Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity

The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR sig...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 73; no. 6; pp. 1993 - 2002
Main Authors Atkins, Charity, Liu, Qi, Minthorn, Elisabeth, Zhang, Shu-Yun, Figueroa, David J., Moss, Katherine, Stanley, Thomas B., Sanders, Brent, Goetz, Aaron, Gaul, Nathan, Choudhry, Anthony E., Alsaid, Hasan, Jucker, Beat M., Axten, Jeffrey M., Kumar, Rakesh
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC50 of 0.9 nmol/L. It is highly selective for PERK with IC50 values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC50 in the range of 10–30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients. Cancer Res; 73(6); 1993–2002. ©2012 AACR.
AbstractList The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.
The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC50 of 0.9 nmol/L. It is highly selective for PERK with IC50 values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC50 in the range of 10–30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients. Cancer Res; 73(6); 1993–2002. ©2012 AACR.
The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.
Author Alsaid, Hasan
Zhang, Shu-Yun
Axten, Jeffrey M.
Gaul, Nathan
Choudhry, Anthony E.
Atkins, Charity
Minthorn, Elisabeth
Figueroa, David J.
Moss, Katherine
Liu, Qi
Sanders, Brent
Goetz, Aaron
Stanley, Thomas B.
Kumar, Rakesh
Jucker, Beat M.
Author_xml – sequence: 1
  givenname: Charity
  surname: Atkins
  fullname: Atkins, Charity
– sequence: 2
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
– sequence: 3
  givenname: Elisabeth
  surname: Minthorn
  fullname: Minthorn, Elisabeth
– sequence: 4
  givenname: Shu-Yun
  surname: Zhang
  fullname: Zhang, Shu-Yun
– sequence: 5
  givenname: David J.
  surname: Figueroa
  fullname: Figueroa, David J.
– sequence: 6
  givenname: Katherine
  surname: Moss
  fullname: Moss, Katherine
– sequence: 7
  givenname: Thomas B.
  surname: Stanley
  fullname: Stanley, Thomas B.
– sequence: 8
  givenname: Brent
  surname: Sanders
  fullname: Sanders, Brent
– sequence: 9
  givenname: Aaron
  surname: Goetz
  fullname: Goetz, Aaron
– sequence: 10
  givenname: Nathan
  surname: Gaul
  fullname: Gaul, Nathan
– sequence: 11
  givenname: Anthony E.
  surname: Choudhry
  fullname: Choudhry, Anthony E.
– sequence: 12
  givenname: Hasan
  surname: Alsaid
  fullname: Alsaid, Hasan
– sequence: 13
  givenname: Beat M.
  surname: Jucker
  fullname: Jucker, Beat M.
– sequence: 14
  givenname: Jeffrey M.
  surname: Axten
  fullname: Axten, Jeffrey M.
– sequence: 15
  givenname: Rakesh
  surname: Kumar
  fullname: Kumar, Rakesh
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27349377$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23333938$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrGzEQhUVISew0PyFBl0Au60qr1UpLT8akiUlwS2lvBaHVztoqaymR5BTn10dO3AR66VyGB98bhvfG6NB5BwidUTKhlMtPhBBZ8EqUk9l0UdCyYJQ0B2hEOZOFqCp-iEZvzDEax_g7S04JP0LHJcvTMDlCv2YrHbRJEOyTTtY77Hus8cI_woC_XX2_xbfW6Qh47la2tckH_MemFZ66ZNNmnaV23YvSbmn9Epw1eGqSfbRp-xF96PUQ4XS_T9DPL1c_ZjfF3dfr-Wx6V5j8RSp6AaSVXcUkYx1jsjZU5u-ANgBCiK7XUNc1q7qatG3PiRGlyRl0leDATKXZCbp8vXsf_MMGYlJrGw0Mg3bgN1FRRoXkpGxIRs_36KZdQ6fug13rsFV_E8nAxR7Q0eihD9oZG985waqGCZE5_sqZ4GMM0L8hlKhdQ2qXvtqlr3JDipZq11D2ff7HZ2x6ST4FbYf_uJ8BNn-U_A
CODEN CNREA8
CitedBy_id crossref_primary_10_1016_j_lfs_2021_119470
crossref_primary_10_1016_j_bbrc_2018_09_032
crossref_primary_10_3389_fonc_2023_1206561
crossref_primary_10_1016_j_bioactmat_2021_04_031
crossref_primary_10_1038_s41467_022_31417_x
crossref_primary_10_1021_acssensors_9b00568
crossref_primary_10_1186_2045_3701_4_3
crossref_primary_10_1126_scitranslmed_aaa9134
crossref_primary_10_1186_s40425_016_0203_4
crossref_primary_10_1096_fj_201700870RR
crossref_primary_10_1016_j_neuropharm_2013_08_034
crossref_primary_10_1016_j_canlet_2020_07_009
crossref_primary_10_1126_scisignal_aal2323
crossref_primary_10_18632_oncotarget_2051
crossref_primary_10_3390_ijms20184354
crossref_primary_10_1021_acsmedchemlett_9b00400
crossref_primary_10_1016_j_envpol_2017_05_046
crossref_primary_10_3390_cells9030540
crossref_primary_10_1016_j_drudis_2021_02_004
crossref_primary_10_3390_ijms19092468
crossref_primary_10_1038_nature17631
crossref_primary_10_1038_s41419_021_04274_7
crossref_primary_10_1016_j_jnutbio_2022_109213
crossref_primary_10_1083_jcb_202405175
crossref_primary_10_1038_s44318_024_00338_4
crossref_primary_10_1016_j_trecan_2020_07_006
crossref_primary_10_1017_erm_2021_2
crossref_primary_10_1016_j_canlet_2019_01_034
crossref_primary_10_1124_molpharm_120_000070
crossref_primary_10_1097_CCO_0000000000000339
crossref_primary_10_1042_BCJ20220068
crossref_primary_10_4161_auto_25900
crossref_primary_10_1038_s41420_017_0002_9
crossref_primary_10_1093_abbs_gmab131
crossref_primary_10_1038_ncb3460
crossref_primary_10_1158_0008_5472_CAN_21_1545
crossref_primary_10_1038_srep11781
crossref_primary_10_1038_s41598_019_39547_x
crossref_primary_10_1186_s12974_017_0878_6
crossref_primary_10_1016_j_ebiom_2020_103138
crossref_primary_10_1186_s12885_022_10289_w
crossref_primary_10_1111_boc_201800068
crossref_primary_10_1038_s41598_019_39562_y
crossref_primary_10_3389_fonc_2022_997235
crossref_primary_10_3390_molecules28073160
crossref_primary_10_1016_j_heliyon_2024_e38342
crossref_primary_10_1039_D4RA01387E
crossref_primary_10_3390_ijms22010355
crossref_primary_10_1016_j_bbcan_2014_07_006
crossref_primary_10_1016_j_celrep_2015_04_063
crossref_primary_10_1016_j_tibs_2014_08_004
crossref_primary_10_1186_s12967_019_1772_z
crossref_primary_10_1530_JOE_17_0497
crossref_primary_10_1371_journal_pone_0120252
crossref_primary_10_1161_STROKEAHA_124_048163
crossref_primary_10_1183_16000617_0184_2020
crossref_primary_10_1074_jbc_REV120_010218
crossref_primary_10_1038_s41573_021_00320_3
crossref_primary_10_1039_C9NP00066F
crossref_primary_10_1016_j_metabol_2018_12_007
crossref_primary_10_1016_j_radonc_2013_06_005
crossref_primary_10_3390_cells8111308
crossref_primary_10_2174_1568009621666210504091722
crossref_primary_10_1208_s12248_018_0254_1
crossref_primary_10_3389_fmicb_2018_00005
crossref_primary_10_1093_narcan_zcac031
crossref_primary_10_1073_pnas_2018229118
crossref_primary_10_1002_cac2_12416
crossref_primary_10_3389_fnins_2015_00264
crossref_primary_10_1111_febs_14608
crossref_primary_10_15252_embr_201642195
crossref_primary_10_3389_fendo_2022_1094394
crossref_primary_10_1038_s41598_021_93663_1
crossref_primary_10_1038_s41598_020_72259_1
crossref_primary_10_1186_s12931_018_0856_2
crossref_primary_10_3389_fimmu_2019_02825
crossref_primary_10_18632_oncotarget_12941
crossref_primary_10_1016_j_molmed_2019_05_011
crossref_primary_10_1016_j_ccell_2022_08_016
crossref_primary_10_1002_jcp_25336
crossref_primary_10_2174_1568009620666200106114826
crossref_primary_10_1002_jcp_24923
crossref_primary_10_3390_cancers12051298
crossref_primary_10_1016_j_jbc_2022_102864
crossref_primary_10_1016_j_isci_2024_109100
crossref_primary_10_1038_s41429_019_0219_3
crossref_primary_10_1128_IAI_00826_18
crossref_primary_10_3389_fcell_2017_00048
crossref_primary_10_1016_j_biopha_2023_115036
crossref_primary_10_1007_s10072_024_07766_4
crossref_primary_10_1093_toxres_tfac041
crossref_primary_10_1186_s13045_015_0184_7
crossref_primary_10_1016_j_semcancer_2018_01_011
crossref_primary_10_1016_j_trecan_2022_06_006
crossref_primary_10_1016_j_bbrc_2015_10_005
crossref_primary_10_1152_ajpcell_00551_2024
crossref_primary_10_1038_s41568_020_00312_2
crossref_primary_10_1158_2159_8290_CD_14_1507
crossref_primary_10_4161_cc_27726
crossref_primary_10_1016_j_bbamcr_2014_01_012
crossref_primary_10_1016_j_celrep_2024_114402
crossref_primary_10_1101_cshperspect_a032995
crossref_primary_10_1172_JCI176136
crossref_primary_10_1002_iub_1576
crossref_primary_10_1039_D4OB01238K
crossref_primary_10_1073_pnas_1603883113
crossref_primary_10_1016_j_semcdb_2015_08_005
crossref_primary_10_1371_journal_pbio_1001945
crossref_primary_10_1038_nrd3976
crossref_primary_10_1074_jbc_M117_813790
crossref_primary_10_1183_16000617_0018_2017
crossref_primary_10_1007_s11523_022_00870_5
crossref_primary_10_1016_j_cell_2016_02_026
crossref_primary_10_1101_gad_297374_117
crossref_primary_10_1093_nar_gku137
crossref_primary_10_3390_biom11030354
crossref_primary_10_18632_oncotarget_11873
crossref_primary_10_3389_fncel_2014_00213
crossref_primary_10_3892_mmr_2017_6418
crossref_primary_10_1016_j_cell_2016_12_004
crossref_primary_10_1097_MPA_0000000000001248
crossref_primary_10_1002_wrna_1491
crossref_primary_10_1016_j_bbadis_2018_10_008
crossref_primary_10_3389_fimmu_2024_1427859
crossref_primary_10_3390_ijms17010052
crossref_primary_10_1053_j_gastro_2024_05_009
crossref_primary_10_3390_ijms21062108
crossref_primary_10_1016_j_conb_2020_02_009
crossref_primary_10_1007_s12079_020_00562_7
crossref_primary_10_1016_j_taap_2018_04_020
crossref_primary_10_12688_f1000research_12138_1
crossref_primary_10_1002_path_5423
crossref_primary_10_1007_s00018_022_04480_2
crossref_primary_10_1172_jci_insight_170148
crossref_primary_10_1016_j_semcancer_2015_04_002
crossref_primary_10_1038_s41467_017_01052_y
crossref_primary_10_1038_s41589_019_0326_2
crossref_primary_10_1016_j_canlet_2017_09_021
crossref_primary_10_1167_iovs_64_11_17
crossref_primary_10_1016_j_trecan_2019_12_001
crossref_primary_10_1016_j_trecan_2024_09_011
crossref_primary_10_2217_fon_13_49
crossref_primary_10_1038_cdd_2016_89
crossref_primary_10_1038_cdd_2017_58
crossref_primary_10_3390_ijms22168674
crossref_primary_10_18632_oncotarget_9515
crossref_primary_10_1016_j_ymthe_2022_04_022
crossref_primary_10_1002_eji_201646856
crossref_primary_10_3109_08830185_2015_1018415
crossref_primary_10_3390_ijms19071832
crossref_primary_10_1007_s00262_017_2019_6
crossref_primary_10_1038_s41375_018_0141_x
crossref_primary_10_1186_s40164_022_00348_0
crossref_primary_10_3390_cancers15020460
crossref_primary_10_1016_j_bbagrm_2014_12_007
crossref_primary_10_1074_jbc_M113_503664
crossref_primary_10_1038_nrc3800
crossref_primary_10_3389_fimmu_2020_543022
crossref_primary_10_1371_journal_pgen_1006518
crossref_primary_10_1016_j_molcel_2017_11_007
crossref_primary_10_1038_s41467_018_08152_3
crossref_primary_10_1016_j_neo_2019_02_004
crossref_primary_10_15430_JCP_2014_19_2_75
crossref_primary_10_1007_s10555_023_10085_3
crossref_primary_10_1002_jbt_22561
crossref_primary_10_1016_j_ajpath_2016_03_004
crossref_primary_10_1016_j_ajpath_2020_01_010
crossref_primary_10_4103_1673_5374_266903
crossref_primary_10_4049_immunohorizons_2100012
crossref_primary_10_1016_j_critrevonc_2018_05_003
crossref_primary_10_1016_j_cub_2016_01_053
crossref_primary_10_1007_s13277_014_1789_0
crossref_primary_10_1038_s41467_023_40823_8
crossref_primary_10_1016_j_jss_2020_05_070
crossref_primary_10_1111_febs_14359
crossref_primary_10_1016_j_tice_2023_102289
crossref_primary_10_3892_or_2016_4632
crossref_primary_10_3389_fcell_2021_683940
crossref_primary_10_1158_1078_0432_CCR_23_1182
crossref_primary_10_15252_emmm_201911845
crossref_primary_10_1039_C9MD00447E
crossref_primary_10_1007_s12079_023_00784_5
crossref_primary_10_1051_medsci_20143010015
crossref_primary_10_1016_j_trecan_2020_05_012
crossref_primary_10_1016_j_bbrc_2017_09_020
crossref_primary_10_1038_s41401_023_01225_0
crossref_primary_10_1039_C9RA08047C
crossref_primary_10_3390_cancers11050631
crossref_primary_10_1016_j_lfs_2018_11_041
crossref_primary_10_1038_s41598_021_89074_x
crossref_primary_10_1016_j_molonc_2016_05_001
crossref_primary_10_1089_ars_2014_5851
crossref_primary_10_1016_j_biopha_2022_113741
crossref_primary_10_1074_jbc_RA120_012525
crossref_primary_10_3390_cancers11111793
crossref_primary_10_1242_jcs_173047
crossref_primary_10_1021_acs_jproteome_3c00600
crossref_primary_10_1016_j_phrs_2020_104823
crossref_primary_10_1242_dev_200342
crossref_primary_10_3390_cancers13020261
crossref_primary_10_1002_asia_201801826
crossref_primary_10_1186_s12964_019_0499_z
crossref_primary_10_5604_01_3001_0015_7948
crossref_primary_10_1111_boc_201700059
crossref_primary_10_1186_s12915_014_0094_0
crossref_primary_10_1038_cddis_2017_369
crossref_primary_10_1016_j_bbalip_2019_04_009
crossref_primary_10_1155_2018_4946289
crossref_primary_10_1016_j_jfluchem_2018_05_012
crossref_primary_10_1038_s41580_024_00794_0
crossref_primary_10_1073_pnas_1805523115
crossref_primary_10_2217_mmt_14_16
crossref_primary_10_3390_cancers13194927
crossref_primary_10_3390_molecules23020337
crossref_primary_10_1021_ml400228e
crossref_primary_10_1177_2472555217701685
crossref_primary_10_1016_j_immuni_2020_03_004
crossref_primary_10_1016_j_jbc_2025_108257
crossref_primary_10_18632_oncotarget_5746
crossref_primary_10_3390_ijms20102518
crossref_primary_10_7554_eLife_05033
crossref_primary_10_18632_oncotarget_5980
crossref_primary_10_3390_ijms24010577
crossref_primary_10_15252_emmm_201606664
crossref_primary_10_3390_pharmaceutics14102233
crossref_primary_10_7554_eLife_01236
crossref_primary_10_1146_annurev_cellbio_111315_125334
crossref_primary_10_1172_jci_insight_121887
crossref_primary_10_3389_fphar_2020_00737
crossref_primary_10_3389_fphar_2022_904701
crossref_primary_10_1016_j_ajps_2024_100889
crossref_primary_10_1016_j_pharmthera_2016_07_007
crossref_primary_10_1038_s41585_022_00649_3
crossref_primary_10_1080_13543776_2017_1238072
crossref_primary_10_1021_acs_jmedchem_3c02422
crossref_primary_10_1038_srep09065
crossref_primary_10_1016_j_jbc_2024_107327
crossref_primary_10_1016_j_nbd_2018_01_004
crossref_primary_10_3389_fgene_2022_1095428
crossref_primary_10_1038_cddiscovery_2017_34
crossref_primary_10_3390_cancers8030030
crossref_primary_10_1016_j_bbcan_2016_12_002
crossref_primary_10_3892_ijmm_2018_3423
crossref_primary_10_1007_s10555_015_9588_7
crossref_primary_10_1016_j_molcel_2024_10_003
crossref_primary_10_1016_j_biochi_2022_01_017
crossref_primary_10_1016_j_jhep_2015_01_032
crossref_primary_10_1016_j_semcancer_2015_03_003
crossref_primary_10_1089_neu_2022_0177
crossref_primary_10_1165_rcmb_2019_0123LE
crossref_primary_10_1016_j_conb_2018_03_004
crossref_primary_10_18632_oncotarget_10126
crossref_primary_10_1016_j_bcp_2024_116038
crossref_primary_10_1074_jbc_RA119_010655
crossref_primary_10_1186_s12964_023_01438_0
crossref_primary_10_1002_1873_3468_14000
crossref_primary_10_1016_j_bbamcr_2014_01_009
crossref_primary_10_3390_cancers10100344
crossref_primary_10_1016_j_pharmthera_2024_108604
crossref_primary_10_3390_cancers14122949
crossref_primary_10_1158_1078_0432_CCR_12_3629
crossref_primary_10_18632_oncotarget_25886
crossref_primary_10_1080_15548627_2023_2258701
crossref_primary_10_1158_1541_7786_MCR_23_0676
crossref_primary_10_2174_0929867325666180117102233
crossref_primary_10_3390_ijms18040854
crossref_primary_10_1038_s41420_022_00915_8
crossref_primary_10_1038_s41467_024_48852_7
crossref_primary_10_1186_s13578_019_0289_8
crossref_primary_10_1016_j_chembiol_2023_08_011
crossref_primary_10_52586_5061
crossref_primary_10_1177_1073858418816611
crossref_primary_10_3390_ijms24021566
crossref_primary_10_18632_aging_204097
crossref_primary_10_1038_s41467_021_24661_0
crossref_primary_10_1186_s13071_022_05394_5
crossref_primary_10_1016_j_pupt_2023_102218
crossref_primary_10_1158_1078_0432_CCR_13_3239
crossref_primary_10_1016_j_molmed_2022_03_006
crossref_primary_10_1016_j_canlet_2024_216678
crossref_primary_10_1146_annurev_pathol_012513_104649
crossref_primary_10_1158_0008_5472_CAN_19_1116
crossref_primary_10_1016_j_cmet_2015_07_010
crossref_primary_10_1007_s00018_021_03756_3
crossref_primary_10_1089_ars_2024_0592
crossref_primary_10_1074_jbc_R113_534743
crossref_primary_10_18632_aging_205511
crossref_primary_10_1152_ajplung_00449_2015
crossref_primary_10_1158_2326_6066_CIR_19_0616
crossref_primary_10_7554_eLife_60970
crossref_primary_10_1080_15548627_2020_1794590
crossref_primary_10_3390_biomedicines6020058
crossref_primary_10_1038_nrc3748
crossref_primary_10_1165_rcmb_2016_0404OC
crossref_primary_10_1016_j_biopha_2019_109249
crossref_primary_10_1097_ALN_0000000000004858
crossref_primary_10_4155_fso_15_45
crossref_primary_10_1172_JCI95873
crossref_primary_10_3109_14756366_2014_966704
crossref_primary_10_1038_cddis_2015_264
crossref_primary_10_1038_cdd_2014_53
crossref_primary_10_1073_pnas_1210633110
crossref_primary_10_1177_1087057114525853
crossref_primary_10_3390_cells11182899
crossref_primary_10_1016_j_ccr_2014_03_015
crossref_primary_10_1016_j_mce_2020_110932
crossref_primary_10_1186_s13046_020_01824_3
crossref_primary_10_3892_or_2016_4975
crossref_primary_10_1074_jbc_RA118_006682
crossref_primary_10_1038_s41389_020_00279_7
crossref_primary_10_1152_ajpcell_00266_2016
crossref_primary_10_1038_s41419_020_03319_7
crossref_primary_10_1038_nchembio_1664
crossref_primary_10_1158_2159_8290_CD_14_1490
crossref_primary_10_1016_j_tcb_2016_06_005
crossref_primary_10_1051_medsci_20153106021
crossref_primary_10_1016_j_trecan_2016_03_007
crossref_primary_10_3389_fcell_2019_00050
crossref_primary_10_4161_23723556_2014_975089
crossref_primary_10_1016_j_cellsig_2014_12_010
crossref_primary_10_1158_2326_6066_CIR_18_0182
crossref_primary_10_1586_17446651_2014_927309
crossref_primary_10_15252_embj_2021109985
crossref_primary_10_2217_ijh_13_32
crossref_primary_10_3389_fimmu_2019_03154
crossref_primary_10_1007_s00280_016_2996_8
crossref_primary_10_1038_onc_2015_178
crossref_primary_10_1080_14728222_2017_1397133
crossref_primary_10_1038_s41421_021_00332_8
crossref_primary_10_1158_1541_7786_MCR_22_0920
crossref_primary_10_1016_j_cmet_2020_06_002
crossref_primary_10_1073_pnas_1516362112
crossref_primary_10_3892_or_2017_5589
crossref_primary_10_1016_j_semcancer_2015_02_004
crossref_primary_10_1073_pnas_1621188114
Cites_doi 10.1083/jcb.200508099
10.1158/0008-5472.CAN-04-1606
10.2337/db09-1064
10.1128/MCB.22.21.7405-7416.2002
10.1128/MCB.01145-06
10.1016/B978-0-12-385114-7.00019-2
10.1158/0008-5472.CAN-06-3235
10.1186/1471-2407-8-229
10.1093/genetics/154.2.787
10.1042/BJ20081706
10.2337/diabetes.53.7.1876
10.1016/j.tem.2010.08.005
10.1038/sj.emboj.7600777
10.1016/j.cmet.2006.11.002
10.1158/1541-7786.MCR-06-0150
10.1128/MCB.23.21.7448-7459.2003
10.1371/annotation/b22a2657-7ce6-471a-8593-8bc8e86e2efa
10.1128/MCB.18.12.7499
10.1016/S1097-2765(01)00264-7
10.1128/MCB.22.11.3864-3874.2002
10.1002/jcp.21543
10.1038/nrc1505
10.1371/journal.pone.0009575
10.1186/1471-2121-8-38
10.1158/1541-7786.MCR-05-0221
10.1074/jbc.M314219200
10.1002/ijc.23479
10.1038/16729
10.1182/blood-2003-06-1859
10.1002/elps.201100565
10.1074/jbc.M704612200
10.1038/onc.2008.428
10.1379/1466-1268(2002)007<0222:TMERAA>2.0.CO;2
10.1002/rcm.426
10.1186/1750-1172-5-29
10.1021/jm300713s
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright_xml – notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-12-3109
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 2002
ExternalDocumentID 23333938
27349377
10_1158_0008_5472_CAN_12_3109
Genre Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
W2D
W8F
WH7
WOQ
YKV
YZZ
.55
.GJ
3O-
8WZ
A6W
AFFNX
AI.
C1A
D0S
IQODW
J5H
MVM
OHT
VH1
WHG
X7M
XJT
ZCG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c339t-f7e0b8d43833d3386c18393e19ee777dfae66634d60bbf50c72c115d475e3c4a3
ISSN 0008-5472
1538-7445
IngestDate Fri Jul 11 05:00:30 EDT 2025
Mon Jul 21 05:52:28 EDT 2025
Mon Jul 21 09:15:27 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Tue Jul 01 04:17:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Antineoplastic agent
Characterization
Enzyme
Kinase
Transferases
Inhibitor
Antiangiogenic agent
Biological activity
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-f7e0b8d43833d3386c18393e19ee777dfae66634d60bbf50c72c115d475e3c4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23333938
PQID 1317850290
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1317850290
pubmed_primary_23333938
pascalfrancis_primary_27349377
crossref_primary_10_1158_0008_5472_CAN_12_3109
crossref_citationtrail_10_1158_0008_5472_CAN_12_3109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-15
PublicationDateYYYYMMDD 2013-03-15
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2013
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References Ameri (2022061704061385200_bib28) 2004; 103
Brown (2022061704061385200_bib22) 1998; 58
Gales (2022061704061385200_bib34) 2012
Gjymishka (2022061704061385200_bib36) 2009; 417
Bi (2022061704061385200_bib21) 2005; 24
Romero-Ramirez (2022061704061385200_bib25) 2004; 64
Hamanaka (2022061704061385200_bib4) 2009; 28
Davies (2022061704061385200_bib29) 2008; 123
Harding (2022061704061385200_bib12) 2001; 7
Blais (2022061704061385200_bib23) 2006; 26
Drogat (2022061704061385200_bib38) 2007; 67
Feldman (2022061704061385200_bib3) 2005; 3
Harding (2022061704061385200_bib33) 1999; 397
Koumenis (2022061704061385200_bib24) 2002; 22
Teske (2022061704061385200_bib32) 2011; 490
Iida (2022061704061385200_bib14) 2007; 8
Shi (2022061704061385200_bib6) 1998; 18
Koumenis (2022061704061385200_bib1) 2006; 4
Bull (2022061704061385200_bib37) 2012; 33
Senee (2022061704061385200_bib15) 2004; 53
Cullinan (2022061704061385200_bib11) 2004; 279
Gupta (2022061704061385200_bib17) 2009; 4
Jorgensen (2022061704061385200_bib27) 2008; 8
Cavener (2022061704061385200_bib18) 2010; 21
Ghosh (2022061704061385200_bib26) 2010; 5
Lee (2022061704061385200_bib35) 2003; 23
Zhang (2022061704061385200_bib13) 2006; 4
Gupta (2022061704061385200_bib19) 2010; 59
Axten (2022061704061385200_bib30) 2012; 55
Sood (2022061704061385200_bib7) 2000; 154
Su (2022061704061385200_bib9) 2008; 283
Zhang (2022061704061385200_bib31) 2002; 22
Ma (2022061704061385200_bib8) 2001; 15
Wei (2022061704061385200_bib20) 2008; 217
Julier (2022061704061385200_bib16) 2010; 5
Marciniak (2022061704061385200_bib10) 2006; 172
Ma (2022061704061385200_bib2) 2004; 4
Ma (2022061704061385200_bib5) 2002; 7
References_xml – volume: 172
  start-page: 201
  year: 2006
  ident: 2022061704061385200_bib10
  article-title: Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200508099
– volume: 64
  start-page: 5943
  year: 2004
  ident: 2022061704061385200_bib25
  article-title: XBP1 is essential for survival under hypoxic conditions and is required for tumor growth
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-1606
– volume: 59
  start-page: 1937
  year: 2010
  ident: 2022061704061385200_bib19
  article-title: PERK (EIF2AK3) regulates proinsulin tranfficking and quality control in the secretory pathway
  publication-title: Diabetes
  doi: 10.2337/db09-1064
– volume: 22
  start-page: 7405
  year: 2002
  ident: 2022061704061385200_bib24
  article-title: Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.21.7405-7416.2002
– year: 2012
  ident: 2022061704061385200_bib34
  article-title: PERK inhibitor induces pancreatic toxicity in rats
  publication-title: Soc Tox Path
– volume: 26
  start-page: 9517
  year: 2006
  ident: 2022061704061385200_bib23
  article-title: Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01145-06
– volume: 490
  start-page: 333
  year: 2011
  ident: 2022061704061385200_bib32
  article-title: Methods for analyzing eIF2 kinases and translational control in the unfolded protein response
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-385114-7.00019-2
– volume: 67
  start-page: 6700
  year: 2007
  ident: 2022061704061385200_bib38
  article-title: IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-a expression and contributes to angiogenesis and tumor growth in vivo
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-3235
– volume: 8
  start-page: 1
  year: 2008
  ident: 2022061704061385200_bib27
  article-title: Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-8-229
– volume: 154
  start-page: 787
  year: 2000
  ident: 2022061704061385200_bib7
  article-title: A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2a
  publication-title: Genetics
  doi: 10.1093/genetics/154.2.787
– volume: 417
  start-page: 695
  year: 2009
  ident: 2022061704061385200_bib36
  article-title: Transcriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway
  publication-title: Biochem J
  doi: 10.1042/BJ20081706
– volume: 53
  start-page: 1876
  year: 2004
  ident: 2022061704061385200_bib15
  article-title: Wolcott-Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.7.1876
– volume: 21
  start-page: 714
  year: 2010
  ident: 2022061704061385200_bib18
  article-title: PERK in beta cell biology and insulin biogenesis
  publication-title: Trends Endocrinol Metabol
  doi: 10.1016/j.tem.2010.08.005
– volume: 24
  start-page: 3470
  year: 2005
  ident: 2022061704061385200_bib21
  article-title: ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600777
– volume: 4
  start-page: 491
  year: 2006
  ident: 2022061704061385200_bib13
  article-title: PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2006.11.002
– volume: 4
  start-page: 423
  year: 2006
  ident: 2022061704061385200_bib1
  article-title: “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-06-0150
– volume: 23
  start-page: 7448
  year: 2003
  ident: 2022061704061385200_bib35
  article-title: XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.21.7448-7459.2003
– volume: 4
  start-page: 1
  year: 2009
  ident: 2022061704061385200_bib17
  article-title: PERK regulates the proliferation and development of insulin-secreting beta-cell tumors in the endocrine pancreas of mice
  publication-title: PLoS ONE
  doi: 10.1371/annotation/b22a2657-7ce6-471a-8593-8bc8e86e2efa
– volume: 18
  start-page: 7499
  year: 1998
  ident: 2022061704061385200_bib6
  article-title: Identification and characterization of pancreatic eukaryotic initiation factor 2a-subunit kinase, PEK, involved in translational control
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.18.12.7499
– volume: 7
  start-page: 1153
  year: 2001
  ident: 2022061704061385200_bib12
  article-title: Diabetes mellitus and excocrine pancreatic dysfunction in PERK−/− mice reveals a role for translational control in survival of secretory cells
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(01)00264-7
– volume: 22
  start-page: 3864
  year: 2002
  ident: 2022061704061385200_bib31
  article-title: The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.22.11.3864-3874.2002
– volume: 217
  start-page: 693
  year: 2008
  ident: 2022061704061385200_bib20
  article-title: PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.21543
– volume: 4
  start-page: 966
  year: 2004
  ident: 2022061704061385200_bib2
  article-title: The role of the unfolded protein response in tumour development: friend or foe?
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1505
– volume: 5
  start-page: 1
  year: 2010
  ident: 2022061704061385200_bib26
  article-title: Transcriptional regulation of VEGF-A by the unfolded protein response pathway
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009575
– volume: 8
  start-page: 1
  year: 2007
  ident: 2022061704061385200_bib14
  article-title: PERK eIF2 alpha kinase is required to regulate the viability of the exocrine pancreas in mice
  publication-title: BMC Cell Biol
  doi: 10.1186/1471-2121-8-38
– volume: 3
  start-page: 597
  year: 2005
  ident: 2022061704061385200_bib3
  article-title: The unfolded protein response: a novel component of the hypoxic stress response in tumors
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-05-0221
– volume: 279
  start-page: 20076
  year: 2004
  ident: 2022061704061385200_bib11
  article-title: PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following ER stress
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M314219200
– volume: 123
  start-page: 85
  year: 2008
  ident: 2022061704061385200_bib29
  article-title: Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer
  publication-title: Int J Cancer
  doi: 10.1002/ijc.23479
– volume: 397
  start-page: 271
  year: 1999
  ident: 2022061704061385200_bib33
  article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
  publication-title: Nature
  doi: 10.1038/16729
– volume: 103
  start-page: 1876
  year: 2004
  ident: 2022061704061385200_bib28
  article-title: Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells
  publication-title: Blood
  doi: 10.1182/blood-2003-06-1859
– volume: 58
  start-page: 1408
  year: 1998
  ident: 2022061704061385200_bib22
  article-title: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy
  publication-title: Cancer Res
– volume: 33
  start-page: 1814
  year: 2012
  ident: 2022061704061385200_bib37
  article-title: Proteome analysis of tunicamycin-induced ER stress
  publication-title: Electrophoresis
  doi: 10.1002/elps.201100565
– volume: 283
  start-page: 469
  year: 2008
  ident: 2022061704061385200_bib9
  article-title: Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M704612200
– volume: 28
  start-page: 910
  year: 2009
  ident: 2022061704061385200_bib4
  article-title: PERK-dependent regulation of IAP translation during ER stress
  publication-title: Oncogene
  doi: 10.1038/onc.2008.428
– volume: 7
  start-page: 222
  year: 2002
  ident: 2022061704061385200_bib5
  article-title: The mammalian endoplasmic reticulum as a sensor for cellular stress
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(2002)007<0222:TMERAA>2.0.CO;2
– volume: 15
  start-page: 1693
  year: 2001
  ident: 2022061704061385200_bib8
  article-title: Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.426
– volume: 5
  start-page: 1
  year: 2010
  ident: 2022061704061385200_bib16
  article-title: Wolcott–Rallison syndrome
  publication-title: Orphanet J Rare Dis
  doi: 10.1186/1750-1172-5-29
– volume: 55
  start-page: 7193
  year: 2012
  ident: 2022061704061385200_bib30
  article-title: Discovery of 7-methyl-5-(1-{[3- (trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of PKR-like endoplasmic reticulum kinase (PERK)
  publication-title: J Med Chem
  doi: 10.1021/jm300713s
SSID ssj0005105
Score 2.5684268
Snippet The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia,...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1993
SubjectTerms Adenine - analogs & derivatives
Adenine - pharmacology
Angiogenesis Inhibitors - pharmacology
Animals
Antineoplastic agents
Antineoplastic Agents - pharmacology
Biological and medical sciences
eIF-2 Kinase - antagonists & inhibitors
Female
Gene Expression Profiling
Indoles - pharmacology
Medical sciences
Mice
Pharmacology. Drug treatments
Protein Kinase Inhibitors - pharmacology
Tumors
Title Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity
URI https://www.ncbi.nlm.nih.gov/pubmed/23333938
https://www.proquest.com/docview/1317850290
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB2Mwxr6Xbisa7C04sy3bsh9LyCgrLetooYOBkSV5MU2dkNp96F-_O0t2nJCyjzwYR0ZSovv5fCff_Y6QT0L6Oc-VdBTj3AlYzh2h_MiJEx27IsOaq7g1cHIaHV0EXy_Dy8Gg7meXVNlY3u3MK_kfqUIbyBWzZP9Bst2g0ADnIF84goTh-FcynnRsy3ed5SdG5eJWz0ffpt-PR1dFCU-pUVHOigxu3VWbyobxAdc2fBK_ifJXsYBpkLxVmnoSfat1gtBYjSwx0Kx582tCOBoVM5-P-xsK1ZXdw8af146EMT9Fja1nRSfkApkLTDTxdI5kvya8bGsne1Y7P-qyvz2BpSKYYxI0x3qtUnlgSCNbnWvKl1hs9RUoxhPu1uxhbEIhYycMuD-eHJ4avsWGXaHqSXt53YjbZ_BJDHXMFqV2e-kBeeiDd4GFL47P1iTzaHPaZC-Y9fPOOZFE2o6yYdE8WYobuLlyUxXlfrelMV_On5Gn1u-ghwZEz8lAly_IoxMbWfGS_NzGEl3kVNAGSxSxRA2WaIcliliiHZbgTNFNLNEWS6_IxZfp-eTIsZU3HAl_qXJyrt0sVkhjyxRjcSTRkGbaS7TmnKtcaHB7WaAiN8vy0JXcl7BWKuChZjIQ7DXZKxelfktoFItERUJpTybgjHPh5kGmJNcq1DCKNyRBu3qptLT0WB1lnjbuaRhjeESc4vqnsP6p56e4_kMy7rotDS_LnzocbIim64X8TmCj8yH52MoqBRWL781EqRf1TeqBjR2Hrp-4Q_LGCHHd24Jg_94r78jj9X3xnuxVq1p_AEO2yg4a2P0GXe2Z1w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+a+novel+PERK+kinase+inhibitor+with+antitumor+and+antiangiogenic+activity&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Atkins%2C+Charity&rft.au=Liu%2C+Qi&rft.au=Minthorn%2C+Elisabeth&rft.au=Zhang%2C+Shu-Yun&rft.date=2013-03-15&rft.eissn=1538-7445&rft.volume=73&rft.issue=6&rft.spage=1993&rft_id=info:doi/10.1158%2F0008-5472.CAN-12-3109&rft_id=info%3Apmid%2F23333938&rft.externalDocID=23333938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon