Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables

Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 27; p. e00440
Main Authors Zeraatpisheh, Mojtaba, Ayoubi, Shamsollah, Mirbagheri, Zahra, Mosaddeghi, Mohammad Reza, Xu, Ming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as mentioned above, are time-consuming and expensive. Thus, this study attempts to spatially predict the soil aggregate stability indices, including mean weight diameter-MWD, geometric mean diameter-GMD, water-stable aggregates-WSA, and SOC in various aggregate fractions using digital soil mapping and machine learning models using the environmental covariates as the time and cost-effective approaches. Thus, a total of 100 soil surface samples (0–10 cm depth) were collected from the natural forest, tea plantation, and paddy rice field land uses, and soil aggregate stability indices were determined following laboratory analyses. The machine learning models, including random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), artificial neural network (ANN), and the ensemble of four single models, were trained using the repeated 10-fold cross-validation method. The models were evaluated by the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and normalized RMSE (nRMSE). The modeling results demonstrated that the RF model outperformed for MWD (R2 = 0.74, nRMSE = 24.28), GMD (R2 = 0.75, nRMSE = 12.72), and WSA (R2 = 0.58, nRMSE = 10.40), while kNN and SVM models resulted in the best prediction of SOC in (meso and micro-aggregates (RMSE = 1.03 and 0.88)) and macroaggregates (RMSE = 1.49), respectively. However, the ensemble model increased the prediction accuracies for all soil targets (RI ≥ 15.78%). Moreover, the variable importance analysis showed that soil properties such as soil organic matter (SOM) and remote sense-data mainly explained the variation of soil aggregate stability indices and SOC in various aggregate fractions. Overall, the results revealed that the machine learning-based models could accurately predict the soil aggregate stability and associated SOC, and the produced maps can be a baseline map for land use planning and decision making. •Various environmental variables were used to predict aggregate stability indices and SOC in aggregate fractions.•Spatial variability of aggregates stability indices and associated SOC were modeled by machine learning.•Soil organic matter had the highest importance on aggregate stability indices.•Remote sensing derivatives accounted for the majority of SOC variation in aggregate fractions.•Ensemble models of five machine learning algorithms showed a promising improvement compared to single models.
AbstractList Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as mentioned above, are time-consuming and expensive. Thus, this study attempts to spatially predict the soil aggregate stability indices, including mean weight diameter-MWD, geometric mean diameter-GMD, water-stable aggregates-WSA, and SOC in various aggregate fractions using digital soil mapping and machine learning models using the environmental covariates as the time and cost-effective approaches. Thus, a total of 100 soil surface samples (0–10 cm depth) were collected from the natural forest, tea plantation, and paddy rice field land uses, and soil aggregate stability indices were determined following laboratory analyses. The machine learning models, including random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), artificial neural network (ANN), and the ensemble of four single models, were trained using the repeated 10-fold cross-validation method. The models were evaluated by the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and normalized RMSE (nRMSE). The modeling results demonstrated that the RF model outperformed for MWD (R2 = 0.74, nRMSE = 24.28), GMD (R2 = 0.75, nRMSE = 12.72), and WSA (R2 = 0.58, nRMSE = 10.40), while kNN and SVM models resulted in the best prediction of SOC in (meso and micro-aggregates (RMSE = 1.03 and 0.88)) and macroaggregates (RMSE = 1.49), respectively. However, the ensemble model increased the prediction accuracies for all soil targets (RI ≥ 15.78%). Moreover, the variable importance analysis showed that soil properties such as soil organic matter (SOM) and remote sense-data mainly explained the variation of soil aggregate stability indices and SOC in various aggregate fractions. Overall, the results revealed that the machine learning-based models could accurately predict the soil aggregate stability and associated SOC, and the produced maps can be a baseline map for land use planning and decision making. •Various environmental variables were used to predict aggregate stability indices and SOC in aggregate fractions.•Spatial variability of aggregates stability indices and associated SOC were modeled by machine learning.•Soil organic matter had the highest importance on aggregate stability indices.•Remote sensing derivatives accounted for the majority of SOC variation in aggregate fractions.•Ensemble models of five machine learning algorithms showed a promising improvement compared to single models.
Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as mentioned above, are time-consuming and expensive. Thus, this study attempts to spatially predict the soil aggregate stability indices, including mean weight diameter-MWD, geometric mean diameter-GMD, water-stable aggregates-WSA, and SOC in various aggregate fractions using digital soil mapping and machine learning models using the environmental covariates as the time and cost-effective approaches. Thus, a total of 100 soil surface samples (0–10 cm depth) were collected from the natural forest, tea plantation, and paddy rice field land uses, and soil aggregate stability indices were determined following laboratory analyses. The machine learning models, including random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), artificial neural network (ANN), and the ensemble of four single models, were trained using the repeated 10-fold cross-validation method. The models were evaluated by the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R²), and normalized RMSE (nRMSE). The modeling results demonstrated that the RF model outperformed for MWD (R² = 0.74, nRMSE = 24.28), GMD (R² = 0.75, nRMSE = 12.72), and WSA (R² = 0.58, nRMSE = 10.40), while kNN and SVM models resulted in the best prediction of SOC in (meso and micro-aggregates (RMSE = 1.03 and 0.88)) and macroaggregates (RMSE = 1.49), respectively. However, the ensemble model increased the prediction accuracies for all soil targets (RI ≥ 15.78%). Moreover, the variable importance analysis showed that soil properties such as soil organic matter (SOM) and remote sense-data mainly explained the variation of soil aggregate stability indices and SOC in various aggregate fractions. Overall, the results revealed that the machine learning-based models could accurately predict the soil aggregate stability and associated SOC, and the produced maps can be a baseline map for land use planning and decision making.
ArticleNumber e00440
Author Mirbagheri, Zahra
Xu, Ming
Mosaddeghi, Mohammad Reza
Zeraatpisheh, Mojtaba
Ayoubi, Shamsollah
Author_xml – sequence: 1
  givenname: Mojtaba
  surname: Zeraatpisheh
  fullname: Zeraatpisheh, Mojtaba
  email: mojtaba.zeraatpisheh@henu.edu.cn, zeraatpishem@yahoo.com
  organization: Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
– sequence: 2
  givenname: Shamsollah
  surname: Ayoubi
  fullname: Ayoubi, Shamsollah
  email: ayoubi@cc.iut.ac.ir
  organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
– sequence: 3
  givenname: Zahra
  surname: Mirbagheri
  fullname: Mirbagheri, Zahra
  email: nmirbaghery69@gmail.com
  organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
– sequence: 4
  givenname: Mohammad Reza
  surname: Mosaddeghi
  fullname: Mosaddeghi, Mohammad Reza
  email: mosaddeghi@iut.ac.ir
  organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran
– sequence: 5
  givenname: Ming
  surname: Xu
  fullname: Xu, Ming
  email: mingxu@henu.edu.cn
  organization: Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
BookMark eNqFkcFuFSEUhompibX2DVywdHOvDMxAx4WJaaw2aeJCXZMzzGF6bhi4AvcmfZa-rHM7LhoXujoE_u8P8L1mZzFFZOxtI7aNaPT73XbCNOaylUI2WxSibcULdi5VJzdC9O3Zs_UrdlnKTggh-04ZLc_Z4_c9VILA9xlHcpVS5MnzkihwmKaME1TkpcJAgeoDhziuhylPEMlxB3lYGIrP4j7DU1Phh0Jx4jO4e4rIA0KOpw0IU8pU7-fyVIjxSDnFGWNdbnKETDAELG_YSw-h4OWfecF-3nz-cf11c_fty-31p7uNU6qvG2-wuZLiahhRq7FdhhFeOe17aYw2bQvKoOwHkL5Hb6TpukG7bjBmdAK1Vhfs3dq7z-nXAUu1MxWHIUDEdChWaqW7pu2FWKIf1qjLqZSM3jqqcHprzUDBNsKepNidXaXYkxS7Slng9i94n2mG_PA_7OOK4fIHR8JsiyOMbvGV0VU7Jvp3wW9O6a9_
CitedBy_id crossref_primary_10_1007_s10661_022_10465_2
crossref_primary_10_3390_land12111984
crossref_primary_10_1016_j_catena_2023_107170
crossref_primary_10_1134_S1064229323601762
crossref_primary_10_3390_rs14102504
crossref_primary_10_3390_land12051034
crossref_primary_10_1021_acs_est_2c07561
crossref_primary_10_31545_intagr_188506
crossref_primary_10_1002_saj2_20581
crossref_primary_10_3390_su15032587
crossref_primary_10_1007_s12145_023_01005_8
crossref_primary_10_2478_johh_2024_0028
crossref_primary_10_1016_j_compag_2022_107262
crossref_primary_10_1016_j_geoderma_2022_116006
crossref_primary_10_3390_f13020276
crossref_primary_10_3390_rs17050882
crossref_primary_10_7717_peerj_14012
crossref_primary_10_1002_ldr_4333
crossref_primary_10_1002_ldr_4410
crossref_primary_10_1007_s42729_025_02333_y
crossref_primary_10_3390_agronomy14040788
crossref_primary_10_3390_agronomy12020451
crossref_primary_10_1002_ldr_4655
crossref_primary_10_1016_j_catena_2024_107804
crossref_primary_10_1016_j_heliyon_2024_e38419
crossref_primary_10_3390_bdcc7020113
crossref_primary_10_1007_s44246_024_00153_w
crossref_primary_10_1080_03650340_2024_2448623
crossref_primary_10_1007_s40808_024_01963_y
crossref_primary_10_3389_fsoil_2023_1155712
crossref_primary_10_3934_geosci_2024007
crossref_primary_10_1007_s10661_024_13173_1
crossref_primary_10_3390_agronomy13122962
crossref_primary_10_1177_15501329221107573
crossref_primary_10_3390_rs16224304
crossref_primary_10_2139_ssrn_4140109
crossref_primary_10_3390_su14052793
crossref_primary_10_1038_s41598_022_20755_x
crossref_primary_10_1016_j_jssas_2022_07_006
crossref_primary_10_3390_land13010078
crossref_primary_10_1007_s42729_024_01981_w
crossref_primary_10_1016_j_apgeochem_2024_106233
crossref_primary_10_1007_s10661_023_11980_6
crossref_primary_10_3389_fsufs_2022_1016000
crossref_primary_10_1016_j_compag_2022_106790
crossref_primary_10_3390_hydrology11110183
crossref_primary_10_1016_j_srs_2024_100118
crossref_primary_10_1016_j_iswcr_2023_09_002
crossref_primary_10_3390_agronomy14020335
crossref_primary_10_1016_j_compag_2023_108550
crossref_primary_10_3390_agronomy12112595
crossref_primary_10_3390_rs14194929
crossref_primary_10_1002_hyp_70067
crossref_primary_10_1177_11786221221114777
crossref_primary_10_1016_j_catena_2024_107941
crossref_primary_10_3390_agriculture12101552
Cites_doi 10.1007/s10113-019-01520-9
10.1016/j.apm.2019.12.016
10.1007/s11629-013-2645-1
10.3389/feart.2021.748859
10.1016/j.rse.2020.112117
10.1016/S0038-0717(00)00179-6
10.1016/j.geoderma.2014.12.013
10.1111/ejss.4_12311
10.1016/j.geoderma.2020.114233
10.1016/0034-4257(88)90106-X
10.1016/j.heliyon.2021.e06480
10.1016/j.geoderma.2003.08.018
10.1016/j.agee.2009.06.017
10.1371/journal.pone.0125814
10.1007/s12517-019-4532-8
10.1016/j.geodrs.2017.02.001
10.1016/j.still.2012.01.011
10.1016/j.geomorph.2017.02.015
10.1080/00103624.2020.1808012
10.31545/intagr/125620
10.1016/j.geoderma.2015.12.003
10.1016/j.still.2004.08.001
10.1016/j.geodrs.2018.e00195
10.1016/j.still.2004.02.010
10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2
10.2136/sssaj2000.6441479x
10.1016/j.indcrop.2016.07.008
10.1016/j.catena.2020.105071
10.5194/soil-7-33-2021
10.1016/j.geoderma.2020.114890
10.1016/S0038-0717(97)00207-1
10.1016/j.catena.2021.105280
10.1080/00380768.1998.10414435
10.1016/j.geoderma.2021.115108
10.1016/j.catena.2017.10.002
10.1016/S2095-6339(15)30042-3
10.1016/j.geoderma.2019.05.031
10.1155/2011/421904
10.1016/S0016-7061(03)00223-4
10.1016/j.scitotenv.2016.09.175
10.1016/j.catena.2019.104408
10.1097/00010694-193401000-00003
10.1016/j.geoderma.2018.09.006
10.1016/j.geoderma.2018.12.037
10.1016/j.geoderma.2020.114793
10.1016/j.geoderma.2019.114139
10.1016/B978-0-12-405942-9.00001-3
10.2136/sssaj1950.036159950014000C0005x
10.1016/j.geoderma.2014.06.032
10.1016/j.geoderma.2018.03.007
10.1029/2002WR001426
10.1016/j.ejsobi.2019.103119
10.2136/sssaj1979.03615995004300050038x
10.18393/ejss.541319
10.1016/j.agee.2006.06.017
10.1080/17583004.2018.1553434
10.1016/j.geoderma.2019.07.005
10.1016/j.geoderma.2013.08.024
10.1111/gcb.12508
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2021.e00440
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2021_e00440
S2352009421000857
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-f7e18208bde63d4bde70f3c6f92776744a37e29ba2f9ef72755b6c5b77dc0e663
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Tue Aug 05 10:27:29 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Tue Jul 01 02:07:19 EDT 2025
Fri Feb 23 02:44:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil erosion
Hyrcanian forest
Cambisols
Digital soil mapping
Luvisols
Land use change
Soil organic matter
Aggregate stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-f7e18208bde63d4bde70f3c6f92776744a37e29ba2f9ef72755b6c5b77dc0e663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636514900
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636514900
crossref_citationtrail_10_1016_j_geodrs_2021_e00440
crossref_primary_10_1016_j_geodrs_2021_e00440
elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Richardson, Wiegand (bb0270) 1977
Tajik, Ayoubi, Khajehali, Shataee (bb0330) 2019; 12
Lu, Sakagami, Tanaka, Hamada (bib424) 1998; 44
Zhou, Xue, Chen, Zhou, Liang, Wang (bb0420) 2020
Kemper, Rosenau (bb0175) 1986
Page, Miller, Keeney (bb0245) 1982
Olaya (bb0240) 2004
Wilding (bb0370) 1985
Gallant, Dowling (bb0105) 2003; 39
Minasny, McBratney, Malone, Wheeler (bb0225) 2013
Zhi, Zhang, Yang, Yang, Liu, Song, Zhao, Li (bb0415) 2017; 10
Genuer, Poggi, Tuleau-Malot (bb0115) 2010; 31
Li, Lu, Wang, Ma, Wei, Li (bb0210) 2016; 91
Taghizadeh-Mehrjardi, Amirian-Chakan, Eftekhari, Jamshidi, Davatgar, Toomanian, Kerry, Heung, Sarmadian, Matinfar, Shirmardi, Nabiollahi, Zolfaghari, Emadi, Zeraatpisheh, Jafari, Karimi, Ebrahimi-Khusfi, Hamzehpour, Schmidt, Behrens, Scholten (bib421) 2021
Wang, Shi (bb0360) 2018; 324
Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (bb0405) 2019; 338
Khanifar, Khademalrasoul (bb0190) 2021; 198
Bremner (bb0045) 1996
Bakhshandeh, Hossieni, Zeraatpisheh, Francaviglia (bb0020) 2019; 95
Soil Survey Staff (bb0300) 2010
Esri (bb0085) 2011
Solomon, Fritzsche, Lehmann, Tekalign, Zech (bb0305) 2002; 66
Wynants, Kelly, Mtei, Munishi, Patrick, Rabinovich, Nasseri, Gilvear, Roberts, Boeckx, Wilson, Blake, Ndakidemi (bb0380) 2019
Gilan Meteorological Administration (bb0125) 2019
Bouslihim, Rochdi, Aboutayeb, El Amrani-Paaza, Miftah, Hssaini (bb0035) 2021; 9
Tajik, Ayoubi, Zeraatpisheh (bb0340) 2020; 20
Bouslihim, Rochdi, El Amrani Paaza (bb0040) 2021; 7
Geological Survey of Iran (bb0120) 1995
Six, Elliott, Paustian (bb0290) 2000; 32
Taghizadeh-Mehrjardi, Schmidt, Toomanian, Heung, Behrens, Mosavi, Band, Amirian-Chakan, Fathabadi, Scholten (bb0325) 2021; 383
Zeraatpishe, Khormali (bb0395) 2012
Jastrow, Miller, Lussenhop (bb0155) 1998; 30
van Bavel (bb0345) 1950; 14
Keskin, Grunwald, Harris (bb0180) 2019; 339
Khaledian, Miller (bb0185) 2020; 81
Walkley, Black (bb0355) 1934; 37
WRB (bb0375) 2014
Ye, Tan, Fang, Ji, Deng (bb0385) 2018; 179
JAXA (bb0160) 2019
Rivera, Bonilla (bb0275) 2020; 187
Ye, Tan, Fang, Ji (bb0390) 2019; 192
Hengl, Heuvelink, Kempen, Leenaars, Walsh, Shepherd, Sila, MacMillan, De Jesus, Tamene, Tondoh (bb0145) 2015; 10
Lamichhane, Kumar, Wilson (bb0200) 2019; 352
Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M.R., 2021. Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. Int. Agrophysics 34, 343–353. Doi
Hati, Swarup, Dwivedi, Misra, Bandyopadhyay (bb0135) 2007; 119
.
Arrouays, McBratney, Bouma, Libohova, Richer-de-Forges, Morgan, Roudier, Poggio, Mulder (bb0005) 2020; 20
Nabiollahi, Eskandari, Taghizadeh-Mehrjardi, Kerry, Triantafilis (bb0230) 2019; 10
Khormali, Ajami, Ayoubi, Srinivasarao, Wani (bb0195) 2009; 134
Jones, Filippi, Wittig, Fajardo, Pino, Mcbratney (bb0165) 2021; 7
Singh, A.K., Kumar, S., Kalambukattu, J.G., 2019. Assessing aggregate stability of soils under various land use/land cover in a watershed of mid-Himalayan landscape. Eur. J. Soil Sci. 8, 131–143. Doi
Poppiel, Demattê, Rosin, Campos, Tayebi, Bonfatti, Ayoubi, Tajik, Afshar, Jafari, Hamzehpour, Taghizadeh-Mehrjardi, Ostovari, Asgari, Naimi, Nabiollahi, Fathizad, Zeraatpisheh, Javaheri, Doustaky, Naderi, Dehghani, Atash, Farshadirad, Mirzaee, Shahriari, Ghorbani, Rahmati (bb0260) 2021; 385
Boettinger, Ramsey, Bodily, Cole, Kienast-Brown, Nield, Saunders, Stum (bb0030) 2008
Caravaca, Lax, Albaladjeo (bb0055) 2004; 78
Deng, Liu, Shangguan (bb0070) 2014; 20
McBratney, Mendonça Santos, Minasny (bb0220) 2003; 117
Mainuri, Owino (bib423) 2013; 1
Goydaragh, Taghizadeh-Mehrjardi, Jafarzadeh, Triantafilis, Lado (bb0130) 2021; 202
Fathizad, Ali Hakimzadeh Ardakani, Sodaiezadeh, Kerry, Taghizadeh-Mehrjardi (bb0095) 2020; 365
Celik (bb0060) 2005; 83
Development Core Team (bb0075) 2016
Nauman, Thompson (bb0235) 2014; 213
Pahlavan-rad, Dahmardeh, Brungard (bb0255) 2018
Browning, Duniway (bb0050) 2011
Hengl, Heuvelink, Stein (bb0140) 2004; 120
Foley, Asner, Costa, Coe, DeFries, Gibbs, Howard, Olson, Patz, Ramankutty, Snyder (bb0100) 2007
Taghizadeh-Mehrjardi, Nabiollahi, Kerry (bb0310) 2016; 266
Zeraatpisheh, Ayoubi, Jafari, Finke (bb0400) 2017; 285
Kamamia, Vogel, Mwangi, Feger, Sang, Julich (bb0170) 2021; 24
Dietterichl (bb0080) 2002; 40
Ayoubi, Mokhtari Karchegani, Mosaddeghi, Honarjoo (bb0010) 2012; 121
Huete (bb0150) 1988; 25
Baligh, Honarjoo, Totonchi, Jalalian (bb0025) 2020; 51
Le Bissonnais (bb0205) 2016; 67
Wang, Wang, Adhikari, Jia, Jin, Liu (bb0365) 2016; 8
Zeraatpisheh, Bakhshandeh, Hosseini, Alavi (bb0410) 2020; 363
Six, Conant, Paul, Paustian (bb0295) 2013; 357
Chaplot, Cooper (bb0065) 2015; 243
Silvero, Demattê, Amorim, dos Santos, Rizzo, Safanelli, Poppiel, de Sousa Mendes, Bonfatti (bb0280) 2021; 252
Taghizadeh-Mehrjardi, Minasny, Toomanian, Zeraatpisheh, Amirian-Chakan, Triantafilis (bb0315) 2019; 3
Chenu, Le Bissonnais, Arrouays (bib422) 2000; 64
Tajik, Ayoubi, Shirani, Zeraatpisheh (bb0335) 2019; 353
Richard, Suarez (bb0265) 1996
Mansuy, Thiffault, Paré, Bernier, Guindon, Villemaire, Poirier, Beaudoin (bb0215) 2014; 235–236
Taghizadeh-Mehrjardi, Hamzehpour, Hassanzadeh, Heung, Ghebleh Goydaragh, Schmidt, Scholten (bb0320) 2021; 399
Gee, Bauder (bb0110) 1979; 43
Falahatkar, Hosseini, Salman Mahiny, Ayoubi, Wang (bb0090) 2014; 11
Pahlavan-Rad, Akbarimoghaddam (bb0250) 2018; 160
Villarino, Studdert, Baldassini, Cendoya, Ciuffoli, Mastrángelo, Piñeiro (bb0350) 2017; 575
Lamichhane (10.1016/j.geodrs.2021.e00440_bb0200) 2019; 352
Caravaca (10.1016/j.geodrs.2021.e00440_bb0055) 2004; 78
Geological Survey of Iran (10.1016/j.geodrs.2021.e00440_bb0120) 1995
Hengl (10.1016/j.geodrs.2021.e00440_bb0140) 2004; 120
Lu (10.1016/j.geodrs.2021.e00440_bib424) 1998; 44
WRB (10.1016/j.geodrs.2021.e00440_bb0375) 2014
Bremner (10.1016/j.geodrs.2021.e00440_bb0045) 1996
Tajik (10.1016/j.geodrs.2021.e00440_bb0335) 2019; 353
Foley (10.1016/j.geodrs.2021.e00440_bb0100) 2007
Khormali (10.1016/j.geodrs.2021.e00440_bb0195) 2009; 134
Kemper (10.1016/j.geodrs.2021.e00440_bb0175) 1986
Falahatkar (10.1016/j.geodrs.2021.e00440_bb0090) 2014; 11
Le Bissonnais (10.1016/j.geodrs.2021.e00440_bb0205) 2016; 67
Six (10.1016/j.geodrs.2021.e00440_bb0290) 2000; 32
Walkley (10.1016/j.geodrs.2021.e00440_bb0355) 1934; 37
Solomon (10.1016/j.geodrs.2021.e00440_bb0305) 2002; 66
Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0315) 2019; 3
Wilding (10.1016/j.geodrs.2021.e00440_bb0370) 1985
Huete (10.1016/j.geodrs.2021.e00440_bb0150) 1988; 25
Nabiollahi (10.1016/j.geodrs.2021.e00440_bb0230) 2019; 10
Rivera (10.1016/j.geodrs.2021.e00440_bb0275) 2020; 187
10.1016/j.geodrs.2021.e00440_bb0015
Bouslihim (10.1016/j.geodrs.2021.e00440_bb0035) 2021; 9
Gallant (10.1016/j.geodrs.2021.e00440_bb0105) 2003; 39
Six (10.1016/j.geodrs.2021.e00440_bb0295) 2013; 357
Fathizad (10.1016/j.geodrs.2021.e00440_bb0095) 2020; 365
Jones (10.1016/j.geodrs.2021.e00440_bb0165) 2021; 7
Wang (10.1016/j.geodrs.2021.e00440_bb0365) 2016; 8
Ye (10.1016/j.geodrs.2021.e00440_bb0385) 2018; 179
Zhou (10.1016/j.geodrs.2021.e00440_bb0420) 2020
Chaplot (10.1016/j.geodrs.2021.e00440_bb0065) 2015; 243
Minasny (10.1016/j.geodrs.2021.e00440_bb0225) 2013
Zeraatpisheh (10.1016/j.geodrs.2021.e00440_bb0410) 2020; 363
Li (10.1016/j.geodrs.2021.e00440_bb0210) 2016; 91
Keskin (10.1016/j.geodrs.2021.e00440_bb0180) 2019; 339
Bakhshandeh (10.1016/j.geodrs.2021.e00440_bb0020) 2019; 95
Soil Survey Staff (10.1016/j.geodrs.2021.e00440_bb0300) 2010
Celik (10.1016/j.geodrs.2021.e00440_bb0060) 2005; 83
Khanifar (10.1016/j.geodrs.2021.e00440_bb0190) 2021; 198
Tajik (10.1016/j.geodrs.2021.e00440_bb0330) 2019; 12
Mainuri (10.1016/j.geodrs.2021.e00440_bib423) 2013; 1
Genuer (10.1016/j.geodrs.2021.e00440_bb0115) 2010; 31
Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bib421) 2021
Nauman (10.1016/j.geodrs.2021.e00440_bb0235) 2014; 213
Richardson (10.1016/j.geodrs.2021.e00440_bb0270) 1977
Tajik (10.1016/j.geodrs.2021.e00440_bb0340) 2020; 20
Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0325) 2021; 383
Browning (10.1016/j.geodrs.2021.e00440_bb0050) 2011
Chenu (10.1016/j.geodrs.2021.e00440_bib422) 2000; 64
Bouslihim (10.1016/j.geodrs.2021.e00440_bb0040) 2021; 7
Hati (10.1016/j.geodrs.2021.e00440_bb0135) 2007; 119
Wynants (10.1016/j.geodrs.2021.e00440_bb0380) 2019
Deng (10.1016/j.geodrs.2021.e00440_bb0070) 2014; 20
Baligh (10.1016/j.geodrs.2021.e00440_bb0025) 2020; 51
Dietterichl (10.1016/j.geodrs.2021.e00440_bb0080) 2002; 40
Boettinger (10.1016/j.geodrs.2021.e00440_bb0030) 2008
Pahlavan-Rad (10.1016/j.geodrs.2021.e00440_bb0250) 2018; 160
Poppiel (10.1016/j.geodrs.2021.e00440_bb0260) 2021; 385
Development Core Team (10.1016/j.geodrs.2021.e00440_bb0075) 2016
Khaledian (10.1016/j.geodrs.2021.e00440_bb0185) 2020; 81
10.1016/j.geodrs.2021.e00440_bb0285
JAXA (10.1016/j.geodrs.2021.e00440_bb0160) 2019
Zeraatpisheh (10.1016/j.geodrs.2021.e00440_bb0405) 2019; 338
Zhi (10.1016/j.geodrs.2021.e00440_bb0415) 2017; 10
Pahlavan-rad (10.1016/j.geodrs.2021.e00440_bb0255) 2018
Esri (10.1016/j.geodrs.2021.e00440_bb0085) 2011
Gilan Meteorological Administration (10.1016/j.geodrs.2021.e00440_bb0125)
Olaya (10.1016/j.geodrs.2021.e00440_bb0240) 2004
Goydaragh (10.1016/j.geodrs.2021.e00440_bb0130) 2021; 202
Hengl (10.1016/j.geodrs.2021.e00440_bb0145) 2015; 10
McBratney (10.1016/j.geodrs.2021.e00440_bb0220) 2003; 117
Mansuy (10.1016/j.geodrs.2021.e00440_bb0215) 2014; 235–236
Ayoubi (10.1016/j.geodrs.2021.e00440_bb0010) 2012; 121
Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0310) 2016; 266
Villarino (10.1016/j.geodrs.2021.e00440_bb0350) 2017; 575
Ye (10.1016/j.geodrs.2021.e00440_bb0390) 2019; 192
Kamamia (10.1016/j.geodrs.2021.e00440_bb0170) 2021; 24
Zeraatpisheh (10.1016/j.geodrs.2021.e00440_bb0400) 2017; 285
Gee (10.1016/j.geodrs.2021.e00440_bb0110) 1979; 43
Jastrow (10.1016/j.geodrs.2021.e00440_bb0155) 1998; 30
Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0320) 2021; 399
van Bavel (10.1016/j.geodrs.2021.e00440_bb0345) 1950; 14
Page (10.1016/j.geodrs.2021.e00440_bb0245) 1982
Richard (10.1016/j.geodrs.2021.e00440_bb0265) 1996
Arrouays (10.1016/j.geodrs.2021.e00440_bb0005) 2020; 20
Silvero (10.1016/j.geodrs.2021.e00440_bb0280) 2021; 252
Wang (10.1016/j.geodrs.2021.e00440_bb0360) 2018; 324
Zeraatpishe (10.1016/j.geodrs.2021.e00440_bb0395) 2012
References_xml – volume: 30
  start-page: 905
  year: 1998
  end-page: 916
  ident: bb0155
  article-title: Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie
  publication-title: Soil Biol. Biochem.
– volume: 324
  start-page: 56
  year: 2018
  end-page: 66
  ident: bb0360
  article-title: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy of soil particle-size fraction mapping
  publication-title: Geoderma
– start-page: 1
  year: 2020
  end-page: 18
  ident: bb0420
  article-title: Fine-Resolution Mapping of Soil Total Nitrogen across China Based on Weighted Model Averaging
– volume: 235–236
  start-page: 59
  year: 2014
  end-page: 73
  ident: bb0215
  article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method
  publication-title: Geoderma
– volume: 12
  start-page: 368
  year: 2019
  ident: bb0330
  article-title: Effects of tree species composition on soil properties and invertebrates in a deciduous forest
  publication-title: Arab. J. Geosci.
– volume: 10
  start-page: 63
  year: 2019
  end-page: 77
  ident: bb0230
  article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models
  publication-title: Carbon Manag
– volume: 10
  start-page: 1
  year: 2017
  end-page: 10
  ident: bb0415
  article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan plateau using random forest
  publication-title: Geoderma Reg
– year: 2019
  ident: bb0380
  article-title: Drivers of increased soil erosion in East Africa’s agro-pastoral systems: changing interactions between the social, economic and natural domains
  publication-title: Reg. Environ. Chang.
– volume: 7
  start-page: 33
  year: 2021
  end-page: 46
  ident: bb0165
  article-title: Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape
  publication-title: Soil
– volume: 8
  start-page: 11
  year: 2016
  end-page: 14
  ident: bb0365
  article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian
  publication-title: China Sustain
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0150
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 66
  start-page: 969
  year: 2002
  end-page: 978
  ident: bb0305
  article-title: Soil organic matter dynamics in the subhumid agroecosystems of the Ethiopian highlands: evidence from natural 13C abundance and particle-size fractionation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  year: 2002
  ident: bb0080
  article-title: The handbook of brain theory and neural networks - ensemble learning
  publication-title: MIT Press
– volume: 14
  year: 1950
  ident: bb0345
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 1
  start-page: 80
  year: 2013
  end-page: 87
  ident: bib423
  article-title: Effects of land use and management on aggregate stability and hydraulic conductivity of soils within river Njoro watershed in Kenya
  publication-title: Int. Soil Water Conserv. Res.
– volume: 119
  start-page: 127
  year: 2007
  end-page: 134
  ident: bb0135
  article-title: Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of Central India after 28 years of continuous cropping, fertilization and manuring
  publication-title: Agric. Ecosyst. Environ.
– volume: 357
  start-page: 135
  year: 2013
  end-page: 139
  ident: bb0295
  article-title: Stabilization mechanisms of protected versus unprotected soil organic matter: implications for C-saturation of soils
  publication-title: Hrvat Znan Bibliogr i MZOS-Svibor
– volume: 67
  start-page: 11
  year: 2016
  end-page: 21
  ident: bb0205
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology
  publication-title: Eur. J. Soil Sci.
– year: 1996
  ident: bb0265
  publication-title: Carbonates and gypsum. In: methods of soil analysis. Part 3. Chemical methods
– start-page: 166
  year: 1985
  end-page: 194
  ident: bb0370
  article-title: Spatial variability: its documentation, accommodation and implication to soil surveys
  publication-title: Soil spatial variability Workshop
– volume: 213
  start-page: 385
  year: 2014
  end-page: 399
  ident: bb0235
  article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees
  publication-title: Geoderma
– start-page: 1085
  year: 1996
  end-page: 1122
  ident: bb0045
  publication-title: Nitrogen–total. In ‘methods of soil analyses, part 3, chemical methods’
– year: 2019
  ident: bb0160
  article-title: ALOS Global Digital Surface Model “ALOS World 3D - 30m (AW3D30)”
– reference: Singh, A.K., Kumar, S., Kalambukattu, J.G., 2019. Assessing aggregate stability of soils under various land use/land cover in a watershed of mid-Himalayan landscape. Eur. J. Soil Sci. 8, 131–143. Doi:
– volume: 266
  start-page: 98
  year: 2016
  end-page: 110
  ident: bb0310
  article-title: Digital mapping of soil organic carbon at multiple depths using different across the study area using techniques in Baneh region, Iran
  publication-title: Geoderma
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: bb0355
  article-title: An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration
  publication-title: Soil Sci.
– start-page: 1159
  year: 1982
  ident: bb0245
  article-title: Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy, No. 9
– volume: 202
  start-page: 105280
  year: 2021
  ident: bb0130
  article-title: Using environmental variables and Fourier transform infrared spectroscopy to predict soil organic carbon
  publication-title: Catena
– volume: 81
  start-page: 401
  year: 2020
  end-page: 418
  ident: bb0185
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
– volume: 252
  start-page: 112117
  year: 2021
  ident: bb0280
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 1347
  year: 2003
  ident: bb0105
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
– year: 2019
  ident: bb0125
– volume: 44
  start-page: 147
  year: 1998
  end-page: 155.doi
  ident: bib424
  article-title: Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use
  publication-title: Soil Sci. Plant Nutr.
– volume: 285
  start-page: 186
  year: 2017
  end-page: 204
  ident: bb0400
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0220
  article-title: On digital soil mapping
  publication-title: Geoderma
– year: 2010
  ident: bb0300
  article-title: Keys to Soil Taxonomy, U.S. Department of Agriculture-Natural Resources Conservation Service
– volume: 353
  start-page: 252
  year: 2019
  end-page: 263
  ident: bb0335
  article-title: Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem
  publication-title: Geoderma
– volume: 20
  start-page: 3544
  year: 2014
  end-page: 3556
  ident: bb0070
  article-title: Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: a synthesis
  publication-title: Glob. Chang. Biol.
– volume: 120
  start-page: 75
  year: 2004
  end-page: 93
  ident: bb0140
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
– volume: 363
  start-page: 114139
  year: 2020
  ident: bb0410
  article-title: Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping
  publication-title: Geoderma
– volume: 243
  start-page: 205
  year: 2015
  end-page: 213
  ident: bb0065
  article-title: Soil aggregate stability to predict organic carbon outputs from soils
  publication-title: Geoderma
– year: 1977
  ident: bb0270
  article-title: Distinguishing Vegetation from Soil Background Information by Gray Mapping of Landsat MSS Data
– volume: 179
  start-page: 71
  year: 2018
  end-page: 81
  ident: bb0385
  article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau
  publication-title: China: I Spatial variability Soil Tillage Res
– volume: 338
  start-page: 445
  year: 2019
  end-page: 452
  ident: bb0405
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran
  publication-title: Geoderma
– year: 2016
  ident: bb0075
  article-title: R: A Language and Environment for Statistical Computing
– year: 2012
  ident: bb0395
  article-title: Carbon stock and mineral factors controlling soil organic carbon in a climatic gradient
  publication-title: Golestan province
– volume: 31
  start-page: 2225
  year: 2010
  end-page: 2236
  ident: bb0115
  article-title: Variable selection using random forests. Pattern Recogn
  publication-title: Lett.
– start-page: 193
  year: 2008
  end-page: 202
  ident: bb0030
  article-title: Landsat spectral data for digital soil mapping, digital soil mapping with limited data
  publication-title: Springer
– year: 2018
  ident: bb0255
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Reg.
– volume: 575
  start-page: 1056
  year: 2017
  end-page: 1065
  ident: bb0350
  article-title: Deforestation impacts on soil organic carbon stocks in the semiarid Chaco region
  publication-title: Argentina Sci Total Environ
– volume: 399
  start-page: 115108
  year: 2021
  ident: bb0320
  article-title: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping
  publication-title: Geoderma
– volume: 91
  start-page: 194
  year: 2016
  end-page: 204
  ident: bb0210
  article-title: Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Ind
  publication-title: Crops Prod
– volume: 20
  year: 2020
  ident: bb0005
  article-title: Impressions of digital soil maps: the good, the not so good, and making them ever better
  publication-title: Geoderma Reg
– volume: 365
  start-page: 114233
  year: 2020
  ident: bb0095
  article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran
  publication-title: Geoderma
– volume: 160
  start-page: 275
  year: 2018
  end-page: 281
  ident: bb0250
  article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran)
  publication-title: Catena
– volume: 339
  start-page: 40
  year: 2019
  end-page: 58
  ident: bb0180
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
– volume: 385
  year: 2021
  ident: bb0260
  article-title: High resolution middle eastern soil attributes mapping via open data and cloud computing
  publication-title: Geoderma
– year: 2011
  ident: bb0050
  article-title: Digital soil mapping in the absence of field training data: a case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential
  publication-title: Appl Environ Soil Sci
– volume: 64
  start-page: 1479
  year: 2000
  end-page: 1486
  ident: bib422
  article-title: Organic matter influence on clay wettability and soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
– volume: 9
  start-page: 1
  year: 2021
  end-page: 13
  ident: bb0035
  article-title: Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique
  publication-title: Front. Earth Sci.
– volume: 11
  start-page: 507
  year: 2014
  end-page: 518
  ident: bb0090
  article-title: Soil organic carbon stock as affected by land use/cover changes in the humid region of northern Iran
  publication-title: J. Mt. Sci.
– volume: 51
  start-page: 1904
  year: 2020
  end-page: 1915
  ident: bb0025
  article-title: Predicting soil particulate organic matter using artificial neural network with wavelet function
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 24
  year: 2021
  ident: bb0170
  article-title: Geoderma regional mapping soil aggregate stability using digital soil mapping : a case study of Ruiru reservoir catchment
  publication-title: Kenya Geoderma Reg
– year: 2011
  ident: bb0085
  article-title: ArcGIS Desktop: Release 10
– volume: 187
  start-page: 104408
  year: 2020
  ident: bb0275
  article-title: Predicting soil aggregate stability using readily available soil properties and machine learning techniques
  publication-title: Catena
– volume: 383
  start-page: 114793
  year: 2021
  ident: bb0325
  article-title: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models
  publication-title: Geoderma
– volume: 43
  start-page: 1004
  year: 1979
  end-page: 1007
  ident: bb0110
  article-title: Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters
  publication-title: Soil Sci. Soc. Am. J.
– reference: Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M.R., 2021. Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. Int. Agrophysics 34, 343–353. Doi:
– volume: 83
  start-page: 270
  year: 2005
  end-page: 277
  ident: bb0060
  article-title: Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey
  publication-title: Soil Tillage Res.
– year: 2014
  ident: bb0375
  article-title: World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
– start-page: 1
  year: 2013
  end-page: 47
  ident: bb0225
  article-title: Chapter one - digital mapping of soil carbon
  publication-title: Advances in Agronomy
– reference: .
– volume: 95
  start-page: 103119
  year: 2019
  ident: bb0020
  article-title: Land use change effects on soil quality and biological fertility: a case study in northern Iran
  publication-title: Eur. J. Soil Biol.
– volume: 134
  start-page: 178
  year: 2009
  end-page: 189
  ident: bb0195
  article-title: Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province
  publication-title: Iran Agric Ecosyst Environ
– volume: 3
  start-page: 1
  year: 2019
  end-page: 21
  ident: bb0315
  article-title: Digital mapping of soil classes using ensemble of models in Isfahan region
  publication-title: Iran Soil Syst
– volume: 78
  start-page: 83
  year: 2004
  end-page: 90
  ident: bb0055
  article-title: Aggregate stability and characteristics of particle size fractions in cultivated and forest soils of semiarid Spain
  publication-title: Soil Tillage Res.
– year: 2004
  ident: bb0240
  article-title: A gentle introduction to SAGA GIS. The SAGA user group eV
– volume: 198
  start-page: 105071
  year: 2021
  ident: bb0190
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation
  publication-title: Catena
– volume: 32
  start-page: 2099
  year: 2000
  end-page: 2103
  ident: bb0290
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
– year: 2021
  ident: bib421
  publication-title: National-scale digital soil mapping using machine learning algorithms for Iran
– start-page: 425
  year: 1986
  end-page: 442
  ident: bb0175
  article-title: Aggregate stability and size distribution
  publication-title: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods
– year: 1995
  ident: bb0120
  article-title: Geological Quadrangle Map. NoI11
– volume: 7
  year: 2021
  ident: bb0040
  article-title: Machine learning approaches for the prediction of soil aggregate stability
  publication-title: Heliyon
– year: 2007
  ident: bb0100
  article-title: Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin
  publication-title: Front. Ecol. Environ.
– volume: 10
  start-page: 4
  year: 2015
  end-page: 7
  ident: bb0145
  article-title: Mapping soil properties of Africa at 250m resolution: random forests significantly improve current predictions
  publication-title: PLoS One
– volume: 192
  start-page: 1
  year: 2019
  end-page: 11
  ident: bb0390
  article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau
  publication-title: China: II Spatial prediction Soil Tillage Res
– volume: 121
  start-page: 18
  year: 2012
  end-page: 26
  ident: bb0010
  article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran
  publication-title: Soil Tillage Res.
– volume: 352
  start-page: 395
  year: 2019
  end-page: 413
  ident: bb0200
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review
  publication-title: Geoderma
– volume: 20
  year: 2020
  ident: bb0340
  article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran
  publication-title: Geoderma Reg
– year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0380
  article-title: Drivers of increased soil erosion in East Africa’s agro-pastoral systems: changing interactions between the social, economic and natural domains
  publication-title: Reg. Environ. Chang.
  doi: 10.1007/s10113-019-01520-9
– volume: 81
  start-page: 401
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0185
  article-title: Selecting appropriate machine learning methods for digital soil mapping
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.12.016
– volume: 11
  start-page: 507
  issue: 2
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00440_bb0090
  article-title: Soil organic carbon stock as affected by land use/cover changes in the humid region of northern Iran
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-013-2645-1
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0035
  article-title: Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2021.748859
– volume: 252
  start-page: 112117
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0280
  article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112117
– volume: 32
  start-page: 2099
  year: 2000
  ident: 10.1016/j.geodrs.2021.e00440_bb0290
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00179-6
– volume: 66
  start-page: 969
  year: 2002
  ident: 10.1016/j.geodrs.2021.e00440_bb0305
  article-title: Soil organic matter dynamics in the subhumid agroecosystems of the Ethiopian highlands: evidence from natural 13C abundance and particle-size fractionation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 243
  start-page: 205
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00440_bb0065
  article-title: Soil aggregate stability to predict organic carbon outputs from soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.013
– volume: 67
  start-page: 11
  issue: 1
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00440_bb0205
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.4_12311
– volume: 365
  start-page: 114233
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0095
  article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114233
– volume: 25
  start-page: 295
  issue: 3
  year: 1988
  ident: 10.1016/j.geodrs.2021.e00440_bb0150
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– start-page: 425
  year: 1986
  ident: 10.1016/j.geodrs.2021.e00440_bb0175
  article-title: Aggregate stability and size distribution
– volume: 7
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0040
  article-title: Machine learning approaches for the prediction of soil aggregate stability
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06480
– volume: 120
  start-page: 75
  year: 2004
  ident: 10.1016/j.geodrs.2021.e00440_bb0140
  article-title: A generic framework for spatial prediction of soil variables based on regression-kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.08.018
– year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0160
– volume: 134
  start-page: 178
  year: 2009
  ident: 10.1016/j.geodrs.2021.e00440_bb0195
  article-title: Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province
  publication-title: Iran Agric Ecosyst Environ
  doi: 10.1016/j.agee.2009.06.017
– volume: 10
  start-page: 4
  year: 2015
  ident: 10.1016/j.geodrs.2021.e00440_bb0145
  article-title: Mapping soil properties of Africa at 250m resolution: random forests significantly improve current predictions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125814
– volume: 12
  start-page: 368
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0330
  article-title: Effects of tree species composition on soil properties and invertebrates in a deciduous forest
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4532-8
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00440_bb0415
  article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan plateau using random forest
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2017.02.001
– volume: 3
  start-page: 1
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0315
  article-title: Digital mapping of soil classes using ensemble of models in Isfahan region
  publication-title: Iran Soil Syst
– year: 1995
  ident: 10.1016/j.geodrs.2021.e00440_bb0120
– volume: 121
  start-page: 18
  year: 2012
  ident: 10.1016/j.geodrs.2021.e00440_bb0010
  article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2012.01.011
– volume: 285
  start-page: 186
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00440_bb0400
  article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.02.015
– volume: 51
  start-page: 1904
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0025
  article-title: Predicting soil particulate organic matter using artificial neural network with wavelet function
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2020.1808012
– start-page: 1159
  year: 1982
  ident: 10.1016/j.geodrs.2021.e00440_bb0245
– ident: 10.1016/j.geodrs.2021.e00440_bb0015
  doi: 10.31545/intagr/125620
– volume: 266
  start-page: 98
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00440_bb0310
  article-title: Digital mapping of soil organic carbon at multiple depths using different across the study area using techniques in Baneh region, Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.003
– volume: 83
  start-page: 270
  year: 2005
  ident: 10.1016/j.geodrs.2021.e00440_bb0060
  article-title: Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.08.001
– year: 2018
  ident: 10.1016/j.geodrs.2021.e00440_bb0255
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2018.e00195
– volume: 24
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0170
  article-title: Geoderma regional mapping soil aggregate stability using digital soil mapping : a case study of Ruiru reservoir catchment
  publication-title: Kenya Geoderma Reg
– year: 1977
  ident: 10.1016/j.geodrs.2021.e00440_bb0270
– volume: 78
  start-page: 83
  year: 2004
  ident: 10.1016/j.geodrs.2021.e00440_bb0055
  article-title: Aggregate stability and characteristics of particle size fractions in cultivated and forest soils of semiarid Spain
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.02.010
– year: 2007
  ident: 10.1016/j.geodrs.2021.e00440_bb0100
  article-title: Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2
– volume: 64
  start-page: 1479
  year: 2000
  ident: 10.1016/j.geodrs.2021.e00440_bib422
  article-title: Organic matter influence on clay wettability and soil aggregate stability
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6441479x
– volume: 91
  start-page: 194
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00440_bb0210
  article-title: Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Ind
  publication-title: Crops Prod
  doi: 10.1016/j.indcrop.2016.07.008
– volume: 198
  start-page: 105071
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0190
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation
  publication-title: Catena
  doi: 10.1016/j.catena.2020.105071
– start-page: 166
  year: 1985
  ident: 10.1016/j.geodrs.2021.e00440_bb0370
  article-title: Spatial variability: its documentation, accommodation and implication to soil surveys
  publication-title: Soil spatial variability Workshop
– volume: 7
  start-page: 33
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0165
  article-title: Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape
  publication-title: Soil
  doi: 10.5194/soil-7-33-2021
– volume: 385
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0260
  article-title: High resolution middle eastern soil attributes mapping via open data and cloud computing
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114890
– volume: 30
  start-page: 905
  year: 1998
  ident: 10.1016/j.geodrs.2021.e00440_bb0155
  article-title: Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(97)00207-1
– volume: 202
  start-page: 105280
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0130
  article-title: Using environmental variables and Fourier transform infrared spectroscopy to predict soil organic carbon
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105280
– volume: 44
  start-page: 147
  issue: 2
  year: 1998
  ident: 10.1016/j.geodrs.2021.e00440_bib424
  article-title: Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1998.10414435
– start-page: 1
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0420
– volume: 399
  start-page: 115108
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0320
  article-title: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115108
– year: 2014
  ident: 10.1016/j.geodrs.2021.e00440_bb0375
– volume: 31
  start-page: 2225
  issue: 14
  year: 2010
  ident: 10.1016/j.geodrs.2021.e00440_bb0115
  article-title: Variable selection using random forests. Pattern Recogn
  publication-title: Lett.
– year: 2012
  ident: 10.1016/j.geodrs.2021.e00440_bb0395
  article-title: Carbon stock and mineral factors controlling soil organic carbon in a climatic gradient
  publication-title: Golestan province
– volume: 160
  start-page: 275
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00440_bb0250
  article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran)
  publication-title: Catena
  doi: 10.1016/j.catena.2017.10.002
– volume: 1
  start-page: 80
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00440_bib423
  article-title: Effects of land use and management on aggregate stability and hydraulic conductivity of soils within river Njoro watershed in Kenya
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/S2095-6339(15)30042-3
– year: 2004
  ident: 10.1016/j.geodrs.2021.e00440_bb0240
– ident: 10.1016/j.geodrs.2021.e00440_bb0125
– volume: 352
  start-page: 395
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0200
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.031
– year: 2011
  ident: 10.1016/j.geodrs.2021.e00440_bb0050
  article-title: Digital soil mapping in the absence of field training data: a case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential
  publication-title: Appl Environ Soil Sci
  doi: 10.1155/2011/421904
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geodrs.2021.e00440_bb0220
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– year: 2010
  ident: 10.1016/j.geodrs.2021.e00440_bb0300
– volume: 575
  start-page: 1056
  year: 2017
  ident: 10.1016/j.geodrs.2021.e00440_bb0350
  article-title: Deforestation impacts on soil organic carbon stocks in the semiarid Chaco region
  publication-title: Argentina Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.09.175
– volume: 8
  start-page: 11
  year: 2016
  ident: 10.1016/j.geodrs.2021.e00440_bb0365
  article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian
  publication-title: China Sustain
– volume: 187
  start-page: 104408
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0275
  article-title: Predicting soil aggregate stability using readily available soil properties and machine learning techniques
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104408
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geodrs.2021.e00440_bb0355
  article-title: An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– year: 2011
  ident: 10.1016/j.geodrs.2021.e00440_bb0085
– year: 1996
  ident: 10.1016/j.geodrs.2021.e00440_bb0265
– volume: 338
  start-page: 445
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0405
  article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.006
– volume: 40
  year: 2002
  ident: 10.1016/j.geodrs.2021.e00440_bb0080
  article-title: The handbook of brain theory and neural networks - ensemble learning
  publication-title: MIT Press
– volume: 357
  start-page: 135
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00440_bb0295
  article-title: Stabilization mechanisms of protected versus unprotected soil organic matter: implications for C-saturation of soils
  publication-title: Hrvat Znan Bibliogr i MZOS-Svibor
– start-page: 1085
  year: 1996
  ident: 10.1016/j.geodrs.2021.e00440_bb0045
– volume: 339
  start-page: 40
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0180
  article-title: Digital mapping of soil carbon fractions with machine learning
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.037
– volume: 383
  start-page: 114793
  year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bb0325
  article-title: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114793
– volume: 363
  start-page: 114139
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0410
  article-title: Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114139
– volume: 20
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0005
  article-title: Impressions of digital soil maps: the good, the not so good, and making them ever better
  publication-title: Geoderma Reg
– volume: 179
  start-page: 71
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00440_bb0385
  article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau
  publication-title: China: I Spatial variability Soil Tillage Res
– start-page: 1
  year: 2013
  ident: 10.1016/j.geodrs.2021.e00440_bb0225
  article-title: Chapter one - digital mapping of soil carbon
  doi: 10.1016/B978-0-12-405942-9.00001-3
– volume: 14
  year: 1950
  ident: 10.1016/j.geodrs.2021.e00440_bb0345
  article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1950.036159950014000C0005x
– start-page: 193
  year: 2008
  ident: 10.1016/j.geodrs.2021.e00440_bb0030
  article-title: Landsat spectral data for digital soil mapping, digital soil mapping with limited data
  publication-title: Springer
– volume: 235–236
  start-page: 59
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00440_bb0215
  article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.06.032
– year: 2021
  ident: 10.1016/j.geodrs.2021.e00440_bib421
– volume: 324
  start-page: 56
  year: 2018
  ident: 10.1016/j.geodrs.2021.e00440_bb0360
  article-title: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy of soil particle-size fraction mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.007
– volume: 20
  year: 2020
  ident: 10.1016/j.geodrs.2021.e00440_bb0340
  article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran
  publication-title: Geoderma Reg
– volume: 39
  start-page: 1347
  year: 2003
  ident: 10.1016/j.geodrs.2021.e00440_bb0105
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001426
– volume: 95
  start-page: 103119
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0020
  article-title: Land use change effects on soil quality and biological fertility: a case study in northern Iran
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2019.103119
– volume: 43
  start-page: 1004
  year: 1979
  ident: 10.1016/j.geodrs.2021.e00440_bb0110
  article-title: Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1979.03615995004300050038x
– ident: 10.1016/j.geodrs.2021.e00440_bb0285
  doi: 10.18393/ejss.541319
– volume: 119
  start-page: 127
  year: 2007
  ident: 10.1016/j.geodrs.2021.e00440_bb0135
  article-title: Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of Central India after 28 years of continuous cropping, fertilization and manuring
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.06.017
– volume: 10
  start-page: 63
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0230
  article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models
  publication-title: Carbon Manag
  doi: 10.1080/17583004.2018.1553434
– volume: 353
  start-page: 252
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0335
  article-title: Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.005
– volume: 213
  start-page: 385
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00440_bb0235
  article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.08.024
– volume: 20
  start-page: 3544
  issue: 11
  year: 2014
  ident: 10.1016/j.geodrs.2021.e00440_bb0070
  article-title: Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: a synthesis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12508
– year: 2016
  ident: 10.1016/j.geodrs.2021.e00440_bb0075
– volume: 192
  start-page: 1
  year: 2019
  ident: 10.1016/j.geodrs.2021.e00440_bb0390
  article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau
  publication-title: China: II Spatial prediction Soil Tillage Res
SSID ssj0002953762
Score 2.4701762
Snippet Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00440
SubjectTerms Aggregate stability
Cambisols
cost effectiveness
Digital soil mapping
forests
Hyrcanian forest
Land use change
landscapes
Luvisols
neural networks
paddies
prediction
rough rice
soil aggregates
Soil erosion
soil organic carbon
Soil organic matter
support vector machines
sustainable land management
tea
Title Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables
URI https://dx.doi.org/10.1016/j.geodrs.2021.e00440
https://www.proquest.com/docview/2636514900
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZpcumlpDSladKiQK_O2vq1jiE0bLs0hyahuRlJllyXjb14N4U-S142GskOaSEEehKyNUZoxjMj6ZsZhD7VdbA6xpssgv0Y1SrTghWZ5IXMPRE2LyHA-du5mF-xr9f8egudTrEwAKscdX_S6VFbj09m42rOVm07uyA0pgxipIiOg3yBdghVIoj2zsmXxfz84aiFKMhZQmKZOU4yoJmC6CLSq3F9PUDqblIcu1iD-Skj9Y-6jjbobBe9Gp1HfJLm9xptue4NuoOqwkGK8GqASxdYaNx7vO7bJdZN2E7DQRkOTmCEwf7BuqvTy1TQyWKrBxNo2u7RcD-kgIc1BmB8g28i5tLhschEg_Wy6Yd28_NmHT_4KF4uzOR32IBDSNZ6D12dfb48nWdjyYXMUqo2mZcOMrqXpnaC1iw0gWPUCq9ITPvDNJWOKKOJV84H34dzIyw3UtY2d8F7eYu2u75z7xDmTJSOlKImuWdMQYdzTY0snC2J0fuITmtc2TEfOZTFWFYT8OxXlThTAWeqxJl9lD1QrVI-jmfGy4l91V9yVQWT8Qzl0cTtKvxycI-iO9ffhkGCiuBnqjx__99fP0AvoZeAMYdoezPcug_BvdmYj6P4Qrv4_mNxDxWU_oA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9gAXBAJEoRQjcQ2b-DM5VlWrLW33Qiv1ZtmOHYK2ySq7ReK38GfrsZOqIKFKnKLEHsvyOOOx_eYNQp_rOqw6xpssgv0Y1VWmBSsyyQuZeyJsXkKA88VSLK7Y12t-vYOOplgYgFWOtj_Z9Gitxy_zcTTn67adfyM0UgYxUkTHQT5Bu8BOxWdo9_D0bLG8P2ohFXCWkJhmjpMMZKYguoj0alxfD0DdTYovLuZg_tci9Ze5jmvQyQv0fHQe8WHq30u047pX6DdkFQ6zCK8HuHSBgca9x5u-XWHdhO00HJTh4ARGGOwvrLs6FaaEThZbPZgg03YPqvshBTxsMADjG3wTMZcOj0kmGqxXTT-02-83m9jgg3i50JOfYQMOIVmb1-jq5PjyaJGNKRcyS2m1zbx0wOhemtoJWrPwCBqjVviKRNofpql0pDKa-Mr54PtwboTlRsra5i54L2_QrOs79xZhzkTpSClqknvGKnjhXFMjC2dLYvQeotMYKzvykUNajJWagGc_VNKMAs2opJk9lN1LrRMfxyP15aQ-9ce8UmHJeETy06RtFX45uEfRnetvQyVBRfAzqzx_99-tf0RPF5cX5-r8dHn2Hj2DkgSS2Uez7XDrPgRXZ2sOxql8Bxi5_8M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+soil+aggregate+stability+and+soil+organic+carbon+in+aggregate+fractions+using+machine+learning+algorithms+and+environmental+variables&rft.jtitle=Geoderma+Regional&rft.au=Zeraatpisheh%2C+Mojtaba&rft.au=Ayoubi%2C+Shamsollah&rft.au=Mirbagheri%2C+Zahra&rft.au=Mosaddeghi%2C+Mohammad+Reza&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=27&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00440&rft.externalDocID=S2352009421000857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon