Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils

Rhizospheric and endophytic bacteria are known to increase phosphorus efficiency (PE) of plant in phosphorus-deficient soils. The purpose of this research was to examine the role of rhizospheric and endophytic bacterial inoculation in increasing phosphorus acquisition efficiency (PAE) and phosphorus...

Full description

Saved in:
Bibliographic Details
Published inRhizosphere Vol. 14; p. 100196
Main Authors Emami, Somayeh, Alikhani, Hossein Ali, Pourbabaee, Ahmad Ali, Etesami, Hassan, Motasharezadeh, Babak, Sarmadian, Fereydoon
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rhizospheric and endophytic bacteria are known to increase phosphorus efficiency (PE) of plant in phosphorus-deficient soils. The purpose of this research was to examine the role of rhizospheric and endophytic bacterial inoculation in increasing phosphorus acquisition efficiency (PAE) and phosphorus utilization efficiency (PUE) by solubilization of phosphate and expanding of root system. A total of 22 isolates were selected from rhizosphere and inside root of wheat (Triticum aestivum L.) plants based on plant growth promoting traits. These isolates significantly solubilized phosphorus from tri-calcium phosphate and produced indole-3-acetic acid (IAA) under in vitro condition. In pot experiment, we found that rhizospheric and endophytic bacterial inoculation improved root and shoot dry matter, grain yield, length, surface area and volume of roots. At the ripening stage, the consortium treated (co-inoculation with rhizospheric and endophytic bacteria) pots exhibited enhanced the plant height (up to 15.0% and 11.0%), shoot dry weight (up to 5.8% and 7.5%), root dry weight (up to 68% and 58%) and grain yield (up to 58.0% and 42.0%), in Marvdasht and Roshan cultivars respectively. The uptake of P was 3.61 mg pot−1 for Marvdasht cultivar and 6.44 mg pot−1 for Roshan cultivar. Inoculation with rhizospheric isolate increased PE index by 29.5% and 18.7% in Marvdasht and Roshan cultivars, respectively. Noticeable effect was detected in case of consortium treatment, suggesting that plant growth promoting rhizobacteria acted synergistically with plant growth promoting endophytes. Finally, our study highlights the importance of co-inoculation with rhizospheric and endophytic bacterial inoculant in improving P efficiency of wheat cultivars. •This is the first paper to report that phosphate-solubilizing bacteria (PSB) were increased phosphorus efficiency of plant.•Inoculation increased phosphorus acquisition efficiency by increasing phosphorus uptake from soils.•Phosphate solubilizing rhizobacteria acted synergistically with phosphate solubilizing endophytes.•The PSB improved the root growth indices and grain yield.
AbstractList Rhizospheric and endophytic bacteria are known to increase phosphorus efficiency (PE) of plant in phosphorus-deficient soils. The purpose of this research was to examine the role of rhizospheric and endophytic bacterial inoculation in increasing phosphorus acquisition efficiency (PAE) and phosphorus utilization efficiency (PUE) by solubilization of phosphate and expanding of root system. A total of 22 isolates were selected from rhizosphere and inside root of wheat (Triticum aestivum L.) plants based on plant growth promoting traits. These isolates significantly solubilized phosphorus from tri-calcium phosphate and produced indole-3-acetic acid (IAA) under in vitro condition. In pot experiment, we found that rhizospheric and endophytic bacterial inoculation improved root and shoot dry matter, grain yield, length, surface area and volume of roots. At the ripening stage, the consortium treated (co-inoculation with rhizospheric and endophytic bacteria) pots exhibited enhanced the plant height (up to 15.0% and 11.0%), shoot dry weight (up to 5.8% and 7.5%), root dry weight (up to 68% and 58%) and grain yield (up to 58.0% and 42.0%), in Marvdasht and Roshan cultivars respectively. The uptake of P was 3.61 mg pot⁻¹ for Marvdasht cultivar and 6.44 mg pot⁻¹ for Roshan cultivar. Inoculation with rhizospheric isolate increased PE index by 29.5% and 18.7% in Marvdasht and Roshan cultivars, respectively. Noticeable effect was detected in case of consortium treatment, suggesting that plant growth promoting rhizobacteria acted synergistically with plant growth promoting endophytes. Finally, our study highlights the importance of co-inoculation with rhizospheric and endophytic bacterial inoculant in improving P efficiency of wheat cultivars.
Rhizospheric and endophytic bacteria are known to increase phosphorus efficiency (PE) of plant in phosphorus-deficient soils. The purpose of this research was to examine the role of rhizospheric and endophytic bacterial inoculation in increasing phosphorus acquisition efficiency (PAE) and phosphorus utilization efficiency (PUE) by solubilization of phosphate and expanding of root system. A total of 22 isolates were selected from rhizosphere and inside root of wheat (Triticum aestivum L.) plants based on plant growth promoting traits. These isolates significantly solubilized phosphorus from tri-calcium phosphate and produced indole-3-acetic acid (IAA) under in vitro condition. In pot experiment, we found that rhizospheric and endophytic bacterial inoculation improved root and shoot dry matter, grain yield, length, surface area and volume of roots. At the ripening stage, the consortium treated (co-inoculation with rhizospheric and endophytic bacteria) pots exhibited enhanced the plant height (up to 15.0% and 11.0%), shoot dry weight (up to 5.8% and 7.5%), root dry weight (up to 68% and 58%) and grain yield (up to 58.0% and 42.0%), in Marvdasht and Roshan cultivars respectively. The uptake of P was 3.61 mg pot−1 for Marvdasht cultivar and 6.44 mg pot−1 for Roshan cultivar. Inoculation with rhizospheric isolate increased PE index by 29.5% and 18.7% in Marvdasht and Roshan cultivars, respectively. Noticeable effect was detected in case of consortium treatment, suggesting that plant growth promoting rhizobacteria acted synergistically with plant growth promoting endophytes. Finally, our study highlights the importance of co-inoculation with rhizospheric and endophytic bacterial inoculant in improving P efficiency of wheat cultivars. •This is the first paper to report that phosphate-solubilizing bacteria (PSB) were increased phosphorus efficiency of plant.•Inoculation increased phosphorus acquisition efficiency by increasing phosphorus uptake from soils.•Phosphate solubilizing rhizobacteria acted synergistically with phosphate solubilizing endophytes.•The PSB improved the root growth indices and grain yield.
ArticleNumber 100196
Author Motasharezadeh, Babak
Sarmadian, Fereydoon
Alikhani, Hossein Ali
Emami, Somayeh
Pourbabaee, Ahmad Ali
Etesami, Hassan
Author_xml – sequence: 1
  givenname: Somayeh
  surname: Emami
  fullname: Emami, Somayeh
  email: emamisomaye@ut.ac.ir
– sequence: 2
  givenname: Hossein Ali
  surname: Alikhani
  fullname: Alikhani, Hossein Ali
– sequence: 3
  givenname: Ahmad Ali
  surname: Pourbabaee
  fullname: Pourbabaee, Ahmad Ali
– sequence: 4
  givenname: Hassan
  surname: Etesami
  fullname: Etesami, Hassan
– sequence: 5
  givenname: Babak
  surname: Motasharezadeh
  fullname: Motasharezadeh, Babak
– sequence: 6
  givenname: Fereydoon
  surname: Sarmadian
  fullname: Sarmadian, Fereydoon
BookMark eNqFkc9u1DAQxi3USpS2b8DBRy67OI6djTkgoRX_pEpc6NlynHEzq6wdbGfR9ll4WBxSJMQBTh6Nf983mvlekAsfPBDysmLbilXN68M2DpimYcsZX1qsUs0zcsWF5Bteqfbij_o5uU3pwAqza2rZ1Ffkxz74FGLG-UiDo-D7MA3nDNT4nhbjx1CsIQKdhqUy5SeFce5wxEf0D7QzNkNEQ_E4xXCC9ASGGOZE5wQUnEOL4O2ZoqffBzCZ2nnMeDIxLa3fgsL3sLK5DMEx3ZBLZ8YEt0_vNbn_8P7r_tPm7svHz_t3dxtb1ypvXN0JJkXF-sYxp1rb76xqoemsYlwqy0wrO-WME06CZUq4VjlrmK2FkLU09TV5tfqWFb7NkLI-YrIwjsZDWUNzoVouOd_Jgr5ZURtDShGctphNxuBzNDjqiuklFX3Qayp6SUWvqRSx-Es8RTyaeP6f7O0qg3KDE0LU6ddBoccINus-4L8NfgI00rDd
CitedBy_id crossref_primary_10_1007_s00284_023_03349_2
crossref_primary_10_3390_plants12173090
crossref_primary_10_1016_j_heliyon_2022_e09081
crossref_primary_10_3390_microorganisms10050899
crossref_primary_10_1007_s00203_022_02864_3
crossref_primary_10_3389_fsufs_2020_607355
crossref_primary_10_1038_s41598_023_39852_6
crossref_primary_10_1007_s00344_022_10901_0
crossref_primary_10_1016_j_stress_2024_100632
crossref_primary_10_3390_microorganisms12030558
crossref_primary_10_1007_s10661_024_12445_0
crossref_primary_10_1007_s42729_021_00726_3
crossref_primary_10_3390_jof8020094
crossref_primary_10_1111_sum_12987
crossref_primary_10_1016_j_rhisph_2024_100877
crossref_primary_10_1007_s00284_025_04087_3
crossref_primary_10_1016_j_mib_2023_102286
crossref_primary_10_3390_plants10010076
crossref_primary_10_1016_j_rhisph_2021_100456
crossref_primary_10_3390_microorganisms12081591
crossref_primary_10_1007_s12517_021_07025_2
crossref_primary_10_1016_j_rhisph_2022_100476
crossref_primary_10_3389_fpls_2022_961085
crossref_primary_10_1007_s11274_024_04086_9
crossref_primary_10_1007_s42729_022_00980_z
crossref_primary_10_1016_j_crmicr_2024_100326
crossref_primary_10_3389_fsufs_2022_830198
crossref_primary_10_1002_ldr_4851
crossref_primary_10_3390_f12020120
crossref_primary_10_1016_j_envexpbot_2022_105033
crossref_primary_10_1016_j_chemosphere_2024_143068
crossref_primary_10_1016_j_pedsph_2024_05_002
crossref_primary_10_1088_1755_1315_1362_1_012028
crossref_primary_10_1016_j_jenvman_2024_122201
crossref_primary_10_3389_fmicb_2022_775002
crossref_primary_10_1515_opag_2022_0328
crossref_primary_10_1016_j_pedsph_2022_06_005
crossref_primary_10_1016_j_micres_2022_127094
crossref_primary_10_1016_j_scp_2022_100634
crossref_primary_10_1016_j_rhisph_2020_100240
crossref_primary_10_1007_s42729_024_01849_z
crossref_primary_10_3390_jof7050390
crossref_primary_10_1007_s00248_021_01702_1
crossref_primary_10_3390_agronomy12092050
crossref_primary_10_1016_j_scitotenv_2020_140682
crossref_primary_10_1038_s41598_021_95092_6
crossref_primary_10_1155_2022_5115875
crossref_primary_10_1016_j_agee_2024_109408
crossref_primary_10_1016_j_agee_2023_108774
crossref_primary_10_1002_jsfa_11501
crossref_primary_10_1080_01490451_2022_2027049
crossref_primary_10_1007_s00344_021_10458_4
crossref_primary_10_1016_j_scitotenv_2025_179082
crossref_primary_10_3390_ijerph191710883
crossref_primary_10_1016_j_isci_2022_103821
crossref_primary_10_1016_j_tim_2024_02_003
crossref_primary_10_1016_j_scitotenv_2023_166468
crossref_primary_10_1007_s11356_022_21711_y
crossref_primary_10_3390_microorganisms11051276
crossref_primary_10_1038_s41598_024_81072_z
crossref_primary_10_1016_j_copbio_2021_06_009
crossref_primary_10_1007_s00203_022_02809_w
Cites_doi 10.3732/ajb.1200572
10.1016/j.jenvrad.2016.10.006
10.1016/j.proeng.2016.02.091
10.1016/S1002-0160(15)30010-2
10.1556/AMicr.56.2009.3.6
10.1111/j.1365-3040.2007.01733.x
10.1016/j.jgeb.2017.06.005
10.1007/s11104-011-0950-4
10.3389/fpls.2016.00492
10.1021/jf010111x
10.1016/j.ecoleng.2017.03.008
10.1016/S0378-1127(99)00300-X
10.1007/s00374-007-0172-3
10.1007/s11104-006-9178-0
10.1007/s00374-011-0609-6
10.1016/j.agee.2017.07.006
10.1093/aob/mcl027
10.1016/j.apsoil.2010.04.007
10.1016/j.apsoil.2015.08.003
10.1016/j.ejsobi.2010.10.005
10.3389/fpls.2017.00141
10.1016/j.indcrop.2018.05.020
10.1016/j.ecoleng.2016.06.029
10.1016/j.scitotenv.2015.09.009
10.1016/j.micres.2015.11.008
10.1016/j.ecoleng.2017.11.008
10.1016/j.ecoleng.2015.06.045
10.1016/j.rhisph.2019.100146
10.1016/j.sjbs.2018.05.024
10.14719/pst.2014.1.2.25
10.1002/jpln.200520507
10.1016/j.micres.2017.05.005
10.1104/pp.17.01583
10.1016/S1002-0160(19)60825-8
10.1016/S0981-9428(03)00019-6
10.1007/s11104-004-0469-z
10.1016/S0734-9750(99)00014-2
10.1016/j.micres.2017.08.011
10.1016/j.soilbio.2006.05.008
10.1016/j.apsoil.2011.10.016
10.1016/j.rhisph.2016.09.003
10.1016/j.envexpbot.2010.11.007
10.1016/j.apsoil.2008.08.001
10.1080/00380768.2018.1510284
10.1016/j.phytochem.2012.11.009
10.1016/j.sjbs.2012.06.003
10.1016/j.chemosphere.2016.10.097
10.1007/s11104-010-0444-9
10.1071/AR9580778
10.1016/j.jprot.2015.04.009
10.1007/s003740050258
10.1016/j.biocontrol.2012.12.010
10.1128/AEM.57.2.535-538.1991
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rhisph.2020.100196
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
EISSN 2452-2198
ExternalDocumentID 10_1016_j_rhisph_2020_100196
S2452219820300197
GroupedDBID --M
0R~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AFXIZ
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPCBC
SSA
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-f3b405410d6f0f98cd7c98e6bc90259c0a85b9faf4f5ec094f89fca0c344535a3
IEDL.DBID AIKHN
ISSN 2452-2198
IngestDate Fri Jul 11 10:04:40 EDT 2025
Tue Jul 01 03:12:53 EDT 2025
Thu Apr 24 22:53:47 EDT 2025
Fri Feb 23 02:47:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biofertilizer
Soil phosphorous
Rhizobacteria
Phosphate deficiency
Triticum aestivum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-f3b405410d6f0f98cd7c98e6bc90259c0a85b9faf4f5ec094f89fca0c344535a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2498252275
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2498252275
crossref_citationtrail_10_1016_j_rhisph_2020_100196
crossref_primary_10_1016_j_rhisph_2020_100196
elsevier_sciencedirect_doi_10_1016_j_rhisph_2020_100196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Rhizosphere
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Gao, Tian, Shi, Li, Zhang (bib37) 2011; 71
Rosas, Andrés, Rovera, Correa (bib50) 2006; 38
Babana, Kassogué, Dicko, Maîga, Samaké, Traoré, Fané, Faradji (bib8) 2016; 138
Etesami, Alikhani (bib23) 2016; 2
Zhang, Wang, Ma, Zhang, Fu (bib66) 2016; 95
Hamdali, Hafidi, Virolle, Ouhdouch (bib30) 2008; 40
Hegedűs, Tóth-Bodroghi, Németh, Somlai, Kovács (bib31) 2017; 173
Iyer, Rajput, Rajkumar (bib32) 2017; 202
Aloni, Aloni, Langhans, Ullrich (bib3) 2006; 97
Ferreira, De Carvalho, Andrade, Oliveira, De Medeiros, Moreira (bib25) 2020; 30
Kaur, Reddy (bib34) 2015; 25
Rodríguez, Fraga (bib49) 1999; 17
Singh, Reddy (bib55) 2011; 47
Wittenmyer, Merbach (bib63) 2005; 168
Santoyo, Moreno-Hagelsieb, Orozco-Mosqueda, Glick (bib51) 2016; 183
Bric, Bostock, Silverstone (bib14) 1991; 57
Poupin, Greve, Carmona, Pinedo (bib47) 2016; 7
Fernández, Zalba, Gómez, Sagardoy (bib24) 2007; 43
Bohm (bib13) 1979
Mahanta, Rai, Dhar, Varghese, Raja, Purakayastha (bib40) 2018; 111
Pande, Pandey, Mehra, Singh, Kaushik (bib46) 2017; 15
Arif, Shahzad, Yasmeen, Riaz, Ashraf, Ashraf, Mubarik, Kausar (bib7) 2017
Denton, Veneklaas, Freimoser, Lambers (bib20) 2007; 30
Zaidi, Khan, Ahemad, Oves (bib65) 2009; 56
Schoumans (bib53) 2015
Tabatabai (bib58) 1982
Nico, Claudia, Ribaudo, Cantore, Cur (bib43) 2012; 61
Aquino, Ventura, Alexandrino, Michelon, Pescador, Nicio, Watanabe, Diniz, Oliveira, Hata (bib6) 2018; 121
Franco-Correa, Quintana, Duque, Suarez, Rodríguez, Barea (bib26) 2010; 45
Anderson (bib4) 1982
Cortivo, Barion, Visioli, Mattarozzi, Mosca, Vamerali (bib17) 2017; 247
El Zemrany, Czarnes, Hallett, Alamercery, Bally, Jocteur-Monrozier (bib21) 2007; 291
Othman, Othman, Saud, Wahab (bib44) 2017; 51
Wei, Huang, Tan, Mei, Shen, Xu (bib61) 2013; 65
Chanway, Shishido, Nairn, Jungwirth, Markham, Xiao, Holl (bib16) 2000; 133
Richardson, Lynch, Ryan, Delhaize, Smith, Smith, Harvey, Ryan, Veneklaas, Lambers, Oberson, Culvenor, Simpson (bib48) 2011; 349
Tandon (bib59) 2005
Balemi, Negisho (bib10) 2012; 12
Johnson, Curl (bib69) 1972
Ozturk, Eker, Torun, Cakmak (bib45) 2005; 269
Maiti, Singh, Variar (bib41) 2012; 48
Korir, Mungai, Thuita, Hamba, Asso (bib35) 2017; 8
Freitas, Banerjee, Germida (bib27) 1997; 24
Liu, Li, Zhang, Fu, Fan, Patel, Zhang (bib38) 2015; 96
Zhu, Qu, Hong, Sun (bib67) 2011; 1–6
Lambers, Brundrett, Raven, Hopper (bib36) 2010; 334
Banaei-Asl, Bandehagh, Uliaei, Farajzadeh, Sakata, Mustafa, Komatsu (bib11) 2015; 124
Łukowiak, Grzebisz, Sassenrath (bib68) 2016; 542
Emami, Alikhani, Pourbabaei, Etesami, Motasharezadeh, Sarmadian (bib22) 2018; 64
Weil, Brady (bib62) 2017
Strock, Riva, Lynch (bib57) 2018; 176
Afzal, Bano (bib1) 2008; 10
Wu, Haig, Pratley, Lemerle, An (bib64) 2001; 49
da-Costa, de-Lima, Oliveira-Longatti, de-Souza (bib18) 2015; 83
Sperber (bib56) 1958; 9
Jahanian, Chaichi, Rezaei, Rezayazdi, Khavazi (bib33) 2012; 4
Antoun, Kloepper (bib5) 2001
Ghosh, Penterman, Little, Chavez, Glick (bib29) 2003; 41
Chamam, Sanguin, Bellvert, Meiffren, Comte, Wisniewski-Dyé, Bertrand, Prigent-Combaret (bib15) 2013; 87
Mukhtar, Shahid, Mehnaz, Malik (bib42) 2017; 205
Sarker, Talukder, Islam (bib52) 2014; 1
Batool, Iqbal (bib12) 2019; 26
Bakhshandeh, Pirdashti, Lendeh (bib9) 2017; 103
Gaiero, McCall, Thompson, Day, Best, Dunfield (bib28) 2013; 100
Tennakoon, Rajapaksha, Hettiarachchi (bib60) 2019; 10
Deng, Cao (bib19) 2017; 168
Ahemad, Khan (bib2) 2012; 19
Emami (10.1016/j.rhisph.2020.100196_bib22) 2018; 64
Aloni (10.1016/j.rhisph.2020.100196_bib3) 2006; 97
Wu (10.1016/j.rhisph.2020.100196_bib64) 2001; 49
Rosas (10.1016/j.rhisph.2020.100196_bib50) 2006; 38
Sperber (10.1016/j.rhisph.2020.100196_bib56) 1958; 9
Tabatabai (10.1016/j.rhisph.2020.100196_bib58) 1982
Ghosh (10.1016/j.rhisph.2020.100196_bib29) 2003; 41
Jahanian (10.1016/j.rhisph.2020.100196_bib33) 2012; 4
Bric (10.1016/j.rhisph.2020.100196_bib14) 1991; 57
Gaiero (10.1016/j.rhisph.2020.100196_bib28) 2013; 100
Freitas (10.1016/j.rhisph.2020.100196_bib27) 1997; 24
Bakhshandeh (10.1016/j.rhisph.2020.100196_bib9) 2017; 103
Mahanta (10.1016/j.rhisph.2020.100196_bib40) 2018; 111
Batool (10.1016/j.rhisph.2020.100196_bib12) 2019; 26
Anderson (10.1016/j.rhisph.2020.100196_bib4) 1982
Antoun (10.1016/j.rhisph.2020.100196_bib5) 2001
Fernández (10.1016/j.rhisph.2020.100196_bib24) 2007; 43
Iyer (10.1016/j.rhisph.2020.100196_bib32) 2017; 202
Łukowiak (10.1016/j.rhisph.2020.100196_bib68) 2016; 542
Franco-Correa (10.1016/j.rhisph.2020.100196_bib26) 2010; 45
Chanway (10.1016/j.rhisph.2020.100196_bib16) 2000; 133
Tennakoon (10.1016/j.rhisph.2020.100196_bib60) 2019; 10
Kaur (10.1016/j.rhisph.2020.100196_bib34) 2015; 25
Liu (10.1016/j.rhisph.2020.100196_bib38) 2015; 96
Korir (10.1016/j.rhisph.2020.100196_bib35) 2017; 8
Ahemad (10.1016/j.rhisph.2020.100196_bib2) 2012; 19
Deng (10.1016/j.rhisph.2020.100196_bib19) 2017; 168
Banaei-Asl (10.1016/j.rhisph.2020.100196_bib11) 2015; 124
Maiti (10.1016/j.rhisph.2020.100196_bib41) 2012; 48
Etesami (10.1016/j.rhisph.2020.100196_bib23) 2016; 2
Chamam (10.1016/j.rhisph.2020.100196_bib15) 2013; 87
Rodríguez (10.1016/j.rhisph.2020.100196_bib49) 1999; 17
Singh (10.1016/j.rhisph.2020.100196_bib55) 2011; 47
El Zemrany (10.1016/j.rhisph.2020.100196_bib21) 2007; 291
Aquino (10.1016/j.rhisph.2020.100196_bib6) 2018; 121
Balemi (10.1016/j.rhisph.2020.100196_bib10) 2012; 12
da-Costa (10.1016/j.rhisph.2020.100196_bib18) 2015; 83
Zhu (10.1016/j.rhisph.2020.100196_bib67) 2011; 1–6
Arif (10.1016/j.rhisph.2020.100196_bib7) 2017
Bohm (10.1016/j.rhisph.2020.100196_bib13) 1979
Richardson (10.1016/j.rhisph.2020.100196_bib48) 2011; 349
Mukhtar (10.1016/j.rhisph.2020.100196_bib42) 2017; 205
Sarker (10.1016/j.rhisph.2020.100196_bib52) 2014; 1
Hamdali (10.1016/j.rhisph.2020.100196_bib30) 2008; 40
Denton (10.1016/j.rhisph.2020.100196_bib20) 2007; 30
Strock (10.1016/j.rhisph.2020.100196_bib57) 2018; 176
Poupin (10.1016/j.rhisph.2020.100196_bib47) 2016; 7
Tandon (10.1016/j.rhisph.2020.100196_bib59) 2005
Babana (10.1016/j.rhisph.2020.100196_bib8) 2016; 138
Nico (10.1016/j.rhisph.2020.100196_bib43) 2012; 61
Schoumans (10.1016/j.rhisph.2020.100196_bib53) 2015
Hegedűs (10.1016/j.rhisph.2020.100196_bib31) 2017; 173
Cortivo (10.1016/j.rhisph.2020.100196_bib17) 2017; 247
Lambers (10.1016/j.rhisph.2020.100196_bib36) 2010; 334
Othman (10.1016/j.rhisph.2020.100196_bib44) 2017; 51
Wittenmyer (10.1016/j.rhisph.2020.100196_bib63) 2005; 168
Zaidi (10.1016/j.rhisph.2020.100196_bib65) 2009; 56
Weil (10.1016/j.rhisph.2020.100196_bib62) 2017
Li (10.1016/j.rhisph.2020.100196_bib37) 2011; 71
Afzal (10.1016/j.rhisph.2020.100196_bib1) 2008; 10
Johnson (10.1016/j.rhisph.2020.100196_bib69) 1972
Pande (10.1016/j.rhisph.2020.100196_bib46) 2017; 15
Wei (10.1016/j.rhisph.2020.100196_bib61) 2013; 65
Zhang (10.1016/j.rhisph.2020.100196_bib66) 2016; 95
Ferreira (10.1016/j.rhisph.2020.100196_bib25) 2020; 30
Ozturk (10.1016/j.rhisph.2020.100196_bib45) 2005; 269
Santoyo (10.1016/j.rhisph.2020.100196_bib51) 2016; 183
References_xml – volume: 48
  start-page: 67
  year: 2012
  end-page: 73
  ident: bib41
  article-title: Rice-based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity to improve phosphorus nutrition of upland rice (
  publication-title: Biol. Fertil. Soils
– year: 2005
  ident: bib59
  article-title: Methods of Analysis of Soils Plants Waters Fertilisers and Organic Manures
– volume: 121
  start-page: 277
  year: 2018
  end-page: 281
  ident: bib6
  article-title: Plant-promoting rhizobacteria
  publication-title: Ind. Crop. Prod.
– volume: 168
  start-page: 1100
  year: 2017
  end-page: 1106
  ident: bib19
  article-title: Fungal endophytes and their interactions with plants in phytoremediation: a review
  publication-title: Chemosphere
– start-page: 6433
  year: 2017
  end-page: 6695
  ident: bib62
  article-title: Soil Phosphorus and Potassium
  publication-title: The Nature and Properties of Soils
– volume: 96
  start-page: 217
  year: 2015
  end-page: 224
  ident: bib38
  article-title: Characterization of phosphate-solubilizing bacteria isolated from calcareous soils
  publication-title: Appl. Soil Ecol.
– start-page: 831
  year: 1982
  end-page: 853
  ident: bib4
  article-title: Soil respiration
  publication-title: Methods of Soil Analysis. Part. 2. Chemical and Microbiological Properties
– volume: 30
  start-page: 98
  year: 2020
  end-page: 108
  ident: bib25
  article-title: Co-inoculation of selected nodule endophytic rhizobacterial strains with Rhizobium tropici promotes plant growth and controls damping off in common bean
  publication-title: Pedosphere
– volume: 138
  start-page: 319
  year: 2016
  end-page: 324
  ident: bib8
  article-title: Development of a biological phosphate fertilizer to improve wheat (
  publication-title: Procedia. Eng.
– volume: 183
  start-page: 92
  year: 2016
  end-page: 99
  ident: bib51
  article-title: Plant growth-promoting bacterial endophytes
  publication-title: Microbiol. Res.
– volume: 24
  start-page: 358
  year: 1997
  end-page: 364
  ident: bib27
  article-title: Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (
  publication-title: Biol. Fertil. Soils
– volume: 111
  start-page: 31
  year: 2018
  end-page: 43
  ident: bib40
  article-title: Modification of root properties with phosphate solubilizing bacteria and arbuscular mycorrhiza to reduce rock phosphate application in soybean-wheat cropping system
  publication-title: Ecol. Eng.
– start-page: 1447
  year: 2001
  end-page: 1480
  ident: bib5
  article-title: Plant growth-promoting rhizobacteria (PGPR)
  publication-title: Encyclopedia of Genetics
– volume: 8
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib35
  article-title: Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil
  publication-title: Front. Plant Sci.
– volume: 2
  start-page: 5
  year: 2016
  end-page: 12
  ident: bib23
  article-title: Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant
  publication-title: Rhizosphere
– start-page: 903
  year: 1982
  end-page: 947
  ident: bib58
  article-title: Soil enzymes
  publication-title: Methods of Soil Analysis
– volume: 12
  start-page: 547
  year: 2012
  end-page: 562
  ident: bib10
  article-title: Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 202
  start-page: 43
  year: 2017
  end-page: 50
  ident: bib32
  article-title: Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth
  publication-title: Microbiol. Res.
– volume: 64
  start-page: 719
  year: 2018
  end-page: 727
  ident: bib22
  article-title: Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria
  publication-title: Soil Sci. Plant Nutr.
– volume: 43
  start-page: 805
  year: 2007
  end-page: 809
  ident: bib24
  article-title: Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions
  publication-title: Biol. Fertil. Soils
– volume: 61
  start-page: 190
  year: 2012
  end-page: 195
  ident: bib43
  article-title: Uptake of phosphate and promotion of vegetative growth in glucose-exuding rice plants (
  publication-title: Appl. Soil Ecol.
– volume: 15
  start-page: 379
  year: 2017
  end-page: 391
  ident: bib46
  article-title: Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize
  publication-title: J. Genet. Eng. Biotechnol.
– volume: 334
  start-page: 11
  year: 2010
  end-page: 31
  ident: bib36
  article-title: Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies
  publication-title: Plant Soil
– volume: 100
  start-page: 1738
  year: 2013
  end-page: 1750
  ident: bib28
  article-title: Inside the root microbiome: bacterial root endophytes and plant growth promotion
  publication-title: Am. J. Bot.
– volume: 269
  start-page: 69
  year: 2005
  end-page: 80
  ident: bib45
  article-title: Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil
  publication-title: Plant Soil
– volume: 103
  start-page: 164
  year: 2017
  end-page: 169
  ident: bib9
  article-title: Phosphate and potassium-solubilizing bacteria effect on the growth of rice
  publication-title: Ecol. Eng.
– volume: 291
  start-page: 109
  year: 2007
  end-page: 118
  ident: bib21
  article-title: Early changes in root characteristics of maize (
  publication-title: Plant Soil
– volume: 9
  start-page: 778
  year: 1958
  end-page: 781
  ident: bib56
  article-title: The incidence of apatite-solubilizing organisms in the rhizosphere and soil
  publication-title: J. Agric. Res.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib47
  article-title: A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by
  publication-title: Front. Plant Sci.
– volume: 10
  start-page: 85
  year: 2008
  end-page: 88
  ident: bib1
  article-title: Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (
  publication-title: Int. J. Agric. Biol.
– volume: 10
  start-page: 100146
  year: 2019
  ident: bib60
  article-title: Tea yield maintained in PGPR inoculated field plants despite significant reduction in fertilizer application
  publication-title: Rhizosphere
– volume: 40
  start-page: 510
  year: 2008
  end-page: 517
  ident: bib30
  article-title: Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions
  publication-title: Appl. Soil Ecol.
– volume: 95
  start-page: 64
  year: 2016
  end-page: 72
  ident: bib66
  article-title: Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields
  publication-title: Ecol. Eng.
– volume: 542
  start-page: 1062
  year: 2016
  end-page: 1077
  ident: bib68
  article-title: New insights into phosphorus management in agriculture-a crop rotation approach
  publication-title: Sci. Total Environ.
– start-page: 513
  year: 2017
  end-page: 556
  ident: bib7
  article-title: Improving plant phosphorus (P) acquisition by phosphate-solubilizing bacteria
  publication-title: Essential Plant Nutrients
– volume: 45
  start-page: 209
  year: 2010
  end-page: 217
  ident: bib26
  article-title: Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities
  publication-title: Appl. Soil Ecol.
– volume: 97
  start-page: 883
  year: 2006
  end-page: 893
  ident: bib3
  article-title: Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism
  publication-title: Ann. Bot.
– volume: 19
  start-page: 451
  year: 2012
  end-page: 459
  ident: bib2
  article-title: Alleviation of fungicide-induced phytotoxicity in greengram [
  publication-title: Saudi J. Biol. Sci.
– volume: 41
  start-page: 277
  year: 2003
  end-page: 281
  ident: bib29
  article-title: Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola,
  publication-title: Plant Physiol. Biochem.
– volume: 87
  start-page: 65
  year: 2013
  end-page: 77
  ident: bib15
  article-title: Plant secondary metabolite profiling evidences strain-dependent effect in the
  publication-title: Phytochemistry
– volume: 1–6
  year: 2011
  ident: bib67
  article-title: Isolation and characterization of a phosphate solubilizing halophilic bacterium
  publication-title: Evid. Based Complement Alternat Med.
– volume: 30
  start-page: 1557
  year: 2007
  end-page: 1565
  ident: bib20
  article-title: species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus
  publication-title: Plant Cell Environ.
– year: 1972
  ident: bib69
  publication-title: Methods for the research on ecology of soil borne plant pathogens
– volume: 57
  start-page: 535
  year: 1991
  end-page: 538
  ident: bib14
  article-title: Rapid in-situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane
  publication-title: Appl. Environ. Microbiol.
– volume: 176
  start-page: 691
  year: 2018
  end-page: 703
  ident: bib57
  article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition
  publication-title: Plant Physiol.
– volume: 124
  start-page: 88
  year: 2015
  end-page: 111
  ident: bib11
  article-title: Proteomic analysis of canola root inoculated with bacteria under salt stress
  publication-title: J. Proteomics
– volume: 173
  start-page: 34
  year: 2017
  end-page: 43
  ident: bib31
  article-title: Radiological investigation of phosphate fertilizers: leaching studies
  publication-title: J. Environ. Radioact.
– volume: 168
  start-page: 531
  year: 2005
  end-page: 540
  ident: bib63
  article-title: Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 205
  start-page: 107
  year: 2017
  end-page: 117
  ident: bib42
  article-title: Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (
  publication-title: Microbiol. Res.
– volume: 49
  start-page: 3742
  year: 2001
  end-page: 3745
  ident: bib64
  article-title: Allelochemicals in wheat (
  publication-title: J. Agric. Food Chem.
– volume: 4
  start-page: 923
  year: 2012
  end-page: 929
  ident: bib33
  article-title: The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (
  publication-title: Intl. J. Agric. Crop Sci.
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  ident: bib48
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
– volume: 25
  start-page: 428
  year: 2015
  end-page: 437
  ident: bib34
  article-title: Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics
  publication-title: Pedosphere
– volume: 247
  start-page: 396
  year: 2017
  end-page: 408
  ident: bib17
  article-title: Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM
  publication-title: Agric. Ecosyst. Environ.
– volume: 17
  start-page: 319
  year: 1999
  end-page: 339
  ident: bib49
  article-title: Phosphate solubilizing bacteria and their role in plant growth promotion
  publication-title: Biotechnol. Adv.
– volume: 38
  start-page: 3502
  year: 2006
  end-page: 3505
  ident: bib50
  article-title: Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis
  publication-title: Soil Biol. Biochem.
– volume: 56
  start-page: 263
  year: 2009
  end-page: 284
  ident: bib65
  article-title: Plant growth promotion by phosphate solubilizing bacteria
  publication-title: Acta Microbiol. Immunol. Hung.
– year: 1979
  ident: bib13
  article-title: Methods of Studying Root Systems
– volume: 83
  start-page: 380
  year: 2015
  end-page: 385
  ident: bib18
  article-title: Phosphate-solubilising bacteria enhance
  publication-title: Ecol. Eng.
– volume: 133
  start-page: 81
  year: 2000
  end-page: 88
  ident: bib16
  article-title: Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria
  publication-title: For. Ecol. Manag.
– volume: 51
  start-page: 532
  year: 2017
  end-page: 537
  ident: bib44
  article-title: Effects of root colonization by zinc-solubilizing bacteria on rice plant (
  publication-title: Agric. Nat. Resour.
– start-page: 261
  year: 2015
  ident: bib53
  article-title: Phosphorus Leaching from Soils: Process Description, Risk Assessment and Mitigation, PhD Thesis
– volume: 26
  start-page: 1400
  year: 2019
  end-page: 1410
  ident: bib12
  article-title: Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of
  publication-title: Saudi J. Biol. Sci.
– volume: 47
  start-page: 30
  year: 2011
  end-page: 34
  ident: bib55
  article-title: Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils
  publication-title: Eur. J. Soil Biol.
– volume: 1
  start-page: 86
  year: 2014
  end-page: 93
  ident: bib52
  article-title: Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat
  publication-title: Plant Sci. Today.
– volume: 65
  start-page: 278
  year: 2013
  end-page: 285
  ident: bib61
  article-title: The congeneric strain
  publication-title: Biol. Contr.
– volume: 71
  start-page: 114
  year: 2011
  end-page: 120
  ident: bib37
  article-title: Stimulation of root acid phosphatase by phosphorus deficiency is regulated by ethylene in Medicago falcate
  publication-title: Environ. Exp. Bot.
– volume: 100
  start-page: 1738
  year: 2013
  ident: 10.1016/j.rhisph.2020.100196_bib28
  article-title: Inside the root microbiome: bacterial root endophytes and plant growth promotion
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.1200572
– volume: 173
  start-page: 34
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib31
  article-title: Radiological investigation of phosphate fertilizers: leaching studies
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2016.10.006
– volume: 138
  start-page: 319
  year: 2016
  ident: 10.1016/j.rhisph.2020.100196_bib8
  article-title: Development of a biological phosphate fertilizer to improve wheat (Triticum aestivum L.) production in Mali
  publication-title: Procedia. Eng.
  doi: 10.1016/j.proeng.2016.02.091
– volume: 25
  start-page: 428
  year: 2015
  ident: 10.1016/j.rhisph.2020.100196_bib34
  article-title: Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)30010-2
– volume: 56
  start-page: 263
  year: 2009
  ident: 10.1016/j.rhisph.2020.100196_bib65
  article-title: Plant growth promotion by phosphate solubilizing bacteria
  publication-title: Acta Microbiol. Immunol. Hung.
  doi: 10.1556/AMicr.56.2009.3.6
– volume: 30
  start-page: 1557
  year: 2007
  ident: 10.1016/j.rhisph.2020.100196_bib20
  article-title: Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01733.x
– volume: 15
  start-page: 379
  issue: 2
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib46
  article-title: Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize
  publication-title: J. Genet. Eng. Biotechnol.
  doi: 10.1016/j.jgeb.2017.06.005
– year: 2005
  ident: 10.1016/j.rhisph.2020.100196_bib59
– volume: 349
  start-page: 121
  year: 2011
  ident: 10.1016/j.rhisph.2020.100196_bib48
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.rhisph.2020.100196_bib47
  article-title: A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00492
– volume: 49
  start-page: 3742
  year: 2001
  ident: 10.1016/j.rhisph.2020.100196_bib64
  article-title: Allelochemicals in wheat (Triticum aestivum L.): cultivar difference in the exudation of phenolic acids
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf010111x
– start-page: 1447
  year: 2001
  ident: 10.1016/j.rhisph.2020.100196_bib5
  article-title: Plant growth-promoting rhizobacteria (PGPR)
– volume: 103
  start-page: 164
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib9
  article-title: Phosphate and potassium-solubilizing bacteria effect on the growth of rice
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2017.03.008
– volume: 133
  start-page: 81
  year: 2000
  ident: 10.1016/j.rhisph.2020.100196_bib16
  article-title: Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(99)00300-X
– volume: 43
  start-page: 805
  issue: 6
  year: 2007
  ident: 10.1016/j.rhisph.2020.100196_bib24
  article-title: Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-007-0172-3
– volume: 10
  start-page: 85
  issue: 1
  year: 2008
  ident: 10.1016/j.rhisph.2020.100196_bib1
  article-title: Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum)
  publication-title: Int. J. Agric. Biol.
– volume: 291
  start-page: 109
  year: 2007
  ident: 10.1016/j.rhisph.2020.100196_bib21
  article-title: Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9178-0
– start-page: 903
  year: 1982
  ident: 10.1016/j.rhisph.2020.100196_bib58
  article-title: Soil enzymes
– volume: 48
  start-page: 67
  year: 2012
  ident: 10.1016/j.rhisph.2020.100196_bib41
  article-title: Rice-based crop rotation for enhancing native arbuscular mycorrhizal (AM) activity to improve phosphorus nutrition of upland rice (Oryza sativa L.)
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-011-0609-6
– volume: 247
  start-page: 396
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib17
  article-title: Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.07.006
– volume: 97
  start-page: 883
  year: 2006
  ident: 10.1016/j.rhisph.2020.100196_bib3
  article-title: Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcl027
– volume: 45
  start-page: 209
  issue: 3
  year: 2010
  ident: 10.1016/j.rhisph.2020.100196_bib26
  article-title: Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2010.04.007
– volume: 96
  start-page: 217
  year: 2015
  ident: 10.1016/j.rhisph.2020.100196_bib38
  article-title: Characterization of phosphate-solubilizing bacteria isolated from calcareous soils
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.08.003
– volume: 1–6
  year: 2011
  ident: 10.1016/j.rhisph.2020.100196_bib67
  article-title: Isolation and characterization of a phosphate solubilizing halophilic bacterium kushneria sp. YCWA18 from daqiao saltern on the coast of yellow sea of China
  publication-title: Evid. Based Complement Alternat Med.
– start-page: 831
  year: 1982
  ident: 10.1016/j.rhisph.2020.100196_bib4
  article-title: Soil respiration
– volume: 12
  start-page: 547
  issue: 3
  year: 2012
  ident: 10.1016/j.rhisph.2020.100196_bib10
  article-title: Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 47
  start-page: 30
  year: 2011
  ident: 10.1016/j.rhisph.2020.100196_bib55
  article-title: Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2010.10.005
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib35
  article-title: Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00141
– volume: 121
  start-page: 277
  year: 2018
  ident: 10.1016/j.rhisph.2020.100196_bib6
  article-title: Plant-promoting rhizobacteria Methylobacterium komagatae increases crambe yields, root system and plant height
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2018.05.020
– volume: 95
  start-page: 64
  year: 2016
  ident: 10.1016/j.rhisph.2020.100196_bib66
  article-title: Arbuscular mycorrhiza improved phosphorus efficiency in paddy fields
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.06.029
– start-page: 261
  year: 2015
  ident: 10.1016/j.rhisph.2020.100196_bib53
– volume: 542
  start-page: 1062
  issue: Part B
  year: 2016
  ident: 10.1016/j.rhisph.2020.100196_bib68
  article-title: New insights into phosphorus management in agriculture-a crop rotation approach
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.009
– volume: 183
  start-page: 92
  year: 2016
  ident: 10.1016/j.rhisph.2020.100196_bib51
  article-title: Plant growth-promoting bacterial endophytes
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2015.11.008
– volume: 111
  start-page: 31
  year: 2018
  ident: 10.1016/j.rhisph.2020.100196_bib40
  article-title: Modification of root properties with phosphate solubilizing bacteria and arbuscular mycorrhiza to reduce rock phosphate application in soybean-wheat cropping system
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2017.11.008
– volume: 83
  start-page: 380
  year: 2015
  ident: 10.1016/j.rhisph.2020.100196_bib18
  article-title: Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2015.06.045
– volume: 10
  start-page: 100146
  issue: 2019
  year: 2019
  ident: 10.1016/j.rhisph.2020.100196_bib60
  article-title: Tea yield maintained in PGPR inoculated field plants despite significant reduction in fertilizer application
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2019.100146
– volume: 26
  start-page: 1400
  year: 2019
  ident: 10.1016/j.rhisph.2020.100196_bib12
  article-title: Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var. Galaxy 2013)
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2018.05.024
– volume: 1
  start-page: 86
  issue: 2
  year: 2014
  ident: 10.1016/j.rhisph.2020.100196_bib52
  article-title: Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat
  publication-title: Plant Sci. Today.
  doi: 10.14719/pst.2014.1.2.25
– volume: 168
  start-page: 531
  year: 2005
  ident: 10.1016/j.rhisph.2020.100196_bib63
  article-title: Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200520507
– volume: 202
  start-page: 43
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib32
  article-title: Effect of succinate on phosphate solubilization in nitrogen fixing bacteria harbouring chick pea and their effect on plant growth
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.05.005
– volume: 176
  start-page: 691
  year: 2018
  ident: 10.1016/j.rhisph.2020.100196_bib57
  article-title: Reduction in root secondary growth as a strategy for phosphorus acquisition
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01583
– volume: 30
  start-page: 98
  issue: 1
  year: 2020
  ident: 10.1016/j.rhisph.2020.100196_bib25
  article-title: Co-inoculation of selected nodule endophytic rhizobacterial strains with Rhizobium tropici promotes plant growth and controls damping off in common bean
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(19)60825-8
– volume: 51
  start-page: 532
  issue: 6
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib44
  article-title: Effects of root colonization by zinc-solubilizing bacteria on rice plant (Oryza sativa MR219) growth
  publication-title: Agric. Nat. Resour.
– volume: 41
  start-page: 277
  year: 2003
  ident: 10.1016/j.rhisph.2020.100196_bib29
  article-title: Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(03)00019-6
– volume: 269
  start-page: 69
  year: 2005
  ident: 10.1016/j.rhisph.2020.100196_bib45
  article-title: Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0469-z
– start-page: 6433
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib62
  article-title: Soil Phosphorus and Potassium
– volume: 17
  start-page: 319
  year: 1999
  ident: 10.1016/j.rhisph.2020.100196_bib49
  article-title: Phosphate solubilizing bacteria and their role in plant growth promotion
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(99)00014-2
– volume: 205
  start-page: 107
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib42
  article-title: Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.)
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.08.011
– volume: 38
  start-page: 3502
  issue: 12
  year: 2006
  ident: 10.1016/j.rhisph.2020.100196_bib50
  article-title: Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.05.008
– volume: 61
  start-page: 190
  year: 2012
  ident: 10.1016/j.rhisph.2020.100196_bib43
  article-title: Uptake of phosphate and promotion of vegetative growth in glucose-exuding rice plants (Oryza sativa) inoculated with plant growth-promoting bacteria
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2011.10.016
– volume: 2
  start-page: 5
  year: 2016
  ident: 10.1016/j.rhisph.2020.100196_bib23
  article-title: Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2016.09.003
– volume: 71
  start-page: 114
  year: 2011
  ident: 10.1016/j.rhisph.2020.100196_bib37
  article-title: Stimulation of root acid phosphatase by phosphorus deficiency is regulated by ethylene in Medicago falcate
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2010.11.007
– volume: 40
  start-page: 510
  year: 2008
  ident: 10.1016/j.rhisph.2020.100196_bib30
  article-title: Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2008.08.001
– volume: 64
  start-page: 719
  year: 2018
  ident: 10.1016/j.rhisph.2020.100196_bib22
  article-title: Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2018.1510284
– volume: 87
  start-page: 65
  year: 2013
  ident: 10.1016/j.rhisph.2020.100196_bib15
  article-title: Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2012.11.009
– volume: 19
  start-page: 451
  year: 2012
  ident: 10.1016/j.rhisph.2020.100196_bib2
  article-title: Alleviation of fungicide-induced phytotoxicity in greengram [Vignaradiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2012.06.003
– volume: 168
  start-page: 1100
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib19
  article-title: Fungal endophytes and their interactions with plants in phytoremediation: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.10.097
– volume: 334
  start-page: 11
  year: 2010
  ident: 10.1016/j.rhisph.2020.100196_bib36
  article-title: Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0444-9
– volume: 4
  start-page: 923
  year: 2012
  ident: 10.1016/j.rhisph.2020.100196_bib33
  article-title: The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynaras colymus)
  publication-title: Intl. J. Agric. Crop Sci.
– volume: 9
  start-page: 778
  year: 1958
  ident: 10.1016/j.rhisph.2020.100196_bib56
  article-title: The incidence of apatite-solubilizing organisms in the rhizosphere and soil
  publication-title: J. Agric. Res.
  doi: 10.1071/AR9580778
– year: 1979
  ident: 10.1016/j.rhisph.2020.100196_bib13
– year: 1972
  ident: 10.1016/j.rhisph.2020.100196_bib69
– volume: 124
  start-page: 88
  year: 2015
  ident: 10.1016/j.rhisph.2020.100196_bib11
  article-title: Proteomic analysis of canola root inoculated with bacteria under salt stress
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2015.04.009
– volume: 24
  start-page: 358
  issue: 24
  year: 1997
  ident: 10.1016/j.rhisph.2020.100196_bib27
  article-title: Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.)
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740050258
– volume: 65
  start-page: 278
  year: 2013
  ident: 10.1016/j.rhisph.2020.100196_bib61
  article-title: The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato
  publication-title: Biol. Contr.
  doi: 10.1016/j.biocontrol.2012.12.010
– start-page: 513
  year: 2017
  ident: 10.1016/j.rhisph.2020.100196_bib7
  article-title: Improving plant phosphorus (P) acquisition by phosphate-solubilizing bacteria
– volume: 57
  start-page: 535
  year: 1991
  ident: 10.1016/j.rhisph.2020.100196_bib14
  article-title: Rapid in-situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.57.2.535-538.1991
SSID ssj0001763563
Score 2.401633
Snippet Rhizospheric and endophytic bacteria are known to increase phosphorus efficiency (PE) of plant in phosphorus-deficient soils. The purpose of this research was...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100196
SubjectTerms Biofertilizer
cultivars
endophytes
grain yield
indole acetic acid
length
Phosphate deficiency
phosphorus
plant growth
plant growth-promoting rhizobacteria
plant height
Rhizobacteria
rhizosphere
ripening
root systems
roots
soil
Soil phosphorous
solubilization
surface area
tricalcium phosphate
Triticum aestivum
volume
weight
wheat
Title Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils
URI https://dx.doi.org/10.1016/j.rhisph.2020.100196
https://www.proquest.com/docview/2498252275
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEF_0fOlLUdpSW5Ut-Boul9lNdh8PUU7Fe7GCb0uy2cUUmxyXXAU_ix_WmWxiaREE35Iwk4Sd3fmzM_sbxo6tAPAOZKQTWUYCRBwpJQnGNVU2Flmh-vMVV8t0cSMubuXtFjsZz8JQWeWg-4NO77X18GQ6jOZ0VVXTa8oZ4npDEwbkqGTbbCcBneLU3pmfXy6Wf7daehA2yjUTS0Q84yG6vtJrfVe1K0pMJAGSiAD8XzdS_6nr3gad7bKPg_PI5-H_9tiWqz-xJ-q5iU50tfnNG89dXTY4dJ3jeV3yNZXUtQQd4Pjqjq7Qt-Q036go9hHtFi8CXnPOq35_wbUDYbNuNi3ftI67HmaCzmjyquYPpL45IXZUfzAqpkcjA9KXLtB2-JHqvv3Mbs5Of54soqHnQmQBdBd5KNCFE7O4TH3stbJlZrVyaWEpH6ltnCtZaJ974aWzGBt6pb3NYwtCSJA5fGGTuqndV8YVQYVBqZKZi4VPoJCFcHqWeOh7FcE-g3GQjR0Ayakvxr0ZK89-mSAaQ6IxQTT7LHrhWgVAjjfos1F-5p-JZdBmvMH5YxS3wTVHiZS8djj0BkNWDKyTJJPf3v327-wD3YWqswM26dYbd4j-TVccDfP3Gbt6_Ms
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9ze9AXUVT8NoKvZV2TrOmjiDJ124sKvoU2TbCi7Vg7Bf8W_1jvmlZRBMG3kt61JZfeR-7yO0JONGfMGia8KBCpxxn3PSkFwrgOpfZ5mMj6fMVkOhzd8at7cd8hZ-1ZGCyrbHS_0-m1tm5G-s1s9mdZ1r_BnCH8b2DCGDoq4RLpITqV6JLe6eX1aPq11VKDsGGuGVk85GkP0dWVXvOHrJxhYiJwkEQI4P-7kfqhrmsbdLFGVhvnkZ6671snHZNvkHfsuQlOdLZ4poWlJk8LmLrK0DhP6RxL6kqEDjB09oBX4FtSXG9YFPsGdosmDq85plm9v2DKhrCYF4uSLkpDTQ0zgWc0aZbTV1TfFBE7sheIinGoZQD61DjaCl6SPZWb5O7i_PZs5DU9FzzNWFR5liXgwvGBnw6tbyOp01BH0gwTjfnISPuxFElkY8utMBpiQysjq2NfM84FEzHbIt28yM02oRKhwlgqg4HxuQ1YIhJuokFgWd2riO0Q1k6y0g0gOfbFeFJt5dmjcqJRKBrlRLNDvE-umQPk-IM-bOWnvi0sBTbjD87jVtwK_jlMpMS5galXELJCYB0Eodj999OPyPLodjJW48vp9R5ZwTuuAm2fdKv5whyAr1Mlh81a_gCqef-x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consortium+of+endophyte+and+rhizosphere+phosphate+solubilizing+bacteria+improves+phosphorous+use+efficiency+in+wheat+cultivars+in+phosphorus+deficient+soils&rft.jtitle=Rhizosphere&rft.au=Emami%2C+Somayeh&rft.au=Alikhani%2C+Hossein+Ali&rft.au=Pourbabaee%2C+Ahmad+Ali&rft.au=Etesami%2C+Hassan&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=14&rft_id=info:doi/10.1016%2Fj.rhisph.2020.100196&rft.externalDocID=S2452219820300197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon