Lai%2C+Alvin+CK&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=180&rft.spage=637&rft.epage=657&rft_id=info:doi/10.1016%2Fj.renene.2021.08.067&rft.externalDocID=S0960148121012337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon