Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables
Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as...
Saved in:
Published in | Geoderma Regional Vol. 27; p. e00440 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as mentioned above, are time-consuming and expensive. Thus, this study attempts to spatially predict the soil aggregate stability indices, including mean weight diameter-MWD, geometric mean diameter-GMD, water-stable aggregates-WSA, and SOC in various aggregate fractions using digital soil mapping and machine learning models using the environmental covariates as the time and cost-effective approaches. Thus, a total of 100 soil surface samples (0–10 cm depth) were collected from the natural forest, tea plantation, and paddy rice field land uses, and soil aggregate stability indices were determined following laboratory analyses. The machine learning models, including random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), artificial neural network (ANN), and the ensemble of four single models, were trained using the repeated 10-fold cross-validation method. The models were evaluated by the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and normalized RMSE (nRMSE). The modeling results demonstrated that the RF model outperformed for MWD (R2 = 0.74, nRMSE = 24.28), GMD (R2 = 0.75, nRMSE = 12.72), and WSA (R2 = 0.58, nRMSE = 10.40), while kNN and SVM models resulted in the best prediction of SOC in (meso and micro-aggregates (RMSE = 1.03 and 0.88)) and macroaggregates (RMSE = 1.49), respectively. However, the ensemble model increased the prediction accuracies for all soil targets (RI ≥ 15.78%). Moreover, the variable importance analysis showed that soil properties such as soil organic matter (SOM) and remote sense-data mainly explained the variation of soil aggregate stability indices and SOC in various aggregate fractions. Overall, the results revealed that the machine learning-based models could accurately predict the soil aggregate stability and associated SOC, and the produced maps can be a baseline map for land use planning and decision making.
•Various environmental variables were used to predict aggregate stability indices and SOC in aggregate fractions.•Spatial variability of aggregates stability indices and associated SOC were modeled by machine learning.•Soil organic matter had the highest importance on aggregate stability indices.•Remote sensing derivatives accounted for the majority of SOC variation in aggregate fractions.•Ensemble models of five machine learning algorithms showed a promising improvement compared to single models. |
---|---|
AbstractList | Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as mentioned above, are time-consuming and expensive. Thus, this study attempts to spatially predict the soil aggregate stability indices, including mean weight diameter-MWD, geometric mean diameter-GMD, water-stable aggregates-WSA, and SOC in various aggregate fractions using digital soil mapping and machine learning models using the environmental covariates as the time and cost-effective approaches. Thus, a total of 100 soil surface samples (0–10 cm depth) were collected from the natural forest, tea plantation, and paddy rice field land uses, and soil aggregate stability indices were determined following laboratory analyses. The machine learning models, including random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), artificial neural network (ANN), and the ensemble of four single models, were trained using the repeated 10-fold cross-validation method. The models were evaluated by the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and normalized RMSE (nRMSE). The modeling results demonstrated that the RF model outperformed for MWD (R2 = 0.74, nRMSE = 24.28), GMD (R2 = 0.75, nRMSE = 12.72), and WSA (R2 = 0.58, nRMSE = 10.40), while kNN and SVM models resulted in the best prediction of SOC in (meso and micro-aggregates (RMSE = 1.03 and 0.88)) and macroaggregates (RMSE = 1.49), respectively. However, the ensemble model increased the prediction accuracies for all soil targets (RI ≥ 15.78%). Moreover, the variable importance analysis showed that soil properties such as soil organic matter (SOM) and remote sense-data mainly explained the variation of soil aggregate stability indices and SOC in various aggregate fractions. Overall, the results revealed that the machine learning-based models could accurately predict the soil aggregate stability and associated SOC, and the produced maps can be a baseline map for land use planning and decision making.
•Various environmental variables were used to predict aggregate stability indices and SOC in aggregate fractions.•Spatial variability of aggregates stability indices and associated SOC were modeled by machine learning.•Soil organic matter had the highest importance on aggregate stability indices.•Remote sensing derivatives accounted for the majority of SOC variation in aggregate fractions.•Ensemble models of five machine learning algorithms showed a promising improvement compared to single models. Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the landscape is crucial for sustainable land use planning and management practices. Direct traditional measurements for the target variables, as mentioned above, are time-consuming and expensive. Thus, this study attempts to spatially predict the soil aggregate stability indices, including mean weight diameter-MWD, geometric mean diameter-GMD, water-stable aggregates-WSA, and SOC in various aggregate fractions using digital soil mapping and machine learning models using the environmental covariates as the time and cost-effective approaches. Thus, a total of 100 soil surface samples (0–10 cm depth) were collected from the natural forest, tea plantation, and paddy rice field land uses, and soil aggregate stability indices were determined following laboratory analyses. The machine learning models, including random forest (RF), k-nearest neighbors (kNN), support vector machine (SVM), artificial neural network (ANN), and the ensemble of four single models, were trained using the repeated 10-fold cross-validation method. The models were evaluated by the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R²), and normalized RMSE (nRMSE). The modeling results demonstrated that the RF model outperformed for MWD (R² = 0.74, nRMSE = 24.28), GMD (R² = 0.75, nRMSE = 12.72), and WSA (R² = 0.58, nRMSE = 10.40), while kNN and SVM models resulted in the best prediction of SOC in (meso and micro-aggregates (RMSE = 1.03 and 0.88)) and macroaggregates (RMSE = 1.49), respectively. However, the ensemble model increased the prediction accuracies for all soil targets (RI ≥ 15.78%). Moreover, the variable importance analysis showed that soil properties such as soil organic matter (SOM) and remote sense-data mainly explained the variation of soil aggregate stability indices and SOC in various aggregate fractions. Overall, the results revealed that the machine learning-based models could accurately predict the soil aggregate stability and associated SOC, and the produced maps can be a baseline map for land use planning and decision making. |
ArticleNumber | e00440 |
Author | Mirbagheri, Zahra Xu, Ming Mosaddeghi, Mohammad Reza Zeraatpisheh, Mojtaba Ayoubi, Shamsollah |
Author_xml | – sequence: 1 givenname: Mojtaba surname: Zeraatpisheh fullname: Zeraatpisheh, Mojtaba email: mojtaba.zeraatpisheh@henu.edu.cn, zeraatpishem@yahoo.com organization: Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China – sequence: 2 givenname: Shamsollah surname: Ayoubi fullname: Ayoubi, Shamsollah email: ayoubi@cc.iut.ac.ir organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran – sequence: 3 givenname: Zahra surname: Mirbagheri fullname: Mirbagheri, Zahra email: nmirbaghery69@gmail.com organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran – sequence: 4 givenname: Mohammad Reza surname: Mosaddeghi fullname: Mosaddeghi, Mohammad Reza email: mosaddeghi@iut.ac.ir organization: Department of Soil Science, College of Agriculture, Isfahan University of Technology, 84156-83111 Isfahan, Iran – sequence: 5 givenname: Ming surname: Xu fullname: Xu, Ming email: mingxu@henu.edu.cn organization: Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China |
BookMark | eNqFkcFuFSEUhompibX2DVywdHOvDMxAx4WJaaw2aeJCXZMzzGF6bhi4AvcmfZa-rHM7LhoXujoE_u8P8L1mZzFFZOxtI7aNaPT73XbCNOaylUI2WxSibcULdi5VJzdC9O3Zs_UrdlnKTggh-04ZLc_Z4_c9VILA9xlHcpVS5MnzkihwmKaME1TkpcJAgeoDhziuhylPEMlxB3lYGIrP4j7DU1Phh0Jx4jO4e4rIA0KOpw0IU8pU7-fyVIjxSDnFGWNdbnKETDAELG_YSw-h4OWfecF-3nz-cf11c_fty-31p7uNU6qvG2-wuZLiahhRq7FdhhFeOe17aYw2bQvKoOwHkL5Hb6TpukG7bjBmdAK1Vhfs3dq7z-nXAUu1MxWHIUDEdChWaqW7pu2FWKIf1qjLqZSM3jqqcHprzUDBNsKepNidXaXYkxS7Slng9i94n2mG_PA_7OOK4fIHR8JsiyOMbvGV0VU7Jvp3wW9O6a9_ |
CitedBy_id | crossref_primary_10_1007_s10661_022_10465_2 crossref_primary_10_3390_land12111984 crossref_primary_10_1016_j_catena_2023_107170 crossref_primary_10_1134_S1064229323601762 crossref_primary_10_3390_rs14102504 crossref_primary_10_3390_land12051034 crossref_primary_10_1021_acs_est_2c07561 crossref_primary_10_31545_intagr_188506 crossref_primary_10_1002_saj2_20581 crossref_primary_10_3390_su15032587 crossref_primary_10_1007_s12145_023_01005_8 crossref_primary_10_2478_johh_2024_0028 crossref_primary_10_1016_j_compag_2022_107262 crossref_primary_10_1016_j_geoderma_2022_116006 crossref_primary_10_3390_f13020276 crossref_primary_10_3390_rs17050882 crossref_primary_10_7717_peerj_14012 crossref_primary_10_1002_ldr_4333 crossref_primary_10_1002_ldr_4410 crossref_primary_10_1007_s42729_025_02333_y crossref_primary_10_3390_agronomy14040788 crossref_primary_10_3390_agronomy12020451 crossref_primary_10_1002_ldr_4655 crossref_primary_10_1016_j_catena_2024_107804 crossref_primary_10_1016_j_heliyon_2024_e38419 crossref_primary_10_3390_bdcc7020113 crossref_primary_10_1007_s44246_024_00153_w crossref_primary_10_1080_03650340_2024_2448623 crossref_primary_10_1007_s40808_024_01963_y crossref_primary_10_3389_fsoil_2023_1155712 crossref_primary_10_3934_geosci_2024007 crossref_primary_10_1007_s10661_024_13173_1 crossref_primary_10_3390_agronomy13122962 crossref_primary_10_1177_15501329221107573 crossref_primary_10_3390_rs16224304 crossref_primary_10_2139_ssrn_4140109 crossref_primary_10_3390_su14052793 crossref_primary_10_1038_s41598_022_20755_x crossref_primary_10_1016_j_jssas_2022_07_006 crossref_primary_10_3390_land13010078 crossref_primary_10_1007_s42729_024_01981_w crossref_primary_10_1016_j_apgeochem_2024_106233 crossref_primary_10_1007_s10661_023_11980_6 crossref_primary_10_3389_fsufs_2022_1016000 crossref_primary_10_1016_j_compag_2022_106790 crossref_primary_10_3390_hydrology11110183 crossref_primary_10_1016_j_srs_2024_100118 crossref_primary_10_1016_j_iswcr_2023_09_002 crossref_primary_10_3390_agronomy14020335 crossref_primary_10_1016_j_compag_2023_108550 crossref_primary_10_3390_agronomy12112595 crossref_primary_10_3390_rs14194929 crossref_primary_10_1002_hyp_70067 crossref_primary_10_1177_11786221221114777 crossref_primary_10_1016_j_catena_2024_107941 crossref_primary_10_3390_agriculture12101552 |
Cites_doi | 10.1007/s10113-019-01520-9 10.1016/j.apm.2019.12.016 10.1007/s11629-013-2645-1 10.3389/feart.2021.748859 10.1016/j.rse.2020.112117 10.1016/S0038-0717(00)00179-6 10.1016/j.geoderma.2014.12.013 10.1111/ejss.4_12311 10.1016/j.geoderma.2020.114233 10.1016/0034-4257(88)90106-X 10.1016/j.heliyon.2021.e06480 10.1016/j.geoderma.2003.08.018 10.1016/j.agee.2009.06.017 10.1371/journal.pone.0125814 10.1007/s12517-019-4532-8 10.1016/j.geodrs.2017.02.001 10.1016/j.still.2012.01.011 10.1016/j.geomorph.2017.02.015 10.1080/00103624.2020.1808012 10.31545/intagr/125620 10.1016/j.geoderma.2015.12.003 10.1016/j.still.2004.08.001 10.1016/j.geodrs.2018.e00195 10.1016/j.still.2004.02.010 10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2 10.2136/sssaj2000.6441479x 10.1016/j.indcrop.2016.07.008 10.1016/j.catena.2020.105071 10.5194/soil-7-33-2021 10.1016/j.geoderma.2020.114890 10.1016/S0038-0717(97)00207-1 10.1016/j.catena.2021.105280 10.1080/00380768.1998.10414435 10.1016/j.geoderma.2021.115108 10.1016/j.catena.2017.10.002 10.1016/S2095-6339(15)30042-3 10.1016/j.geoderma.2019.05.031 10.1155/2011/421904 10.1016/S0016-7061(03)00223-4 10.1016/j.scitotenv.2016.09.175 10.1016/j.catena.2019.104408 10.1097/00010694-193401000-00003 10.1016/j.geoderma.2018.09.006 10.1016/j.geoderma.2018.12.037 10.1016/j.geoderma.2020.114793 10.1016/j.geoderma.2019.114139 10.1016/B978-0-12-405942-9.00001-3 10.2136/sssaj1950.036159950014000C0005x 10.1016/j.geoderma.2014.06.032 10.1016/j.geoderma.2018.03.007 10.1029/2002WR001426 10.1016/j.ejsobi.2019.103119 10.2136/sssaj1979.03615995004300050038x 10.18393/ejss.541319 10.1016/j.agee.2006.06.017 10.1080/17583004.2018.1553434 10.1016/j.geoderma.2019.07.005 10.1016/j.geoderma.2013.08.024 10.1111/gcb.12508 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2021.e00440 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2021_e00440 S2352009421000857 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-f7e18208bde63d4bde70f3c6f92776744a37e29ba2f9ef72755b6c5b77dc0e663 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Tue Aug 05 10:27:29 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 02:07:19 EDT 2025 Fri Feb 23 02:44:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil erosion Hyrcanian forest Cambisols Digital soil mapping Luvisols Land use change Soil organic matter Aggregate stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-f7e18208bde63d4bde70f3c6f92776744a37e29ba2f9ef72755b6c5b77dc0e663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636514900 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636514900 crossref_citationtrail_10_1016_j_geodrs_2021_e00440 crossref_primary_10_1016_j_geodrs_2021_e00440 elsevier_sciencedirect_doi_10_1016_j_geodrs_2021_e00440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Richardson, Wiegand (bb0270) 1977 Tajik, Ayoubi, Khajehali, Shataee (bb0330) 2019; 12 Lu, Sakagami, Tanaka, Hamada (bib424) 1998; 44 Zhou, Xue, Chen, Zhou, Liang, Wang (bb0420) 2020 Kemper, Rosenau (bb0175) 1986 Page, Miller, Keeney (bb0245) 1982 Olaya (bb0240) 2004 Wilding (bb0370) 1985 Gallant, Dowling (bb0105) 2003; 39 Minasny, McBratney, Malone, Wheeler (bb0225) 2013 Zhi, Zhang, Yang, Yang, Liu, Song, Zhao, Li (bb0415) 2017; 10 Genuer, Poggi, Tuleau-Malot (bb0115) 2010; 31 Li, Lu, Wang, Ma, Wei, Li (bb0210) 2016; 91 Taghizadeh-Mehrjardi, Amirian-Chakan, Eftekhari, Jamshidi, Davatgar, Toomanian, Kerry, Heung, Sarmadian, Matinfar, Shirmardi, Nabiollahi, Zolfaghari, Emadi, Zeraatpisheh, Jafari, Karimi, Ebrahimi-Khusfi, Hamzehpour, Schmidt, Behrens, Scholten (bib421) 2021 Wang, Shi (bb0360) 2018; 324 Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (bb0405) 2019; 338 Khanifar, Khademalrasoul (bb0190) 2021; 198 Bremner (bb0045) 1996 Bakhshandeh, Hossieni, Zeraatpisheh, Francaviglia (bb0020) 2019; 95 Soil Survey Staff (bb0300) 2010 Esri (bb0085) 2011 Solomon, Fritzsche, Lehmann, Tekalign, Zech (bb0305) 2002; 66 Wynants, Kelly, Mtei, Munishi, Patrick, Rabinovich, Nasseri, Gilvear, Roberts, Boeckx, Wilson, Blake, Ndakidemi (bb0380) 2019 Gilan Meteorological Administration (bb0125) 2019 Bouslihim, Rochdi, Aboutayeb, El Amrani-Paaza, Miftah, Hssaini (bb0035) 2021; 9 Tajik, Ayoubi, Zeraatpisheh (bb0340) 2020; 20 Bouslihim, Rochdi, El Amrani Paaza (bb0040) 2021; 7 Geological Survey of Iran (bb0120) 1995 Six, Elliott, Paustian (bb0290) 2000; 32 Taghizadeh-Mehrjardi, Schmidt, Toomanian, Heung, Behrens, Mosavi, Band, Amirian-Chakan, Fathabadi, Scholten (bb0325) 2021; 383 Zeraatpishe, Khormali (bb0395) 2012 Jastrow, Miller, Lussenhop (bb0155) 1998; 30 van Bavel (bb0345) 1950; 14 Keskin, Grunwald, Harris (bb0180) 2019; 339 Khaledian, Miller (bb0185) 2020; 81 Walkley, Black (bb0355) 1934; 37 WRB (bb0375) 2014 Ye, Tan, Fang, Ji, Deng (bb0385) 2018; 179 JAXA (bb0160) 2019 Rivera, Bonilla (bb0275) 2020; 187 Ye, Tan, Fang, Ji (bb0390) 2019; 192 Hengl, Heuvelink, Kempen, Leenaars, Walsh, Shepherd, Sila, MacMillan, De Jesus, Tamene, Tondoh (bb0145) 2015; 10 Lamichhane, Kumar, Wilson (bb0200) 2019; 352 Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M.R., 2021. Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. Int. Agrophysics 34, 343–353. Doi Hati, Swarup, Dwivedi, Misra, Bandyopadhyay (bb0135) 2007; 119 . Arrouays, McBratney, Bouma, Libohova, Richer-de-Forges, Morgan, Roudier, Poggio, Mulder (bb0005) 2020; 20 Nabiollahi, Eskandari, Taghizadeh-Mehrjardi, Kerry, Triantafilis (bb0230) 2019; 10 Khormali, Ajami, Ayoubi, Srinivasarao, Wani (bb0195) 2009; 134 Jones, Filippi, Wittig, Fajardo, Pino, Mcbratney (bb0165) 2021; 7 Singh, A.K., Kumar, S., Kalambukattu, J.G., 2019. Assessing aggregate stability of soils under various land use/land cover in a watershed of mid-Himalayan landscape. Eur. J. Soil Sci. 8, 131–143. Doi Poppiel, Demattê, Rosin, Campos, Tayebi, Bonfatti, Ayoubi, Tajik, Afshar, Jafari, Hamzehpour, Taghizadeh-Mehrjardi, Ostovari, Asgari, Naimi, Nabiollahi, Fathizad, Zeraatpisheh, Javaheri, Doustaky, Naderi, Dehghani, Atash, Farshadirad, Mirzaee, Shahriari, Ghorbani, Rahmati (bb0260) 2021; 385 Boettinger, Ramsey, Bodily, Cole, Kienast-Brown, Nield, Saunders, Stum (bb0030) 2008 Caravaca, Lax, Albaladjeo (bb0055) 2004; 78 Deng, Liu, Shangguan (bb0070) 2014; 20 McBratney, Mendonça Santos, Minasny (bb0220) 2003; 117 Mainuri, Owino (bib423) 2013; 1 Goydaragh, Taghizadeh-Mehrjardi, Jafarzadeh, Triantafilis, Lado (bb0130) 2021; 202 Fathizad, Ali Hakimzadeh Ardakani, Sodaiezadeh, Kerry, Taghizadeh-Mehrjardi (bb0095) 2020; 365 Celik (bb0060) 2005; 83 Development Core Team (bb0075) 2016 Nauman, Thompson (bb0235) 2014; 213 Pahlavan-rad, Dahmardeh, Brungard (bb0255) 2018 Browning, Duniway (bb0050) 2011 Hengl, Heuvelink, Stein (bb0140) 2004; 120 Foley, Asner, Costa, Coe, DeFries, Gibbs, Howard, Olson, Patz, Ramankutty, Snyder (bb0100) 2007 Taghizadeh-Mehrjardi, Nabiollahi, Kerry (bb0310) 2016; 266 Zeraatpisheh, Ayoubi, Jafari, Finke (bb0400) 2017; 285 Kamamia, Vogel, Mwangi, Feger, Sang, Julich (bb0170) 2021; 24 Dietterichl (bb0080) 2002; 40 Ayoubi, Mokhtari Karchegani, Mosaddeghi, Honarjoo (bb0010) 2012; 121 Huete (bb0150) 1988; 25 Baligh, Honarjoo, Totonchi, Jalalian (bb0025) 2020; 51 Le Bissonnais (bb0205) 2016; 67 Wang, Wang, Adhikari, Jia, Jin, Liu (bb0365) 2016; 8 Zeraatpisheh, Bakhshandeh, Hosseini, Alavi (bb0410) 2020; 363 Six, Conant, Paul, Paustian (bb0295) 2013; 357 Chaplot, Cooper (bb0065) 2015; 243 Silvero, Demattê, Amorim, dos Santos, Rizzo, Safanelli, Poppiel, de Sousa Mendes, Bonfatti (bb0280) 2021; 252 Taghizadeh-Mehrjardi, Minasny, Toomanian, Zeraatpisheh, Amirian-Chakan, Triantafilis (bb0315) 2019; 3 Chenu, Le Bissonnais, Arrouays (bib422) 2000; 64 Tajik, Ayoubi, Shirani, Zeraatpisheh (bb0335) 2019; 353 Richard, Suarez (bb0265) 1996 Mansuy, Thiffault, Paré, Bernier, Guindon, Villemaire, Poirier, Beaudoin (bb0215) 2014; 235–236 Taghizadeh-Mehrjardi, Hamzehpour, Hassanzadeh, Heung, Ghebleh Goydaragh, Schmidt, Scholten (bb0320) 2021; 399 Gee, Bauder (bb0110) 1979; 43 Falahatkar, Hosseini, Salman Mahiny, Ayoubi, Wang (bb0090) 2014; 11 Pahlavan-Rad, Akbarimoghaddam (bb0250) 2018; 160 Villarino, Studdert, Baldassini, Cendoya, Ciuffoli, Mastrángelo, Piñeiro (bb0350) 2017; 575 Lamichhane (10.1016/j.geodrs.2021.e00440_bb0200) 2019; 352 Caravaca (10.1016/j.geodrs.2021.e00440_bb0055) 2004; 78 Geological Survey of Iran (10.1016/j.geodrs.2021.e00440_bb0120) 1995 Hengl (10.1016/j.geodrs.2021.e00440_bb0140) 2004; 120 Lu (10.1016/j.geodrs.2021.e00440_bib424) 1998; 44 WRB (10.1016/j.geodrs.2021.e00440_bb0375) 2014 Bremner (10.1016/j.geodrs.2021.e00440_bb0045) 1996 Tajik (10.1016/j.geodrs.2021.e00440_bb0335) 2019; 353 Foley (10.1016/j.geodrs.2021.e00440_bb0100) 2007 Khormali (10.1016/j.geodrs.2021.e00440_bb0195) 2009; 134 Kemper (10.1016/j.geodrs.2021.e00440_bb0175) 1986 Falahatkar (10.1016/j.geodrs.2021.e00440_bb0090) 2014; 11 Le Bissonnais (10.1016/j.geodrs.2021.e00440_bb0205) 2016; 67 Six (10.1016/j.geodrs.2021.e00440_bb0290) 2000; 32 Walkley (10.1016/j.geodrs.2021.e00440_bb0355) 1934; 37 Solomon (10.1016/j.geodrs.2021.e00440_bb0305) 2002; 66 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0315) 2019; 3 Wilding (10.1016/j.geodrs.2021.e00440_bb0370) 1985 Huete (10.1016/j.geodrs.2021.e00440_bb0150) 1988; 25 Nabiollahi (10.1016/j.geodrs.2021.e00440_bb0230) 2019; 10 Rivera (10.1016/j.geodrs.2021.e00440_bb0275) 2020; 187 10.1016/j.geodrs.2021.e00440_bb0015 Bouslihim (10.1016/j.geodrs.2021.e00440_bb0035) 2021; 9 Gallant (10.1016/j.geodrs.2021.e00440_bb0105) 2003; 39 Six (10.1016/j.geodrs.2021.e00440_bb0295) 2013; 357 Fathizad (10.1016/j.geodrs.2021.e00440_bb0095) 2020; 365 Jones (10.1016/j.geodrs.2021.e00440_bb0165) 2021; 7 Wang (10.1016/j.geodrs.2021.e00440_bb0365) 2016; 8 Ye (10.1016/j.geodrs.2021.e00440_bb0385) 2018; 179 Zhou (10.1016/j.geodrs.2021.e00440_bb0420) 2020 Chaplot (10.1016/j.geodrs.2021.e00440_bb0065) 2015; 243 Minasny (10.1016/j.geodrs.2021.e00440_bb0225) 2013 Zeraatpisheh (10.1016/j.geodrs.2021.e00440_bb0410) 2020; 363 Li (10.1016/j.geodrs.2021.e00440_bb0210) 2016; 91 Keskin (10.1016/j.geodrs.2021.e00440_bb0180) 2019; 339 Bakhshandeh (10.1016/j.geodrs.2021.e00440_bb0020) 2019; 95 Soil Survey Staff (10.1016/j.geodrs.2021.e00440_bb0300) 2010 Celik (10.1016/j.geodrs.2021.e00440_bb0060) 2005; 83 Khanifar (10.1016/j.geodrs.2021.e00440_bb0190) 2021; 198 Tajik (10.1016/j.geodrs.2021.e00440_bb0330) 2019; 12 Mainuri (10.1016/j.geodrs.2021.e00440_bib423) 2013; 1 Genuer (10.1016/j.geodrs.2021.e00440_bb0115) 2010; 31 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bib421) 2021 Nauman (10.1016/j.geodrs.2021.e00440_bb0235) 2014; 213 Richardson (10.1016/j.geodrs.2021.e00440_bb0270) 1977 Tajik (10.1016/j.geodrs.2021.e00440_bb0340) 2020; 20 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0325) 2021; 383 Browning (10.1016/j.geodrs.2021.e00440_bb0050) 2011 Chenu (10.1016/j.geodrs.2021.e00440_bib422) 2000; 64 Bouslihim (10.1016/j.geodrs.2021.e00440_bb0040) 2021; 7 Hati (10.1016/j.geodrs.2021.e00440_bb0135) 2007; 119 Wynants (10.1016/j.geodrs.2021.e00440_bb0380) 2019 Deng (10.1016/j.geodrs.2021.e00440_bb0070) 2014; 20 Baligh (10.1016/j.geodrs.2021.e00440_bb0025) 2020; 51 Dietterichl (10.1016/j.geodrs.2021.e00440_bb0080) 2002; 40 Boettinger (10.1016/j.geodrs.2021.e00440_bb0030) 2008 Pahlavan-Rad (10.1016/j.geodrs.2021.e00440_bb0250) 2018; 160 Poppiel (10.1016/j.geodrs.2021.e00440_bb0260) 2021; 385 Development Core Team (10.1016/j.geodrs.2021.e00440_bb0075) 2016 Khaledian (10.1016/j.geodrs.2021.e00440_bb0185) 2020; 81 10.1016/j.geodrs.2021.e00440_bb0285 JAXA (10.1016/j.geodrs.2021.e00440_bb0160) 2019 Zeraatpisheh (10.1016/j.geodrs.2021.e00440_bb0405) 2019; 338 Zhi (10.1016/j.geodrs.2021.e00440_bb0415) 2017; 10 Pahlavan-rad (10.1016/j.geodrs.2021.e00440_bb0255) 2018 Esri (10.1016/j.geodrs.2021.e00440_bb0085) 2011 Gilan Meteorological Administration (10.1016/j.geodrs.2021.e00440_bb0125) Olaya (10.1016/j.geodrs.2021.e00440_bb0240) 2004 Goydaragh (10.1016/j.geodrs.2021.e00440_bb0130) 2021; 202 Hengl (10.1016/j.geodrs.2021.e00440_bb0145) 2015; 10 McBratney (10.1016/j.geodrs.2021.e00440_bb0220) 2003; 117 Mansuy (10.1016/j.geodrs.2021.e00440_bb0215) 2014; 235–236 Ayoubi (10.1016/j.geodrs.2021.e00440_bb0010) 2012; 121 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0310) 2016; 266 Villarino (10.1016/j.geodrs.2021.e00440_bb0350) 2017; 575 Ye (10.1016/j.geodrs.2021.e00440_bb0390) 2019; 192 Kamamia (10.1016/j.geodrs.2021.e00440_bb0170) 2021; 24 Zeraatpisheh (10.1016/j.geodrs.2021.e00440_bb0400) 2017; 285 Gee (10.1016/j.geodrs.2021.e00440_bb0110) 1979; 43 Jastrow (10.1016/j.geodrs.2021.e00440_bb0155) 1998; 30 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2021.e00440_bb0320) 2021; 399 van Bavel (10.1016/j.geodrs.2021.e00440_bb0345) 1950; 14 Page (10.1016/j.geodrs.2021.e00440_bb0245) 1982 Richard (10.1016/j.geodrs.2021.e00440_bb0265) 1996 Arrouays (10.1016/j.geodrs.2021.e00440_bb0005) 2020; 20 Silvero (10.1016/j.geodrs.2021.e00440_bb0280) 2021; 252 Wang (10.1016/j.geodrs.2021.e00440_bb0360) 2018; 324 Zeraatpishe (10.1016/j.geodrs.2021.e00440_bb0395) 2012 |
References_xml | – volume: 30 start-page: 905 year: 1998 end-page: 916 ident: bb0155 article-title: Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie publication-title: Soil Biol. Biochem. – volume: 324 start-page: 56 year: 2018 end-page: 66 ident: bb0360 article-title: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy of soil particle-size fraction mapping publication-title: Geoderma – start-page: 1 year: 2020 end-page: 18 ident: bb0420 article-title: Fine-Resolution Mapping of Soil Total Nitrogen across China Based on Weighted Model Averaging – volume: 235–236 start-page: 59 year: 2014 end-page: 73 ident: bb0215 article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method publication-title: Geoderma – volume: 12 start-page: 368 year: 2019 ident: bb0330 article-title: Effects of tree species composition on soil properties and invertebrates in a deciduous forest publication-title: Arab. J. Geosci. – volume: 10 start-page: 63 year: 2019 end-page: 77 ident: bb0230 article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models publication-title: Carbon Manag – volume: 10 start-page: 1 year: 2017 end-page: 10 ident: bb0415 article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan plateau using random forest publication-title: Geoderma Reg – year: 2019 ident: bb0380 article-title: Drivers of increased soil erosion in East Africa’s agro-pastoral systems: changing interactions between the social, economic and natural domains publication-title: Reg. Environ. Chang. – volume: 7 start-page: 33 year: 2021 end-page: 46 ident: bb0165 article-title: Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape publication-title: Soil – volume: 8 start-page: 11 year: 2016 end-page: 14 ident: bb0365 article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian publication-title: China Sustain – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bb0150 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 66 start-page: 969 year: 2002 end-page: 978 ident: bb0305 article-title: Soil organic matter dynamics in the subhumid agroecosystems of the Ethiopian highlands: evidence from natural 13C abundance and particle-size fractionation publication-title: Soil Sci. Soc. Am. J. – volume: 40 year: 2002 ident: bb0080 article-title: The handbook of brain theory and neural networks - ensemble learning publication-title: MIT Press – volume: 14 year: 1950 ident: bb0345 article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation publication-title: Soil Sci. Soc. Am. J. – volume: 1 start-page: 80 year: 2013 end-page: 87 ident: bib423 article-title: Effects of land use and management on aggregate stability and hydraulic conductivity of soils within river Njoro watershed in Kenya publication-title: Int. Soil Water Conserv. Res. – volume: 119 start-page: 127 year: 2007 end-page: 134 ident: bb0135 article-title: Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of Central India after 28 years of continuous cropping, fertilization and manuring publication-title: Agric. Ecosyst. Environ. – volume: 357 start-page: 135 year: 2013 end-page: 139 ident: bb0295 article-title: Stabilization mechanisms of protected versus unprotected soil organic matter: implications for C-saturation of soils publication-title: Hrvat Znan Bibliogr i MZOS-Svibor – volume: 67 start-page: 11 year: 2016 end-page: 21 ident: bb0205 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology publication-title: Eur. J. Soil Sci. – year: 1996 ident: bb0265 publication-title: Carbonates and gypsum. In: methods of soil analysis. Part 3. Chemical methods – start-page: 166 year: 1985 end-page: 194 ident: bb0370 article-title: Spatial variability: its documentation, accommodation and implication to soil surveys publication-title: Soil spatial variability Workshop – volume: 213 start-page: 385 year: 2014 end-page: 399 ident: bb0235 article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees publication-title: Geoderma – start-page: 1085 year: 1996 end-page: 1122 ident: bb0045 publication-title: Nitrogen–total. In ‘methods of soil analyses, part 3, chemical methods’ – year: 2019 ident: bb0160 article-title: ALOS Global Digital Surface Model “ALOS World 3D - 30m (AW3D30)” – reference: Singh, A.K., Kumar, S., Kalambukattu, J.G., 2019. Assessing aggregate stability of soils under various land use/land cover in a watershed of mid-Himalayan landscape. Eur. J. Soil Sci. 8, 131–143. Doi: – volume: 266 start-page: 98 year: 2016 end-page: 110 ident: bb0310 article-title: Digital mapping of soil organic carbon at multiple depths using different across the study area using techniques in Baneh region, Iran publication-title: Geoderma – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bb0355 article-title: An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration publication-title: Soil Sci. – start-page: 1159 year: 1982 ident: bb0245 article-title: Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy, No. 9 – volume: 202 start-page: 105280 year: 2021 ident: bb0130 article-title: Using environmental variables and Fourier transform infrared spectroscopy to predict soil organic carbon publication-title: Catena – volume: 81 start-page: 401 year: 2020 end-page: 418 ident: bb0185 article-title: Selecting appropriate machine learning methods for digital soil mapping publication-title: Appl. Math. Model. – volume: 252 start-page: 112117 year: 2021 ident: bb0280 article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison publication-title: Remote Sens. Environ. – volume: 39 start-page: 1347 year: 2003 ident: bb0105 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. – year: 2019 ident: bb0125 – volume: 44 start-page: 147 year: 1998 end-page: 155.doi ident: bib424 article-title: Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use publication-title: Soil Sci. Plant Nutr. – volume: 285 start-page: 186 year: 2017 end-page: 204 ident: bb0400 article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran publication-title: Geomorphology – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0220 article-title: On digital soil mapping publication-title: Geoderma – year: 2010 ident: bb0300 article-title: Keys to Soil Taxonomy, U.S. Department of Agriculture-Natural Resources Conservation Service – volume: 353 start-page: 252 year: 2019 end-page: 263 ident: bb0335 article-title: Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem publication-title: Geoderma – volume: 20 start-page: 3544 year: 2014 end-page: 3556 ident: bb0070 article-title: Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: a synthesis publication-title: Glob. Chang. Biol. – volume: 120 start-page: 75 year: 2004 end-page: 93 ident: bb0140 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma – volume: 363 start-page: 114139 year: 2020 ident: bb0410 article-title: Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping publication-title: Geoderma – volume: 243 start-page: 205 year: 2015 end-page: 213 ident: bb0065 article-title: Soil aggregate stability to predict organic carbon outputs from soils publication-title: Geoderma – year: 1977 ident: bb0270 article-title: Distinguishing Vegetation from Soil Background Information by Gray Mapping of Landsat MSS Data – volume: 179 start-page: 71 year: 2018 end-page: 81 ident: bb0385 article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau publication-title: China: I Spatial variability Soil Tillage Res – volume: 338 start-page: 445 year: 2019 end-page: 452 ident: bb0405 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran publication-title: Geoderma – year: 2016 ident: bb0075 article-title: R: A Language and Environment for Statistical Computing – year: 2012 ident: bb0395 article-title: Carbon stock and mineral factors controlling soil organic carbon in a climatic gradient publication-title: Golestan province – volume: 31 start-page: 2225 year: 2010 end-page: 2236 ident: bb0115 article-title: Variable selection using random forests. Pattern Recogn publication-title: Lett. – start-page: 193 year: 2008 end-page: 202 ident: bb0030 article-title: Landsat spectral data for digital soil mapping, digital soil mapping with limited data publication-title: Springer – year: 2018 ident: bb0255 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Reg. – volume: 575 start-page: 1056 year: 2017 end-page: 1065 ident: bb0350 article-title: Deforestation impacts on soil organic carbon stocks in the semiarid Chaco region publication-title: Argentina Sci Total Environ – volume: 399 start-page: 115108 year: 2021 ident: bb0320 article-title: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping publication-title: Geoderma – volume: 91 start-page: 194 year: 2016 end-page: 204 ident: bb0210 article-title: Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Ind publication-title: Crops Prod – volume: 20 year: 2020 ident: bb0005 article-title: Impressions of digital soil maps: the good, the not so good, and making them ever better publication-title: Geoderma Reg – volume: 365 start-page: 114233 year: 2020 ident: bb0095 article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran publication-title: Geoderma – volume: 160 start-page: 275 year: 2018 end-page: 281 ident: bb0250 article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran) publication-title: Catena – volume: 339 start-page: 40 year: 2019 end-page: 58 ident: bb0180 article-title: Digital mapping of soil carbon fractions with machine learning publication-title: Geoderma – volume: 385 year: 2021 ident: bb0260 article-title: High resolution middle eastern soil attributes mapping via open data and cloud computing publication-title: Geoderma – year: 2011 ident: bb0050 article-title: Digital soil mapping in the absence of field training data: a case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential publication-title: Appl Environ Soil Sci – volume: 64 start-page: 1479 year: 2000 end-page: 1486 ident: bib422 article-title: Organic matter influence on clay wettability and soil aggregate stability publication-title: Soil Sci. Soc. Am. J. – volume: 9 start-page: 1 year: 2021 end-page: 13 ident: bb0035 article-title: Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique publication-title: Front. Earth Sci. – volume: 11 start-page: 507 year: 2014 end-page: 518 ident: bb0090 article-title: Soil organic carbon stock as affected by land use/cover changes in the humid region of northern Iran publication-title: J. Mt. Sci. – volume: 51 start-page: 1904 year: 2020 end-page: 1915 ident: bb0025 article-title: Predicting soil particulate organic matter using artificial neural network with wavelet function publication-title: Commun. Soil Sci. Plant Anal. – volume: 24 year: 2021 ident: bb0170 article-title: Geoderma regional mapping soil aggregate stability using digital soil mapping : a case study of Ruiru reservoir catchment publication-title: Kenya Geoderma Reg – year: 2011 ident: bb0085 article-title: ArcGIS Desktop: Release 10 – volume: 187 start-page: 104408 year: 2020 ident: bb0275 article-title: Predicting soil aggregate stability using readily available soil properties and machine learning techniques publication-title: Catena – volume: 383 start-page: 114793 year: 2021 ident: bb0325 article-title: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models publication-title: Geoderma – volume: 43 start-page: 1004 year: 1979 end-page: 1007 ident: bb0110 article-title: Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters publication-title: Soil Sci. Soc. Am. J. – reference: Ayoubi, S., Mirbagheri, Z., Mosaddeghi, M.R., 2021. Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. Int. Agrophysics 34, 343–353. Doi: – volume: 83 start-page: 270 year: 2005 end-page: 277 ident: bb0060 article-title: Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey publication-title: Soil Tillage Res. – year: 2014 ident: bb0375 article-title: World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps – start-page: 1 year: 2013 end-page: 47 ident: bb0225 article-title: Chapter one - digital mapping of soil carbon publication-title: Advances in Agronomy – reference: . – volume: 95 start-page: 103119 year: 2019 ident: bb0020 article-title: Land use change effects on soil quality and biological fertility: a case study in northern Iran publication-title: Eur. J. Soil Biol. – volume: 134 start-page: 178 year: 2009 end-page: 189 ident: bb0195 article-title: Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province publication-title: Iran Agric Ecosyst Environ – volume: 3 start-page: 1 year: 2019 end-page: 21 ident: bb0315 article-title: Digital mapping of soil classes using ensemble of models in Isfahan region publication-title: Iran Soil Syst – volume: 78 start-page: 83 year: 2004 end-page: 90 ident: bb0055 article-title: Aggregate stability and characteristics of particle size fractions in cultivated and forest soils of semiarid Spain publication-title: Soil Tillage Res. – year: 2004 ident: bb0240 article-title: A gentle introduction to SAGA GIS. The SAGA user group eV – volume: 198 start-page: 105071 year: 2021 ident: bb0190 article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation publication-title: Catena – volume: 32 start-page: 2099 year: 2000 end-page: 2103 ident: bb0290 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. – year: 2021 ident: bib421 publication-title: National-scale digital soil mapping using machine learning algorithms for Iran – start-page: 425 year: 1986 end-page: 442 ident: bb0175 article-title: Aggregate stability and size distribution publication-title: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods – year: 1995 ident: bb0120 article-title: Geological Quadrangle Map. NoI11 – volume: 7 year: 2021 ident: bb0040 article-title: Machine learning approaches for the prediction of soil aggregate stability publication-title: Heliyon – year: 2007 ident: bb0100 article-title: Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin publication-title: Front. Ecol. Environ. – volume: 10 start-page: 4 year: 2015 end-page: 7 ident: bb0145 article-title: Mapping soil properties of Africa at 250m resolution: random forests significantly improve current predictions publication-title: PLoS One – volume: 192 start-page: 1 year: 2019 end-page: 11 ident: bb0390 article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau publication-title: China: II Spatial prediction Soil Tillage Res – volume: 121 start-page: 18 year: 2012 end-page: 26 ident: bb0010 article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran publication-title: Soil Tillage Res. – volume: 352 start-page: 395 year: 2019 end-page: 413 ident: bb0200 article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review publication-title: Geoderma – volume: 20 year: 2020 ident: bb0340 article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran publication-title: Geoderma Reg – year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0380 article-title: Drivers of increased soil erosion in East Africa’s agro-pastoral systems: changing interactions between the social, economic and natural domains publication-title: Reg. Environ. Chang. doi: 10.1007/s10113-019-01520-9 – volume: 81 start-page: 401 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0185 article-title: Selecting appropriate machine learning methods for digital soil mapping publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.12.016 – volume: 11 start-page: 507 issue: 2 year: 2014 ident: 10.1016/j.geodrs.2021.e00440_bb0090 article-title: Soil organic carbon stock as affected by land use/cover changes in the humid region of northern Iran publication-title: J. Mt. Sci. doi: 10.1007/s11629-013-2645-1 – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0035 article-title: Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique publication-title: Front. Earth Sci. doi: 10.3389/feart.2021.748859 – volume: 252 start-page: 112117 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0280 article-title: Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112117 – volume: 32 start-page: 2099 year: 2000 ident: 10.1016/j.geodrs.2021.e00440_bb0290 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00179-6 – volume: 66 start-page: 969 year: 2002 ident: 10.1016/j.geodrs.2021.e00440_bb0305 article-title: Soil organic matter dynamics in the subhumid agroecosystems of the Ethiopian highlands: evidence from natural 13C abundance and particle-size fractionation publication-title: Soil Sci. Soc. Am. J. – volume: 243 start-page: 205 year: 2015 ident: 10.1016/j.geodrs.2021.e00440_bb0065 article-title: Soil aggregate stability to predict organic carbon outputs from soils publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.013 – volume: 67 start-page: 11 issue: 1 year: 2016 ident: 10.1016/j.geodrs.2021.e00440_bb0205 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.4_12311 – volume: 365 start-page: 114233 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0095 article-title: Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114233 – volume: 25 start-page: 295 issue: 3 year: 1988 ident: 10.1016/j.geodrs.2021.e00440_bb0150 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – start-page: 425 year: 1986 ident: 10.1016/j.geodrs.2021.e00440_bb0175 article-title: Aggregate stability and size distribution – volume: 7 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0040 article-title: Machine learning approaches for the prediction of soil aggregate stability publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06480 – volume: 120 start-page: 75 year: 2004 ident: 10.1016/j.geodrs.2021.e00440_bb0140 article-title: A generic framework for spatial prediction of soil variables based on regression-kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2003.08.018 – year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0160 – volume: 134 start-page: 178 year: 2009 ident: 10.1016/j.geodrs.2021.e00440_bb0195 article-title: Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province publication-title: Iran Agric Ecosyst Environ doi: 10.1016/j.agee.2009.06.017 – volume: 10 start-page: 4 year: 2015 ident: 10.1016/j.geodrs.2021.e00440_bb0145 article-title: Mapping soil properties of Africa at 250m resolution: random forests significantly improve current predictions publication-title: PLoS One doi: 10.1371/journal.pone.0125814 – volume: 12 start-page: 368 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0330 article-title: Effects of tree species composition on soil properties and invertebrates in a deciduous forest publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4532-8 – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.geodrs.2021.e00440_bb0415 article-title: Predicting mattic epipedons in the northeastern Qinghai-Tibetan plateau using random forest publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2017.02.001 – volume: 3 start-page: 1 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0315 article-title: Digital mapping of soil classes using ensemble of models in Isfahan region publication-title: Iran Soil Syst – year: 1995 ident: 10.1016/j.geodrs.2021.e00440_bb0120 – volume: 121 start-page: 18 year: 2012 ident: 10.1016/j.geodrs.2021.e00440_bb0010 article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.01.011 – volume: 285 start-page: 186 year: 2017 ident: 10.1016/j.geodrs.2021.e00440_bb0400 article-title: Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.02.015 – volume: 51 start-page: 1904 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0025 article-title: Predicting soil particulate organic matter using artificial neural network with wavelet function publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2020.1808012 – start-page: 1159 year: 1982 ident: 10.1016/j.geodrs.2021.e00440_bb0245 – ident: 10.1016/j.geodrs.2021.e00440_bb0015 doi: 10.31545/intagr/125620 – volume: 266 start-page: 98 year: 2016 ident: 10.1016/j.geodrs.2021.e00440_bb0310 article-title: Digital mapping of soil organic carbon at multiple depths using different across the study area using techniques in Baneh region, Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.003 – volume: 83 start-page: 270 year: 2005 ident: 10.1016/j.geodrs.2021.e00440_bb0060 article-title: Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.08.001 – year: 2018 ident: 10.1016/j.geodrs.2021.e00440_bb0255 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2018.e00195 – volume: 24 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0170 article-title: Geoderma regional mapping soil aggregate stability using digital soil mapping : a case study of Ruiru reservoir catchment publication-title: Kenya Geoderma Reg – year: 1977 ident: 10.1016/j.geodrs.2021.e00440_bb0270 – volume: 78 start-page: 83 year: 2004 ident: 10.1016/j.geodrs.2021.e00440_bb0055 article-title: Aggregate stability and characteristics of particle size fractions in cultivated and forest soils of semiarid Spain publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.02.010 – year: 2007 ident: 10.1016/j.geodrs.2021.e00440_bb0100 article-title: Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2 – volume: 64 start-page: 1479 year: 2000 ident: 10.1016/j.geodrs.2021.e00440_bib422 article-title: Organic matter influence on clay wettability and soil aggregate stability publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6441479x – volume: 91 start-page: 194 year: 2016 ident: 10.1016/j.geodrs.2021.e00440_bb0210 article-title: Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Ind publication-title: Crops Prod doi: 10.1016/j.indcrop.2016.07.008 – volume: 198 start-page: 105071 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0190 article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation publication-title: Catena doi: 10.1016/j.catena.2020.105071 – start-page: 166 year: 1985 ident: 10.1016/j.geodrs.2021.e00440_bb0370 article-title: Spatial variability: its documentation, accommodation and implication to soil surveys publication-title: Soil spatial variability Workshop – volume: 7 start-page: 33 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0165 article-title: Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape publication-title: Soil doi: 10.5194/soil-7-33-2021 – volume: 385 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0260 article-title: High resolution middle eastern soil attributes mapping via open data and cloud computing publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114890 – volume: 30 start-page: 905 year: 1998 ident: 10.1016/j.geodrs.2021.e00440_bb0155 article-title: Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(97)00207-1 – volume: 202 start-page: 105280 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0130 article-title: Using environmental variables and Fourier transform infrared spectroscopy to predict soil organic carbon publication-title: Catena doi: 10.1016/j.catena.2021.105280 – volume: 44 start-page: 147 issue: 2 year: 1998 ident: 10.1016/j.geodrs.2021.e00440_bib424 article-title: Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1998.10414435 – start-page: 1 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0420 – volume: 399 start-page: 115108 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0320 article-title: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115108 – year: 2014 ident: 10.1016/j.geodrs.2021.e00440_bb0375 – volume: 31 start-page: 2225 issue: 14 year: 2010 ident: 10.1016/j.geodrs.2021.e00440_bb0115 article-title: Variable selection using random forests. Pattern Recogn publication-title: Lett. – year: 2012 ident: 10.1016/j.geodrs.2021.e00440_bb0395 article-title: Carbon stock and mineral factors controlling soil organic carbon in a climatic gradient publication-title: Golestan province – volume: 160 start-page: 275 year: 2018 ident: 10.1016/j.geodrs.2021.e00440_bb0250 article-title: Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran) publication-title: Catena doi: 10.1016/j.catena.2017.10.002 – volume: 1 start-page: 80 year: 2013 ident: 10.1016/j.geodrs.2021.e00440_bib423 article-title: Effects of land use and management on aggregate stability and hydraulic conductivity of soils within river Njoro watershed in Kenya publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/S2095-6339(15)30042-3 – year: 2004 ident: 10.1016/j.geodrs.2021.e00440_bb0240 – ident: 10.1016/j.geodrs.2021.e00440_bb0125 – volume: 352 start-page: 395 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0200 article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.031 – year: 2011 ident: 10.1016/j.geodrs.2021.e00440_bb0050 article-title: Digital soil mapping in the absence of field training data: a case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential publication-title: Appl Environ Soil Sci doi: 10.1155/2011/421904 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geodrs.2021.e00440_bb0220 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – year: 2010 ident: 10.1016/j.geodrs.2021.e00440_bb0300 – volume: 575 start-page: 1056 year: 2017 ident: 10.1016/j.geodrs.2021.e00440_bb0350 article-title: Deforestation impacts on soil organic carbon stocks in the semiarid Chaco region publication-title: Argentina Sci Total Environ doi: 10.1016/j.scitotenv.2016.09.175 – volume: 8 start-page: 11 year: 2016 ident: 10.1016/j.geodrs.2021.e00440_bb0365 article-title: Spatial-temporal changes of soil organic carbon content in Wafangdian publication-title: China Sustain – volume: 187 start-page: 104408 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0275 article-title: Predicting soil aggregate stability using readily available soil properties and machine learning techniques publication-title: Catena doi: 10.1016/j.catena.2019.104408 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geodrs.2021.e00440_bb0355 article-title: An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – year: 2011 ident: 10.1016/j.geodrs.2021.e00440_bb0085 – year: 1996 ident: 10.1016/j.geodrs.2021.e00440_bb0265 – volume: 338 start-page: 445 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0405 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.006 – volume: 40 year: 2002 ident: 10.1016/j.geodrs.2021.e00440_bb0080 article-title: The handbook of brain theory and neural networks - ensemble learning publication-title: MIT Press – volume: 357 start-page: 135 year: 2013 ident: 10.1016/j.geodrs.2021.e00440_bb0295 article-title: Stabilization mechanisms of protected versus unprotected soil organic matter: implications for C-saturation of soils publication-title: Hrvat Znan Bibliogr i MZOS-Svibor – start-page: 1085 year: 1996 ident: 10.1016/j.geodrs.2021.e00440_bb0045 – volume: 339 start-page: 40 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0180 article-title: Digital mapping of soil carbon fractions with machine learning publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.037 – volume: 383 start-page: 114793 year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bb0325 article-title: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114793 – volume: 363 start-page: 114139 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0410 article-title: Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114139 – volume: 20 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0005 article-title: Impressions of digital soil maps: the good, the not so good, and making them ever better publication-title: Geoderma Reg – volume: 179 start-page: 71 year: 2018 ident: 10.1016/j.geodrs.2021.e00440_bb0385 article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau publication-title: China: I Spatial variability Soil Tillage Res – start-page: 1 year: 2013 ident: 10.1016/j.geodrs.2021.e00440_bb0225 article-title: Chapter one - digital mapping of soil carbon doi: 10.1016/B978-0-12-405942-9.00001-3 – volume: 14 year: 1950 ident: 10.1016/j.geodrs.2021.e00440_bb0345 article-title: Mean weight-diameter of soil aggregates as a statistical index of aggregation publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1950.036159950014000C0005x – start-page: 193 year: 2008 ident: 10.1016/j.geodrs.2021.e00440_bb0030 article-title: Landsat spectral data for digital soil mapping, digital soil mapping with limited data publication-title: Springer – volume: 235–236 start-page: 59 year: 2014 ident: 10.1016/j.geodrs.2021.e00440_bb0215 article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.032 – year: 2021 ident: 10.1016/j.geodrs.2021.e00440_bib421 – volume: 324 start-page: 56 year: 2018 ident: 10.1016/j.geodrs.2021.e00440_bb0360 article-title: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy of soil particle-size fraction mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.007 – volume: 20 year: 2020 ident: 10.1016/j.geodrs.2021.e00440_bb0340 article-title: Digital mapping of soil organic carbon using ensemble learning model in Mollisols of Hyrcanian forests, northern Iran publication-title: Geoderma Reg – volume: 39 start-page: 1347 year: 2003 ident: 10.1016/j.geodrs.2021.e00440_bb0105 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. doi: 10.1029/2002WR001426 – volume: 95 start-page: 103119 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0020 article-title: Land use change effects on soil quality and biological fertility: a case study in northern Iran publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2019.103119 – volume: 43 start-page: 1004 year: 1979 ident: 10.1016/j.geodrs.2021.e00440_bb0110 article-title: Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1979.03615995004300050038x – ident: 10.1016/j.geodrs.2021.e00440_bb0285 doi: 10.18393/ejss.541319 – volume: 119 start-page: 127 year: 2007 ident: 10.1016/j.geodrs.2021.e00440_bb0135 article-title: Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of Central India after 28 years of continuous cropping, fertilization and manuring publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.06.017 – volume: 10 start-page: 63 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0230 article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models publication-title: Carbon Manag doi: 10.1080/17583004.2018.1553434 – volume: 353 start-page: 252 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0335 article-title: Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.005 – volume: 213 start-page: 385 year: 2014 ident: 10.1016/j.geodrs.2021.e00440_bb0235 article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.08.024 – volume: 20 start-page: 3544 issue: 11 year: 2014 ident: 10.1016/j.geodrs.2021.e00440_bb0070 article-title: Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: a synthesis publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12508 – year: 2016 ident: 10.1016/j.geodrs.2021.e00440_bb0075 – volume: 192 start-page: 1 year: 2019 ident: 10.1016/j.geodrs.2021.e00440_bb0390 article-title: Spatial analysis of soil aggregate stability in a small catchment of the loess plateau publication-title: China: II Spatial prediction Soil Tillage Res |
SSID | ssj0002953762 |
Score | 2.4701762 |
Snippet | Knowledge about the spatial variability of soil aggregate stability indices, soil organic carbon (SOC) in various aggregate sizes, and aggregation across the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00440 |
SubjectTerms | Aggregate stability Cambisols cost effectiveness Digital soil mapping forests Hyrcanian forest Land use change landscapes Luvisols neural networks paddies prediction rough rice soil aggregates Soil erosion soil organic carbon Soil organic matter support vector machines sustainable land management tea |
Title | Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables |
URI | https://dx.doi.org/10.1016/j.geodrs.2021.e00440 https://www.proquest.com/docview/2636514900 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZpcumlpDSladKiQK_O2vq1jiE0bLs0hyahuRlJllyXjb14N4U-S142GskOaSEEehKyNUZoxjMj6ZsZhD7VdbA6xpssgv0Y1SrTghWZ5IXMPRE2LyHA-du5mF-xr9f8egudTrEwAKscdX_S6VFbj09m42rOVm07uyA0pgxipIiOg3yBdghVIoj2zsmXxfz84aiFKMhZQmKZOU4yoJmC6CLSq3F9PUDqblIcu1iD-Skj9Y-6jjbobBe9Gp1HfJLm9xptue4NuoOqwkGK8GqASxdYaNx7vO7bJdZN2E7DQRkOTmCEwf7BuqvTy1TQyWKrBxNo2u7RcD-kgIc1BmB8g28i5tLhschEg_Wy6Yd28_NmHT_4KF4uzOR32IBDSNZ6D12dfb48nWdjyYXMUqo2mZcOMrqXpnaC1iw0gWPUCq9ITPvDNJWOKKOJV84H34dzIyw3UtY2d8F7eYu2u75z7xDmTJSOlKImuWdMQYdzTY0snC2J0fuITmtc2TEfOZTFWFYT8OxXlThTAWeqxJl9lD1QrVI-jmfGy4l91V9yVQWT8Qzl0cTtKvxycI-iO9ffhkGCiuBnqjx__99fP0AvoZeAMYdoezPcug_BvdmYj6P4Qrv4_mNxDxWU_oA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9gAXBAJEoRQjcQ2b-DM5VlWrLW33Qiv1ZtmOHYK2ySq7ReK38GfrsZOqIKFKnKLEHsvyOOOx_eYNQp_rOqw6xpssgv0Y1VWmBSsyyQuZeyJsXkKA88VSLK7Y12t-vYOOplgYgFWOtj_Z9Gitxy_zcTTn67adfyM0UgYxUkTHQT5Bu8BOxWdo9_D0bLG8P2ohFXCWkJhmjpMMZKYguoj0alxfD0DdTYovLuZg_tci9Ze5jmvQyQv0fHQe8WHq30u047pX6DdkFQ6zCK8HuHSBgca9x5u-XWHdhO00HJTh4ARGGOwvrLs6FaaEThZbPZgg03YPqvshBTxsMADjG3wTMZcOj0kmGqxXTT-02-83m9jgg3i50JOfYQMOIVmb1-jq5PjyaJGNKRcyS2m1zbx0wOhemtoJWrPwCBqjVviKRNofpql0pDKa-Mr54PtwboTlRsra5i54L2_QrOs79xZhzkTpSClqknvGKnjhXFMjC2dLYvQeotMYKzvykUNajJWagGc_VNKMAs2opJk9lN1LrRMfxyP15aQ-9ce8UmHJeETy06RtFX45uEfRnetvQyVBRfAzqzx_99-tf0RPF5cX5-r8dHn2Hj2DkgSS2Uez7XDrPgRXZ2sOxql8Bxi5_8M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+soil+aggregate+stability+and+soil+organic+carbon+in+aggregate+fractions+using+machine+learning+algorithms+and+environmental+variables&rft.jtitle=Geoderma+Regional&rft.au=Zeraatpisheh%2C+Mojtaba&rft.au=Ayoubi%2C+Shamsollah&rft.au=Mirbagheri%2C+Zahra&rft.au=Mosaddeghi%2C+Mohammad+Reza&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=27&rft_id=info:doi/10.1016%2Fj.geodrs.2021.e00440&rft.externalDocID=S2352009421000857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |