Using deep learning to predict soil properties from regional spectral data
Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in proces...
Saved in:
Published in | Geoderma Regional Vol. 16; p. e00198 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data.
•CNN model is able to predict soil properties from raw spectral data.•CNN is able to predict multi properties simultaneously and synergically.•The multi-task CNN reduced the error compared to the Cubist model by 62%.•This approach works better with large spectral datasets. |
---|---|
AbstractList | Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data. Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data. •CNN model is able to predict soil properties from raw spectral data.•CNN is able to predict multi properties simultaneously and synergically.•The multi-task CNN reduced the error compared to the Cubist model by 62%.•This approach works better with large spectral datasets. |
ArticleNumber | e00198 |
Author | Padarian, J. Minasny, B. McBratney, A.B. |
Author_xml | – sequence: 1 givenname: J. surname: Padarian fullname: Padarian, J. email: jose.padarian@sydney.edu.au – sequence: 2 givenname: B. surname: Minasny fullname: Minasny, B. email: budiman.minasny@sydney.edu.au – sequence: 3 givenname: A.B. surname: McBratney fullname: McBratney, A.B. email: alex.mcbratney@sydney.edu.au |
BookMark | eNqFkMtKAzEUhoNUsNa-gYtZupkxl7nFhSDFKwU3dh3S5KSkTCdjkgq-vRnGhbjQVc6B_zv8-c7RrHc9IHRJcEEwqa_3xQ6c9qGgmLQFYEx4e4LmlFU0x5iXsx_zGVqGsMcYU16xpqZz9LIJtt9lGmDIOpC-H7fossGDtipmwdkuLW4AHy2EzHh3yDzsrOtll4UBVPRp0DLKC3RqZBdg-f0u0Obh_m31lK9fH59Xd-tcMcZjbmqqt1DWbclrDRobpSRTja6hlawxDa-AlA2lhjNMaGVwCm0pTwhLCU3ZAl1Nd1Ot9yOEKA42KOg62YM7BkFJyytSpT-m6M0UVd6F4MEIZaOMqXxqbTtBsBgdir2YHIrRoZgcJrj8BQ_eHqT__A-7nTBIDj4seBGUhV4lnz7ZEtrZvw98Ae2KkRI |
CitedBy_id | crossref_primary_10_1016_j_foodcont_2022_109389 crossref_primary_10_1016_j_geoderma_2023_116752 crossref_primary_10_3390_rs12071095 crossref_primary_10_1016_j_geoderma_2019_06_016 crossref_primary_10_3390_rs12091389 crossref_primary_10_1016_j_geoderma_2020_114731 crossref_primary_10_1111_sum_13077 crossref_primary_10_1016_j_meatsci_2023_109196 crossref_primary_10_1016_j_catena_2021_105190 crossref_primary_10_29133_yyutbd_1177796 crossref_primary_10_1111_ejss_13323 crossref_primary_10_1016_j_geoderma_2020_114616 crossref_primary_10_1007_s12145_024_01467_4 crossref_primary_10_5194_soil_5_79_2019 crossref_primary_10_3233_JIFS_230408 crossref_primary_10_1016_j_isprsjprs_2022_01_018 crossref_primary_10_1038_s41598_019_50480_x crossref_primary_10_1016_j_jag_2022_102719 crossref_primary_10_2139_ssrn_4129089 crossref_primary_10_1016_j_asr_2023_05_027 crossref_primary_10_3390_agronomy13071806 crossref_primary_10_1016_j_compag_2022_107171 crossref_primary_10_3390_rs15030835 crossref_primary_10_1016_j_geoderma_2021_115449 crossref_primary_10_3390_agronomy14091998 crossref_primary_10_1038_s41598_023_40863_6 crossref_primary_10_1109_TIP_2023_3348656 crossref_primary_10_3390_rs14020397 crossref_primary_10_1088_1757_899X_768_7_072049 crossref_primary_10_3390_sym13020319 crossref_primary_10_1080_00103624_2024_2416920 crossref_primary_10_3390_s25010287 crossref_primary_10_1364_OE_502709 crossref_primary_10_1109_LGRS_2023_3304749 crossref_primary_10_1007_s10661_022_10848_5 crossref_primary_10_1038_s41598_024_69464_7 crossref_primary_10_1016_j_geoderma_2023_116724 crossref_primary_10_3390_app14219839 crossref_primary_10_3390_foods11192977 crossref_primary_10_1155_2022_9748257 crossref_primary_10_1111_ejss_13370 crossref_primary_10_1016_j_geoderma_2023_116555 crossref_primary_10_1016_j_geoderma_2024_117006 crossref_primary_10_3390_s20216271 crossref_primary_10_1080_1343943X_2020_1785898 crossref_primary_10_1016_j_compag_2025_110164 crossref_primary_10_1002_ldr_3497 crossref_primary_10_5194_soil_7_525_2021 crossref_primary_10_1109_JSTARS_2020_3039844 crossref_primary_10_3390_ijms252413390 crossref_primary_10_1080_23270012_2023_2207184 crossref_primary_10_1021_acs_est_2c09788 crossref_primary_10_1080_00103624_2023_2211110 crossref_primary_10_3390_s23073686 crossref_primary_10_25046_aj060262 crossref_primary_10_3390_s21113758 crossref_primary_10_1016_j_aeolia_2021_100682 crossref_primary_10_4236_ojss_2021_112006 crossref_primary_10_1016_j_chemosphere_2021_131889 crossref_primary_10_1016_j_saa_2024_125317 crossref_primary_10_61186_jwmr_14_27_38 crossref_primary_10_1016_j_trac_2022_116804 crossref_primary_10_1080_00103624_2022_2070638 crossref_primary_10_1016_j_infrared_2022_104056 crossref_primary_10_1007_s11440_021_01266_x crossref_primary_10_1007_s42729_025_02333_y crossref_primary_10_3390_toxics12050357 crossref_primary_10_1007_s11368_024_03747_4 crossref_primary_10_1002_saj2_20193 crossref_primary_10_1016_j_trac_2024_117981 crossref_primary_10_1016_j_geoderma_2023_116653 crossref_primary_10_1007_s12145_023_01168_4 crossref_primary_10_1134_S1027451021010110 crossref_primary_10_3390_rs12142234 crossref_primary_10_3390_su14148455 crossref_primary_10_1007_s10661_024_12817_6 crossref_primary_10_3390_ijms25010106 crossref_primary_10_1109_TGRS_2024_3360334 crossref_primary_10_1016_j_compag_2024_109233 crossref_primary_10_1021_acs_estlett_2c00949 crossref_primary_10_1007_s11119_021_09806_x crossref_primary_10_1016_j_geoderma_2023_116657 crossref_primary_10_1016_j_aca_2019_06_012 crossref_primary_10_1007_s12665_023_11073_0 crossref_primary_10_1016_j_compag_2022_106845 crossref_primary_10_1007_s00521_024_10871_2 crossref_primary_10_1016_j_geoderma_2021_115071 crossref_primary_10_1016_j_iswa_2023_200252 crossref_primary_10_3390_rs15020465 crossref_primary_10_1038_s41598_024_83479_0 crossref_primary_10_3389_fenvs_2021_809995 crossref_primary_10_1016_j_geoderma_2022_116102 crossref_primary_10_1021_acs_analchem_2c00655 crossref_primary_10_1021_acs_analchem_4c02380 crossref_primary_10_1109_ACCESS_2021_3069449 crossref_primary_10_1007_s44211_025_00746_4 crossref_primary_10_1007_s11042_024_18230_y crossref_primary_10_1080_00103624_2024_2406484 crossref_primary_10_1080_03091902_2022_2080885 crossref_primary_10_3390_land10010063 crossref_primary_10_1016_j_geoderma_2022_115819 crossref_primary_10_1016_j_compag_2021_106655 crossref_primary_10_3390_agriculture12070977 crossref_primary_10_3390_ijms22189940 crossref_primary_10_3390_agriculture15030288 crossref_primary_10_1080_00103624_2024_2378158 crossref_primary_10_3390_rs14194962 crossref_primary_10_3390_rs16111964 crossref_primary_10_1109_TPAMI_2023_3347617 crossref_primary_10_1109_TGRS_2024_3511118 crossref_primary_10_1016_j_compag_2022_106945 crossref_primary_10_1080_00387010_2025_2455475 crossref_primary_10_5194_soil_6_565_2020 crossref_primary_10_1002_saj2_20678 crossref_primary_10_1007_s44246_024_00125_0 crossref_primary_10_1109_LGRS_2022_3201266 crossref_primary_10_3390_su12020443 crossref_primary_10_1177_11786221231214069 crossref_primary_10_1007_s10661_021_09561_6 crossref_primary_10_1016_j_jag_2021_102389 crossref_primary_10_1109_JSEN_2022_3211007 crossref_primary_10_3390_rs16122065 crossref_primary_10_3390_agronomy12081915 crossref_primary_10_1016_j_compag_2024_109761 crossref_primary_10_1016_j_compag_2022_106814 crossref_primary_10_1016_j_compag_2023_107859 crossref_primary_10_1016_j_geoderma_2022_116095 crossref_primary_10_5194_soil_7_193_2021 crossref_primary_10_1016_j_catena_2023_107628 crossref_primary_10_1088_1742_6596_1769_1_012017 crossref_primary_10_3390_s24144528 crossref_primary_10_3390_rs16183427 crossref_primary_10_1007_s12665_021_10084_z crossref_primary_10_3389_frwa_2023_1193142 crossref_primary_10_17475_kastorman_1049347 crossref_primary_10_1139_cjss_2020_0025 crossref_primary_10_1007_s11694_024_02856_5 crossref_primary_10_3389_fnut_2024_1325934 crossref_primary_10_1364_OE_390070 crossref_primary_10_1016_j_compag_2022_106802 crossref_primary_10_1007_s11368_024_03921_8 crossref_primary_10_1080_00380768_2022_2101864 crossref_primary_10_1002_pen_26715 crossref_primary_10_1016_j_geoderma_2024_117037 crossref_primary_10_1007_s00500_020_05474_7 crossref_primary_10_1007_s00521_022_07744_x crossref_primary_10_1007_s12247_022_09679_1 crossref_primary_10_1016_j_geoderma_2022_115695 crossref_primary_10_1111_gcb_14815 crossref_primary_10_1016_j_geoderma_2024_117031 crossref_primary_10_17221_133_2022_SWR crossref_primary_10_1016_j_geoderma_2021_115159 crossref_primary_10_1016_j_geoderma_2020_114568 crossref_primary_10_5382_econgeo_5023 crossref_primary_10_1063_5_0158092 crossref_primary_10_3390_knowledge4040025 crossref_primary_10_3390_rs16071192 crossref_primary_10_1016_j_catena_2024_108115 crossref_primary_10_1080_00032719_2022_2046021 crossref_primary_10_1002_saj2_20225 crossref_primary_10_1002_saj2_20223 crossref_primary_10_3390_rs15041072 crossref_primary_10_1016_j_envpol_2023_122548 crossref_primary_10_1016_j_compag_2024_108760 crossref_primary_10_1016_j_agwat_2020_106303 crossref_primary_10_5194_soil_6_35_2020 crossref_primary_10_1016_j_geoderma_2022_116284 crossref_primary_10_1177_09670335231173140 crossref_primary_10_3390_s23156709 crossref_primary_10_1007_s10163_022_01404_x crossref_primary_10_1002_csan_21427 crossref_primary_10_3389_fenvs_2023_1279712 crossref_primary_10_1149_2_0222003JES crossref_primary_10_1016_j_geoderma_2021_115691 crossref_primary_10_3390_su132112074 crossref_primary_10_1016_j_geodrs_2024_e00817 crossref_primary_10_3390_app14167202 crossref_primary_10_3390_rs13081519 crossref_primary_10_1371_journal_pone_0286825 crossref_primary_10_1016_j_geoderma_2020_114664 crossref_primary_10_1080_05704928_2024_2369570 crossref_primary_10_1016_j_catena_2023_107228 crossref_primary_10_1002_saj2_70028 crossref_primary_10_1016_j_conbuildmat_2022_128799 crossref_primary_10_1016_j_geoderma_2021_115366 crossref_primary_10_1016_j_lwt_2021_110856 crossref_primary_10_1080_01431161_2021_1948625 crossref_primary_10_3390_su16083478 crossref_primary_10_1016_j_geoderma_2020_114875 crossref_primary_10_1109_JSTARS_2023_3287583 crossref_primary_10_3390_s24144728 crossref_primary_10_1016_j_soisec_2024_100161 crossref_primary_10_3390_s21103459 crossref_primary_10_1016_j_geoderma_2022_116063 crossref_primary_10_1016_j_geoderma_2025_117259 crossref_primary_10_3390_app112311520 crossref_primary_10_3390_s22072556 crossref_primary_10_3390_su17062561 crossref_primary_10_1007_s11760_023_02696_8 crossref_primary_10_1051_e3sconf_202341201083 crossref_primary_10_1038_s41598_020_80486_9 |
Cites_doi | 10.1016/j.geoderma.2015.12.031 10.2136/sssaj2002.6400a 10.1016/j.geoderma.2009.12.025 10.1016/j.geoderma.2017.09.014 10.1111/j.1365-2389.2009.01121.x 10.2136/sssaj1986.03615995005000010023x 10.2136/sssaj2001.652480x 10.1109/TASSP.1984.1164317 10.1016/j.geoderma.2017.03.012 10.1016/j.earscirev.2016.01.012 10.1071/SR02137 10.1016/j.chemolab.2008.06.003 10.1016/j.soilbio.2011.02.019 10.1016/j.geoderma.2017.01.002 10.1371/journal.pone.0066409 10.1016/S0065-2113(10)07005-7 10.1366/0003702894202201 10.1109/JSTARS.2014.2329330 10.1038/nature14539 10.1016/j.geoderma.2009.01.025 10.2136/sssaj2002.9880 10.1021/ac60214a047 10.1007/s13762-014-0580-5 10.1016/j.geoderma.2013.09.021 10.1016/j.biosystemseng.2016.04.018 10.2136/sssaj1995.03615995005900020014x 10.1080/05704928.2013.811081 10.1016/j.geoderma.2005.04.025 10.1016/j.gfs.2015.07.001 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2018.e00198 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2018_e00198 S2352009418302785 |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-f62dbe468496ded0fcca3c7d6e8a37f795e14722f930125f0dedb29be43e8ad23 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri Jul 11 00:34:23 EDT 2025 Tue Jul 01 02:07:17 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 23 02:22:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Convolutional Neural Networks Multi-task learning Spectrograms Simultaneous prediction |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-f62dbe468496ded0fcca3c7d6e8a37f795e14722f930125f0dedb29be43e8ad23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2189515029 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2189515029 crossref_citationtrail_10_1016_j_geodrs_2018_e00198 crossref_primary_10_1016_j_geodrs_2018_e00198 elsevier_sciencedirect_doi_10_1016_j_geodrs_2018_e00198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bengio (bb0025) 2012 Griffin, Lim (bb0080) 1984; 32 Ramsundar, Kearnes, Riley, Webster, Konerding, Pande (bb0185) 2015 Scherer, Müller, Behnke (bb0210) 2010 Potter, Kopp, Green (bb0165) 1947 Krizhevsky, Sutskever, Hinton (bb0095) 2012 Barnes, Dhanoa, Lister (bb0010) 1989; 43 McCarty, Reeves, Reeves, Follett, Kimble (bb0130) 2002; 66 Viscarra Rossel, Cattle, Ortega, Fouad (bb0255) 2009; 150 Chollet (bb0055) 2015 Nitish, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0160) 2014; 15 Brown, Shepherd, Walsh, Mays, Reinsch (bb0040) 2006; 132 Chen, Lin, Zhao, Wang, Gu (bb0050) 2014; 7 Islam, Singh, McBratney (bb0085) 2003; 41 Lecun, Bengio, Hinton (bb0120) 2015; 521 Viscarra Rossel, Behrens (bb0245) 2010; 158 Gras, Barthès, Mahaut, Trupin (bb0075) 2014; 214 Stockmann, Padarian, McBratney, Minasny, de Brogniez, Montanarella, Hong, Rawlins, Field (bb0235) 2015; 6 Niazi, Singh, Minasny (bb0155) 2015; 12 Minasny, McBratney (bb0140) 2008; 94 Sarathjith, Das, Wani, Sahrawat (bb0200) 2016; 267 Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Shi, Stenberg, Stevens, Adamchuk (bb0260) 2016; 155 Mevik, Wehrens, Liland (bb0135) 2016 Ruder (bb0195) 2017 Savitzky, Golay (bb0205) 1964; 36 Vašát, Kodešová, Klement, Borvka (bb0240) 2017; 298 Lecun, Bengio (bb0115) 1995; 3361 Kingma, Ba (bb0090) 2014 Romero, D. J., Ben-Dor, E., Demattê, J. A., e Souza, A. B., Vicente, L. E., Tavares, T. R., Martello, M., Strabeli, T. F., da Barros, P. P. S., Fiorio, P. R. Kuhn, Quinlan (bb0100) 2017 Viscarra Rossel, Lark (bb0250) 2009; 60 (2018). Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis. Geoderma 312, 95–103. Lawrence, Lin (bb0105) 1989 Morellos, Pantazi, Moshou, Alexandridis, Whetton, Tziotzios, Wiebensohn, Bill, Mouazen (bb0150) 2016; 152 Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das (bb0145) 2017; 292 Blackman, Tukey (bb0035) 1958 Lecun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bb0110) 1990 Ben-Dor, Banin (bb0020) 1995; 59 Bjerrum, Glahder, Skov (bb0030) 2017 Shepherd, Walsh (bb0215) 2002; 66 Wills, Loecke, Sequeira, Teachman, Grunwald, West (bb0265) 2014 Bellon-Maurel, McBratney (bb0015) 2011; 43 Python Software Foundation (bb0170) 2017 Stenberg, Rossel, Mouazen, Wetterlind (bb0225) 2010; 107 Geeves, Cresswell, Murphy, Gessler, Chartres, Little, Bowman (bb0070) 1995 Quinlan (bb0175) 1992; Vol. 92 Stevens, Nocita, Tóth, Montanarella, van Wesemael (bb0230) 2013; 8 Soriano-Disla, Janik, Viscarra Rossel, MacDonald, McLaughlin (bb0220) 2014; 49 Efron, Tibshirani (bb0065) 1993; Vol. 57 Chang, Laird, Mausbach, Hurburgh (bb0045) 2001; 65 Dalal, Henry (bb0060) 1986; 50 Martens, Naes (bb0125) 1989 R Core Team (bb0180) 2016 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bb0005) 2015 Brown (10.1016/j.geodrs.2018.e00198_bb0040) 2006; 132 Efron (10.1016/j.geodrs.2018.e00198_bb0065) 1993; Vol. 57 McCarty (10.1016/j.geodrs.2018.e00198_bb0130) 2002; 66 Islam (10.1016/j.geodrs.2018.e00198_bb0085) 2003; 41 Barnes (10.1016/j.geodrs.2018.e00198_bb0010) 1989; 43 Blackman (10.1016/j.geodrs.2018.e00198_bb0035) 1958 Griffin (10.1016/j.geodrs.2018.e00198_bb0080) 1984; 32 Martens (10.1016/j.geodrs.2018.e00198_bb0125) 1989 Minasny (10.1016/j.geodrs.2018.e00198_bb0145) 2017; 292 Soriano-Disla (10.1016/j.geodrs.2018.e00198_bb0220) 2014; 49 Ben-Dor (10.1016/j.geodrs.2018.e00198_bb0020) 1995; 59 Mevik (10.1016/j.geodrs.2018.e00198_bb0135) Wills (10.1016/j.geodrs.2018.e00198_bb0265) 2014 Lecun (10.1016/j.geodrs.2018.e00198_bb0120) 2015; 521 Potter (10.1016/j.geodrs.2018.e00198_bb0165) 1947 Gras (10.1016/j.geodrs.2018.e00198_bb0075) 2014; 214 Ruder (10.1016/j.geodrs.2018.e00198_bb0195) 2017 Python Software Foundation (10.1016/j.geodrs.2018.e00198_bb0170) 2017 Minasny (10.1016/j.geodrs.2018.e00198_bb0140) 2008; 94 Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0255) 2009; 150 Lecun (10.1016/j.geodrs.2018.e00198_bb0115) 1995; 3361 Krizhevsky (10.1016/j.geodrs.2018.e00198_bb0095) 2012 Savitzky (10.1016/j.geodrs.2018.e00198_bb0205) 1964; 36 Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0250) 2009; 60 Nitish (10.1016/j.geodrs.2018.e00198_bb0160) 2014; 15 Sarathjith (10.1016/j.geodrs.2018.e00198_bb0200) 2016; 267 R Core Team (10.1016/j.geodrs.2018.e00198_bb0180) 2016 Bellon-Maurel (10.1016/j.geodrs.2018.e00198_bb0015) 2011; 43 Ramsundar (10.1016/j.geodrs.2018.e00198_bb0185) 2015 Morellos (10.1016/j.geodrs.2018.e00198_bb0150) 2016; 152 Chang (10.1016/j.geodrs.2018.e00198_bb0045) 2001; 65 Lecun (10.1016/j.geodrs.2018.e00198_bb0110) 1990 Quinlan (10.1016/j.geodrs.2018.e00198_bb0175) 1992; Vol. 92 Stenberg (10.1016/j.geodrs.2018.e00198_bb0225) 2010; 107 Bengio (10.1016/j.geodrs.2018.e00198_bb0025) 2012 Geeves (10.1016/j.geodrs.2018.e00198_bb0070) 1995 Niazi (10.1016/j.geodrs.2018.e00198_bb0155) 2015; 12 Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0245) 2010; 158 Abadi (10.1016/j.geodrs.2018.e00198_bb0005) 2015 Kingma (10.1016/j.geodrs.2018.e00198_bb0090) 2014 Scherer (10.1016/j.geodrs.2018.e00198_bb0210) 2010 Chen (10.1016/j.geodrs.2018.e00198_bb0050) 2014; 7 Dalal (10.1016/j.geodrs.2018.e00198_bb0060) 1986; 50 Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0260) 2016; 155 Vašát (10.1016/j.geodrs.2018.e00198_bb0240) 2017; 298 Kuhn (10.1016/j.geodrs.2018.e00198_bb0100) Stevens (10.1016/j.geodrs.2018.e00198_bb0230) 2013; 8 Stockmann (10.1016/j.geodrs.2018.e00198_bb0235) 2015; 6 Bjerrum (10.1016/j.geodrs.2018.e00198_bb0030) 2017 10.1016/j.geodrs.2018.e00198_bb0190 Lawrence (10.1016/j.geodrs.2018.e00198_bb0105) 1989 Shepherd (10.1016/j.geodrs.2018.e00198_bb0215) 2002; 66 Chollet (10.1016/j.geodrs.2018.e00198_bb0055) |
References_xml | – volume: 267 start-page: 1 year: 2016 end-page: 9 ident: bb0200 article-title: Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils publication-title: Geoderma – year: 2016 ident: bb0180 article-title: R: A Language and Environment for Statistical Computing – start-page: 92 year: 2010 end-page: 101 ident: bb0210 article-title: Evaluation of pooling operations in convolutional architectures for object recognition publication-title: Artificial Neural Networks–ICANN 2010 – year: 1947 ident: bb0165 article-title: Visible Speech – year: 2015 ident: bb0185 article-title: Massively multitask networks for drug discovery – volume: 3361 start-page: 1995 year: 1995 ident: bb0115 article-title: Convolutional networks for images, speech, and time series publication-title: The handbook of brain theory and neural networks – volume: 292 start-page: 59 year: 2017 end-page: 86 ident: bb0145 article-title: Soil carbon 4 per mille publication-title: Geoderma – year: 2017 ident: bb0030 article-title: Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics – start-page: 17 year: 2012 end-page: 36 ident: bb0025 article-title: Deep learning of representations for unsupervised and transfer learning publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning – year: 2015 ident: bb0055 article-title: Keras – volume: 43 start-page: 772 year: 1989 end-page: 777 ident: bb0010 article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Appl Spectrosc – volume: Vol. 57 year: 1993 ident: bb0065 article-title: An Introduction to the Bootstrap – volume: 107 start-page: 163 year: 2010 end-page: 215 ident: bb0225 article-title: Chapter five-visible and near infrared spectroscopy in soil science publication-title: Adv Agron – volume: 43 start-page: 1398 year: 2011 end-page: 1410 ident: bb0015 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–critical review and research perspectives publication-title: Soil Biol Biochem – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bb0160 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of machine learning research – volume: 94 start-page: 72 year: 2008 end-page: 79 ident: bb0140 article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy publication-title: Chemom Intel Lab Syst – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: bb0205 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal Chem – volume: 41 start-page: 1101 year: 2003 end-page: 1114 ident: bb0085 article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy publication-title: Soil Research – reference: Romero, D. J., Ben-Dor, E., Demattê, J. A., e Souza, A. B., Vicente, L. E., Tavares, T. R., Martello, M., Strabeli, T. F., da Barros, P. P. S., Fiorio, P. R. – reference: (2018). Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis. Geoderma 312, 95–103. – volume: 60 start-page: 453 year: 2009 end-page: 464 ident: bb0250 article-title: Improved analysis and modelling of soil diffuse reflectance spectra using wavelets publication-title: European Journal of Soil Science – year: 2017 ident: bb0100 article-title: Cubist: Rule- and Instance-Based Regression Modeling. R Package Version 0.2.1 – start-page: 1097 year: 2012 end-page: 1105 ident: bb0095 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 59 start-page: 364 year: 1995 end-page: 372 ident: bb0020 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci Soc Am J – volume: 32 start-page: 236 year: 1984 end-page: 243 ident: bb0080 article-title: Signal estimation from modified short-time Fourier transform publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – volume: 12 start-page: 1965 year: 2015 end-page: 1974 ident: bb0155 article-title: Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site publication-title: International Journal of Environmental Science and Technology – start-page: 396 year: 1990 end-page: 404 ident: bb0110 article-title: Handwritten digit recognition with a back-propagation network publication-title: Advances in Neural Information Processing Systems – volume: Vol. 92 start-page: 343 year: 1992 end-page: 348 ident: bb0175 article-title: Learning with continuous classes publication-title: 5th Australian Joint Conference on Artificial Intelligence, Singapore – year: 1989 ident: bb0125 article-title: Multivariate calibration – volume: 155 start-page: 198 year: 2016 end-page: 230 ident: bb0260 article-title: A global spectral library to characterize the world's soil publication-title: Earth-Science Reviews – volume: 50 start-page: 120 year: 1986 end-page: 123 ident: bb0060 article-title: Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by near infrared Reflectance Spectrophotometry 1 publication-title: Soil Sci Soc Am J – year: 2016 ident: bb0135 article-title: Pls: Partial Least Squares and Principal Component Regression. R Package Version 2.6–0 – year: 2015 ident: bb0005 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems – volume: 8 year: 2013 ident: bb0230 article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy publication-title: PloS One – volume: 132 start-page: 273 year: 2006 end-page: 290 ident: bb0040 article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy publication-title: Geoderma – volume: 66 start-page: 988 year: 2002 end-page: 998 ident: bb0215 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci Soc Am J – volume: 298 start-page: 46 year: 2017 end-page: 53 ident: bb0240 article-title: Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation publication-title: Geoderma – year: 2017 ident: bb0170 article-title: Python Language Reference. Python Software Foundation publication-title: URL – volume: 214 start-page: 126 year: 2014 end-page: 134 ident: bb0075 article-title: Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils publication-title: Geoderma – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: bb0050 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – start-page: 255 year: 1989 end-page: 268 ident: bb0105 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – year: 2017 ident: bb0195 article-title: An overview of multi-task learning in deep neural networks – start-page: 95 year: 2014 end-page: 104 ident: bb0265 article-title: Overview of the US rapid carbon assessment project: sampling design, initial summary and uncertainty estimates publication-title: Soil carbon – year: 2014 ident: bb0090 article-title: Adam: A method for stochastic optimization – year: 1995 ident: bb0070 article-title: The Physical, Chemical and Morphological Properties of Soils in the Wheat-Belt of Southern New South Wales and Northern Victoria – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: bb0045 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties publication-title: Soil Sci Soc Am J – volume: 150 start-page: 253 year: 2009 end-page: 266 ident: bb0255 article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy publication-title: Geoderma – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bb0120 article-title: Deep learning publication-title: Nature – volume: 66 start-page: 640 year: 2002 end-page: 646 ident: bb0130 article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement publication-title: Soil Sci Soc Am J – year: 1958 ident: bb0035 article-title: The Measurement of Power Spectra – volume: 152 start-page: 104 year: 2016 end-page: 116 ident: bb0150 article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy publication-title: Biosystems Engineering – volume: 6 start-page: 9 year: 2015 end-page: 16 ident: bb0235 article-title: Global soil organic carbon assessment publication-title: Glob Food Sec – volume: 49 start-page: 139 year: 2014 end-page: 186 ident: bb0220 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Applied Spectroscopy Reviews – volume: 158 start-page: 46 year: 2010 end-page: 54 ident: bb0245 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – volume: 267 start-page: 1 year: 2016 ident: 10.1016/j.geodrs.2018.e00198_bb0200 article-title: Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.031 – year: 1958 ident: 10.1016/j.geodrs.2018.e00198_bb0035 – volume: 66 start-page: 640 issue: 2 year: 2002 ident: 10.1016/j.geodrs.2018.e00198_bb0130 article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2002.6400a – volume: Vol. 92 start-page: 343 year: 1992 ident: 10.1016/j.geodrs.2018.e00198_bb0175 article-title: Learning with continuous classes – volume: 158 start-page: 46 issue: 1 year: 2010 ident: 10.1016/j.geodrs.2018.e00198_bb0245 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 – ident: 10.1016/j.geodrs.2018.e00198_bb0190 doi: 10.1016/j.geoderma.2017.09.014 – year: 1989 ident: 10.1016/j.geodrs.2018.e00198_bb0125 – year: 2017 ident: 10.1016/j.geodrs.2018.e00198_bb0170 article-title: Python Language Reference. Python Software Foundation – volume: 60 start-page: 453 issue: 3 year: 2009 ident: 10.1016/j.geodrs.2018.e00198_bb0250 article-title: Improved analysis and modelling of soil diffuse reflectance spectra using wavelets publication-title: European Journal of Soil Science doi: 10.1111/j.1365-2389.2009.01121.x – volume: 50 start-page: 120 issue: 1 year: 1986 ident: 10.1016/j.geodrs.2018.e00198_bb0060 article-title: Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by near infrared Reflectance Spectrophotometry 1 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1986.03615995005000010023x – year: 2016 ident: 10.1016/j.geodrs.2018.e00198_bb0180 – ident: 10.1016/j.geodrs.2018.e00198_bb0100 – volume: 65 start-page: 480 issue: 2 year: 2001 ident: 10.1016/j.geodrs.2018.e00198_bb0045 article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2001.652480x – year: 2014 ident: 10.1016/j.geodrs.2018.e00198_bb0090 – volume: 32 start-page: 236 issue: 2 year: 1984 ident: 10.1016/j.geodrs.2018.e00198_bb0080 article-title: Signal estimation from modified short-time Fourier transform publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/TASSP.1984.1164317 – year: 1995 ident: 10.1016/j.geodrs.2018.e00198_bb0070 – year: 2017 ident: 10.1016/j.geodrs.2018.e00198_bb0195 – volume: 298 start-page: 46 year: 2017 ident: 10.1016/j.geodrs.2018.e00198_bb0240 article-title: Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation publication-title: Geoderma doi: 10.1016/j.geoderma.2017.03.012 – volume: 155 start-page: 198 year: 2016 ident: 10.1016/j.geodrs.2018.e00198_bb0260 article-title: A global spectral library to characterize the world's soil publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2016.01.012 – year: 2015 ident: 10.1016/j.geodrs.2018.e00198_bb0005 – volume: 41 start-page: 1101 issue: 6 year: 2003 ident: 10.1016/j.geodrs.2018.e00198_bb0085 article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy publication-title: Soil Research doi: 10.1071/SR02137 – volume: 94 start-page: 72 issue: 1 year: 2008 ident: 10.1016/j.geodrs.2018.e00198_bb0140 article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy publication-title: Chemom Intel Lab Syst doi: 10.1016/j.chemolab.2008.06.003 – volume: 43 start-page: 1398 issue: 7 year: 2011 ident: 10.1016/j.geodrs.2018.e00198_bb0015 article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–critical review and research perspectives publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.02.019 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.geodrs.2018.e00198_bb0160 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of machine learning research – volume: 292 start-page: 59 year: 2017 ident: 10.1016/j.geodrs.2018.e00198_bb0145 article-title: Soil carbon 4 per mille publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.002 – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.geodrs.2018.e00198_bb0230 article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy publication-title: PloS One doi: 10.1371/journal.pone.0066409 – start-page: 255 year: 1989 ident: 10.1016/j.geodrs.2018.e00198_bb0105 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – ident: 10.1016/j.geodrs.2018.e00198_bb0135 – volume: 107 start-page: 163 year: 2010 ident: 10.1016/j.geodrs.2018.e00198_bb0225 article-title: Chapter five-visible and near infrared spectroscopy in soil science publication-title: Adv Agron doi: 10.1016/S0065-2113(10)07005-7 – volume: 43 start-page: 772 issue: 5 year: 1989 ident: 10.1016/j.geodrs.2018.e00198_bb0010 article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra publication-title: Appl Spectrosc doi: 10.1366/0003702894202201 – start-page: 1097 year: 2012 ident: 10.1016/j.geodrs.2018.e00198_bb0095 article-title: Imagenet classification with deep convolutional neural networks – year: 2015 ident: 10.1016/j.geodrs.2018.e00198_bb0185 – volume: 7 start-page: 2094 issue: 6 year: 2014 ident: 10.1016/j.geodrs.2018.e00198_bb0050 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2329330 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.geodrs.2018.e00198_bb0120 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 150 start-page: 253 issue: 3–4 year: 2009 ident: 10.1016/j.geodrs.2018.e00198_bb0255 article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2009.01.025 – year: 2017 ident: 10.1016/j.geodrs.2018.e00198_bb0030 – volume: 66 start-page: 988 issue: 3 year: 2002 ident: 10.1016/j.geodrs.2018.e00198_bb0215 article-title: Development of reflectance spectral libraries for characterization of soil properties publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2002.9880 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 10.1016/j.geodrs.2018.e00198_bb0205 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal Chem doi: 10.1021/ac60214a047 – year: 1947 ident: 10.1016/j.geodrs.2018.e00198_bb0165 – volume: 12 start-page: 1965 issue: 6 year: 2015 ident: 10.1016/j.geodrs.2018.e00198_bb0155 article-title: Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-014-0580-5 – start-page: 17 year: 2012 ident: 10.1016/j.geodrs.2018.e00198_bb0025 article-title: Deep learning of representations for unsupervised and transfer learning – volume: 214 start-page: 126 year: 2014 ident: 10.1016/j.geodrs.2018.e00198_bb0075 article-title: Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.021 – volume: 152 start-page: 104 year: 2016 ident: 10.1016/j.geodrs.2018.e00198_bb0150 article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2016.04.018 – volume: 3361 start-page: 1995 issue: 10 year: 1995 ident: 10.1016/j.geodrs.2018.e00198_bb0115 article-title: Convolutional networks for images, speech, and time series publication-title: The handbook of brain theory and neural networks – start-page: 95 year: 2014 ident: 10.1016/j.geodrs.2018.e00198_bb0265 article-title: Overview of the US rapid carbon assessment project: sampling design, initial summary and uncertainty estimates – volume: 59 start-page: 364 issue: 2 year: 1995 ident: 10.1016/j.geodrs.2018.e00198_bb0020 article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1995.03615995005900020014x – volume: 49 start-page: 139 issue: 2 year: 2014 ident: 10.1016/j.geodrs.2018.e00198_bb0220 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Applied Spectroscopy Reviews doi: 10.1080/05704928.2013.811081 – volume: 132 start-page: 273 issue: 3 year: 2006 ident: 10.1016/j.geodrs.2018.e00198_bb0040 article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2005.04.025 – start-page: 396 year: 1990 ident: 10.1016/j.geodrs.2018.e00198_bb0110 article-title: Handwritten digit recognition with a back-propagation network – volume: Vol. 57 year: 1993 ident: 10.1016/j.geodrs.2018.e00198_bb0065 – start-page: 92 year: 2010 ident: 10.1016/j.geodrs.2018.e00198_bb0210 article-title: Evaluation of pooling operations in convolutional architectures for object recognition – ident: 10.1016/j.geodrs.2018.e00198_bb0055 – volume: 6 start-page: 9 year: 2015 ident: 10.1016/j.geodrs.2018.e00198_bb0235 article-title: Global soil organic carbon assessment publication-title: Glob Food Sec doi: 10.1016/j.gfs.2015.07.001 |
SSID | ssj0002953762 |
Score | 2.562621 |
Snippet | Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00198 |
SubjectTerms | algorithms artificial intelligence clay Convolutional Neural Networks data analysis data collection Europe infrared spectroscopy Multi-task learning neural networks prediction reflectance regression analysis sand Simultaneous prediction soil organic carbon soil properties spectral analysis Spectrograms topsoil wavelengths |
Title | Using deep learning to predict soil properties from regional spectral data |
URI | https://dx.doi.org/10.1016/j.geodrs.2018.e00198 https://www.proquest.com/docview/2189515029 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vXgRRcU3K3iNTfaR7B5FlNpiDz7QW0i6s6UiTajx_zuTR0FBCp6SDTNLmJ2dHXZmvmHsMolzFZpMB1YYHyhrwiCjeyuhAYTT2ru6HdDDJB6-qNGbfttgN10tDKVVtra_sem1tW6_DFppDsr5fPAkZA0ZpCKCsEqM3mR9gadr2GP96_vxcLK6ahGWMEtE3WZOi4B4uiK6OtNrBoVbEnR3ZK6AfB7z1yH1y1zXZ9DdDttunUd-3fzfLtuAxR4b1VF_7gBK3vaAmPGq4OWSYjAV_yzmHzgoSsqghk9OBSWc-jGQD87rSsslvlCq6D57ubt9vhkGbYeEYCqlrQIfC5eDio2ysQMXelwPOU1cDCaTiU-shojQIL3FfSy0D5EoFxZZJFI4IQ9Yb1Es4JDx3OQGJ5OxAa9MBHmu5DRTGc4hfCLgiMlOJOm0hQ-nLhYfaZcn9p42gkxJkGkjyCMWrLjKBj5jDX3SSTv9oQYpWvg1nBfd4qS4QyjskS2g-EKiyKAbqVENjv89-wnbwpFtks9OWa9afsEZeiNVft5qGz3Hj6_jb2Zv4NY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHMoFFbWoQKGu1B7T3fiR2AcOCIp2WdgLIHEzyXqMFqFNtBuE-F38QWbyWKmVKqRKe8tjbCVfxuOJPfMNYz_SJFd9k-nIChMiZU0_ymjdSmgA4bUOvi4HdDlOBjfq_FbfrrHXLheGwipb29_Y9Npat1d6LZq9cjrtXQlZUwapmCisUtNFVo7g5Rn_2xZHw1P8yD-FOPt9fTKI2tIC0URKW0UhET4HlRhlEw--H_BF5CT1CZhMpiG1GmKiUQwWB4DQoY9CubDYRKKEJ7YDtPsbxIaFw2rjeDgajJdLO8ISR4qoy9ppEdEzdkl7dWTZPRR-TlThsfkF5GOZf02Kf00P9Zx39pFttc4qP27w2GZrMPvEzusoA-4BSt7WnLjnVcHLOe35VHxRTB_xpCgpYhsWnBJYONV_IJ-f15mdczyg0NTP7GYlsO2w9Vkxgy-M5yY32JlMDARlYshzJSeZyrAPEVIBu0x2kLhJS1dOVTMeXReX9uAaIB0B6Rogd1m0bFU2dB3vyKcd2u4PtXM4o7zT8nv3cRyOSNpmyWZQPKFQbNBt1agGe__d-zf2YXB9eeEuhuPRPtvEO7YJfPvK1qv5ExygJ1Tlh63mcXa3amV_A7AOHas |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+learning+to+predict+soil+properties+from+regional+spectral+data&rft.jtitle=Geoderma+Regional&rft.au=Padarian%2C+J.&rft.au=Minasny%2C+B.&rft.au=McBratney%2C+A.B.&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=16&rft_id=info:doi/10.1016%2Fj.geodrs.2018.e00198&rft.externalDocID=S2352009418302785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |