Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering
► CoNiFeCrAl0.6Ti0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. Inequi-atomic CoNiFeCr...
Saved in:
Published in | Journal of alloys and compounds Vol. 553; pp. 316 - 323 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
15.03.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► CoNiFeCrAl0.6Ti0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture.
Inequi-atomic CoNiFeCrAl0.6Ti0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl0.6Ti0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52GPa, 11.5% and 573 HV, respectively. The fracture mechanism of CoNiFeCrAl0.6Ti0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode. |
---|---|
AbstractList | Inequi-atomic CoNiFeCrAl0.6Ti0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl0.6Ti0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 HV, respectively. The fracture mechanism of CoNiFeCrAl0.6Ti0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode. ► CoNiFeCrAl0.6Ti0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. Inequi-atomic CoNiFeCrAl0.6Ti0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl0.6Ti0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52GPa, 11.5% and 573 HV, respectively. The fracture mechanism of CoNiFeCrAl0.6Ti0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode. |
Author | Chen, Weiping Fu, Zhiqiang Zhu, Dezhi Fang, Sicong Zhang, Dayue Xiao, Huaqiang |
Author_xml | – sequence: 1 givenname: Zhiqiang surname: Fu fullname: Fu, Zhiqiang email: kopyhit@163.com organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China – sequence: 2 givenname: Weiping surname: Chen fullname: Chen, Weiping organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China – sequence: 3 givenname: Sicong surname: Fang fullname: Fang, Sicong organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China – sequence: 4 givenname: Dayue surname: Zhang fullname: Zhang, Dayue organization: School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom – sequence: 5 givenname: Huaqiang surname: Xiao fullname: Xiao, Huaqiang organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China – sequence: 6 givenname: Dezhi surname: Zhu fullname: Zhu, Dezhi organization: School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27113708$$DView record in Pascal Francis |
BookMark | eNqFkU1v1DAURS1UJKaFn4DkDRKbBH8kjiMWaDSiBamCTVlbjv3S8eDYwXZb5d-T6YxYsOnqbc49err3El2EGACh95TUlFDx6VAftPcmTjUjlNWU1rQRr9CGyo5XjRD9BdqQnrWV5FK-QZc5HwghtOd0g5at93Fx4R4PsNePLiasg8UWxpgmXVwMuDy5EI6EC1jjXfzhrmGXtp7U4s6RusF7d7_HEEqK84L10YfnFA3kDBYPC86zTr_x7HWeNM4uFEir7i16PWqf4d35XqFf11_vdt-q258333fb28pw3pcKTDcaOZC2F1YK1tqeCwti7AQl4zAyzYXsRtJ0DTQNHwbZWaZBWmADa4dB8yv08eRdf_rzALmoyWUD3usA8SErykVLGeVds6IfzqjORvsx6WBcVnNyk06LYh1dMSJXrj1xJsWcE4z_EErUcRJ1UOdJ1HESRalaJ1lzn__LGVeeSy5JO_9i-sspDWtbjw6SysZBMGBdAlOUje4Fw18gXa5g |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2021_163352 crossref_primary_10_1016_j_msea_2017_12_021 crossref_primary_10_1016_j_matdes_2013_08_099 crossref_primary_10_1016_j_jmmm_2018_04_056 crossref_primary_10_1016_j_mtcomm_2023_105344 crossref_primary_10_1080_09506608_2016_1180020 crossref_primary_10_1016_j_apt_2018_06_006 crossref_primary_10_2139_ssrn_4200042 crossref_primary_10_1080_00325899_2018_1427662 crossref_primary_10_1007_s11661_018_4970_z crossref_primary_10_1007_s11661_021_06205_9 crossref_primary_10_1016_j_msea_2022_144335 crossref_primary_10_1016_j_jallcom_2018_02_029 crossref_primary_10_1007_s44210_024_00038_y crossref_primary_10_1016_j_msea_2019_138832 crossref_primary_10_1016_j_jallcom_2018_05_180 crossref_primary_10_1016_j_jallcom_2019_01_213 crossref_primary_10_3390_met12091428 crossref_primary_10_1016_j_matdes_2022_111167 crossref_primary_10_1016_j_jallcom_2016_10_138 crossref_primary_10_1016_j_msea_2016_09_007 crossref_primary_10_1007_s12540_020_00769_8 crossref_primary_10_1016_j_jmrt_2022_01_141 crossref_primary_10_1016_j_msea_2019_138881 crossref_primary_10_3139_120_111533 crossref_primary_10_1179_1743284715Y_0000000124 crossref_primary_10_1177_09544062211008935 crossref_primary_10_1016_j_msea_2023_146055 crossref_primary_10_1557_jmr_2017_341 crossref_primary_10_1016_j_mtcomm_2025_112233 crossref_primary_10_1016_j_msea_2021_142175 crossref_primary_10_1007_s40195_020_01150_9 crossref_primary_10_1016_j_msea_2015_07_052 crossref_primary_10_1016_j_intermet_2018_09_011 crossref_primary_10_1016_S1875_5372_15_60039_X crossref_primary_10_1007_s00170_023_11288_2 crossref_primary_10_1016_j_intermet_2022_107802 crossref_primary_10_3390_ma17246061 crossref_primary_10_1016_j_apsusc_2017_04_009 crossref_primary_10_1016_j_msea_2021_142569 crossref_primary_10_1016_j_vacuum_2018_01_031 crossref_primary_10_3103_S1063457615010049 crossref_primary_10_1007_s11837_013_0759_0 crossref_primary_10_1016_j_jmmm_2023_171131 crossref_primary_10_1016_j_mser_2018_04_003 crossref_primary_10_28948_ngumuh_517876 crossref_primary_10_1007_s00170_023_12770_7 crossref_primary_10_1080_00325899_2018_1438230 crossref_primary_10_1016_j_engfracmech_2020_107235 crossref_primary_10_1016_j_pmatsci_2021_100777 crossref_primary_10_1016_j_intermet_2020_106900 crossref_primary_10_1007_s12613_020_2221_y crossref_primary_10_1007_s12613_016_1213_4 crossref_primary_10_1016_j_matchemphys_2017_11_037 crossref_primary_10_1016_j_optlastec_2022_108871 crossref_primary_10_3390_met9121296 crossref_primary_10_1007_s11665_018_3409_4 crossref_primary_10_1016_j_jmst_2021_03_024 crossref_primary_10_1016_j_actamat_2016_08_081 crossref_primary_10_1007_s11661_013_1824_6 crossref_primary_10_1016_j_apt_2022_103520 crossref_primary_10_1016_j_intermet_2017_09_013 crossref_primary_10_1080_02670844_2019_1587141 crossref_primary_10_1016_j_mtcomm_2024_109355 crossref_primary_10_1088_2053_1591_ab5fc9 crossref_primary_10_1016_j_intermet_2018_07_009 crossref_primary_10_1016_j_mtcomm_2020_101009 crossref_primary_10_1557_jmr_2018_477 crossref_primary_10_1080_02670836_2019_1639888 crossref_primary_10_1016_j_jallcom_2014_06_090 crossref_primary_10_1016_j_mtcomm_2025_111695 crossref_primary_10_3390_met13010178 crossref_primary_10_1016_j_actamat_2017_01_066 crossref_primary_10_1007_s41230_024_3031_z crossref_primary_10_1016_j_jallcom_2019_02_318 crossref_primary_10_1016_j_msea_2014_09_077 crossref_primary_10_4028_www_scientific_net_AMR_837_277 crossref_primary_10_1080_00325899_2019_1584454 crossref_primary_10_3390_coatings13020399 crossref_primary_10_1007_s11665_023_08996_x crossref_primary_10_1016_j_matdes_2013_11_066 crossref_primary_10_1557_jmr_2019_37 crossref_primary_10_1016_j_jallcom_2020_157851 crossref_primary_10_1016_j_jeurceramsoc_2014_10_024 crossref_primary_10_1016_j_jallcom_2015_11_205 crossref_primary_10_1016_j_vacuum_2016_12_039 crossref_primary_10_1016_j_msea_2015_02_072 crossref_primary_10_1016_j_msea_2015_08_056 crossref_primary_10_1016_j_intermet_2015_11_005 crossref_primary_10_1088_1757_899X_145_7_072007 crossref_primary_10_1016_j_jallcom_2018_07_145 crossref_primary_10_1016_j_jalmes_2025_100170 crossref_primary_10_1016_j_vacuum_2016_05_019 crossref_primary_10_1016_j_mtcomm_2023_105557 crossref_primary_10_1016_j_vacuum_2019_04_043 crossref_primary_10_1038_s41598_017_02168_3 crossref_primary_10_1016_j_scriptamat_2018_08_045 crossref_primary_10_3390_cryst10100929 crossref_primary_10_1016_j_msea_2013_12_096 |
Cites_doi | 10.1016/S0921-5093(00)01446-5 10.1002/adem.200300567 10.1063/1.1633975 10.1016/j.jallcom.2011.04.113 10.1002/adem.200900057 10.1016/j.msea.2011.01.028 10.1063/1.2356310 10.1016/j.matdes.2012.03.059 10.1016/j.jallcom.2007.05.104 10.1016/S1359-6462(01)00712-6 10.1016/j.msea.2012.01.002 10.1016/j.corsci.2010.06.025 10.1016/S1003-6326(07)60196-4 10.1016/j.jallcom.2009.12.010 10.1016/j.msea.2011.11.044 10.1063/1.1594836 10.1016/j.jallcom.2009.05.144 10.1016/j.msea.2008.01.064 10.1007/s10853-006-6555-2 10.1016/j.actamat.2006.02.036 10.1002/adem.200300507 10.1016/j.matchemphys.2007.01.003 10.1016/j.jallcom.2007.12.004 10.1016/j.jallcom.2008.10.106 10.2320/matertrans.46.2817 10.1016/S1359-6454(02)00318-X 10.1016/j.msea.2008.12.053 10.1016/j.msea.2012.02.009 10.1016/j.msea.2009.09.019 10.1063/1.351028 10.1063/1.2734517 10.1016/0022-3697(64)90178-7 10.1016/j.actamat.2006.04.007 10.1016/j.pmatsci.2011.05.001 10.2320/matertrans.47.1395 10.1016/j.matchemphys.2011.11.021 10.1016/j.msea.2008.08.025 10.1016/j.msea.2006.12.113 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8BQ 8FD JG9 |
DOI | 10.1016/j.jallcom.2012.11.146 |
DatabaseName | CrossRef Pascal-Francis METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics Applied Sciences |
EISSN | 1873-4669 |
EndPage | 323 |
ExternalDocumentID | 27113708 10_1016_j_jallcom_2012_11_146 S092583881202141X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SMS SSH T9H WUQ AFXIZ EFKBS IQODW 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c339t-ec7fc8b0596d8625d936de6f7610fbf2a3687f0474e443bb87d2ae8de2b25bba3 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Fri Jul 11 03:17:29 EDT 2025 Mon Jul 21 09:16:51 EDT 2025 Tue Jul 01 03:03:09 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Fri Feb 23 02:22:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High entropy alloys Deformation twinning Spark plasma sintering Mechanical alloying high entropy alloy Scanning electron microscopy Nanodefect Mechanical twin Aluminium alloy X ray diffraction Intergranular fracture Tensile strength Metastable phase Phase transformation Plasticity Yield strength Microstructure Supersaturated solid solution Fracture mode |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-ec7fc8b0596d8625d936de6f7610fbf2a3687f0474e443bb87d2ae8de2b25bba3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1365121374 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1365121374 pascalfrancis_primary_27113708 crossref_primary_10_1016_j_jallcom_2012_11_146 crossref_citationtrail_10_1016_j_jallcom_2012_11_146 elsevier_sciencedirect_doi_10_1016_j_jallcom_2012_11_146 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-15 |
PublicationDateYYYYMMDD | 2013-03-15 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mohammed, El-Danaf, Radwan (b0160) 2007; 457 Yapici, Karaman, Luo (b0155) 2006; 54 Chen, Shu, Hu, Zhao, Yuan (b0010) 2012; 541 Zhang, Fu, Zhang, Wang, Lee, Niihara (b0090) 2010; 495 Chou, Wang, Yeh, Shih (b0055) 2010; 52 Yeh, Chen, Lin, Gan, Chin, Shun, Chang (b0020) 2004; 6 Yamakov, Wolf, Phillpot, Gleiter (b0145) 2002; 50 Liao, Zhou, Lavernia, He, Zhu (b0135) 2003; 83 Venables (b0170) 1964; 25 Chen, Lin, Yeh, Chen, Huang, Tu (b0045) 2006; 47 Yang, Zhang (b0125) 2012; 132 Kaschner, Tome, Beyerlein, Vogel, Brown, McCabe (b0195) 2006; 54 Zhu, Liao, Wu (b0150) 2012; 57 Takeuchi, Inoue (b0115) 2001; 304 Chen, Shu, Zhao, Zhao, Wang, Yuan (b0180) 2012; 40 Youngdahl, Weertman, Hugo, Kung (b0190) 2001; 44 Varalakshmi, Kamaraj, Murty (b0025) 2008; 460 Zhang, Fu, Zhang, Shi, Wang, Wang, Wang, Zhang (b0060) 2009; 485 Chen, Zhao, Zhao, Hu, Shu (b0005) 2011; 509 Chen, Hu, Hsieh, Yeh, Chen (b0030) 2009; 481 Munir, Anselmi-Tamburini, Ohyanagi (b0075) 2006; 41 Chen, Yuan, Zhao, Shu, Hu, Zhao, Zhao (b0175) 2012; 537 Chen, Zhao, Shu, Zhao (b0185) 2011; 528 Hung, Yeh, Shun, Chen (b0050) 2004; 6 Zhang, Fu, Zhang, Wang, Wang, Wang, Zhang, Shi (b0085) 2009; 508 Sui, Zhu, Qi, Li, Yang (b0100) 1992; 71 Li, Zhang, Rong, Li (b0165) 2009; 467 Takeuchi, Inoue (b0110) 2005; 46 Chen, Cheng, Yang, Zhang, Tian, Fan (b0140) 2007; 17 Chen, Luo, Zhao (b0015) 2009; 477 Zhou, Zhang, Wang, Chen (b0080) 2007; 90 Liao, Zhou, Lavernia, Srinivasan, Baskes, He, Zhu (b0130) 2003; 83 Jin, Chen, Chen, Yeh, Shun, Lin, Chang (b0035) 2005; 36A Li, Wang, Ren, Yang, Fu (b0040) 2008; 498 Yeh, Chang, Hong, Chen, Lin (b0095) 2007; 103 Varalakshmi, Kamaraj, Murty (b0065) 2010; 527 Zhao, Zhu, Liao, Horita, Langdon (b0200) 2006; 89 Wang, Li, Ren, Yang, Fu (b0105) 2008; 491 Wang, Li, Fu (b0120) 2009; 11 Praveen, Murty, Kottada (b0070) 2012; 534 Li (10.1016/j.jallcom.2012.11.146_b0040) 2008; 498 Liao (10.1016/j.jallcom.2012.11.146_b0130) 2003; 83 Youngdahl (10.1016/j.jallcom.2012.11.146_b0190) 2001; 44 Takeuchi (10.1016/j.jallcom.2012.11.146_b0115) 2001; 304 Wang (10.1016/j.jallcom.2012.11.146_b0120) 2009; 11 Praveen (10.1016/j.jallcom.2012.11.146_b0070) 2012; 534 Yeh (10.1016/j.jallcom.2012.11.146_b0020) 2004; 6 Chen (10.1016/j.jallcom.2012.11.146_b0180) 2012; 40 Chen (10.1016/j.jallcom.2012.11.146_b0015) 2009; 477 Liao (10.1016/j.jallcom.2012.11.146_b0135) 2003; 83 Li (10.1016/j.jallcom.2012.11.146_b0165) 2009; 467 Zhang (10.1016/j.jallcom.2012.11.146_b0085) 2009; 508 Chen (10.1016/j.jallcom.2012.11.146_b0005) 2011; 509 Chou (10.1016/j.jallcom.2012.11.146_b0055) 2010; 52 Zhu (10.1016/j.jallcom.2012.11.146_b0150) 2012; 57 Sui (10.1016/j.jallcom.2012.11.146_b0100) 1992; 71 Chen (10.1016/j.jallcom.2012.11.146_b0010) 2012; 541 Varalakshmi (10.1016/j.jallcom.2012.11.146_b0065) 2010; 527 Zhang (10.1016/j.jallcom.2012.11.146_b0090) 2010; 495 Chen (10.1016/j.jallcom.2012.11.146_b0175) 2012; 537 Kaschner (10.1016/j.jallcom.2012.11.146_b0195) 2006; 54 Takeuchi (10.1016/j.jallcom.2012.11.146_b0110) 2005; 46 Venables (10.1016/j.jallcom.2012.11.146_b0170) 1964; 25 Wang (10.1016/j.jallcom.2012.11.146_b0105) 2008; 491 Zhao (10.1016/j.jallcom.2012.11.146_b0200) 2006; 89 Chen (10.1016/j.jallcom.2012.11.146_b0140) 2007; 17 Yamakov (10.1016/j.jallcom.2012.11.146_b0145) 2002; 50 Hung (10.1016/j.jallcom.2012.11.146_b0050) 2004; 6 Yang (10.1016/j.jallcom.2012.11.146_b0125) 2012; 132 Mohammed (10.1016/j.jallcom.2012.11.146_b0160) 2007; 457 Varalakshmi (10.1016/j.jallcom.2012.11.146_b0025) 2008; 460 Chen (10.1016/j.jallcom.2012.11.146_b0045) 2006; 47 Munir (10.1016/j.jallcom.2012.11.146_b0075) 2006; 41 Yapici (10.1016/j.jallcom.2012.11.146_b0155) 2006; 54 Yeh (10.1016/j.jallcom.2012.11.146_b0095) 2007; 103 Chen (10.1016/j.jallcom.2012.11.146_b0185) 2011; 528 Zhang (10.1016/j.jallcom.2012.11.146_b0060) 2009; 485 Jin (10.1016/j.jallcom.2012.11.146_b0035) 2005; 36A Chen (10.1016/j.jallcom.2012.11.146_b0030) 2009; 481 Zhou (10.1016/j.jallcom.2012.11.146_b0080) 2007; 90 |
References_xml | – volume: 36A start-page: 1263 year: 2005 ident: b0035 publication-title: Metall. Mater. Trans. A – volume: 90 start-page: 181904 year: 2007 ident: b0080 publication-title: Appl. Phys. Lett. – volume: 460 start-page: 253 year: 2008 ident: b0025 publication-title: J. Alloys Comp. – volume: 6 start-page: 74 year: 2004 ident: b0050 publication-title: Adv. Eng. Mater. – volume: 541 start-page: 98 year: 2012 ident: b0010 publication-title: Mater. Sci. Eng. A – volume: 534 start-page: 83 year: 2012 ident: b0070 publication-title: Mater. Sci. Eng. A – volume: 83 start-page: 5062 year: 2003 ident: b0135 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 641 year: 2009 ident: b0120 publication-title: Adv. Eng. Mater. – volume: 527 start-page: 1027 year: 2010 ident: b0065 publication-title: Mater. Sci. Eng. A – volume: 52 start-page: 3481 year: 2010 ident: b0055 publication-title: Corros. Sci. – volume: 50 start-page: 5005 year: 2002 ident: b0145 publication-title: Acta Mater. – volume: 89 start-page: 121906 year: 2006 ident: b0200 publication-title: Appl. Phys. Lett. – volume: 57 start-page: 1 year: 2012 ident: b0150 publication-title: Prog. Mater Sci. – volume: 508 start-page: 214 year: 2009 ident: b0085 publication-title: Mater. Sci. Eng. A – volume: 40 start-page: 488 year: 2012 ident: b0180 publication-title: Mater. Des. – volume: 17 start-page: 898 year: 2007 ident: b0140 publication-title: Trans. Nonferrous Met. Soc. China – volume: 528 start-page: 3930 year: 2011 ident: b0185 publication-title: Mater. Sci. Eng. A – volume: 498 start-page: 482 year: 2008 ident: b0040 publication-title: Mater. Sci. Eng. A – volume: 54 start-page: 3755 year: 2006 ident: b0155 publication-title: Acta Mater. – volume: 495 start-page: 33 year: 2010 ident: b0090 publication-title: J. Alloys Comp. – volume: 491 start-page: 154 year: 2008 ident: b0105 publication-title: Mater. Sci. Eng. A – volume: 132 start-page: 233 year: 2012 ident: b0125 publication-title: Mater. Chem. Phys. – volume: 481 start-page: 769 year: 2009 ident: b0030 publication-title: J. Alloys Comp. – volume: 83 start-page: 632 year: 2003 ident: b0130 publication-title: Appl. Phys. Lett. – volume: 103 start-page: 41 year: 2007 ident: b0095 publication-title: Mater. Chem. Phys. – volume: 41 start-page: 763 year: 2006 ident: b0075 publication-title: J. Mater. Sci. – volume: 6 start-page: 299 year: 2004 ident: b0020 publication-title: Adv. Eng. Mater. – volume: 485 start-page: L31 year: 2009 ident: b0060 publication-title: J. Alloys Comp. – volume: 54 start-page: 2887 year: 2006 ident: b0195 publication-title: Acta Mater. – volume: 71 start-page: 2945 year: 1992 ident: b0100 publication-title: J. Appl. Phys. – volume: 47 start-page: 1395 year: 2006 ident: b0045 publication-title: Mater. Trans. – volume: 44 start-page: 1475 year: 2001 ident: b0190 publication-title: Scr. Mater. – volume: 304 start-page: 446 year: 2001 ident: b0115 publication-title: Mater. Sci. Eng. A – volume: 457 start-page: 373 year: 2007 ident: b0160 publication-title: Mater. Sci. Eng. A – volume: 477 start-page: 726 year: 2009 ident: b0015 publication-title: J. Alloys Comp. – volume: 467 start-page: 383 year: 2009 ident: b0165 publication-title: J. Alloys Comp. – volume: 537 start-page: 25 year: 2012 ident: b0175 publication-title: Mater. Sci. Eng. A – volume: 509 start-page: 7303 year: 2011 ident: b0005 publication-title: J. Alloys Comp. – volume: 25 start-page: 693 year: 1964 ident: b0170 publication-title: J. Phys. Chem. Solids – volume: 46 start-page: 2817 year: 2005 ident: b0110 publication-title: Mater. Trans. – volume: 304 start-page: 446 year: 2001 ident: 10.1016/j.jallcom.2012.11.146_b0115 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(00)01446-5 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.jallcom.2012.11.146_b0020 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 83 start-page: 5062 year: 2003 ident: 10.1016/j.jallcom.2012.11.146_b0135 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1633975 – volume: 509 start-page: 7303 year: 2011 ident: 10.1016/j.jallcom.2012.11.146_b0005 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2011.04.113 – volume: 11 start-page: 641 year: 2009 ident: 10.1016/j.jallcom.2012.11.146_b0120 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200900057 – volume: 528 start-page: 3930 year: 2011 ident: 10.1016/j.jallcom.2012.11.146_b0185 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.01.028 – volume: 89 start-page: 121906 year: 2006 ident: 10.1016/j.jallcom.2012.11.146_b0200 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2356310 – volume: 40 start-page: 488 year: 2012 ident: 10.1016/j.jallcom.2012.11.146_b0180 publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.03.059 – volume: 460 start-page: 253 year: 2008 ident: 10.1016/j.jallcom.2012.11.146_b0025 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2007.05.104 – volume: 44 start-page: 1475 year: 2001 ident: 10.1016/j.jallcom.2012.11.146_b0190 publication-title: Scr. Mater. doi: 10.1016/S1359-6462(01)00712-6 – volume: 537 start-page: 25 year: 2012 ident: 10.1016/j.jallcom.2012.11.146_b0175 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.01.002 – volume: 52 start-page: 3481 year: 2010 ident: 10.1016/j.jallcom.2012.11.146_b0055 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2010.06.025 – volume: 17 start-page: 898 year: 2007 ident: 10.1016/j.jallcom.2012.11.146_b0140 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(07)60196-4 – volume: 481 start-page: 769 year: 2009 ident: 10.1016/j.jallcom.2012.11.146_b0030 publication-title: J. Alloys Comp. – volume: 495 start-page: 33 year: 2010 ident: 10.1016/j.jallcom.2012.11.146_b0090 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2009.12.010 – volume: 534 start-page: 83 year: 2012 ident: 10.1016/j.jallcom.2012.11.146_b0070 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.11.044 – volume: 83 start-page: 632 year: 2003 ident: 10.1016/j.jallcom.2012.11.146_b0130 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1594836 – volume: 485 start-page: L31 year: 2009 ident: 10.1016/j.jallcom.2012.11.146_b0060 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2009.05.144 – volume: 491 start-page: 154 year: 2008 ident: 10.1016/j.jallcom.2012.11.146_b0105 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.01.064 – volume: 41 start-page: 763 year: 2006 ident: 10.1016/j.jallcom.2012.11.146_b0075 publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-6555-2 – volume: 54 start-page: 2887 year: 2006 ident: 10.1016/j.jallcom.2012.11.146_b0195 publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.02.036 – volume: 6 start-page: 74 year: 2004 ident: 10.1016/j.jallcom.2012.11.146_b0050 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300507 – volume: 103 start-page: 41 year: 2007 ident: 10.1016/j.jallcom.2012.11.146_b0095 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2007.01.003 – volume: 467 start-page: 383 year: 2009 ident: 10.1016/j.jallcom.2012.11.146_b0165 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2007.12.004 – volume: 477 start-page: 726 year: 2009 ident: 10.1016/j.jallcom.2012.11.146_b0015 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2008.10.106 – volume: 46 start-page: 2817 year: 2005 ident: 10.1016/j.jallcom.2012.11.146_b0110 publication-title: Mater. Trans. doi: 10.2320/matertrans.46.2817 – volume: 50 start-page: 5005 year: 2002 ident: 10.1016/j.jallcom.2012.11.146_b0145 publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00318-X – volume: 508 start-page: 214 year: 2009 ident: 10.1016/j.jallcom.2012.11.146_b0085 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.12.053 – volume: 541 start-page: 98 year: 2012 ident: 10.1016/j.jallcom.2012.11.146_b0010 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.02.009 – volume: 527 start-page: 1027 year: 2010 ident: 10.1016/j.jallcom.2012.11.146_b0065 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.09.019 – volume: 71 start-page: 2945 year: 1992 ident: 10.1016/j.jallcom.2012.11.146_b0100 publication-title: J. Appl. Phys. doi: 10.1063/1.351028 – volume: 90 start-page: 181904 year: 2007 ident: 10.1016/j.jallcom.2012.11.146_b0080 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2734517 – volume: 25 start-page: 693 year: 1964 ident: 10.1016/j.jallcom.2012.11.146_b0170 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(64)90178-7 – volume: 36A start-page: 1263 year: 2005 ident: 10.1016/j.jallcom.2012.11.146_b0035 publication-title: Metall. Mater. Trans. A – volume: 54 start-page: 3755 year: 2006 ident: 10.1016/j.jallcom.2012.11.146_b0155 publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.04.007 – volume: 57 start-page: 1 year: 2012 ident: 10.1016/j.jallcom.2012.11.146_b0150 publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2011.05.001 – volume: 47 start-page: 1395 year: 2006 ident: 10.1016/j.jallcom.2012.11.146_b0045 publication-title: Mater. Trans. doi: 10.2320/matertrans.47.1395 – volume: 132 start-page: 233 year: 2012 ident: 10.1016/j.jallcom.2012.11.146_b0125 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.11.021 – volume: 498 start-page: 482 year: 2008 ident: 10.1016/j.jallcom.2012.11.146_b0040 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.08.025 – volume: 457 start-page: 373 year: 2007 ident: 10.1016/j.jallcom.2012.11.146_b0160 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.12.113 |
SSID | ssj0001931 |
Score | 2.406509 |
Snippet | ► CoNiFeCrAl0.6Ti0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits... Inequi-atomic CoNiFeCrAl0.6Ti0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 316 |
SubjectTerms | Alloy systems Alloying Applied sciences Body centered cubic lattice Condensed matter: structure, mechanical and thermal properties Deformation twinning Elasticity. Plasticity Entropy Exact sciences and technology Fatigue, brittleness, fracture, and cracks High entropy alloys Mechanical alloying Mechanical and acoustical properties of condensed matter Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanical properties of solids Metals. Metallurgy Nanostructure Phase transformations Physics Scanning electron microscopy Spark plasma sintering |
Title | Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering |
URI | https://dx.doi.org/10.1016/j.jallcom.2012.11.146 https://www.proquest.com/docview/1365121374 |
Volume | 553 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY2yjjC3bWLotaLBXObIsW85jMA3ZBnlZC3kz-jI4c22TpIy89G-vTrbTlRUKezUSEnfHfVh3vx9C35QrqJlimjBpNAHIbqIUlcQw5ZJroVNa-C7fVbK84j_W8foEZcMsDLRV9r6_8-neW_dfpr00p21ZTn_RGYM3PxehAPcrXMMEOxdg5cHtfZuHS1A8a55bTGD1_RTPdBNsZFVB04iLgsw5j8DnwY_Hp7NW7pzUio7u4h_P7cPR4g163eeReN5d9S06sfUIvcgG-rYRevUX0uAIPfednnr3Dh3mVdXAbBMeJvSxrA029jjGiPd_Sk9khMsaS5w1q3Jhs-28okFyWdKAY8A4xvBbuGkPGF7uD7jtBg6sweqAnZfa_satS8yvJd4BIgXc4j26WlxcZkvS8y8QHUWzPbFaFDpVQNBjXOETm1mUGJsUwqVchSqYjJJUFJQLbjmPlEqFYdKmxjrlx0rJ6AM6rZvafkRYaSqEMakFOLlEcFnwmGomleYyCbUeIz5IPdc9ODlwZFT50IW2yXtl5aAsV7hA0TJGwXFb26FzPLUhHVSaPzCz3EWQp7ZOHpjA8UAmwjASNB2jr4NN5E7X8PAia9vc7HJoJQToPMHP___8T-gl81QcEQnjz-h0v72xX1xCtFcTb_ET9Gz-_edydQes2Qyv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5Sh5KUUlq3IW7adAu9SpZWK618NKLGaVJf6oBvYl8CuYokbIfif98dPdyEFgK9ih122RnmoZ35PoAv0hbUVFLlUKGVg5DdjpSecDSVNrnmKvaypst3Ec1v2bdVuDqCpJ-FwbbKzve3Pr3x1t2XcXeb4zrPxz-8CcU3PxuhEPfLXz2DY0SnCgdwPL26ni8ODtnmKA1xnl3voMCfQZ7x2l2LosC-ERsIqfUfbpMK_ztEvazF1l5c1jJe_OW8m4g0ew2vulSSTNvTvoEjUw7hJOkZ3Ibw4gHY4BCeN82eavsW9tOiqHC8ifRD-kSUmmhzmGQku195w2VE8pIIklSLfGaSzbTw3GiZey4jCHNM8M9wVe8JPt7vSd3OHBhN5J5YR7X5SWqbm98JskVQCjzFO7idfV0mc6ejYHBUEEx2jlE8U7FEjh5ta59QT4JImyjjNuvKZEZFEMU88xhnhrFAyphrKkysjdV_KKUIzmBQVqU5ByKVx7nWsUFEuYgzkbHQU1RIxUTkKzUC1t96qjp8cqTJKNK-EW2ddspKUVm2dsG6ZQTuQaxuATqeEoh7laaPLC21QeQp0ctHJnDYkHLfD7gXj-BzbxOp1TW-vYjSVPfbFLsJET2Ps_f_v_8nOJkvv9-kN1eL6ws4pQ0zR-D44QcY7Db35qPNj3bysrP_39ISD2A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alloying+behavior+and+deformation+twinning+in+a+CoNiFeCrAl0.6Ti0.4+high+entropy+alloy+processed+by+spark+plasma+sintering&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Fu%2C+Zhiqiang&rft.au=Chen%2C+Weiping&rft.au=Fang%2C+Sicong&rft.au=Zhang%2C+Dayue&rft.date=2013-03-15&rft.pub=Elsevier+B.V&rft.issn=0925-8388&rft.eissn=1873-4669&rft.volume=553&rft.spage=316&rft.epage=323&rft_id=info:doi/10.1016%2Fj.jallcom.2012.11.146&rft.externalDocID=S092583881202141X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |