Using deep learning to predict soil properties from regional spectral data

Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in proces...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 16; p. e00198
Main Authors Padarian, J., Minasny, B., McBratney, A.B.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data. •CNN model is able to predict soil properties from raw spectral data.•CNN is able to predict multi properties simultaneously and synergically.•The multi-task CNN reduced the error compared to the Cubist model by 62%.•This approach works better with large spectral datasets.
AbstractList Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data.
Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data. •CNN model is able to predict soil properties from raw spectral data.•CNN is able to predict multi properties simultaneously and synergically.•The multi-task CNN reduced the error compared to the Cubist model by 62%.•This approach works better with large spectral datasets.
ArticleNumber e00198
Author Padarian, J.
Minasny, B.
McBratney, A.B.
Author_xml – sequence: 1
  givenname: J.
  surname: Padarian
  fullname: Padarian, J.
  email: jose.padarian@sydney.edu.au
– sequence: 2
  givenname: B.
  surname: Minasny
  fullname: Minasny, B.
  email: budiman.minasny@sydney.edu.au
– sequence: 3
  givenname: A.B.
  surname: McBratney
  fullname: McBratney, A.B.
  email: alex.mcbratney@sydney.edu.au
BookMark eNqFkMtKAzEUhoNUsNa-gYtZupkxl7nFhSDFKwU3dh3S5KSkTCdjkgq-vRnGhbjQVc6B_zv8-c7RrHc9IHRJcEEwqa_3xQ6c9qGgmLQFYEx4e4LmlFU0x5iXsx_zGVqGsMcYU16xpqZz9LIJtt9lGmDIOpC-H7fossGDtipmwdkuLW4AHy2EzHh3yDzsrOtll4UBVPRp0DLKC3RqZBdg-f0u0Obh_m31lK9fH59Xd-tcMcZjbmqqt1DWbclrDRobpSRTja6hlawxDa-AlA2lhjNMaGVwCm0pTwhLCU3ZAl1Nd1Ot9yOEKA42KOg62YM7BkFJyytSpT-m6M0UVd6F4MEIZaOMqXxqbTtBsBgdir2YHIrRoZgcJrj8BQ_eHqT__A-7nTBIDj4seBGUhV4lnz7ZEtrZvw98Ae2KkRI
CitedBy_id crossref_primary_10_1016_j_foodcont_2022_109389
crossref_primary_10_1016_j_geoderma_2023_116752
crossref_primary_10_3390_rs12071095
crossref_primary_10_1016_j_geoderma_2019_06_016
crossref_primary_10_3390_rs12091389
crossref_primary_10_1016_j_geoderma_2020_114731
crossref_primary_10_1111_sum_13077
crossref_primary_10_1016_j_meatsci_2023_109196
crossref_primary_10_1016_j_catena_2021_105190
crossref_primary_10_29133_yyutbd_1177796
crossref_primary_10_1111_ejss_13323
crossref_primary_10_1016_j_geoderma_2020_114616
crossref_primary_10_1007_s12145_024_01467_4
crossref_primary_10_5194_soil_5_79_2019
crossref_primary_10_3233_JIFS_230408
crossref_primary_10_1016_j_isprsjprs_2022_01_018
crossref_primary_10_1038_s41598_019_50480_x
crossref_primary_10_1016_j_jag_2022_102719
crossref_primary_10_2139_ssrn_4129089
crossref_primary_10_1016_j_asr_2023_05_027
crossref_primary_10_3390_agronomy13071806
crossref_primary_10_1016_j_compag_2022_107171
crossref_primary_10_3390_rs15030835
crossref_primary_10_1016_j_geoderma_2021_115449
crossref_primary_10_3390_agronomy14091998
crossref_primary_10_1038_s41598_023_40863_6
crossref_primary_10_1109_TIP_2023_3348656
crossref_primary_10_3390_rs14020397
crossref_primary_10_1088_1757_899X_768_7_072049
crossref_primary_10_3390_sym13020319
crossref_primary_10_1080_00103624_2024_2416920
crossref_primary_10_3390_s25010287
crossref_primary_10_1364_OE_502709
crossref_primary_10_1109_LGRS_2023_3304749
crossref_primary_10_1007_s10661_022_10848_5
crossref_primary_10_1038_s41598_024_69464_7
crossref_primary_10_1016_j_geoderma_2023_116724
crossref_primary_10_3390_app14219839
crossref_primary_10_3390_foods11192977
crossref_primary_10_1155_2022_9748257
crossref_primary_10_1111_ejss_13370
crossref_primary_10_1016_j_geoderma_2023_116555
crossref_primary_10_1016_j_geoderma_2024_117006
crossref_primary_10_3390_s20216271
crossref_primary_10_1080_1343943X_2020_1785898
crossref_primary_10_1016_j_compag_2025_110164
crossref_primary_10_1002_ldr_3497
crossref_primary_10_5194_soil_7_525_2021
crossref_primary_10_1109_JSTARS_2020_3039844
crossref_primary_10_3390_ijms252413390
crossref_primary_10_1080_23270012_2023_2207184
crossref_primary_10_1021_acs_est_2c09788
crossref_primary_10_1080_00103624_2023_2211110
crossref_primary_10_3390_s23073686
crossref_primary_10_25046_aj060262
crossref_primary_10_3390_s21113758
crossref_primary_10_1016_j_aeolia_2021_100682
crossref_primary_10_4236_ojss_2021_112006
crossref_primary_10_1016_j_chemosphere_2021_131889
crossref_primary_10_1016_j_saa_2024_125317
crossref_primary_10_61186_jwmr_14_27_38
crossref_primary_10_1016_j_trac_2022_116804
crossref_primary_10_1080_00103624_2022_2070638
crossref_primary_10_1016_j_infrared_2022_104056
crossref_primary_10_1007_s11440_021_01266_x
crossref_primary_10_1007_s42729_025_02333_y
crossref_primary_10_3390_toxics12050357
crossref_primary_10_1007_s11368_024_03747_4
crossref_primary_10_1002_saj2_20193
crossref_primary_10_1016_j_trac_2024_117981
crossref_primary_10_1016_j_geoderma_2023_116653
crossref_primary_10_1007_s12145_023_01168_4
crossref_primary_10_1134_S1027451021010110
crossref_primary_10_3390_rs12142234
crossref_primary_10_3390_su14148455
crossref_primary_10_1007_s10661_024_12817_6
crossref_primary_10_3390_ijms25010106
crossref_primary_10_1109_TGRS_2024_3360334
crossref_primary_10_1016_j_compag_2024_109233
crossref_primary_10_1021_acs_estlett_2c00949
crossref_primary_10_1007_s11119_021_09806_x
crossref_primary_10_1016_j_geoderma_2023_116657
crossref_primary_10_1016_j_aca_2019_06_012
crossref_primary_10_1007_s12665_023_11073_0
crossref_primary_10_1016_j_compag_2022_106845
crossref_primary_10_1007_s00521_024_10871_2
crossref_primary_10_1016_j_geoderma_2021_115071
crossref_primary_10_1016_j_iswa_2023_200252
crossref_primary_10_3390_rs15020465
crossref_primary_10_1038_s41598_024_83479_0
crossref_primary_10_3389_fenvs_2021_809995
crossref_primary_10_1016_j_geoderma_2022_116102
crossref_primary_10_1021_acs_analchem_2c00655
crossref_primary_10_1021_acs_analchem_4c02380
crossref_primary_10_1109_ACCESS_2021_3069449
crossref_primary_10_1007_s44211_025_00746_4
crossref_primary_10_1007_s11042_024_18230_y
crossref_primary_10_1080_00103624_2024_2406484
crossref_primary_10_1080_03091902_2022_2080885
crossref_primary_10_3390_land10010063
crossref_primary_10_1016_j_geoderma_2022_115819
crossref_primary_10_1016_j_compag_2021_106655
crossref_primary_10_3390_agriculture12070977
crossref_primary_10_3390_ijms22189940
crossref_primary_10_3390_agriculture15030288
crossref_primary_10_1080_00103624_2024_2378158
crossref_primary_10_3390_rs14194962
crossref_primary_10_3390_rs16111964
crossref_primary_10_1109_TPAMI_2023_3347617
crossref_primary_10_1109_TGRS_2024_3511118
crossref_primary_10_1016_j_compag_2022_106945
crossref_primary_10_1080_00387010_2025_2455475
crossref_primary_10_5194_soil_6_565_2020
crossref_primary_10_1002_saj2_20678
crossref_primary_10_1007_s44246_024_00125_0
crossref_primary_10_1109_LGRS_2022_3201266
crossref_primary_10_3390_su12020443
crossref_primary_10_1177_11786221231214069
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_1016_j_jag_2021_102389
crossref_primary_10_1109_JSEN_2022_3211007
crossref_primary_10_3390_rs16122065
crossref_primary_10_3390_agronomy12081915
crossref_primary_10_1016_j_compag_2024_109761
crossref_primary_10_1016_j_compag_2022_106814
crossref_primary_10_1016_j_compag_2023_107859
crossref_primary_10_1016_j_geoderma_2022_116095
crossref_primary_10_5194_soil_7_193_2021
crossref_primary_10_1016_j_catena_2023_107628
crossref_primary_10_1088_1742_6596_1769_1_012017
crossref_primary_10_3390_s24144528
crossref_primary_10_3390_rs16183427
crossref_primary_10_1007_s12665_021_10084_z
crossref_primary_10_3389_frwa_2023_1193142
crossref_primary_10_17475_kastorman_1049347
crossref_primary_10_1139_cjss_2020_0025
crossref_primary_10_1007_s11694_024_02856_5
crossref_primary_10_3389_fnut_2024_1325934
crossref_primary_10_1364_OE_390070
crossref_primary_10_1016_j_compag_2022_106802
crossref_primary_10_1007_s11368_024_03921_8
crossref_primary_10_1080_00380768_2022_2101864
crossref_primary_10_1002_pen_26715
crossref_primary_10_1016_j_geoderma_2024_117037
crossref_primary_10_1007_s00500_020_05474_7
crossref_primary_10_1007_s00521_022_07744_x
crossref_primary_10_1007_s12247_022_09679_1
crossref_primary_10_1016_j_geoderma_2022_115695
crossref_primary_10_1111_gcb_14815
crossref_primary_10_1016_j_geoderma_2024_117031
crossref_primary_10_17221_133_2022_SWR
crossref_primary_10_1016_j_geoderma_2021_115159
crossref_primary_10_1016_j_geoderma_2020_114568
crossref_primary_10_5382_econgeo_5023
crossref_primary_10_1063_5_0158092
crossref_primary_10_3390_knowledge4040025
crossref_primary_10_3390_rs16071192
crossref_primary_10_1016_j_catena_2024_108115
crossref_primary_10_1080_00032719_2022_2046021
crossref_primary_10_1002_saj2_20225
crossref_primary_10_1002_saj2_20223
crossref_primary_10_3390_rs15041072
crossref_primary_10_1016_j_envpol_2023_122548
crossref_primary_10_1016_j_compag_2024_108760
crossref_primary_10_1016_j_agwat_2020_106303
crossref_primary_10_5194_soil_6_35_2020
crossref_primary_10_1016_j_geoderma_2022_116284
crossref_primary_10_1177_09670335231173140
crossref_primary_10_3390_s23156709
crossref_primary_10_1007_s10163_022_01404_x
crossref_primary_10_1002_csan_21427
crossref_primary_10_3389_fenvs_2023_1279712
crossref_primary_10_1149_2_0222003JES
crossref_primary_10_1016_j_geoderma_2021_115691
crossref_primary_10_3390_su132112074
crossref_primary_10_1016_j_geodrs_2024_e00817
crossref_primary_10_3390_app14167202
crossref_primary_10_3390_rs13081519
crossref_primary_10_1371_journal_pone_0286825
crossref_primary_10_1016_j_geoderma_2020_114664
crossref_primary_10_1080_05704928_2024_2369570
crossref_primary_10_1016_j_catena_2023_107228
crossref_primary_10_1002_saj2_70028
crossref_primary_10_1016_j_conbuildmat_2022_128799
crossref_primary_10_1016_j_geoderma_2021_115366
crossref_primary_10_1016_j_lwt_2021_110856
crossref_primary_10_1080_01431161_2021_1948625
crossref_primary_10_3390_su16083478
crossref_primary_10_1016_j_geoderma_2020_114875
crossref_primary_10_1109_JSTARS_2023_3287583
crossref_primary_10_3390_s24144728
crossref_primary_10_1016_j_soisec_2024_100161
crossref_primary_10_3390_s21103459
crossref_primary_10_1016_j_geoderma_2022_116063
crossref_primary_10_1016_j_geoderma_2025_117259
crossref_primary_10_3390_app112311520
crossref_primary_10_3390_s22072556
crossref_primary_10_3390_su17062561
crossref_primary_10_1007_s11760_023_02696_8
crossref_primary_10_1051_e3sconf_202341201083
crossref_primary_10_1038_s41598_020_80486_9
Cites_doi 10.1016/j.geoderma.2015.12.031
10.2136/sssaj2002.6400a
10.1016/j.geoderma.2009.12.025
10.1016/j.geoderma.2017.09.014
10.1111/j.1365-2389.2009.01121.x
10.2136/sssaj1986.03615995005000010023x
10.2136/sssaj2001.652480x
10.1109/TASSP.1984.1164317
10.1016/j.geoderma.2017.03.012
10.1016/j.earscirev.2016.01.012
10.1071/SR02137
10.1016/j.chemolab.2008.06.003
10.1016/j.soilbio.2011.02.019
10.1016/j.geoderma.2017.01.002
10.1371/journal.pone.0066409
10.1016/S0065-2113(10)07005-7
10.1366/0003702894202201
10.1109/JSTARS.2014.2329330
10.1038/nature14539
10.1016/j.geoderma.2009.01.025
10.2136/sssaj2002.9880
10.1021/ac60214a047
10.1007/s13762-014-0580-5
10.1016/j.geoderma.2013.09.021
10.1016/j.biosystemseng.2016.04.018
10.2136/sssaj1995.03615995005900020014x
10.1080/05704928.2013.811081
10.1016/j.geoderma.2005.04.025
10.1016/j.gfs.2015.07.001
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2018.e00198
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2018_e00198
S2352009418302785
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-f62dbe468496ded0fcca3c7d6e8a37f795e14722f930125f0dedb29be43e8ad23
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri Jul 11 00:34:23 EDT 2025
Tue Jul 01 02:07:17 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 23 02:22:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional Neural Networks
Multi-task learning
Spectrograms
Simultaneous prediction
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-f62dbe468496ded0fcca3c7d6e8a37f795e14722f930125f0dedb29be43e8ad23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2189515029
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2189515029
crossref_citationtrail_10_1016_j_geodrs_2018_e00198
crossref_primary_10_1016_j_geodrs_2018_e00198
elsevier_sciencedirect_doi_10_1016_j_geodrs_2018_e00198
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationTitle Geoderma Regional
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bengio (bb0025) 2012
Griffin, Lim (bb0080) 1984; 32
Ramsundar, Kearnes, Riley, Webster, Konerding, Pande (bb0185) 2015
Scherer, Müller, Behnke (bb0210) 2010
Potter, Kopp, Green (bb0165) 1947
Krizhevsky, Sutskever, Hinton (bb0095) 2012
Barnes, Dhanoa, Lister (bb0010) 1989; 43
McCarty, Reeves, Reeves, Follett, Kimble (bb0130) 2002; 66
Viscarra Rossel, Cattle, Ortega, Fouad (bb0255) 2009; 150
Chollet (bb0055) 2015
Nitish, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0160) 2014; 15
Brown, Shepherd, Walsh, Mays, Reinsch (bb0040) 2006; 132
Chen, Lin, Zhao, Wang, Gu (bb0050) 2014; 7
Islam, Singh, McBratney (bb0085) 2003; 41
Lecun, Bengio, Hinton (bb0120) 2015; 521
Viscarra Rossel, Behrens (bb0245) 2010; 158
Gras, Barthès, Mahaut, Trupin (bb0075) 2014; 214
Stockmann, Padarian, McBratney, Minasny, de Brogniez, Montanarella, Hong, Rawlins, Field (bb0235) 2015; 6
Niazi, Singh, Minasny (bb0155) 2015; 12
Minasny, McBratney (bb0140) 2008; 94
Sarathjith, Das, Wani, Sahrawat (bb0200) 2016; 267
Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Shi, Stenberg, Stevens, Adamchuk (bb0260) 2016; 155
Mevik, Wehrens, Liland (bb0135) 2016
Ruder (bb0195) 2017
Savitzky, Golay (bb0205) 1964; 36
Vašát, Kodešová, Klement, Borvka (bb0240) 2017; 298
Lecun, Bengio (bb0115) 1995; 3361
Kingma, Ba (bb0090) 2014
Romero, D. J., Ben-Dor, E., Demattê, J. A., e Souza, A. B., Vicente, L. E., Tavares, T. R., Martello, M., Strabeli, T. F., da Barros, P. P. S., Fiorio, P. R.
Kuhn, Quinlan (bb0100) 2017
Viscarra Rossel, Lark (bb0250) 2009; 60
(2018). Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis. Geoderma 312, 95–103.
Lawrence, Lin (bb0105) 1989
Morellos, Pantazi, Moshou, Alexandridis, Whetton, Tziotzios, Wiebensohn, Bill, Mouazen (bb0150) 2016; 152
Minasny, Malone, McBratney, Angers, Arrouays, Chambers, Chaplot, Chen, Cheng, Das (bb0145) 2017; 292
Blackman, Tukey (bb0035) 1958
Lecun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bb0110) 1990
Ben-Dor, Banin (bb0020) 1995; 59
Bjerrum, Glahder, Skov (bb0030) 2017
Shepherd, Walsh (bb0215) 2002; 66
Wills, Loecke, Sequeira, Teachman, Grunwald, West (bb0265) 2014
Bellon-Maurel, McBratney (bb0015) 2011; 43
Python Software Foundation (bb0170) 2017
Stenberg, Rossel, Mouazen, Wetterlind (bb0225) 2010; 107
Geeves, Cresswell, Murphy, Gessler, Chartres, Little, Bowman (bb0070) 1995
Quinlan (bb0175) 1992; Vol. 92
Stevens, Nocita, Tóth, Montanarella, van Wesemael (bb0230) 2013; 8
Soriano-Disla, Janik, Viscarra Rossel, MacDonald, McLaughlin (bb0220) 2014; 49
Efron, Tibshirani (bb0065) 1993; Vol. 57
Chang, Laird, Mausbach, Hurburgh (bb0045) 2001; 65
Dalal, Henry (bb0060) 1986; 50
Martens, Naes (bb0125) 1989
R Core Team (bb0180) 2016
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bb0005) 2015
Brown (10.1016/j.geodrs.2018.e00198_bb0040) 2006; 132
Efron (10.1016/j.geodrs.2018.e00198_bb0065) 1993; Vol. 57
McCarty (10.1016/j.geodrs.2018.e00198_bb0130) 2002; 66
Islam (10.1016/j.geodrs.2018.e00198_bb0085) 2003; 41
Barnes (10.1016/j.geodrs.2018.e00198_bb0010) 1989; 43
Blackman (10.1016/j.geodrs.2018.e00198_bb0035) 1958
Griffin (10.1016/j.geodrs.2018.e00198_bb0080) 1984; 32
Martens (10.1016/j.geodrs.2018.e00198_bb0125) 1989
Minasny (10.1016/j.geodrs.2018.e00198_bb0145) 2017; 292
Soriano-Disla (10.1016/j.geodrs.2018.e00198_bb0220) 2014; 49
Ben-Dor (10.1016/j.geodrs.2018.e00198_bb0020) 1995; 59
Mevik (10.1016/j.geodrs.2018.e00198_bb0135)
Wills (10.1016/j.geodrs.2018.e00198_bb0265) 2014
Lecun (10.1016/j.geodrs.2018.e00198_bb0120) 2015; 521
Potter (10.1016/j.geodrs.2018.e00198_bb0165) 1947
Gras (10.1016/j.geodrs.2018.e00198_bb0075) 2014; 214
Ruder (10.1016/j.geodrs.2018.e00198_bb0195) 2017
Python Software Foundation (10.1016/j.geodrs.2018.e00198_bb0170) 2017
Minasny (10.1016/j.geodrs.2018.e00198_bb0140) 2008; 94
Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0255) 2009; 150
Lecun (10.1016/j.geodrs.2018.e00198_bb0115) 1995; 3361
Krizhevsky (10.1016/j.geodrs.2018.e00198_bb0095) 2012
Savitzky (10.1016/j.geodrs.2018.e00198_bb0205) 1964; 36
Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0250) 2009; 60
Nitish (10.1016/j.geodrs.2018.e00198_bb0160) 2014; 15
Sarathjith (10.1016/j.geodrs.2018.e00198_bb0200) 2016; 267
R Core Team (10.1016/j.geodrs.2018.e00198_bb0180) 2016
Bellon-Maurel (10.1016/j.geodrs.2018.e00198_bb0015) 2011; 43
Ramsundar (10.1016/j.geodrs.2018.e00198_bb0185) 2015
Morellos (10.1016/j.geodrs.2018.e00198_bb0150) 2016; 152
Chang (10.1016/j.geodrs.2018.e00198_bb0045) 2001; 65
Lecun (10.1016/j.geodrs.2018.e00198_bb0110) 1990
Quinlan (10.1016/j.geodrs.2018.e00198_bb0175) 1992; Vol. 92
Stenberg (10.1016/j.geodrs.2018.e00198_bb0225) 2010; 107
Bengio (10.1016/j.geodrs.2018.e00198_bb0025) 2012
Geeves (10.1016/j.geodrs.2018.e00198_bb0070) 1995
Niazi (10.1016/j.geodrs.2018.e00198_bb0155) 2015; 12
Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0245) 2010; 158
Abadi (10.1016/j.geodrs.2018.e00198_bb0005) 2015
Kingma (10.1016/j.geodrs.2018.e00198_bb0090) 2014
Scherer (10.1016/j.geodrs.2018.e00198_bb0210) 2010
Chen (10.1016/j.geodrs.2018.e00198_bb0050) 2014; 7
Dalal (10.1016/j.geodrs.2018.e00198_bb0060) 1986; 50
Viscarra Rossel (10.1016/j.geodrs.2018.e00198_bb0260) 2016; 155
Vašát (10.1016/j.geodrs.2018.e00198_bb0240) 2017; 298
Kuhn (10.1016/j.geodrs.2018.e00198_bb0100)
Stevens (10.1016/j.geodrs.2018.e00198_bb0230) 2013; 8
Stockmann (10.1016/j.geodrs.2018.e00198_bb0235) 2015; 6
Bjerrum (10.1016/j.geodrs.2018.e00198_bb0030) 2017
10.1016/j.geodrs.2018.e00198_bb0190
Lawrence (10.1016/j.geodrs.2018.e00198_bb0105) 1989
Shepherd (10.1016/j.geodrs.2018.e00198_bb0215) 2002; 66
Chollet (10.1016/j.geodrs.2018.e00198_bb0055)
References_xml – volume: 267
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0200
  article-title: Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils
  publication-title: Geoderma
– year: 2016
  ident: bb0180
  article-title: R: A Language and Environment for Statistical Computing
– start-page: 92
  year: 2010
  end-page: 101
  ident: bb0210
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
  publication-title: Artificial Neural Networks–ICANN 2010
– year: 1947
  ident: bb0165
  article-title: Visible Speech
– year: 2015
  ident: bb0185
  article-title: Massively multitask networks for drug discovery
– volume: 3361
  start-page: 1995
  year: 1995
  ident: bb0115
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The handbook of brain theory and neural networks
– volume: 292
  start-page: 59
  year: 2017
  end-page: 86
  ident: bb0145
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
– year: 2017
  ident: bb0030
  article-title: Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics
– start-page: 17
  year: 2012
  end-page: 36
  ident: bb0025
  article-title: Deep learning of representations for unsupervised and transfer learning
  publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning
– year: 2015
  ident: bb0055
  article-title: Keras
– volume: 43
  start-page: 772
  year: 1989
  end-page: 777
  ident: bb0010
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl Spectrosc
– volume: Vol. 57
  year: 1993
  ident: bb0065
  article-title: An Introduction to the Bootstrap
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  ident: bb0225
  article-title: Chapter five-visible and near infrared spectroscopy in soil science
  publication-title: Adv Agron
– volume: 43
  start-page: 1398
  year: 2011
  end-page: 1410
  ident: bb0015
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–critical review and research perspectives
  publication-title: Soil Biol Biochem
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0160
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of machine learning research
– volume: 94
  start-page: 72
  year: 2008
  end-page: 79
  ident: bb0140
  article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy
  publication-title: Chemom Intel Lab Syst
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bb0205
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal Chem
– volume: 41
  start-page: 1101
  year: 2003
  end-page: 1114
  ident: bb0085
  article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy
  publication-title: Soil Research
– reference: Romero, D. J., Ben-Dor, E., Demattê, J. A., e Souza, A. B., Vicente, L. E., Tavares, T. R., Martello, M., Strabeli, T. F., da Barros, P. P. S., Fiorio, P. R.
– reference: (2018). Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis. Geoderma 312, 95–103.
– volume: 60
  start-page: 453
  year: 2009
  end-page: 464
  ident: bb0250
  article-title: Improved analysis and modelling of soil diffuse reflectance spectra using wavelets
  publication-title: European Journal of Soil Science
– year: 2017
  ident: bb0100
  article-title: Cubist: Rule- and Instance-Based Regression Modeling. R Package Version 0.2.1
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bb0095
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 59
  start-page: 364
  year: 1995
  end-page: 372
  ident: bb0020
  article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Sci Soc Am J
– volume: 32
  start-page: 236
  year: 1984
  end-page: 243
  ident: bb0080
  article-title: Signal estimation from modified short-time Fourier transform
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
– volume: 12
  start-page: 1965
  year: 2015
  end-page: 1974
  ident: bb0155
  article-title: Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site
  publication-title: International Journal of Environmental Science and Technology
– start-page: 396
  year: 1990
  end-page: 404
  ident: bb0110
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Advances in Neural Information Processing Systems
– volume: Vol. 92
  start-page: 343
  year: 1992
  end-page: 348
  ident: bb0175
  article-title: Learning with continuous classes
  publication-title: 5th Australian Joint Conference on Artificial Intelligence, Singapore
– year: 1989
  ident: bb0125
  article-title: Multivariate calibration
– volume: 155
  start-page: 198
  year: 2016
  end-page: 230
  ident: bb0260
  article-title: A global spectral library to characterize the world's soil
  publication-title: Earth-Science Reviews
– volume: 50
  start-page: 120
  year: 1986
  end-page: 123
  ident: bb0060
  article-title: Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by near infrared Reflectance Spectrophotometry 1
  publication-title: Soil Sci Soc Am J
– year: 2016
  ident: bb0135
  article-title: Pls: Partial Least Squares and Principal Component Regression. R Package Version 2.6–0
– year: 2015
  ident: bb0005
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– volume: 8
  year: 2013
  ident: bb0230
  article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy
  publication-title: PloS One
– volume: 132
  start-page: 273
  year: 2006
  end-page: 290
  ident: bb0040
  article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy
  publication-title: Geoderma
– volume: 66
  start-page: 988
  year: 2002
  end-page: 998
  ident: bb0215
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci Soc Am J
– volume: 298
  start-page: 46
  year: 2017
  end-page: 53
  ident: bb0240
  article-title: Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation
  publication-title: Geoderma
– year: 2017
  ident: bb0170
  article-title: Python Language Reference. Python Software Foundation
  publication-title: URL
– volume: 214
  start-page: 126
  year: 2014
  end-page: 134
  ident: bb0075
  article-title: Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils
  publication-title: Geoderma
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: bb0050
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– start-page: 255
  year: 1989
  end-page: 268
  ident: bb0105
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– year: 2017
  ident: bb0195
  article-title: An overview of multi-task learning in deep neural networks
– start-page: 95
  year: 2014
  end-page: 104
  ident: bb0265
  article-title: Overview of the US rapid carbon assessment project: sampling design, initial summary and uncertainty estimates
  publication-title: Soil carbon
– year: 2014
  ident: bb0090
  article-title: Adam: A method for stochastic optimization
– year: 1995
  ident: bb0070
  article-title: The Physical, Chemical and Morphological Properties of Soils in the Wheat-Belt of Southern New South Wales and Northern Victoria
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: bb0045
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci Soc Am J
– volume: 150
  start-page: 253
  year: 2009
  end-page: 266
  ident: bb0255
  article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy
  publication-title: Geoderma
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bb0120
  article-title: Deep learning
  publication-title: Nature
– volume: 66
  start-page: 640
  year: 2002
  end-page: 646
  ident: bb0130
  article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement
  publication-title: Soil Sci Soc Am J
– year: 1958
  ident: bb0035
  article-title: The Measurement of Power Spectra
– volume: 152
  start-page: 104
  year: 2016
  end-page: 116
  ident: bb0150
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
  publication-title: Biosystems Engineering
– volume: 6
  start-page: 9
  year: 2015
  end-page: 16
  ident: bb0235
  article-title: Global soil organic carbon assessment
  publication-title: Glob Food Sec
– volume: 49
  start-page: 139
  year: 2014
  end-page: 186
  ident: bb0220
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Applied Spectroscopy Reviews
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: bb0245
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– volume: 267
  start-page: 1
  year: 2016
  ident: 10.1016/j.geodrs.2018.e00198_bb0200
  article-title: Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.031
– year: 1958
  ident: 10.1016/j.geodrs.2018.e00198_bb0035
– volume: 66
  start-page: 640
  issue: 2
  year: 2002
  ident: 10.1016/j.geodrs.2018.e00198_bb0130
  article-title: Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2002.6400a
– volume: Vol. 92
  start-page: 343
  year: 1992
  ident: 10.1016/j.geodrs.2018.e00198_bb0175
  article-title: Learning with continuous classes
– volume: 158
  start-page: 46
  issue: 1
  year: 2010
  ident: 10.1016/j.geodrs.2018.e00198_bb0245
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– ident: 10.1016/j.geodrs.2018.e00198_bb0190
  doi: 10.1016/j.geoderma.2017.09.014
– year: 1989
  ident: 10.1016/j.geodrs.2018.e00198_bb0125
– year: 2017
  ident: 10.1016/j.geodrs.2018.e00198_bb0170
  article-title: Python Language Reference. Python Software Foundation
– volume: 60
  start-page: 453
  issue: 3
  year: 2009
  ident: 10.1016/j.geodrs.2018.e00198_bb0250
  article-title: Improved analysis and modelling of soil diffuse reflectance spectra using wavelets
  publication-title: European Journal of Soil Science
  doi: 10.1111/j.1365-2389.2009.01121.x
– volume: 50
  start-page: 120
  issue: 1
  year: 1986
  ident: 10.1016/j.geodrs.2018.e00198_bb0060
  article-title: Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by near infrared Reflectance Spectrophotometry 1
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1986.03615995005000010023x
– year: 2016
  ident: 10.1016/j.geodrs.2018.e00198_bb0180
– ident: 10.1016/j.geodrs.2018.e00198_bb0100
– volume: 65
  start-page: 480
  issue: 2
  year: 2001
  ident: 10.1016/j.geodrs.2018.e00198_bb0045
  article-title: Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2001.652480x
– year: 2014
  ident: 10.1016/j.geodrs.2018.e00198_bb0090
– volume: 32
  start-page: 236
  issue: 2
  year: 1984
  ident: 10.1016/j.geodrs.2018.e00198_bb0080
  article-title: Signal estimation from modified short-time Fourier transform
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/TASSP.1984.1164317
– year: 1995
  ident: 10.1016/j.geodrs.2018.e00198_bb0070
– year: 2017
  ident: 10.1016/j.geodrs.2018.e00198_bb0195
– volume: 298
  start-page: 46
  year: 2017
  ident: 10.1016/j.geodrs.2018.e00198_bb0240
  article-title: Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.03.012
– volume: 155
  start-page: 198
  year: 2016
  ident: 10.1016/j.geodrs.2018.e00198_bb0260
  article-title: A global spectral library to characterize the world's soil
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2016.01.012
– year: 2015
  ident: 10.1016/j.geodrs.2018.e00198_bb0005
– volume: 41
  start-page: 1101
  issue: 6
  year: 2003
  ident: 10.1016/j.geodrs.2018.e00198_bb0085
  article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy
  publication-title: Soil Research
  doi: 10.1071/SR02137
– volume: 94
  start-page: 72
  issue: 1
  year: 2008
  ident: 10.1016/j.geodrs.2018.e00198_bb0140
  article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy
  publication-title: Chemom Intel Lab Syst
  doi: 10.1016/j.chemolab.2008.06.003
– volume: 43
  start-page: 1398
  issue: 7
  year: 2011
  ident: 10.1016/j.geodrs.2018.e00198_bb0015
  article-title: Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils–critical review and research perspectives
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.02.019
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.geodrs.2018.e00198_bb0160
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of machine learning research
– volume: 292
  start-page: 59
  year: 2017
  ident: 10.1016/j.geodrs.2018.e00198_bb0145
  article-title: Soil carbon 4 per mille
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.002
– volume: 8
  issue: 6
  year: 2013
  ident: 10.1016/j.geodrs.2018.e00198_bb0230
  article-title: Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy
  publication-title: PloS One
  doi: 10.1371/journal.pone.0066409
– start-page: 255
  year: 1989
  ident: 10.1016/j.geodrs.2018.e00198_bb0105
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– ident: 10.1016/j.geodrs.2018.e00198_bb0135
– volume: 107
  start-page: 163
  year: 2010
  ident: 10.1016/j.geodrs.2018.e00198_bb0225
  article-title: Chapter five-visible and near infrared spectroscopy in soil science
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(10)07005-7
– volume: 43
  start-page: 772
  issue: 5
  year: 1989
  ident: 10.1016/j.geodrs.2018.e00198_bb0010
  article-title: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
  publication-title: Appl Spectrosc
  doi: 10.1366/0003702894202201
– start-page: 1097
  year: 2012
  ident: 10.1016/j.geodrs.2018.e00198_bb0095
  article-title: Imagenet classification with deep convolutional neural networks
– year: 2015
  ident: 10.1016/j.geodrs.2018.e00198_bb0185
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  ident: 10.1016/j.geodrs.2018.e00198_bb0050
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2329330
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.geodrs.2018.e00198_bb0120
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 150
  start-page: 253
  issue: 3–4
  year: 2009
  ident: 10.1016/j.geodrs.2018.e00198_bb0255
  article-title: In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.01.025
– year: 2017
  ident: 10.1016/j.geodrs.2018.e00198_bb0030
– volume: 66
  start-page: 988
  issue: 3
  year: 2002
  ident: 10.1016/j.geodrs.2018.e00198_bb0215
  article-title: Development of reflectance spectral libraries for characterization of soil properties
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2002.9880
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.geodrs.2018.e00198_bb0205
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– year: 1947
  ident: 10.1016/j.geodrs.2018.e00198_bb0165
– volume: 12
  start-page: 1965
  issue: 6
  year: 2015
  ident: 10.1016/j.geodrs.2018.e00198_bb0155
  article-title: Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site
  publication-title: International Journal of Environmental Science and Technology
  doi: 10.1007/s13762-014-0580-5
– start-page: 17
  year: 2012
  ident: 10.1016/j.geodrs.2018.e00198_bb0025
  article-title: Deep learning of representations for unsupervised and transfer learning
– volume: 214
  start-page: 126
  year: 2014
  ident: 10.1016/j.geodrs.2018.e00198_bb0075
  article-title: Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.021
– volume: 152
  start-page: 104
  year: 2016
  ident: 10.1016/j.geodrs.2018.e00198_bb0150
  article-title: Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2016.04.018
– volume: 3361
  start-page: 1995
  issue: 10
  year: 1995
  ident: 10.1016/j.geodrs.2018.e00198_bb0115
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The handbook of brain theory and neural networks
– start-page: 95
  year: 2014
  ident: 10.1016/j.geodrs.2018.e00198_bb0265
  article-title: Overview of the US rapid carbon assessment project: sampling design, initial summary and uncertainty estimates
– volume: 59
  start-page: 364
  issue: 2
  year: 1995
  ident: 10.1016/j.geodrs.2018.e00198_bb0020
  article-title: Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1995.03615995005900020014x
– volume: 49
  start-page: 139
  issue: 2
  year: 2014
  ident: 10.1016/j.geodrs.2018.e00198_bb0220
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Applied Spectroscopy Reviews
  doi: 10.1080/05704928.2013.811081
– volume: 132
  start-page: 273
  issue: 3
  year: 2006
  ident: 10.1016/j.geodrs.2018.e00198_bb0040
  article-title: Global soil characterization with VNIR diffuse reflectance spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.04.025
– start-page: 396
  year: 1990
  ident: 10.1016/j.geodrs.2018.e00198_bb0110
  article-title: Handwritten digit recognition with a back-propagation network
– volume: Vol. 57
  year: 1993
  ident: 10.1016/j.geodrs.2018.e00198_bb0065
– start-page: 92
  year: 2010
  ident: 10.1016/j.geodrs.2018.e00198_bb0210
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
– ident: 10.1016/j.geodrs.2018.e00198_bb0055
– volume: 6
  start-page: 9
  year: 2015
  ident: 10.1016/j.geodrs.2018.e00198_bb0235
  article-title: Global soil organic carbon assessment
  publication-title: Glob Food Sec
  doi: 10.1016/j.gfs.2015.07.001
SSID ssj0002953762
Score 2.562621
Snippet Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00198
SubjectTerms algorithms
artificial intelligence
clay
Convolutional Neural Networks
data analysis
data collection
Europe
infrared spectroscopy
Multi-task learning
neural networks
prediction
reflectance
regression analysis
sand
Simultaneous prediction
soil organic carbon
soil properties
spectral analysis
Spectrograms
topsoil
wavelengths
Title Using deep learning to predict soil properties from regional spectral data
URI https://dx.doi.org/10.1016/j.geodrs.2018.e00198
https://www.proquest.com/docview/2189515029
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60vXgRRcU3K3iNTfaR7B5FlNpiDz7QW0i6s6UiTajx_zuTR0FBCp6SDTNLmJ2dHXZmvmHsMolzFZpMB1YYHyhrwiCjeyuhAYTT2ru6HdDDJB6-qNGbfttgN10tDKVVtra_sem1tW6_DFppDsr5fPAkZA0ZpCKCsEqM3mR9gadr2GP96_vxcLK6ahGWMEtE3WZOi4B4uiK6OtNrBoVbEnR3ZK6AfB7z1yH1y1zXZ9DdDttunUd-3fzfLtuAxR4b1VF_7gBK3vaAmPGq4OWSYjAV_yzmHzgoSsqghk9OBSWc-jGQD87rSsslvlCq6D57ubt9vhkGbYeEYCqlrQIfC5eDio2ysQMXelwPOU1cDCaTiU-shojQIL3FfSy0D5EoFxZZJFI4IQ9Yb1Es4JDx3OQGJ5OxAa9MBHmu5DRTGc4hfCLgiMlOJOm0hQ-nLhYfaZcn9p42gkxJkGkjyCMWrLjKBj5jDX3SSTv9oQYpWvg1nBfd4qS4QyjskS2g-EKiyKAbqVENjv89-wnbwpFtks9OWa9afsEZeiNVft5qGz3Hj6_jb2Zv4NY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHMoFFbWoQKGu1B7T3fiR2AcOCIp2WdgLIHEzyXqMFqFNtBuE-F38QWbyWKmVKqRKe8tjbCVfxuOJPfMNYz_SJFd9k-nIChMiZU0_ymjdSmgA4bUOvi4HdDlOBjfq_FbfrrHXLheGwipb29_Y9Npat1d6LZq9cjrtXQlZUwapmCisUtNFVo7g5Rn_2xZHw1P8yD-FOPt9fTKI2tIC0URKW0UhET4HlRhlEw--H_BF5CT1CZhMpiG1GmKiUQwWB4DQoY9CubDYRKKEJ7YDtPsbxIaFw2rjeDgajJdLO8ISR4qoy9ppEdEzdkl7dWTZPRR-TlThsfkF5GOZf02Kf00P9Zx39pFttc4qP27w2GZrMPvEzusoA-4BSt7WnLjnVcHLOe35VHxRTB_xpCgpYhsWnBJYONV_IJ-f15mdczyg0NTP7GYlsO2w9Vkxgy-M5yY32JlMDARlYshzJSeZyrAPEVIBu0x2kLhJS1dOVTMeXReX9uAaIB0B6Rogd1m0bFU2dB3vyKcd2u4PtXM4o7zT8nv3cRyOSNpmyWZQPKFQbNBt1agGe__d-zf2YXB9eeEuhuPRPtvEO7YJfPvK1qv5ExygJ1Tlh63mcXa3amV_A7AOHas
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+learning+to+predict+soil+properties+from+regional+spectral+data&rft.jtitle=Geoderma+Regional&rft.au=Padarian%2C+J.&rft.au=Minasny%2C+B.&rft.au=McBratney%2C+A.B.&rft.date=2019-03-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=16&rft_id=info:doi/10.1016%2Fj.geodrs.2018.e00198&rft.externalDocID=S2352009418302785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon