Neural network-based event-triggered data-driven control of disturbed nonlinear systems with quantized input

This paper is devoted to design an event-triggered data-driven control for a class of disturbed nonlinear systems with quantized input. A uniform quantizer reconstructed with decreasing quantization intervals is employed to reduce the quantization error. A neural network-based estimation strategy is...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 156; pp. 152 - 159
Main Authors Wang, Xianming, Karimi, Hamid Reza, Shen, Mouquan, Liu, Dan, Li, Li-Wei, Shi, Jiantao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is devoted to design an event-triggered data-driven control for a class of disturbed nonlinear systems with quantized input. A uniform quantizer reconstructed with decreasing quantization intervals is employed to reduce the quantization error. A neural network-based estimation strategy is proposed to estimate both the pseudo partial derivative and disturbances. Consequently, an input triggering rule for single-input single-output systems is provided by incorporating the estimated disturbances, the quantization error bound and tracking errors. Resorting to the Lyapunov method, sufficient conditions for synthesized error systems to be uniformly ultimately bounded are presented. The validity of the proposed scheme is demonstrated via a simulation example.
AbstractList This paper is devoted to design an event-triggered data-driven control for a class of disturbed nonlinear systems with quantized input. A uniform quantizer reconstructed with decreasing quantization intervals is employed to reduce the quantization error. A neural network-based estimation strategy is proposed to estimate both the pseudo partial derivative and disturbances. Consequently, an input triggering rule for single-input single-output systems is provided by incorporating the estimated disturbances, the quantization error bound and tracking errors. Resorting to the Lyapunov method, sufficient conditions for synthesized error systems to be uniformly ultimately bounded are presented. The validity of the proposed scheme is demonstrated via a simulation example.
This paper is devoted to design an event-triggered data-driven control for a class of disturbed nonlinear systems with quantized input. A uniform quantizer reconstructed with decreasing quantization intervals is employed to reduce the quantization error. A neural network-based estimation strategy is proposed to estimate both the pseudo partial derivative and disturbances. Consequently, an input triggering rule for single-input single-output systems is provided by incorporating the estimated disturbances, the quantization error bound and tracking errors. Resorting to the Lyapunov method, sufficient conditions for synthesized error systems to be uniformly ultimately bounded are presented. The validity of the proposed scheme is demonstrated via a simulation example.This paper is devoted to design an event-triggered data-driven control for a class of disturbed nonlinear systems with quantized input. A uniform quantizer reconstructed with decreasing quantization intervals is employed to reduce the quantization error. A neural network-based estimation strategy is proposed to estimate both the pseudo partial derivative and disturbances. Consequently, an input triggering rule for single-input single-output systems is provided by incorporating the estimated disturbances, the quantization error bound and tracking errors. Resorting to the Lyapunov method, sufficient conditions for synthesized error systems to be uniformly ultimately bounded are presented. The validity of the proposed scheme is demonstrated via a simulation example.
Author Wang, Xianming
Karimi, Hamid Reza
Shi, Jiantao
Li, Li-Wei
Shen, Mouquan
Liu, Dan
Author_xml – sequence: 1
  givenname: Xianming
  surname: Wang
  fullname: Wang, Xianming
  organization: School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 211816, China
– sequence: 2
  givenname: Hamid Reza
  surname: Karimi
  fullname: Karimi, Hamid Reza
  email: hamidreza.karimi@polimi.it
  organization: Department of Mechanical Engineering, Politecnico di Milano, Milan, 20156, Italy
– sequence: 3
  givenname: Mouquan
  orcidid: 0000-0001-6448-4866
  surname: Shen
  fullname: Shen, Mouquan
  email: shenmouquan@njtech.edu.cn
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211816, China
– sequence: 4
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211816, China
– sequence: 5
  givenname: Li-Wei
  surname: Li
  fullname: Li, Li-Wei
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211816, China
– sequence: 6
  givenname: Jiantao
  surname: Shi
  fullname: Shi, Jiantao
  organization: College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, 211816, China
BookMark eNqFkMFO3DAQhi20SCyUN-CQYy8JYzubOD1UqlBbKq3aC5wtxx6Dl6y92A4Inr5epace2tNoRv83mvnOycoHj4RcUWgo0O5613icPeaGAWMNDA0wekLWVPRDzXrBVmQNYuB1BwLOyHlKOwDoRMvXZPqJc1RTVejXEJ_qUSU0Fb6gz3WO7uEBY-mNyqo20ZVxpYPPMUxVsJVxKc9xLIFy0OQ8qlilt5Rxn6pXlx-r51n57N5LwPnDnD-QU6umhJd_6gW5__b17ua23v76_uPmy7bWnA-5tpzBuLHcCBjRDmrT8lb0wqqBCo2aMWG1GXqBGwa0RTWa3o4dH5kYKZjy1gX5uOw9xPA8Y8py75LGaVIew5wk61nftZuO9yXaLlEdQ0oRrTxEt1fxTVKQR7lyJxe58ihXwiCL3IJ9-gvTLqvsjm6Um_4Hf15gLA5eHEaZtEOv0biIOksT3L8X_AZtAJ2Z
CitedBy_id crossref_primary_10_1016_j_ins_2023_02_073
crossref_primary_10_1016_j_neunet_2023_11_058
crossref_primary_10_1109_ACCESS_2024_3522107
crossref_primary_10_1002_oca_3142
crossref_primary_10_1002_acs_3675
crossref_primary_10_1007_s00521_024_09442_2
crossref_primary_10_1016_j_conengprac_2023_105602
crossref_primary_10_3934_math_20241444
crossref_primary_10_1007_s11431_023_2607_8
crossref_primary_10_1016_j_neucom_2023_126586
crossref_primary_10_3390_e26080711
crossref_primary_10_1016_j_neunet_2023_04_043
crossref_primary_10_3390_app14125112
crossref_primary_10_1007_s00034_024_02676_4
crossref_primary_10_3390_app14083492
crossref_primary_10_3934_mbe_2023376
crossref_primary_10_3390_math12010024
crossref_primary_10_1109_ACCESS_2023_3270280
crossref_primary_10_3390_ai5030079
crossref_primary_10_1007_s00500_024_10304_1
crossref_primary_10_1177_01423312231181964
Cites_doi 10.1002/rnc.5107
10.1109/TCYB.2020.3015746
10.1016/j.neunet.2019.08.011
10.1109/9.983352
10.1109/TAC.2017.2753460
10.1049/iet-cta.2019.0051
10.1016/j.neucom.2017.07.008
10.1016/j.neunet.2020.01.024
10.1109/TIE.2014.2308161
10.1109/TAC.2019.2959924
10.1109/TCST.2010.2093136
10.1109/TSMC.2018.2866909
10.1109/TIE.2016.2636126
10.1109/TCST.2003.821967
10.23919/ECC51009.2020.9143691
10.1002/rnc.5661
10.1109/TNNLS.2013.2291792
10.1016/j.ins.2020.03.031
10.1109/TNNLS.2021.3053269
10.1016/j.neunet.2019.09.032
10.1109/TNNLS.2019.2919441
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.neunet.2022.09.021
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 159
ExternalDocumentID 10_1016_j_neunet_2022_09_021
S0893608022003719
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
ID FETCH-LOGICAL-c339t-f320b5f3d80bef9a5434878fa918cec228fcd978e52014eabd7fb63b28b10d843
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Jul 10 22:28:17 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 03:32:12 EDT 2025
Fri Feb 23 02:39:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Event-triggered control
Model-free adaptive control
Neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-f320b5f3d80bef9a5434878fa918cec228fcd978e52014eabd7fb63b28b10d843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6448-4866
PQID 2727645637
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2727645637
crossref_primary_10_1016_j_neunet_2022_09_021
crossref_citationtrail_10_1016_j_neunet_2022_09_021
elsevier_sciencedirect_doi_10_1016_j_neunet_2022_09_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Neural networks
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu, Jiang, Shi (b20) 2014; 61
Pham, H. A., & Soffker, D. (2020). Improved model-free adaptive control method using recursive least-squares estimation algorithm. In
Ding, Wang (b8) 2020; 125
(pp. 47–52).
Bu, Zhu, Yu, Hou, Liang (b4) 2020; 30
Li, Wang, Zhang (b13) 2019; 13
Hou, Chi, Gao (b11) 2016; 64
Yu, Hou, Bu, Yu (b23) 2019; 31
Deng, Che, Wu (b7) 2020; 51
Hjalmarsson, H., Gunnarsson, S., & Gevers, M. (2002). A convergent iterative restricted complexity control design scheme. In
Hou, Jin (b12) 2010; 19
Hou (b10) 1994
Cao, Wang, Guo, Huang, Wen (b5) 2019; 119
Bu, Yu, Yu, Hou, Yang (b3) 2021
Liu, Yang (b14) 2018; 272
(pp. 1734–1740).
Zhu, Hou (b25) 2013; 25
Yang, Niu, Karimi (b21) 2022; 32
Rosolia, Borrelli (b17) 2017; 63
Silva, Datta, Bhattacharyya (b18) 2002; 47
Yang, Yu, Sun, Karimi (b22) 2019; 524
Previdi, Schauer, Savaresi, Hunt (b16) 2004; 12
Bu, Hou, Yu, Fu (b1) 2012; 14
Bu, Hou, Yu, Yang (b2) 2018; 50
Zhang, Su, Zhang, Tian (b24) 2021; 32
De Persis, Tesi (b6) 2019; 65
Wang, Wang, Song, Shen, Huang (b19) 2020; 121
Hou (10.1016/j.neunet.2022.09.021_b11) 2016; 64
Wang (10.1016/j.neunet.2022.09.021_b19) 2020; 121
Yang (10.1016/j.neunet.2022.09.021_b21) 2022; 32
Rosolia (10.1016/j.neunet.2022.09.021_b17) 2017; 63
Zhang (10.1016/j.neunet.2022.09.021_b24) 2021; 32
Xu (10.1016/j.neunet.2022.09.021_b20) 2014; 61
Hou (10.1016/j.neunet.2022.09.021_b10) 1994
Yu (10.1016/j.neunet.2022.09.021_b23) 2019; 31
Cao (10.1016/j.neunet.2022.09.021_b5) 2019; 119
Yang (10.1016/j.neunet.2022.09.021_b22) 2019; 524
Bu (10.1016/j.neunet.2022.09.021_b4) 2020; 30
Li (10.1016/j.neunet.2022.09.021_b13) 2019; 13
Deng (10.1016/j.neunet.2022.09.021_b7) 2020; 51
Previdi (10.1016/j.neunet.2022.09.021_b16) 2004; 12
Ding (10.1016/j.neunet.2022.09.021_b8) 2020; 125
Silva (10.1016/j.neunet.2022.09.021_b18) 2002; 47
Zhu (10.1016/j.neunet.2022.09.021_b25) 2013; 25
Bu (10.1016/j.neunet.2022.09.021_b3) 2021
Bu (10.1016/j.neunet.2022.09.021_b2) 2018; 50
Hou (10.1016/j.neunet.2022.09.021_b12) 2010; 19
De Persis (10.1016/j.neunet.2022.09.021_b6) 2019; 65
Bu (10.1016/j.neunet.2022.09.021_b1) 2012; 14
10.1016/j.neunet.2022.09.021_b9
10.1016/j.neunet.2022.09.021_b15
Liu (10.1016/j.neunet.2022.09.021_b14) 2018; 272
References_xml – volume: 32
  start-page: 2518
  year: 2022
  end-page: 2535
  ident: b21
  article-title: Dynamic learning control design for interval type-2 fuzzy singularly perturbed systems: A component-based event-triggering protocol
  publication-title: International Journal of Robust and Nonlinear Control
– volume: 524
  start-page: 136
  year: 2019
  end-page: 147
  ident: b22
  article-title: Event-based networked predictive control for networked control systems subject to two-channel delays
  publication-title: Information Sciences
– reference: Hjalmarsson, H., Gunnarsson, S., & Gevers, M. (2002). A convergent iterative restricted complexity control design scheme. In
– volume: 19
  start-page: 1549
  year: 2010
  end-page: 1558
  ident: b12
  article-title: A novel data-driven control approach for a class of discrete-time nonlinear systems
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 65
  start-page: 909
  year: 2019
  end-page: 924
  ident: b6
  article-title: Formulas for data-driven control: Stabilization, optimality, and robustness
  publication-title: IEEE Transactions on Automatic Control
– volume: 63
  start-page: 1883
  year: 2017
  end-page: 1896
  ident: b17
  article-title: Learning model predictive control for iterative tasks. A data-driven control framework
  publication-title: IEEE Transactions on Automatic Control
– year: 2021
  ident: b3
  article-title: Event-triggered model-free adaptive iterative learning control for a class of nonlinear systems over fading channels
  publication-title: IEEE Transactions on Cybernetics
– volume: 32
  start-page: 5502
  year: 2021
  end-page: 5511
  ident: b24
  article-title: Adaptive resilient event-triggered control design of autonomous vehicles with an iterative single critic learning framework
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 272
  start-page: 356
  year: 2018
  end-page: 364
  ident: b14
  article-title: Neural network-based event-triggered MFAC for nonlinear discrete-time processes
  publication-title: Neurocomputing
– volume: 61
  start-page: 6391
  year: 2014
  end-page: 6398
  ident: b20
  article-title: A novel model-free adaptive control design for multivariable industrial processes
  publication-title: IEEE Transactions on Industrial Electronics
– reference: (pp. 47–52).
– volume: 13
  start-page: 2197
  year: 2019
  end-page: 2206
  ident: b13
  article-title: Data-driven-based event-triggered tracking control for non-linear systems with unknown disturbance
  publication-title: IET Control Theory & Applications
– volume: 31
  start-page: 1170
  year: 2019
  end-page: 1182
  ident: b23
  article-title: RBFNN-based data-driven predictive iterative learning control for nonaffine nonlinear systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 50
  start-page: 5119
  year: 2018
  end-page: 5129
  ident: b2
  article-title: Quantized data driven iterative learning control for a class of nonlinear systems with sensor saturation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– reference: Pham, H. A., & Soffker, D. (2020). Improved model-free adaptive control method using recursive least-squares estimation algorithm. In
– volume: 51
  start-page: 1812
  year: 2020
  end-page: 1821
  ident: b7
  article-title: A dynamic periodic event-triggered approach to consensus of heterogeneous linear multiagent systems with time-varying communication delays
  publication-title: IEEE Transactions on Cybernetics
– volume: 14
  start-page: 42
  year: 2012
  end-page: 49
  ident: b1
  article-title: Model free adaptive control with disturbance observer
  publication-title: Journal of Control Engineering and Applied Informatics
– volume: 125
  start-page: 31
  year: 2020
  end-page: 40
  ident: b8
  article-title: Event-triggered synchronization of discrete-time neural networks: A switching approach
  publication-title: Neural Networks
– volume: 119
  start-page: 178
  year: 2019
  end-page: 189
  ident: b5
  article-title: Synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control
  publication-title: Neural Networks
– volume: 30
  start-page: 6383
  year: 2020
  end-page: 6398
  ident: b4
  article-title: Model-free adaptive control for a class of nonlinear systems with uniform quantizer
  publication-title: International Journal of Robust and Nonlinear Control
– year: 1994
  ident: b10
  article-title: The parameter identification, adaptive control and model free learning adaptive control for nonlinear systems
– volume: 12
  start-page: 176
  year: 2004
  end-page: 182
  ident: b16
  article-title: Data-driven control design for neuroprotheses: A virtual reference feedback tuning (VRFT) approach
  publication-title: IEEE Transactions on Control Systems Technology
– reference: (pp. 1734–1740).
– volume: 47
  start-page: 241
  year: 2002
  end-page: 252
  ident: b18
  article-title: New results on the synthesis of PID controllers
  publication-title: IEEE Transactions on Automatic Control
– volume: 64
  start-page: 4076
  year: 2016
  end-page: 4090
  ident: b11
  article-title: An overview of dynamic-linearization-based data-driven control and applications
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 121
  start-page: 329
  year: 2020
  end-page: 338
  ident: b19
  article-title: A waiting-time-based event-triggered scheme for stabilization of complex-valued neural networks
  publication-title: Neural Networks
– volume: 25
  start-page: 1013
  year: 2013
  end-page: 1020
  ident: b25
  article-title: Data-driven MFAC for a class of discrete-time nonlinear systems with RBFNN
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– ident: 10.1016/j.neunet.2022.09.021_b9
– volume: 30
  start-page: 6383
  year: 2020
  ident: 10.1016/j.neunet.2022.09.021_b4
  article-title: Model-free adaptive control for a class of nonlinear systems with uniform quantizer
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.5107
– volume: 51
  start-page: 1812
  year: 2020
  ident: 10.1016/j.neunet.2022.09.021_b7
  article-title: A dynamic periodic event-triggered approach to consensus of heterogeneous linear multiagent systems with time-varying communication delays
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.3015746
– volume: 119
  start-page: 178
  year: 2019
  ident: 10.1016/j.neunet.2022.09.021_b5
  article-title: Synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.08.011
– volume: 47
  start-page: 241
  year: 2002
  ident: 10.1016/j.neunet.2022.09.021_b18
  article-title: New results on the synthesis of PID controllers
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.983352
– volume: 63
  start-page: 1883
  year: 2017
  ident: 10.1016/j.neunet.2022.09.021_b17
  article-title: Learning model predictive control for iterative tasks. A data-driven control framework
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2017.2753460
– volume: 13
  start-page: 2197
  year: 2019
  ident: 10.1016/j.neunet.2022.09.021_b13
  article-title: Data-driven-based event-triggered tracking control for non-linear systems with unknown disturbance
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2019.0051
– year: 1994
  ident: 10.1016/j.neunet.2022.09.021_b10
– volume: 272
  start-page: 356
  year: 2018
  ident: 10.1016/j.neunet.2022.09.021_b14
  article-title: Neural network-based event-triggered MFAC for nonlinear discrete-time processes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.008
– volume: 125
  start-page: 31
  year: 2020
  ident: 10.1016/j.neunet.2022.09.021_b8
  article-title: Event-triggered synchronization of discrete-time neural networks: A switching approach
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.01.024
– volume: 61
  start-page: 6391
  year: 2014
  ident: 10.1016/j.neunet.2022.09.021_b20
  article-title: A novel model-free adaptive control design for multivariable industrial processes
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2308161
– volume: 65
  start-page: 909
  year: 2019
  ident: 10.1016/j.neunet.2022.09.021_b6
  article-title: Formulas for data-driven control: Stabilization, optimality, and robustness
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2019.2959924
– volume: 19
  start-page: 1549
  year: 2010
  ident: 10.1016/j.neunet.2022.09.021_b12
  article-title: A novel data-driven control approach for a class of discrete-time nonlinear systems
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2010.2093136
– volume: 14
  start-page: 42
  year: 2012
  ident: 10.1016/j.neunet.2022.09.021_b1
  article-title: Model free adaptive control with disturbance observer
  publication-title: Journal of Control Engineering and Applied Informatics
– year: 2021
  ident: 10.1016/j.neunet.2022.09.021_b3
  article-title: Event-triggered model-free adaptive iterative learning control for a class of nonlinear systems over fading channels
  publication-title: IEEE Transactions on Cybernetics
– volume: 50
  start-page: 5119
  year: 2018
  ident: 10.1016/j.neunet.2022.09.021_b2
  article-title: Quantized data driven iterative learning control for a class of nonlinear systems with sensor saturation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2018.2866909
– volume: 64
  start-page: 4076
  year: 2016
  ident: 10.1016/j.neunet.2022.09.021_b11
  article-title: An overview of dynamic-linearization-based data-driven control and applications
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2636126
– volume: 12
  start-page: 176
  year: 2004
  ident: 10.1016/j.neunet.2022.09.021_b16
  article-title: Data-driven control design for neuroprotheses: A virtual reference feedback tuning (VRFT) approach
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2003.821967
– ident: 10.1016/j.neunet.2022.09.021_b15
  doi: 10.23919/ECC51009.2020.9143691
– volume: 32
  start-page: 2518
  year: 2022
  ident: 10.1016/j.neunet.2022.09.021_b21
  article-title: Dynamic learning control design for interval type-2 fuzzy singularly perturbed systems: A component-based event-triggering protocol
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.5661
– volume: 25
  start-page: 1013
  year: 2013
  ident: 10.1016/j.neunet.2022.09.021_b25
  article-title: Data-driven MFAC for a class of discrete-time nonlinear systems with RBFNN
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2291792
– volume: 524
  start-page: 136
  year: 2019
  ident: 10.1016/j.neunet.2022.09.021_b22
  article-title: Event-based networked predictive control for networked control systems subject to two-channel delays
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2020.03.031
– volume: 32
  start-page: 5502
  year: 2021
  ident: 10.1016/j.neunet.2022.09.021_b24
  article-title: Adaptive resilient event-triggered control design of autonomous vehicles with an iterative single critic learning framework
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3053269
– volume: 121
  start-page: 329
  year: 2020
  ident: 10.1016/j.neunet.2022.09.021_b19
  article-title: A waiting-time-based event-triggered scheme for stabilization of complex-valued neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.09.032
– volume: 31
  start-page: 1170
  year: 2019
  ident: 10.1016/j.neunet.2022.09.021_b23
  article-title: RBFNN-based data-driven predictive iterative learning control for nonaffine nonlinear systems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2919441
SSID ssj0006843
Score 2.486385
Snippet This paper is devoted to design an event-triggered data-driven control for a class of disturbed nonlinear systems with quantized input. A uniform quantizer...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms Event-triggered control
Model-free adaptive control
Neural network
Title Neural network-based event-triggered data-driven control of disturbed nonlinear systems with quantized input
URI https://dx.doi.org/10.1016/j.neunet.2022.09.021
https://www.proquest.com/docview/2727645637
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbQ9sKFPmhVaLsyElezie08fFytihYquMBKe7P8RFutAiybC4f-9s7ECaiVqpV6TDROrBl7Zpx88w0hpxByYyl8xcA7Kiajskz53DHvZO29hySiI9O5ui7nC3m5LJZ7ZDbUwiCssvf9yad33rq_M-m1OXlYrSY3GYTaMpWKIu8cFvFJWeEqP_v1CvMo64ScA2GG0kP5XIfxakLbBERUct6xnfL8X-HpL0fdRZ_zd-SgTxvpNM3sPdkLzQfydmjJQPsdekjWSLYBgk1CdzMMUp52LE1sCwfxO2zNSREWyvwGHR3tser0PlIPJm83FgSaRKBhNjQxPT9R_F5LH1uww-oZBFYNvPgjWZx_v53NWd9QgTkh1JZFwTNbROHrzIaoDJaV1lUdjcprFxzndXQejpWhgLRABmN9FW0pLK9tnnlQ5CcyggmEz4SWyshCGi-Us9KaYExhVW5kjIY77_wREYMetevZxrHpxVoPsLKfOmlfo_Z1pjRo_4iwl1EPiW1jh3w1mEj_sWo0BIQdI08Gi2rYUPiXxDThvn3SHDK6EtJKUR3_99O_kH28SrCXr2S03bThGyQvWzvuVueYvJle_Jhf_wYXefNc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcigXaCkICm1diau1iZ2Xj6sVaCmwl4LEzfITLVoFWDYXfn3HsYPUShVSr8k4sWbsmXHyzTcApxhyfcVtTdE7Clp4oamwuaHWFI21FpOInkznel7Nboufd-XdBkyHWpgAq0y-P_r03lunK-OkzfHTYjH-lWGorWKpaOCdE5uwFdipyhFsTS4uZ_M3h1w1ETyH8jQMGCroephX67rWBVAlYz3hKcv_FaH-8tV9ADr_CDspcySTOLlPsOHaPdgdujKQtEk_wzLwbaBgGwHeNMQpS3qiJrrGs_h96M5JAjKU2lXwdSTB1cmjJxat3q00CrSRQ0OtSCR7fiHhky157tAUi1cUWLT44n24PT-7mc5o6qlADediTT1nmS49t02mnRcqVJY2deOVyBvjDGONNxZPlq7EzKBwStva64pr1ug8s6jIAxjhBNwhkEoo1LeyXBhdaOWUKrXIVeG9YsYaewR80KM0iXA89L1YygFZ9iCj9mXQvsyERO0fAX0b9RQJN96RrwcTyT8WjsSY8M7IH4NFJe6p8KNEte6xe5EMk7oKM0tef_nvp3-HD7Ob6yt5dTG_PIbtcCeiYE5gtF517ivmMmv9La3V32Oh9g0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network-based+event-triggered+data-driven+control+of+disturbed+nonlinear+systems+with+quantized+input&rft.jtitle=Neural+networks&rft.au=Wang%2C+Xianming&rft.au=Karimi%2C+Hamid+Reza&rft.au=Shen%2C+Mouquan&rft.au=Liu%2C+Dan&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=156&rft.spage=152&rft.epage=159&rft_id=info:doi/10.1016%2Fj.neunet.2022.09.021&rft.externalDocID=S0893608022003719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon