Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity
The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR sig...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 73; no. 6; pp. 1993 - 2002 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
15.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC50 of 0.9 nmol/L. It is highly selective for PERK with IC50 values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC50 in the range of 10–30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients. Cancer Res; 73(6); 1993–2002. ©2012 AACR. |
---|---|
AbstractList | The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients. The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC50 of 0.9 nmol/L. It is highly selective for PERK with IC50 values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC50 in the range of 10–30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients. Cancer Res; 73(6); 1993–2002. ©2012 AACR. The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients. |
Author | Alsaid, Hasan Zhang, Shu-Yun Axten, Jeffrey M. Gaul, Nathan Choudhry, Anthony E. Atkins, Charity Minthorn, Elisabeth Figueroa, David J. Moss, Katherine Liu, Qi Sanders, Brent Goetz, Aaron Stanley, Thomas B. Kumar, Rakesh Jucker, Beat M. |
Author_xml | – sequence: 1 givenname: Charity surname: Atkins fullname: Atkins, Charity – sequence: 2 givenname: Qi surname: Liu fullname: Liu, Qi – sequence: 3 givenname: Elisabeth surname: Minthorn fullname: Minthorn, Elisabeth – sequence: 4 givenname: Shu-Yun surname: Zhang fullname: Zhang, Shu-Yun – sequence: 5 givenname: David J. surname: Figueroa fullname: Figueroa, David J. – sequence: 6 givenname: Katherine surname: Moss fullname: Moss, Katherine – sequence: 7 givenname: Thomas B. surname: Stanley fullname: Stanley, Thomas B. – sequence: 8 givenname: Brent surname: Sanders fullname: Sanders, Brent – sequence: 9 givenname: Aaron surname: Goetz fullname: Goetz, Aaron – sequence: 10 givenname: Nathan surname: Gaul fullname: Gaul, Nathan – sequence: 11 givenname: Anthony E. surname: Choudhry fullname: Choudhry, Anthony E. – sequence: 12 givenname: Hasan surname: Alsaid fullname: Alsaid, Hasan – sequence: 13 givenname: Beat M. surname: Jucker fullname: Jucker, Beat M. – sequence: 14 givenname: Jeffrey M. surname: Axten fullname: Axten, Jeffrey M. – sequence: 15 givenname: Rakesh surname: Kumar fullname: Kumar, Rakesh |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27349377$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23333938$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFrGzEQhUVISew0PyFBl0Au60qr1UpLT8akiUlwS2lvBaHVztoqaymR5BTn10dO3AR66VyGB98bhvfG6NB5BwidUTKhlMtPhBBZ8EqUk9l0UdCyYJQ0B2hEOZOFqCp-iEZvzDEax_g7S04JP0LHJcvTMDlCv2YrHbRJEOyTTtY77Hus8cI_woC_XX2_xbfW6Qh47la2tckH_MemFZ66ZNNmnaV23YvSbmn9Epw1eGqSfbRp-xF96PUQ4XS_T9DPL1c_ZjfF3dfr-Wx6V5j8RSp6AaSVXcUkYx1jsjZU5u-ANgBCiK7XUNc1q7qatG3PiRGlyRl0leDATKXZCbp8vXsf_MMGYlJrGw0Mg3bgN1FRRoXkpGxIRs_36KZdQ6fug13rsFV_E8nAxR7Q0eihD9oZG985waqGCZE5_sqZ4GMM0L8hlKhdQ2qXvtqlr3JDipZq11D2ff7HZ2x6ST4FbYf_uJ8BNn-U_A |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1016_j_lfs_2021_119470 crossref_primary_10_1016_j_bbrc_2018_09_032 crossref_primary_10_3389_fonc_2023_1206561 crossref_primary_10_1016_j_bioactmat_2021_04_031 crossref_primary_10_1038_s41467_022_31417_x crossref_primary_10_1021_acssensors_9b00568 crossref_primary_10_1186_2045_3701_4_3 crossref_primary_10_1126_scitranslmed_aaa9134 crossref_primary_10_1186_s40425_016_0203_4 crossref_primary_10_1096_fj_201700870RR crossref_primary_10_1016_j_neuropharm_2013_08_034 crossref_primary_10_1016_j_canlet_2020_07_009 crossref_primary_10_1126_scisignal_aal2323 crossref_primary_10_18632_oncotarget_2051 crossref_primary_10_3390_ijms20184354 crossref_primary_10_1021_acsmedchemlett_9b00400 crossref_primary_10_1016_j_envpol_2017_05_046 crossref_primary_10_3390_cells9030540 crossref_primary_10_1016_j_drudis_2021_02_004 crossref_primary_10_3390_ijms19092468 crossref_primary_10_1038_nature17631 crossref_primary_10_1038_s41419_021_04274_7 crossref_primary_10_1016_j_jnutbio_2022_109213 crossref_primary_10_1083_jcb_202405175 crossref_primary_10_1038_s44318_024_00338_4 crossref_primary_10_1016_j_trecan_2020_07_006 crossref_primary_10_1017_erm_2021_2 crossref_primary_10_1016_j_canlet_2019_01_034 crossref_primary_10_1124_molpharm_120_000070 crossref_primary_10_1097_CCO_0000000000000339 crossref_primary_10_1042_BCJ20220068 crossref_primary_10_4161_auto_25900 crossref_primary_10_1038_s41420_017_0002_9 crossref_primary_10_1093_abbs_gmab131 crossref_primary_10_1038_ncb3460 crossref_primary_10_1158_0008_5472_CAN_21_1545 crossref_primary_10_1038_srep11781 crossref_primary_10_1038_s41598_019_39547_x crossref_primary_10_1186_s12974_017_0878_6 crossref_primary_10_1016_j_ebiom_2020_103138 crossref_primary_10_1186_s12885_022_10289_w crossref_primary_10_1111_boc_201800068 crossref_primary_10_1038_s41598_019_39562_y crossref_primary_10_3389_fonc_2022_997235 crossref_primary_10_3390_molecules28073160 crossref_primary_10_1016_j_heliyon_2024_e38342 crossref_primary_10_1039_D4RA01387E crossref_primary_10_3390_ijms22010355 crossref_primary_10_1016_j_bbcan_2014_07_006 crossref_primary_10_1016_j_celrep_2015_04_063 crossref_primary_10_1016_j_tibs_2014_08_004 crossref_primary_10_1186_s12967_019_1772_z crossref_primary_10_1530_JOE_17_0497 crossref_primary_10_1371_journal_pone_0120252 crossref_primary_10_1161_STROKEAHA_124_048163 crossref_primary_10_1183_16000617_0184_2020 crossref_primary_10_1074_jbc_REV120_010218 crossref_primary_10_1038_s41573_021_00320_3 crossref_primary_10_1039_C9NP00066F crossref_primary_10_1016_j_metabol_2018_12_007 crossref_primary_10_1016_j_radonc_2013_06_005 crossref_primary_10_3390_cells8111308 crossref_primary_10_2174_1568009621666210504091722 crossref_primary_10_1208_s12248_018_0254_1 crossref_primary_10_3389_fmicb_2018_00005 crossref_primary_10_1093_narcan_zcac031 crossref_primary_10_1073_pnas_2018229118 crossref_primary_10_1002_cac2_12416 crossref_primary_10_3389_fnins_2015_00264 crossref_primary_10_1111_febs_14608 crossref_primary_10_15252_embr_201642195 crossref_primary_10_3389_fendo_2022_1094394 crossref_primary_10_1038_s41598_021_93663_1 crossref_primary_10_1038_s41598_020_72259_1 crossref_primary_10_1186_s12931_018_0856_2 crossref_primary_10_3389_fimmu_2019_02825 crossref_primary_10_18632_oncotarget_12941 crossref_primary_10_1016_j_molmed_2019_05_011 crossref_primary_10_1016_j_ccell_2022_08_016 crossref_primary_10_1002_jcp_25336 crossref_primary_10_2174_1568009620666200106114826 crossref_primary_10_1002_jcp_24923 crossref_primary_10_3390_cancers12051298 crossref_primary_10_1016_j_jbc_2022_102864 crossref_primary_10_1016_j_isci_2024_109100 crossref_primary_10_1038_s41429_019_0219_3 crossref_primary_10_1128_IAI_00826_18 crossref_primary_10_3389_fcell_2017_00048 crossref_primary_10_1016_j_biopha_2023_115036 crossref_primary_10_1007_s10072_024_07766_4 crossref_primary_10_1093_toxres_tfac041 crossref_primary_10_1186_s13045_015_0184_7 crossref_primary_10_1016_j_semcancer_2018_01_011 crossref_primary_10_1016_j_trecan_2022_06_006 crossref_primary_10_1016_j_bbrc_2015_10_005 crossref_primary_10_1152_ajpcell_00551_2024 crossref_primary_10_1038_s41568_020_00312_2 crossref_primary_10_1158_2159_8290_CD_14_1507 crossref_primary_10_4161_cc_27726 crossref_primary_10_1016_j_bbamcr_2014_01_012 crossref_primary_10_1016_j_celrep_2024_114402 crossref_primary_10_1101_cshperspect_a032995 crossref_primary_10_1172_JCI176136 crossref_primary_10_1002_iub_1576 crossref_primary_10_1039_D4OB01238K crossref_primary_10_1073_pnas_1603883113 crossref_primary_10_1016_j_semcdb_2015_08_005 crossref_primary_10_1371_journal_pbio_1001945 crossref_primary_10_1038_nrd3976 crossref_primary_10_1074_jbc_M117_813790 crossref_primary_10_1183_16000617_0018_2017 crossref_primary_10_1007_s11523_022_00870_5 crossref_primary_10_1016_j_cell_2016_02_026 crossref_primary_10_1101_gad_297374_117 crossref_primary_10_1093_nar_gku137 crossref_primary_10_3390_biom11030354 crossref_primary_10_18632_oncotarget_11873 crossref_primary_10_3389_fncel_2014_00213 crossref_primary_10_3892_mmr_2017_6418 crossref_primary_10_1016_j_cell_2016_12_004 crossref_primary_10_1097_MPA_0000000000001248 crossref_primary_10_1002_wrna_1491 crossref_primary_10_1016_j_bbadis_2018_10_008 crossref_primary_10_3389_fimmu_2024_1427859 crossref_primary_10_3390_ijms17010052 crossref_primary_10_1053_j_gastro_2024_05_009 crossref_primary_10_3390_ijms21062108 crossref_primary_10_1016_j_conb_2020_02_009 crossref_primary_10_1007_s12079_020_00562_7 crossref_primary_10_1016_j_taap_2018_04_020 crossref_primary_10_12688_f1000research_12138_1 crossref_primary_10_1002_path_5423 crossref_primary_10_1007_s00018_022_04480_2 crossref_primary_10_1172_jci_insight_170148 crossref_primary_10_1016_j_semcancer_2015_04_002 crossref_primary_10_1038_s41467_017_01052_y crossref_primary_10_1038_s41589_019_0326_2 crossref_primary_10_1016_j_canlet_2017_09_021 crossref_primary_10_1167_iovs_64_11_17 crossref_primary_10_1016_j_trecan_2019_12_001 crossref_primary_10_1016_j_trecan_2024_09_011 crossref_primary_10_2217_fon_13_49 crossref_primary_10_1038_cdd_2016_89 crossref_primary_10_1038_cdd_2017_58 crossref_primary_10_3390_ijms22168674 crossref_primary_10_18632_oncotarget_9515 crossref_primary_10_1016_j_ymthe_2022_04_022 crossref_primary_10_1002_eji_201646856 crossref_primary_10_3109_08830185_2015_1018415 crossref_primary_10_3390_ijms19071832 crossref_primary_10_1007_s00262_017_2019_6 crossref_primary_10_1038_s41375_018_0141_x crossref_primary_10_1186_s40164_022_00348_0 crossref_primary_10_3390_cancers15020460 crossref_primary_10_1016_j_bbagrm_2014_12_007 crossref_primary_10_1074_jbc_M113_503664 crossref_primary_10_1038_nrc3800 crossref_primary_10_3389_fimmu_2020_543022 crossref_primary_10_1371_journal_pgen_1006518 crossref_primary_10_1016_j_molcel_2017_11_007 crossref_primary_10_1038_s41467_018_08152_3 crossref_primary_10_1016_j_neo_2019_02_004 crossref_primary_10_15430_JCP_2014_19_2_75 crossref_primary_10_1007_s10555_023_10085_3 crossref_primary_10_1002_jbt_22561 crossref_primary_10_1016_j_ajpath_2016_03_004 crossref_primary_10_1016_j_ajpath_2020_01_010 crossref_primary_10_4103_1673_5374_266903 crossref_primary_10_4049_immunohorizons_2100012 crossref_primary_10_1016_j_critrevonc_2018_05_003 crossref_primary_10_1016_j_cub_2016_01_053 crossref_primary_10_1007_s13277_014_1789_0 crossref_primary_10_1038_s41467_023_40823_8 crossref_primary_10_1016_j_jss_2020_05_070 crossref_primary_10_1111_febs_14359 crossref_primary_10_1016_j_tice_2023_102289 crossref_primary_10_3892_or_2016_4632 crossref_primary_10_3389_fcell_2021_683940 crossref_primary_10_1158_1078_0432_CCR_23_1182 crossref_primary_10_15252_emmm_201911845 crossref_primary_10_1039_C9MD00447E crossref_primary_10_1007_s12079_023_00784_5 crossref_primary_10_1051_medsci_20143010015 crossref_primary_10_1016_j_trecan_2020_05_012 crossref_primary_10_1016_j_bbrc_2017_09_020 crossref_primary_10_1038_s41401_023_01225_0 crossref_primary_10_1039_C9RA08047C crossref_primary_10_3390_cancers11050631 crossref_primary_10_1016_j_lfs_2018_11_041 crossref_primary_10_1038_s41598_021_89074_x crossref_primary_10_1016_j_molonc_2016_05_001 crossref_primary_10_1089_ars_2014_5851 crossref_primary_10_1016_j_biopha_2022_113741 crossref_primary_10_1074_jbc_RA120_012525 crossref_primary_10_3390_cancers11111793 crossref_primary_10_1242_jcs_173047 crossref_primary_10_1021_acs_jproteome_3c00600 crossref_primary_10_1016_j_phrs_2020_104823 crossref_primary_10_1242_dev_200342 crossref_primary_10_3390_cancers13020261 crossref_primary_10_1002_asia_201801826 crossref_primary_10_1186_s12964_019_0499_z crossref_primary_10_5604_01_3001_0015_7948 crossref_primary_10_1111_boc_201700059 crossref_primary_10_1186_s12915_014_0094_0 crossref_primary_10_1038_cddis_2017_369 crossref_primary_10_1016_j_bbalip_2019_04_009 crossref_primary_10_1155_2018_4946289 crossref_primary_10_1016_j_jfluchem_2018_05_012 crossref_primary_10_1038_s41580_024_00794_0 crossref_primary_10_1073_pnas_1805523115 crossref_primary_10_2217_mmt_14_16 crossref_primary_10_3390_cancers13194927 crossref_primary_10_3390_molecules23020337 crossref_primary_10_1021_ml400228e crossref_primary_10_1177_2472555217701685 crossref_primary_10_1016_j_immuni_2020_03_004 crossref_primary_10_1016_j_jbc_2025_108257 crossref_primary_10_18632_oncotarget_5746 crossref_primary_10_3390_ijms20102518 crossref_primary_10_7554_eLife_05033 crossref_primary_10_18632_oncotarget_5980 crossref_primary_10_3390_ijms24010577 crossref_primary_10_15252_emmm_201606664 crossref_primary_10_3390_pharmaceutics14102233 crossref_primary_10_7554_eLife_01236 crossref_primary_10_1146_annurev_cellbio_111315_125334 crossref_primary_10_1172_jci_insight_121887 crossref_primary_10_3389_fphar_2020_00737 crossref_primary_10_3389_fphar_2022_904701 crossref_primary_10_1016_j_ajps_2024_100889 crossref_primary_10_1016_j_pharmthera_2016_07_007 crossref_primary_10_1038_s41585_022_00649_3 crossref_primary_10_1080_13543776_2017_1238072 crossref_primary_10_1021_acs_jmedchem_3c02422 crossref_primary_10_1038_srep09065 crossref_primary_10_1016_j_jbc_2024_107327 crossref_primary_10_1016_j_nbd_2018_01_004 crossref_primary_10_3389_fgene_2022_1095428 crossref_primary_10_1038_cddiscovery_2017_34 crossref_primary_10_3390_cancers8030030 crossref_primary_10_1016_j_bbcan_2016_12_002 crossref_primary_10_3892_ijmm_2018_3423 crossref_primary_10_1007_s10555_015_9588_7 crossref_primary_10_1016_j_molcel_2024_10_003 crossref_primary_10_1016_j_biochi_2022_01_017 crossref_primary_10_1016_j_jhep_2015_01_032 crossref_primary_10_1016_j_semcancer_2015_03_003 crossref_primary_10_1089_neu_2022_0177 crossref_primary_10_1165_rcmb_2019_0123LE crossref_primary_10_1016_j_conb_2018_03_004 crossref_primary_10_18632_oncotarget_10126 crossref_primary_10_1016_j_bcp_2024_116038 crossref_primary_10_1074_jbc_RA119_010655 crossref_primary_10_1186_s12964_023_01438_0 crossref_primary_10_1002_1873_3468_14000 crossref_primary_10_1016_j_bbamcr_2014_01_009 crossref_primary_10_3390_cancers10100344 crossref_primary_10_1016_j_pharmthera_2024_108604 crossref_primary_10_3390_cancers14122949 crossref_primary_10_1158_1078_0432_CCR_12_3629 crossref_primary_10_18632_oncotarget_25886 crossref_primary_10_1080_15548627_2023_2258701 crossref_primary_10_1158_1541_7786_MCR_23_0676 crossref_primary_10_2174_0929867325666180117102233 crossref_primary_10_3390_ijms18040854 crossref_primary_10_1038_s41420_022_00915_8 crossref_primary_10_1038_s41467_024_48852_7 crossref_primary_10_1186_s13578_019_0289_8 crossref_primary_10_1016_j_chembiol_2023_08_011 crossref_primary_10_52586_5061 crossref_primary_10_1177_1073858418816611 crossref_primary_10_3390_ijms24021566 crossref_primary_10_18632_aging_204097 crossref_primary_10_1038_s41467_021_24661_0 crossref_primary_10_1186_s13071_022_05394_5 crossref_primary_10_1016_j_pupt_2023_102218 crossref_primary_10_1158_1078_0432_CCR_13_3239 crossref_primary_10_1016_j_molmed_2022_03_006 crossref_primary_10_1016_j_canlet_2024_216678 crossref_primary_10_1146_annurev_pathol_012513_104649 crossref_primary_10_1158_0008_5472_CAN_19_1116 crossref_primary_10_1016_j_cmet_2015_07_010 crossref_primary_10_1007_s00018_021_03756_3 crossref_primary_10_1089_ars_2024_0592 crossref_primary_10_1074_jbc_R113_534743 crossref_primary_10_18632_aging_205511 crossref_primary_10_1152_ajplung_00449_2015 crossref_primary_10_1158_2326_6066_CIR_19_0616 crossref_primary_10_7554_eLife_60970 crossref_primary_10_1080_15548627_2020_1794590 crossref_primary_10_3390_biomedicines6020058 crossref_primary_10_1038_nrc3748 crossref_primary_10_1165_rcmb_2016_0404OC crossref_primary_10_1016_j_biopha_2019_109249 crossref_primary_10_1097_ALN_0000000000004858 crossref_primary_10_4155_fso_15_45 crossref_primary_10_1172_JCI95873 crossref_primary_10_3109_14756366_2014_966704 crossref_primary_10_1038_cddis_2015_264 crossref_primary_10_1038_cdd_2014_53 crossref_primary_10_1073_pnas_1210633110 crossref_primary_10_1177_1087057114525853 crossref_primary_10_3390_cells11182899 crossref_primary_10_1016_j_ccr_2014_03_015 crossref_primary_10_1016_j_mce_2020_110932 crossref_primary_10_1186_s13046_020_01824_3 crossref_primary_10_3892_or_2016_4975 crossref_primary_10_1074_jbc_RA118_006682 crossref_primary_10_1038_s41389_020_00279_7 crossref_primary_10_1152_ajpcell_00266_2016 crossref_primary_10_1038_s41419_020_03319_7 crossref_primary_10_1038_nchembio_1664 crossref_primary_10_1158_2159_8290_CD_14_1490 crossref_primary_10_1016_j_tcb_2016_06_005 crossref_primary_10_1051_medsci_20153106021 crossref_primary_10_1016_j_trecan_2016_03_007 crossref_primary_10_3389_fcell_2019_00050 crossref_primary_10_4161_23723556_2014_975089 crossref_primary_10_1016_j_cellsig_2014_12_010 crossref_primary_10_1158_2326_6066_CIR_18_0182 crossref_primary_10_1586_17446651_2014_927309 crossref_primary_10_15252_embj_2021109985 crossref_primary_10_2217_ijh_13_32 crossref_primary_10_3389_fimmu_2019_03154 crossref_primary_10_1007_s00280_016_2996_8 crossref_primary_10_1038_onc_2015_178 crossref_primary_10_1080_14728222_2017_1397133 crossref_primary_10_1038_s41421_021_00332_8 crossref_primary_10_1158_1541_7786_MCR_22_0920 crossref_primary_10_1016_j_cmet_2020_06_002 crossref_primary_10_1073_pnas_1516362112 crossref_primary_10_3892_or_2017_5589 crossref_primary_10_1016_j_semcancer_2015_02_004 crossref_primary_10_1073_pnas_1621188114 |
Cites_doi | 10.1083/jcb.200508099 10.1158/0008-5472.CAN-04-1606 10.2337/db09-1064 10.1128/MCB.22.21.7405-7416.2002 10.1128/MCB.01145-06 10.1016/B978-0-12-385114-7.00019-2 10.1158/0008-5472.CAN-06-3235 10.1186/1471-2407-8-229 10.1093/genetics/154.2.787 10.1042/BJ20081706 10.2337/diabetes.53.7.1876 10.1016/j.tem.2010.08.005 10.1038/sj.emboj.7600777 10.1016/j.cmet.2006.11.002 10.1158/1541-7786.MCR-06-0150 10.1128/MCB.23.21.7448-7459.2003 10.1371/annotation/b22a2657-7ce6-471a-8593-8bc8e86e2efa 10.1128/MCB.18.12.7499 10.1016/S1097-2765(01)00264-7 10.1128/MCB.22.11.3864-3874.2002 10.1002/jcp.21543 10.1038/nrc1505 10.1371/journal.pone.0009575 10.1186/1471-2121-8-38 10.1158/1541-7786.MCR-05-0221 10.1074/jbc.M314219200 10.1002/ijc.23479 10.1038/16729 10.1182/blood-2003-06-1859 10.1002/elps.201100565 10.1074/jbc.M704612200 10.1038/onc.2008.428 10.1379/1466-1268(2002)007<0222:TMERAA>2.0.CO;2 10.1002/rcm.426 10.1186/1750-1172-5-29 10.1021/jm300713s |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS |
Copyright_xml | – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/0008-5472.CAN-12-3109 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 2002 |
ExternalDocumentID | 23333938 27349377 10_1158_0008_5472_CAN_12_3109 |
Genre | Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS W2D W8F WH7 WOQ YKV YZZ .55 .GJ 3O- 8WZ A6W AFFNX AI. C1A D0S IQODW J5H MVM OHT VH1 WHG X7M XJT ZCG ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c339t-f7e0b8d43833d3386c18393e19ee777dfae66634d60bbf50c72c115d475e3c4a3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Fri Jul 11 05:00:30 EDT 2025 Mon Jul 21 05:52:28 EDT 2025 Mon Jul 21 09:15:27 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Tue Jul 01 04:17:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Antineoplastic agent Characterization Enzyme Kinase Transferases Inhibitor Antiangiogenic agent Biological activity |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c339t-f7e0b8d43833d3386c18393e19ee777dfae66634d60bbf50c72c115d475e3c4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23333938 |
PQID | 1317850290 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1317850290 pubmed_primary_23333938 pascalfrancis_primary_27349377 crossref_primary_10_1158_0008_5472_CAN_12_3109 crossref_citationtrail_10_1158_0008_5472_CAN_12_3109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-15 |
PublicationDateYYYYMMDD | 2013-03-15 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2013 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Ameri (2022061704061385200_bib28) 2004; 103 Brown (2022061704061385200_bib22) 1998; 58 Gales (2022061704061385200_bib34) 2012 Gjymishka (2022061704061385200_bib36) 2009; 417 Bi (2022061704061385200_bib21) 2005; 24 Romero-Ramirez (2022061704061385200_bib25) 2004; 64 Hamanaka (2022061704061385200_bib4) 2009; 28 Davies (2022061704061385200_bib29) 2008; 123 Harding (2022061704061385200_bib12) 2001; 7 Blais (2022061704061385200_bib23) 2006; 26 Drogat (2022061704061385200_bib38) 2007; 67 Feldman (2022061704061385200_bib3) 2005; 3 Harding (2022061704061385200_bib33) 1999; 397 Koumenis (2022061704061385200_bib24) 2002; 22 Teske (2022061704061385200_bib32) 2011; 490 Iida (2022061704061385200_bib14) 2007; 8 Shi (2022061704061385200_bib6) 1998; 18 Koumenis (2022061704061385200_bib1) 2006; 4 Bull (2022061704061385200_bib37) 2012; 33 Senee (2022061704061385200_bib15) 2004; 53 Cullinan (2022061704061385200_bib11) 2004; 279 Gupta (2022061704061385200_bib17) 2009; 4 Jorgensen (2022061704061385200_bib27) 2008; 8 Cavener (2022061704061385200_bib18) 2010; 21 Ghosh (2022061704061385200_bib26) 2010; 5 Lee (2022061704061385200_bib35) 2003; 23 Zhang (2022061704061385200_bib13) 2006; 4 Gupta (2022061704061385200_bib19) 2010; 59 Axten (2022061704061385200_bib30) 2012; 55 Sood (2022061704061385200_bib7) 2000; 154 Su (2022061704061385200_bib9) 2008; 283 Zhang (2022061704061385200_bib31) 2002; 22 Ma (2022061704061385200_bib8) 2001; 15 Wei (2022061704061385200_bib20) 2008; 217 Julier (2022061704061385200_bib16) 2010; 5 Marciniak (2022061704061385200_bib10) 2006; 172 Ma (2022061704061385200_bib2) 2004; 4 Ma (2022061704061385200_bib5) 2002; 7 |
References_xml | – volume: 172 start-page: 201 year: 2006 ident: 2022061704061385200_bib10 article-title: Activation-dependent substrate recruitment by the eukaryotic translation initiation factor 2 kinase PERK publication-title: J Cell Biol doi: 10.1083/jcb.200508099 – volume: 64 start-page: 5943 year: 2004 ident: 2022061704061385200_bib25 article-title: XBP1 is essential for survival under hypoxic conditions and is required for tumor growth publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-1606 – volume: 59 start-page: 1937 year: 2010 ident: 2022061704061385200_bib19 article-title: PERK (EIF2AK3) regulates proinsulin tranfficking and quality control in the secretory pathway publication-title: Diabetes doi: 10.2337/db09-1064 – volume: 22 start-page: 7405 year: 2002 ident: 2022061704061385200_bib24 article-title: Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α publication-title: Mol Cell Biol doi: 10.1128/MCB.22.21.7405-7416.2002 – year: 2012 ident: 2022061704061385200_bib34 article-title: PERK inhibitor induces pancreatic toxicity in rats publication-title: Soc Tox Path – volume: 26 start-page: 9517 year: 2006 ident: 2022061704061385200_bib23 article-title: Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress publication-title: Mol Cell Biol doi: 10.1128/MCB.01145-06 – volume: 490 start-page: 333 year: 2011 ident: 2022061704061385200_bib32 article-title: Methods for analyzing eIF2 kinases and translational control in the unfolded protein response publication-title: Methods Enzymol doi: 10.1016/B978-0-12-385114-7.00019-2 – volume: 67 start-page: 6700 year: 2007 ident: 2022061704061385200_bib38 article-title: IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-a expression and contributes to angiogenesis and tumor growth in vivo publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-3235 – volume: 8 start-page: 1 year: 2008 ident: 2022061704061385200_bib27 article-title: Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells publication-title: BMC Cancer doi: 10.1186/1471-2407-8-229 – volume: 154 start-page: 787 year: 2000 ident: 2022061704061385200_bib7 article-title: A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2a publication-title: Genetics doi: 10.1093/genetics/154.2.787 – volume: 417 start-page: 695 year: 2009 ident: 2022061704061385200_bib36 article-title: Transcriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway publication-title: Biochem J doi: 10.1042/BJ20081706 – volume: 53 start-page: 1876 year: 2004 ident: 2022061704061385200_bib15 article-title: Wolcott-Rallison syndrome: clinical, genetic, and functional study of EIF2AK3 mutations and suggestion of genetic heterogeneity publication-title: Diabetes doi: 10.2337/diabetes.53.7.1876 – volume: 21 start-page: 714 year: 2010 ident: 2022061704061385200_bib18 article-title: PERK in beta cell biology and insulin biogenesis publication-title: Trends Endocrinol Metabol doi: 10.1016/j.tem.2010.08.005 – volume: 24 start-page: 3470 year: 2005 ident: 2022061704061385200_bib21 article-title: ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth publication-title: EMBO J doi: 10.1038/sj.emboj.7600777 – volume: 4 start-page: 491 year: 2006 ident: 2022061704061385200_bib13 article-title: PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis publication-title: Cell Metabol doi: 10.1016/j.cmet.2006.11.002 – volume: 4 start-page: 423 year: 2006 ident: 2022061704061385200_bib1 article-title: “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-06-0150 – volume: 23 start-page: 7448 year: 2003 ident: 2022061704061385200_bib35 article-title: XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response publication-title: Mol Cell Biol doi: 10.1128/MCB.23.21.7448-7459.2003 – volume: 4 start-page: 1 year: 2009 ident: 2022061704061385200_bib17 article-title: PERK regulates the proliferation and development of insulin-secreting beta-cell tumors in the endocrine pancreas of mice publication-title: PLoS ONE doi: 10.1371/annotation/b22a2657-7ce6-471a-8593-8bc8e86e2efa – volume: 18 start-page: 7499 year: 1998 ident: 2022061704061385200_bib6 article-title: Identification and characterization of pancreatic eukaryotic initiation factor 2a-subunit kinase, PEK, involved in translational control publication-title: Mol Cell Biol doi: 10.1128/MCB.18.12.7499 – volume: 7 start-page: 1153 year: 2001 ident: 2022061704061385200_bib12 article-title: Diabetes mellitus and excocrine pancreatic dysfunction in PERK−/− mice reveals a role for translational control in survival of secretory cells publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00264-7 – volume: 22 start-page: 3864 year: 2002 ident: 2022061704061385200_bib31 article-title: The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas publication-title: Mol Cell Biol doi: 10.1128/MCB.22.11.3864-3874.2002 – volume: 217 start-page: 693 year: 2008 ident: 2022061704061385200_bib20 article-title: PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation publication-title: J Cell Physiol doi: 10.1002/jcp.21543 – volume: 4 start-page: 966 year: 2004 ident: 2022061704061385200_bib2 article-title: The role of the unfolded protein response in tumour development: friend or foe? publication-title: Nat Rev Cancer doi: 10.1038/nrc1505 – volume: 5 start-page: 1 year: 2010 ident: 2022061704061385200_bib26 article-title: Transcriptional regulation of VEGF-A by the unfolded protein response pathway publication-title: PLoS ONE doi: 10.1371/journal.pone.0009575 – volume: 8 start-page: 1 year: 2007 ident: 2022061704061385200_bib14 article-title: PERK eIF2 alpha kinase is required to regulate the viability of the exocrine pancreas in mice publication-title: BMC Cell Biol doi: 10.1186/1471-2121-8-38 – volume: 3 start-page: 597 year: 2005 ident: 2022061704061385200_bib3 article-title: The unfolded protein response: a novel component of the hypoxic stress response in tumors publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-05-0221 – volume: 279 start-page: 20076 year: 2004 ident: 2022061704061385200_bib11 article-title: PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following ER stress publication-title: J Biol Chem doi: 10.1074/jbc.M314219200 – volume: 123 start-page: 85 year: 2008 ident: 2022061704061385200_bib29 article-title: Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer publication-title: Int J Cancer doi: 10.1002/ijc.23479 – volume: 397 start-page: 271 year: 1999 ident: 2022061704061385200_bib33 article-title: Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase publication-title: Nature doi: 10.1038/16729 – volume: 103 start-page: 1876 year: 2004 ident: 2022061704061385200_bib28 article-title: Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells publication-title: Blood doi: 10.1182/blood-2003-06-1859 – volume: 58 start-page: 1408 year: 1998 ident: 2022061704061385200_bib22 article-title: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy publication-title: Cancer Res – volume: 33 start-page: 1814 year: 2012 ident: 2022061704061385200_bib37 article-title: Proteome analysis of tunicamycin-induced ER stress publication-title: Electrophoresis doi: 10.1002/elps.201100565 – volume: 283 start-page: 469 year: 2008 ident: 2022061704061385200_bib9 article-title: Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation publication-title: J Biol Chem doi: 10.1074/jbc.M704612200 – volume: 28 start-page: 910 year: 2009 ident: 2022061704061385200_bib4 article-title: PERK-dependent regulation of IAP translation during ER stress publication-title: Oncogene doi: 10.1038/onc.2008.428 – volume: 7 start-page: 222 year: 2002 ident: 2022061704061385200_bib5 article-title: The mammalian endoplasmic reticulum as a sensor for cellular stress publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2002)007<0222:TMERAA>2.0.CO;2 – volume: 15 start-page: 1693 year: 2001 ident: 2022061704061385200_bib8 article-title: Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.426 – volume: 5 start-page: 1 year: 2010 ident: 2022061704061385200_bib16 article-title: Wolcott–Rallison syndrome publication-title: Orphanet J Rare Dis doi: 10.1186/1750-1172-5-29 – volume: 55 start-page: 7193 year: 2012 ident: 2022061704061385200_bib30 article-title: Discovery of 7-methyl-5-(1-{[3- (trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of PKR-like endoplasmic reticulum kinase (PERK) publication-title: J Med Chem doi: 10.1021/jm300713s |
SSID | ssj0005105 |
Score | 2.5684268 |
Snippet | The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia,... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1993 |
SubjectTerms | Adenine - analogs & derivatives Adenine - pharmacology Angiogenesis Inhibitors - pharmacology Animals Antineoplastic agents Antineoplastic Agents - pharmacology Biological and medical sciences eIF-2 Kinase - antagonists & inhibitors Female Gene Expression Profiling Indoles - pharmacology Medical sciences Mice Pharmacology. Drug treatments Protein Kinase Inhibitors - pharmacology Tumors |
Title | Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23333938 https://www.proquest.com/docview/1317850290 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB2Mwxr6Xbisa7C04sy3bsh9LyCgrLetooYOBkSV5MU2dkNp96F-_O0t2nJCyjzwYR0ZSovv5fCff_Y6QT0L6Oc-VdBTj3AlYzh2h_MiJEx27IsOaq7g1cHIaHV0EXy_Dy8Gg7meXVNlY3u3MK_kfqUIbyBWzZP9Bst2g0ADnIF84goTh-FcynnRsy3ed5SdG5eJWz0ffpt-PR1dFCU-pUVHOigxu3VWbyobxAdc2fBK_ifJXsYBpkLxVmnoSfat1gtBYjSwx0Kx582tCOBoVM5-P-xsK1ZXdw8af146EMT9Fja1nRSfkApkLTDTxdI5kvya8bGsne1Y7P-qyvz2BpSKYYxI0x3qtUnlgSCNbnWvKl1hs9RUoxhPu1uxhbEIhYycMuD-eHJ4avsWGXaHqSXt53YjbZ_BJDHXMFqV2e-kBeeiDd4GFL47P1iTzaHPaZC-Y9fPOOZFE2o6yYdE8WYobuLlyUxXlfrelMV_On5Gn1u-ghwZEz8lAly_IoxMbWfGS_NzGEl3kVNAGSxSxRA2WaIcliliiHZbgTNFNLNEWS6_IxZfp-eTIsZU3HAl_qXJyrt0sVkhjyxRjcSTRkGbaS7TmnKtcaHB7WaAiN8vy0JXcl7BWKuChZjIQ7DXZKxelfktoFItERUJpTybgjHPh5kGmJNcq1DCKNyRBu3qptLT0WB1lnjbuaRhjeESc4vqnsP6p56e4_kMy7rotDS_LnzocbIim64X8TmCj8yH52MoqBRWL781EqRf1TeqBjR2Hrp-4Q_LGCHHd24Jg_94r78jj9X3xnuxVq1p_AEO2yg4a2P0GXe2Z1w |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+a+novel+PERK+kinase+inhibitor+with+antitumor+and+antiangiogenic+activity&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Atkins%2C+Charity&rft.au=Liu%2C+Qi&rft.au=Minthorn%2C+Elisabeth&rft.au=Zhang%2C+Shu-Yun&rft.date=2013-03-15&rft.eissn=1538-7445&rft.volume=73&rft.issue=6&rft.spage=1993&rft_id=info:doi/10.1158%2F0008-5472.CAN-12-3109&rft_id=info%3Apmid%2F23333938&rft.externalDocID=23333938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |