A novel hybrid model for short-term wind power forecasting

Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 80; pp. 93 - 106
Main Authors Du, Pei, Wang, Jianzhou, Yang, Wendong, Niu, Tong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance prediction accuracy, this study developed a hybrid model that incorporates the following stages. First, an improved complete ensemble empirical mode decomposition with adaptive noise technology was applied to decompose the wind energy series for eliminating noise and extracting the main features of original data. Next, to achieve high accurate and stable forecasts, an improved wavelet neural network optimized by optimization methods was built and used to implement wind energy prediction. Finally, hypothesis testing, stability test and four case studies including eighteen comparison models were utilized to test the abilities of prediction models. The experimental results show that the average values of the mean absolute percent errors of the proposed hybrid model are 5.0116% (one-step ahead), 7.7877% (two-step ahead) and 10.6968% (three-step ahead), which are much lower than comparison models. •Propose a novel hybrid forecasting model based on multi-objective optimization.•The proposed model is superior to 18 comparison models for wind power prediction.•The proposed hybrid model demonstrates higher prediction accuracy and reliability.•Hypothesis testing is used to make a comprehensive evaluation for proposed model.
AbstractList Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance prediction accuracy, this study developed a hybrid model that incorporates the following stages. First, an improved complete ensemble empirical mode decomposition with adaptive noise technology was applied to decompose the wind energy series for eliminating noise and extracting the main features of original data. Next, to achieve high accurate and stable forecasts, an improved wavelet neural network optimized by optimization methods was built and used to implement wind energy prediction. Finally, hypothesis testing, stability test and four case studies including eighteen comparison models were utilized to test the abilities of prediction models. The experimental results show that the average values of the mean absolute percent errors of the proposed hybrid model are 5.0116% (one-step ahead), 7.7877% (two-step ahead) and 10.6968% (three-step ahead), which are much lower than comparison models. •Propose a novel hybrid forecasting model based on multi-objective optimization.•The proposed model is superior to 18 comparison models for wind power prediction.•The proposed hybrid model demonstrates higher prediction accuracy and reliability.•Hypothesis testing is used to make a comprehensive evaluation for proposed model.
Author Wang, Jianzhou
Yang, Wendong
Niu, Tong
Du, Pei
Author_xml – sequence: 1
  givenname: Pei
  surname: Du
  fullname: Du, Pei
– sequence: 2
  givenname: Jianzhou
  surname: Wang
  fullname: Wang, Jianzhou
  email: wjzdufe@126.com
– sequence: 3
  givenname: Wendong
  surname: Yang
  fullname: Yang, Wendong
– sequence: 4
  givenname: Tong
  surname: Niu
  fullname: Niu, Tong
BookMark eNp9j8tKAzEUhoNUsK2-gKt5gRmTSSYXcVOKVqHgRtchk4tNaSclCS19ezPUlYvCD-f8HL4D3wxMhjBYAB4RbBBE9GnbqBR000IkGohLuhswRZy1taAcTcreUV4TQegdmKW0hQUSLZ-C50U1hKPdVZtzH72p9sGU4kKs0ibEXGcb99XJD6Y6hJON48VqlbIffu7BrVO7ZB_-5hx8v71-Ld_r9efqY7lY1xpjkWurtEEd01ow5YjWxPDeOEVsyzhzhsNO9UpTblAPCaXYEeQExayF0FHFCJ6D9vJXx5BStE4eot-reJYIytFebuVoL0d7CXFJVyD-D9I-q-zDkKPyu-voywW1RerobZRJeztoa3xxz9IEfw3_BVg4eKg
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107941
crossref_primary_10_1177_0958305X241228515
crossref_primary_10_1002_for_3189
crossref_primary_10_1016_j_egyr_2022_05_265
crossref_primary_10_1016_j_apr_2020_04_010
crossref_primary_10_1016_j_eswa_2023_122487
crossref_primary_10_1016_j_asoc_2020_106463
crossref_primary_10_1016_j_cles_2023_100068
crossref_primary_10_1108_GS_02_2020_0023
crossref_primary_10_1016_j_prime_2024_100511
crossref_primary_10_1016_j_isatra_2019_07_009
crossref_primary_10_55974_utbd_1132336
crossref_primary_10_1002_adc2_59
crossref_primary_10_1007_s10668_022_02299_2
crossref_primary_10_3389_fenvs_2022_873939
crossref_primary_10_1016_j_jclepro_2019_119386
crossref_primary_10_3390_su151813424
crossref_primary_10_1007_s10462_025_11140_x
crossref_primary_10_1155_2021_7653091
crossref_primary_10_1016_j_asoc_2021_107288
crossref_primary_10_1016_j_energy_2022_125826
crossref_primary_10_1016_j_asoc_2020_106555
crossref_primary_10_1016_j_jclepro_2020_120378
crossref_primary_10_1007_s10489_023_04599_0
crossref_primary_10_1016_j_apenergy_2019_05_016
crossref_primary_10_1016_j_seta_2020_100757
crossref_primary_10_32604_cmes_2022_019245
crossref_primary_10_1016_j_energy_2023_128226
crossref_primary_10_1016_j_eswa_2024_125376
crossref_primary_10_1016_j_apenergy_2021_116545
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_1016_j_asoc_2021_107935
crossref_primary_10_1088_1742_6596_1748_3_032015
crossref_primary_10_1177_0309524X211046382
crossref_primary_10_1016_j_eswa_2020_114364
crossref_primary_10_1155_2019_1510257
crossref_primary_10_1016_j_scitotenv_2019_135447
crossref_primary_10_3389_fenrg_2021_720406
crossref_primary_10_1002_2050_7038_13010
crossref_primary_10_1016_j_energy_2020_116905
crossref_primary_10_1016_j_renene_2020_09_109
crossref_primary_10_1016_j_knosys_2019_07_024
crossref_primary_10_1063_5_0020759
crossref_primary_10_1109_ACCESS_2020_2973746
crossref_primary_10_1016_j_apenergy_2019_114139
crossref_primary_10_1016_j_egyr_2023_05_181
crossref_primary_10_1016_j_apenergy_2019_114137
crossref_primary_10_1016_j_neucom_2021_07_084
crossref_primary_10_1016_j_jbi_2020_103575
crossref_primary_10_1063_5_0065937
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1007_s00521_019_04570_6
crossref_primary_10_1007_s40314_020_01315_3
crossref_primary_10_1016_j_apm_2020_07_019
crossref_primary_10_1186_s42162_024_00373_9
crossref_primary_10_1016_j_jclepro_2020_120407
crossref_primary_10_1108_GS_02_2023_0013
crossref_primary_10_1016_j_heliyon_2022_e11599
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_egyr_2023_09_028
crossref_primary_10_1007_s12206_021_0423_5
crossref_primary_10_1016_j_oceaneng_2022_112258
crossref_primary_10_1016_j_asoc_2021_107848
crossref_primary_10_1049_rpg2_13159
crossref_primary_10_1016_j_ecmx_2025_100919
crossref_primary_10_3390_electronics10030261
crossref_primary_10_24012_dumf_1079230
crossref_primary_10_1016_j_asoc_2019_105972
crossref_primary_10_3390_jmse13010045
crossref_primary_10_1109_TII_2024_3383018
crossref_primary_10_1007_s00521_024_09923_4
crossref_primary_10_1016_j_jenvman_2019_109855
crossref_primary_10_1016_j_asoc_2019_106029
crossref_primary_10_1016_j_oceaneng_2023_114964
crossref_primary_10_1016_j_asoc_2020_106900
crossref_primary_10_1016_j_apm_2020_08_080
crossref_primary_10_1016_j_enconman_2023_117891
crossref_primary_10_1007_s10489_022_04312_7
crossref_primary_10_1016_j_neucom_2021_05_048
crossref_primary_10_1109_ACCESS_2020_2966641
crossref_primary_10_1109_ACCESS_2024_3440631
crossref_primary_10_1016_j_egyr_2022_07_005
crossref_primary_10_1016_j_renene_2021_08_044
crossref_primary_10_2139_ssrn_4133030
crossref_primary_10_2174_0118722121251451230925033743
crossref_primary_10_1016_j_rser_2020_109912
crossref_primary_10_1016_j_asoc_2020_106476
crossref_primary_10_1016_j_egyr_2024_06_006
crossref_primary_10_59400_esc_v2i3_538
crossref_primary_10_1016_j_enconman_2021_113917
crossref_primary_10_3390_en15249657
crossref_primary_10_1016_j_measurement_2023_113811
crossref_primary_10_1007_s11069_024_06747_2
crossref_primary_10_1016_j_eswa_2023_121438
crossref_primary_10_1109_ACCESS_2019_2936828
crossref_primary_10_1016_j_jclepro_2019_119318
crossref_primary_10_1016_j_scitotenv_2021_150859
crossref_primary_10_1155_2020_8303152
crossref_primary_10_1109_TSTE_2021_3067436
crossref_primary_10_1016_j_energy_2023_128762
crossref_primary_10_1177_01445987241248201
crossref_primary_10_1016_j_apenergy_2024_124035
crossref_primary_10_1109_MCI_2021_3084416
crossref_primary_10_3233_JIFS_210779
crossref_primary_10_1016_j_jclepro_2019_118573
crossref_primary_10_1080_15435075_2024_2399189
crossref_primary_10_1371_journal_pone_0225362
crossref_primary_10_1109_ACCESS_2021_3086583
crossref_primary_10_1016_j_renene_2023_119241
crossref_primary_10_1016_j_apenergy_2023_121749
crossref_primary_10_1007_s10462_023_10554_9
crossref_primary_10_1146_annurev_environ_020220_061831
crossref_primary_10_3390_pr7110843
crossref_primary_10_1016_j_cie_2022_108331
crossref_primary_10_1016_j_renene_2023_119391
crossref_primary_10_1063_5_0059809
crossref_primary_10_1186_s43067_023_00091_4
crossref_primary_10_1177_0309524X231191163
crossref_primary_10_1016_j_jfranklin_2022_06_028
crossref_primary_10_3389_fceng_2021_665415
crossref_primary_10_1016_j_rser_2021_111758
crossref_primary_10_1109_ACCESS_2019_2957174
crossref_primary_10_1016_j_asej_2020_07_019
crossref_primary_10_1016_j_apenergy_2022_118851
crossref_primary_10_1016_j_apenergy_2024_122889
crossref_primary_10_1016_j_epsr_2022_107886
crossref_primary_10_1109_ACCESS_2019_2942012
crossref_primary_10_1016_j_engappai_2020_103783
crossref_primary_10_1109_TII_2022_3230726
crossref_primary_10_1080_1331677X_2023_2183420
crossref_primary_10_1109_ACCESS_2019_2957062
crossref_primary_10_1016_j_asoc_2019_105548
crossref_primary_10_1016_j_energy_2019_04_096
crossref_primary_10_1016_j_jclepro_2019_118556
crossref_primary_10_3390_electronics12173683
crossref_primary_10_1016_j_apenergy_2022_119608
crossref_primary_10_1016_j_jenvman_2019_05_124
crossref_primary_10_3390_en14144184
crossref_primary_10_1016_j_jweia_2025_106035
crossref_primary_10_3390_atmos12081020
crossref_primary_10_1016_j_egyr_2020_12_020
crossref_primary_10_1016_j_asoc_2023_110873
crossref_primary_10_1016_j_enconman_2020_113680
crossref_primary_10_1016_j_enconman_2022_115583
crossref_primary_10_1016_j_renene_2022_06_143
crossref_primary_10_3934_math_20231251
crossref_primary_10_1088_1361_6501_abc964
crossref_primary_10_3390_en14237943
crossref_primary_10_1016_j_apenergy_2019_04_188
crossref_primary_10_1016_j_renene_2020_09_087
crossref_primary_10_1016_j_apm_2019_10_022
crossref_primary_10_1155_2021_5541650
crossref_primary_10_1016_j_energy_2024_130402
crossref_primary_10_1109_ACCESS_2020_2966268
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_3390_e26121062
crossref_primary_10_1007_s13198_022_01754_7
crossref_primary_10_1016_j_rineng_2024_103626
crossref_primary_10_1109_ACCESS_2019_2952555
crossref_primary_10_2174_2666255815666220316154957
crossref_primary_10_1080_15325008_2023_2220688
crossref_primary_10_1016_j_energy_2021_122333
crossref_primary_10_3233_JIFS_237479
crossref_primary_10_1016_j_epsr_2021_107518
crossref_primary_10_3390_en16104060
crossref_primary_10_1016_j_rser_2020_109856
crossref_primary_10_1063_5_0019002
crossref_primary_10_1038_s41598_024_64233_y
crossref_primary_10_3390_atmos13050758
crossref_primary_10_3390_en13184964
crossref_primary_10_1016_j_enconman_2020_112492
crossref_primary_10_3390_app12105100
crossref_primary_10_1016_j_energy_2021_121275
crossref_primary_10_1016_j_energy_2022_123857
crossref_primary_10_1007_s00521_021_06255_5
crossref_primary_10_1016_j_asoc_2020_106620
crossref_primary_10_1016_j_ijepes_2021_107712
crossref_primary_10_3390_en15249261
crossref_primary_10_1049_rpg2_12597
crossref_primary_10_1088_1755_1315_838_1_012002
crossref_primary_10_1063_5_0048686
crossref_primary_10_3390_smartcities5030045
crossref_primary_10_1016_j_isci_2022_105804
crossref_primary_10_1016_j_seta_2021_101940
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_3390_en13061524
crossref_primary_10_1016_j_enconman_2021_114983
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1155_2022_8443619
crossref_primary_10_3390_pr8010035
crossref_primary_10_1109_ACCESS_2020_3027065
crossref_primary_10_1016_j_eswa_2024_123141
crossref_primary_10_1016_j_energy_2022_124957
Cites_doi 10.1016/j.asoc.2014.06.027
10.1016/j.enconman.2014.10.001
10.1098/rspa.1998.0193
10.1080/07350015.1995.10524599
10.1016/j.enconman.2016.02.013
10.1016/j.asoc.2018.07.022
10.3390/su8080754
10.1109/ICACCI.2016.7732428
10.1016/j.asoc.2017.05.057
10.1016/j.renene.2018.11.061
10.1016/j.renene.2016.03.103
10.1016/j.renene.2013.07.001
10.1061/(ASCE)0733-947X(2005)131:10(771)
10.1016/j.enconman.2017.08.014
10.3390/en11040712
10.1016/j.apenergy.2017.04.008
10.1109/72.165591
10.1016/j.knosys.2017.07.018
10.1016/j.apm.2015.11.030
10.1016/j.enconman.2010.11.007
10.1016/j.apenergy.2018.09.012
10.1016/j.enconman.2017.07.065
10.1016/j.knosys.2011.04.019
10.1016/j.renene.2018.01.113
10.1016/j.renene.2011.05.033
10.1016/j.apenergy.2018.11.012
10.1016/j.renene.2008.09.006
10.1016/j.knosys.2015.07.006
10.1016/j.renene.2009.10.028
10.1016/j.asoc.2017.01.033
10.1016/j.renene.2008.03.014
10.1016/j.asoc.2018.09.005
10.1016/j.apm.2019.01.039
10.1016/j.apenergy.2011.04.051
10.1109/TSTE.2019.2890875
10.1016/j.renene.2017.06.095
10.1016/j.knosys.2018.10.036
10.1016/j.apm.2018.10.019
10.1016/j.apenergy.2017.10.031
10.1016/j.cnsns.2016.12.017
10.1016/j.renene.2017.03.064
10.1016/j.bspc.2014.06.009
10.1016/j.renene.2016.10.030
10.1016/j.renene.2011.06.023
10.1016/j.apenergy.2017.04.039
10.1016/j.energy.2015.08.039
10.1016/j.apenergy.2009.12.013
10.1109/TSP.2013.2288675
10.1016/j.renene.2015.04.054
10.1142/S1793536910000422
10.1016/j.enconman.2010.07.053
10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.03.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 106
ExternalDocumentID 10_1016_j_asoc_2019_03_035
S1568494619301619
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c339t-eacd157cc97af4cc4d8bdfa4e2787fd805abac68d1b04663f41f9637200f6a743
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 22:59:45 EDT 2025
Tue Jul 01 01:50:02 EDT 2025
Fri Feb 23 02:24:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wavelet neural network
Wind power forecasting
Hybrid forecasting model
Multi-objective Optimization Algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-eacd157cc97af4cc4d8bdfa4e2787fd805abac68d1b04663f41f9637200f6a743
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_asoc_2019_03_035
crossref_citationtrail_10_1016_j_asoc_2019_03_035
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_03_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Yang, Heng (b6) 2019
Jiang, Adeli (b25) 2005
Zjavka (b42) 2015
Wang, Yang, Du, Niu (b62) 2018
Wang, Luo, Grunder, Lin (b7) 2017
El Aziz, Ewees, Hassanien (b51) 2017
Nor, Shaaban, Abdul Rahman (b35) 2014
Zhao, Guo, Su, Zhao, Xiao, Liu (b46) 2016
Hao, C, Tian (b14) 2019
Du, Wang, Yang, Niu (b4) 2018
Diebold, Mariano (b63) 1995
Wu, Huang (b55) 2008; 1
Sun, Qiao, Wei, Wang (b28) 2017
Meng, Ge, Yin, Chen (b21) 2016
Li, Shi (b19) 2010
Ma, Xie, Wu, Zeng, Wang, Wu (b30) 2019
Guo, Zhao, Lu, Wang (b44) 2012
Xiao, Shao, Yu, Ma, Jin (b22) 2017
Ma, sheng Hu, bin Liu (b29) 2017
Vikas, S.J. Nanda, Multi-objective moth flame optimization, in: 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016, 2016, pp. 2470–2476.
Huang, Shen, Long, Wu, Snin, Zheng, Yen, Tung, Liu (b54) 1998
Zhao, Guo, Su, Zhao, Xiao, Liu (b9) 2016
Lahouar, Ben Hadj Slama (b11) 2017
Yin, Dong, Chen, Ge, Lai, Vaccaro, Meng (b32) 2017
Pourmousavi Kani, Ardehali (b20) 2011
Wang, Zhang, Li, Wang, Dang (b61) 2014
Jiang, Li, Li (b2) 2019
.
Zhang, Benveniste (b48) 1992
Lei (b23) 2018
Kavasseri, Seetharaman (b40) 2009
Du, Wang, Guo, Yang (b12) 2017
Du, Jin, Zhang (b45) 2016
Wang, Niu, Lu, Yang, Du (b3) 2019
Li, Wang, Li, Lu (b26) 2019
Dragomiretskiy, Zosso (b56) 2014
Tian, Hao (b24) 2018
Zhou, Shi, Li (b43) 2011
Foley, Leahy, Marvuglia, McKeogh (b60) 2012
Chitsaz, Amjady, Zareipour (b47) 2015
Colominas, Schlotthauer, Torres (b34) 2014
Wang, Du, Niu, Yang (b5) 2017
Gallego, Pinson, Madsen, Costa, Cuerva (b37) 2011
Lazić, Pejanović, Živković (b36) 2010
Ma, Jin, Dong (b18) 2017
Wang, Du, Lu, Yang, Niu (b58) 2018
Jiang, Li, Li, Yang (b13) 2019
Dong, Sun, Li (b10) 2017
Cadenas, Rivera (b41) 2009
Wang, Hu (b64) 2015
Ng Shin Mei, Sulaiman, Mustaffa, Daniyal (b50) 2017
Brown, Katz, Murphy (b38) 1984
Zhao, Wang, Sun, Wang (b1) 2019
Yang, Wang, Niu, Du (b16) 2019
Mirjalili, Jangir, Mirjalili, Saremi, Trivedi (b59) 2017
Mirjalili (b49) 2015
Sotavento Galicia
Li, Zhu (b15) 2018
Grigonyte, E (b39) 2016; 62
Wang, Zhang, Wu, Wang (b31) 2016
Yeh, Shieh, Huang (b57) 2010; 2
Niu, Sun, Wu, Yu, Wang (b17) 2016
Tian, Hao, Hu (b33) 2018
Wang, Wang, Wei (b8) 2015
Guo, Wu, Lu, Wang (b27) 2011
Xiao (10.1016/j.asoc.2019.03.035_b22) 2017
Ng Shin Mei (10.1016/j.asoc.2019.03.035_b50) 2017
Yeh (10.1016/j.asoc.2019.03.035_b57) 2010; 2
Zhao (10.1016/j.asoc.2019.03.035_b1) 2019
Pourmousavi Kani (10.1016/j.asoc.2019.03.035_b20) 2011
Wang (10.1016/j.asoc.2019.03.035_b62) 2018
Dragomiretskiy (10.1016/j.asoc.2019.03.035_b56) 2014
Lei (10.1016/j.asoc.2019.03.035_b23) 2018
Li (10.1016/j.asoc.2019.03.035_b19) 2010
Guo (10.1016/j.asoc.2019.03.035_b44) 2012
Du (10.1016/j.asoc.2019.03.035_b12) 2017
Tian (10.1016/j.asoc.2019.03.035_b24) 2018
Wang (10.1016/j.asoc.2019.03.035_b7) 2017
10.1016/j.asoc.2019.03.035_b53
Jiang (10.1016/j.asoc.2019.03.035_b25) 2005
Ma (10.1016/j.asoc.2019.03.035_b18) 2017
Zhao (10.1016/j.asoc.2019.03.035_b46) 2016
Du (10.1016/j.asoc.2019.03.035_b45) 2016
10.1016/j.asoc.2019.03.035_b52
Li (10.1016/j.asoc.2019.03.035_b26) 2019
Ma (10.1016/j.asoc.2019.03.035_b30) 2019
Grigonyte (10.1016/j.asoc.2019.03.035_b39) 2016; 62
Dong (10.1016/j.asoc.2019.03.035_b10) 2017
Wang (10.1016/j.asoc.2019.03.035_b8) 2015
El Aziz (10.1016/j.asoc.2019.03.035_b51) 2017
Wang (10.1016/j.asoc.2019.03.035_b61) 2014
Mirjalili (10.1016/j.asoc.2019.03.035_b59) 2017
Yang (10.1016/j.asoc.2019.03.035_b16) 2019
Gallego (10.1016/j.asoc.2019.03.035_b37) 2011
Wu (10.1016/j.asoc.2019.03.035_b55) 2008; 1
Zjavka (10.1016/j.asoc.2019.03.035_b42) 2015
Foley (10.1016/j.asoc.2019.03.035_b60) 2012
Jiang (10.1016/j.asoc.2019.03.035_b13) 2019
Zhang (10.1016/j.asoc.2019.03.035_b48) 1992
Guo (10.1016/j.asoc.2019.03.035_b27) 2011
Ma (10.1016/j.asoc.2019.03.035_b29) 2017
Brown (10.1016/j.asoc.2019.03.035_b38) 1984
Sun (10.1016/j.asoc.2019.03.035_b28) 2017
Cadenas (10.1016/j.asoc.2019.03.035_b41) 2009
Nor (10.1016/j.asoc.2019.03.035_b35) 2014
Huang (10.1016/j.asoc.2019.03.035_b54) 1998
Jiang (10.1016/j.asoc.2019.03.035_b6) 2019
Lazić (10.1016/j.asoc.2019.03.035_b36) 2010
Tian (10.1016/j.asoc.2019.03.035_b33) 2018
Wang (10.1016/j.asoc.2019.03.035_b31) 2016
Colominas (10.1016/j.asoc.2019.03.035_b34) 2014
Wang (10.1016/j.asoc.2019.03.035_b64) 2015
Wang (10.1016/j.asoc.2019.03.035_b5) 2017
Niu (10.1016/j.asoc.2019.03.035_b17) 2016
Yin (10.1016/j.asoc.2019.03.035_b32) 2017
Mirjalili (10.1016/j.asoc.2019.03.035_b49) 2015
Li (10.1016/j.asoc.2019.03.035_b15) 2018
Diebold (10.1016/j.asoc.2019.03.035_b63) 1995
Kavasseri (10.1016/j.asoc.2019.03.035_b40) 2009
Chitsaz (10.1016/j.asoc.2019.03.035_b47) 2015
Wang (10.1016/j.asoc.2019.03.035_b3) 2019
Hao (10.1016/j.asoc.2019.03.035_b14) 2019
Zhao (10.1016/j.asoc.2019.03.035_b9) 2016
Zhou (10.1016/j.asoc.2019.03.035_b43) 2011
Lahouar (10.1016/j.asoc.2019.03.035_b11) 2017
Meng (10.1016/j.asoc.2019.03.035_b21) 2016
Jiang (10.1016/j.asoc.2019.03.035_b2) 2019
Wang (10.1016/j.asoc.2019.03.035_b58) 2018
Du (10.1016/j.asoc.2019.03.035_b4) 2018
References_xml – year: 2016
  ident: b9
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl. Energy
– start-page: 786
  year: 2019
  end-page: 801
  ident: b6
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Appl. Energy
– year: 2019
  ident: b1
  article-title: Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system
  publication-title: Renew. Energy
– year: 2017
  ident: b11
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renew. Energy
– year: 2016
  ident: b45
  article-title: A hybrid multi-step rolling forecasting model based on SSA and simulated annealing-adaptive particle swarm optimization for wind speed
  publication-title: Sustain
– year: 2015
  ident: b64
  article-title: A robust combination approach for short-term wind speed forecasting and analysis - combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
  publication-title: Energy
– year: 2016
  ident: b31
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew. Energy
– reference: Sotavento Galicia,
– year: 2017
  ident: b5
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-objective whale optimization algorithm for wind speed forecasting
  publication-title: Appl. Energy
– year: 1998
  ident: b54
  article-title: The empirical mode decomposition and the hubert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– year: 2009
  ident: b40
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
– year: 2017
  ident: b59
  article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm
  publication-title: Knowl. Based Syst.
– year: 2015
  ident: b8
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China
  publication-title: Energy
– year: 2011
  ident: b27
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl. Based Syst.
– year: 2018
  ident: b23
  article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction
  publication-title: Appl. Soft Comput. J.
– year: 2012
  ident: b44
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renew. Energy
– year: 2017
  ident: b18
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl. Soft Comput. J.
– year: 2010
  ident: b19
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl. Energy.
– year: 2014
  ident: b61
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl. Soft Comput. J.
– year: 2018
  ident: b4
  article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system
  publication-title: Renew. Energy
– year: 2015
  ident: b42
  article-title: Wind speed forecast correction models using polynomial neural networks
  publication-title: Renew. Energy
– year: 2011
  ident: b20
  article-title: Very short-term wind speed prediction: A new artificial neural network-Markov chain model
  publication-title: Energy Convers. Manag.
– year: 2019
  ident: b26
  article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index
  publication-title: J. Clean. Prod.
– year: 2017
  ident: b10
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China
  publication-title: Renew. Energy
– year: 2017
  ident: b32
  article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
  publication-title: Energy Convers. Manag.
– year: 2017
  ident: b12
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manag.
– year: 2019
  ident: b14
  article-title: The study and application of a novel hybrid system for air quality early-warning
  publication-title: Appl. Soft Comput. J.
– year: 2017
  ident: b22
  article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
  publication-title: Appl. Energy
– year: 2014
  ident: b34
  article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
– year: 2009
  ident: b41
  article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
  publication-title: Renew. Energy
– year: 2011
  ident: b43
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
– year: 2019
  ident: b30
  article-title: The novel fractional discrete multivariate grey system model and its applications
  publication-title: Appl. Math. Model.
– year: 2011
  ident: b37
  article-title: Influence of local wind speed and direction on wind power dynamics - Application to offshore very short-term forecasting
  publication-title: Appl. Energy
– year: 2016
  ident: b21
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers. Manag.
– reference: Vikas, S.J. Nanda, Multi-objective moth flame optimization, in: 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016, 2016, pp. 2470–2476.
– year: 2005
  ident: b25
  article-title: Dynamic wavelet neural network model for traffic flow forecasting
  publication-title: J. Transp. Eng.
– year: 2010
  ident: b36
  article-title: Wind forecasts for wind power generation using the Eta model
  publication-title: Renew. Energy
– year: 2019
  ident: b3
  article-title: A novel framework of reservoir computing for deterministic and probabilistic wind power forecasting
  publication-title: IEEE Trans. Sustain. Energy
– year: 2012
  ident: b60
  article-title: Current methods and advances in forecasting of wind power generation
  publication-title: Renew. Energy
– year: 2015
  ident: b47
  article-title: Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
  publication-title: Energy Convers. Manag.
– year: 2018
  ident: b62
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers. Manag.
– year: 2018
  ident: b15
  article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China
  publication-title: Sci. Total Environ.
– year: 2014
  ident: b56
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– year: 2017
  ident: b50
  article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique
  publication-title: Appl. Soft Comput. J.
– year: 2017
  ident: b28
  article-title: A new dynamic integrated approach for wind speed forecasting
  publication-title: Appl. Energy
– year: 2018
  ident: b58
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl. Soft Comput. J.
– year: 2015
  ident: b49
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl. Based Syst.
– volume: 62
  start-page: 45
  year: 2016
  end-page: 55
  ident: b39
  article-title: Butkeviciute short-term wind speed forecasting using ARIMA model
  publication-title: Energetika
– year: 2019
  ident: b13
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation
  publication-title: Knowl. Based Syst.
– year: 1984
  ident: b38
  article-title: Time series models to simulate and forecast wind speeds and power
  publication-title: J. Clim. Appl. Meteorol.
– year: 2016
  ident: b46
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl. Energy
– year: 2017
  ident: b7
  article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
  publication-title: Renew. Energy
– year: 2017
  ident: b51
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– volume: 2
  year: 2010
  ident: b57
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
– year: 1995
  ident: b63
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econom. Statist.
– year: 2019
  ident: b16
  article-title: A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting
  publication-title: Appl. Energy
– year: 2017
  ident: b29
  article-title: A novel kernel regularized nonhomogeneous grey model and its applications
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 1
  year: 2008
  ident: b55
  article-title: Ensemble empirical mode decomposition: a noiseassisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– reference: .
– year: 1992
  ident: b48
  article-title: Wavelet networks
  publication-title: IEEE Trans. Neural Netw.
– year: 2014
  ident: b35
  article-title: Feasibility assessment of wind energy resources in Malaysia based on NWP models
  publication-title: Renew. Energy
– year: 2016
  ident: b17
  article-title: An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting
  publication-title: Appl. Math. Model.
– year: 2018
  ident: b33
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Appl. Energy
– year: 2018
  ident: b24
  article-title: A novel nonlinear combined forecasting system for short-term load forecasting
  publication-title: Energies
– year: 2019
  ident: b2
  article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
  publication-title: Appl. Math. Model.
– year: 2014
  ident: 10.1016/j.asoc.2019.03.035_b61
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2014.06.027
– year: 2016
  ident: 10.1016/j.asoc.2019.03.035_b9
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl. Energy
– year: 2015
  ident: 10.1016/j.asoc.2019.03.035_b47
  article-title: Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.10.001
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b26
  article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index
  publication-title: J. Clean. Prod.
– year: 1998
  ident: 10.1016/j.asoc.2019.03.035_b54
  article-title: The empirical mode decomposition and the hubert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– year: 1995
  ident: 10.1016/j.asoc.2019.03.035_b63
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1080/07350015.1995.10524599
– year: 2016
  ident: 10.1016/j.asoc.2019.03.035_b21
  article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.02.013
– year: 2015
  ident: 10.1016/j.asoc.2019.03.035_b64
  publication-title: Energy
– year: 2018
  ident: 10.1016/j.asoc.2019.03.035_b58
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.07.022
– year: 2016
  ident: 10.1016/j.asoc.2019.03.035_b45
  article-title: A hybrid multi-step rolling forecasting model based on SSA and simulated annealing-adaptive particle swarm optimization for wind speed
  publication-title: Sustain
  doi: 10.3390/su8080754
– ident: 10.1016/j.asoc.2019.03.035_b52
  doi: 10.1109/ICACCI.2016.7732428
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b50
  article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.05.057
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b1
  article-title: Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.11.061
– year: 2016
  ident: 10.1016/j.asoc.2019.03.035_b31
  article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.03.103
– year: 2014
  ident: 10.1016/j.asoc.2019.03.035_b35
  article-title: Feasibility assessment of wind energy resources in Malaysia based on NWP models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.07.001
– year: 2018
  ident: 10.1016/j.asoc.2019.03.035_b15
  article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China
  publication-title: Sci. Total Environ.
– year: 2005
  ident: 10.1016/j.asoc.2019.03.035_b25
  article-title: Dynamic wavelet neural network model for traffic flow forecasting
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2005)131:10(771)
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b32
  article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.08.014
– year: 2018
  ident: 10.1016/j.asoc.2019.03.035_b24
  article-title: A novel nonlinear combined forecasting system for short-term load forecasting
  publication-title: Energies
  doi: 10.3390/en11040712
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b28
  article-title: A new dynamic integrated approach for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.008
– year: 1992
  ident: 10.1016/j.asoc.2019.03.035_b48
  article-title: Wavelet networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.165591
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b59
  article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.07.018
– year: 2016
  ident: 10.1016/j.asoc.2019.03.035_b17
  article-title: An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.11.030
– year: 2011
  ident: 10.1016/j.asoc.2019.03.035_b43
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.11.007
– year: 2018
  ident: 10.1016/j.asoc.2019.03.035_b33
  article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.012
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b12
  article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.07.065
– volume: 1
  issue: 1e41
  year: 2008
  ident: 10.1016/j.asoc.2019.03.035_b55
  article-title: Ensemble empirical mode decomposition: a noiseassisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– year: 2011
  ident: 10.1016/j.asoc.2019.03.035_b27
  article-title: A case study on a hybrid wind speed forecasting method using BP neural network
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2011.04.019
– year: 2018
  ident: 10.1016/j.asoc.2019.03.035_b4
  article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.01.113
– year: 2012
  ident: 10.1016/j.asoc.2019.03.035_b60
  article-title: Current methods and advances in forecasting of wind power generation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.05.033
– year: 2016
  ident: 10.1016/j.asoc.2019.03.035_b46
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Appl. Energy
– year: 2018
  ident: 10.1016/j.asoc.2019.03.035_b62
  article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm
  publication-title: Energy Convers. Manag.
– start-page: 786
  year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b6
  article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.11.012
– year: 2009
  ident: 10.1016/j.asoc.2019.03.035_b40
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.09.006
– year: 2015
  ident: 10.1016/j.asoc.2019.03.035_b49
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 62
  start-page: 45
  issue: 1–2
  year: 2016
  ident: 10.1016/j.asoc.2019.03.035_b39
  article-title: Butkeviciute short-term wind speed forecasting using ARIMA model
  publication-title: Energetika
– year: 2010
  ident: 10.1016/j.asoc.2019.03.035_b36
  article-title: Wind forecasts for wind power generation using the Eta model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.10.028
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b18
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.01.033
– year: 2009
  ident: 10.1016/j.asoc.2019.03.035_b41
  article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.03.014
– ident: 10.1016/j.asoc.2019.03.035_b53
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b14
  article-title: The study and application of a novel hybrid system for air quality early-warning
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.09.005
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b30
  article-title: The novel fractional discrete multivariate grey system model and its applications
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.01.039
– year: 2011
  ident: 10.1016/j.asoc.2019.03.035_b37
  article-title: Influence of local wind speed and direction on wind power dynamics - Application to offshore very short-term forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.04.051
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b3
  article-title: A novel framework of reservoir computing for deterministic and probabilistic wind power forecasting
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2890875
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b7
  article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.06.095
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b13
  article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.10.036
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b2
  article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.10.019
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b5
  article-title: A novel hybrid system based on a new proposed algorithm—Multi-objective whale optimization algorithm for wind speed forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.031
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b29
  article-title: A novel kernel regularized nonhomogeneous grey model and its applications
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.12.017
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b11
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.03.064
– year: 2014
  ident: 10.1016/j.asoc.2019.03.035_b34
  article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.06.009
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b10
  article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.10.030
– year: 2012
  ident: 10.1016/j.asoc.2019.03.035_b44
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.06.023
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b22
  article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.039
– year: 2015
  ident: 10.1016/j.asoc.2019.03.035_b8
  article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.039
– year: 2010
  ident: 10.1016/j.asoc.2019.03.035_b19
  article-title: On comparing three artificial neural networks for wind speed forecasting
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2009.12.013
– year: 2014
  ident: 10.1016/j.asoc.2019.03.035_b56
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– year: 2015
  ident: 10.1016/j.asoc.2019.03.035_b42
  article-title: Wind speed forecast correction models using polynomial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.04.054
– year: 2017
  ident: 10.1016/j.asoc.2019.03.035_b51
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– year: 2018
  ident: 10.1016/j.asoc.2019.03.035_b23
  article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction
  publication-title: Appl. Soft Comput. J.
– volume: 2
  year: 2010
  ident: 10.1016/j.asoc.2019.03.035_b57
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000422
– year: 2011
  ident: 10.1016/j.asoc.2019.03.035_b20
  article-title: Very short-term wind speed prediction: A new artificial neural network-Markov chain model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.07.053
– year: 2019
  ident: 10.1016/j.asoc.2019.03.035_b16
  article-title: A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting
  publication-title: Appl. Energy
– year: 1984
  ident: 10.1016/j.asoc.2019.03.035_b38
  article-title: Time series models to simulate and forecast wind speeds and power
  publication-title: J. Clim. Appl. Meteorol.
  doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2
SSID ssj0016928
Score 2.6167064
Snippet Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Hybrid forecasting model
Multi-objective Optimization Algorithm
Wavelet neural network
Wind power forecasting
Title A novel hybrid model for short-term wind power forecasting
URI https://dx.doi.org/10.1016/j.asoc.2019.03.035
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvvjitzg_Rh58k7i1TZvGtzEc82uIOthbSdOETUY33FR88W_3rk1FQfYgFErbSyiX3OUOfnc_Qk790GRSC8mkMJzBeZwxqUybWcGVVdKaEk14N4j6Q349Ckc10q1qYRBW6Xx_6dMLb-3etJw2W_PJpPUImUfMJYcMIMC4BYv4OBe4y88_v2EeXiQLflUUZijtCmdKjJcCDSC8q2x0WlC-_XE4_Thweltkw0WKtFP-zDapmXyHbFYsDNQZ5S656NB89mamdPyB1Ve04LahEIvSxRhia4a-l75D6k3nyIiGX4xWC4Q775Fh7_Kp22eOEYHpIJBLBl4y80KhtRTKcq15FqeZVdz4YHc2i9uhSpWO4sxLIe-NAss9CxYmwBRspCBY2Cf1fJabA0IFTBinkfYDpbnPgxRs34_bsKBcGxvrBvEqVSTatQtH1oppUuHCnhNUX4LqS9oBXGGDnH2PmZfNMlZKh5WGk19LnoA3XzHu8J_jjsg6PpVY22NSX768mhOIKJZps9gyTbLW6T7c3uP96qY_-ALwmcx8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNAFL34WOjGt1ifs9CVjG2SyWMEF6KW1qobW-guTiYztFLaYqvFjT_lD3onmRQFcSEUskoyw-Tkcu69cGYOwLHrq5TLkFMeKkYxH6eUC1WhOmRCC65Vria8fwhqLXbb9ttz8FnshTGySsv9OadnbG3vlC2a5WG3W37EziNinGEH4Jm6hVtlZUO9T7BvG13Ur_Enn7hu9aZ5VaPWWoBKz-NjinSTOn4oJQ-FZlKyNEpSLZhyMYB1GlV8kQgZRKmTYAMZeJo5GkM1xJjSgcCsi_POwyJDujC2CWcfU12JE_DM0NWsjprl2Z06uahMIORGT5afrJp5zP2SDb9luOoarNjSlFzmX78Oc6q_AauF7QOxLLAJ55ekP3hTPdJ5N9u9SGamQ7D4JaMOFvPUkD2ZYK9PhsaCzTxRUoyMvnoLWjPBaRsW-oO-2gES4oRREkjXE5K5zEuQbNyoghHEpNKRLIFTQBFLez65scnoxYUQ7Tk28MUGvrji4eWX4HQ6ZpifzvHn236BcPwjxmJMH3-M2_3nuCNYqjXv7-K7-kNjD5bNk1zouw8L45dXdYDlzDg5zMKHwNOs4_ULU6kH6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+model+for+short-term+wind+power+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Du%2C+Pei&rft.au=Wang%2C+Jianzhou&rft.au=Yang%2C+Wendong&rft.au=Niu%2C+Tong&rft.date=2019-07-01&rft.issn=1568-4946&rft.volume=80&rft.spage=93&rft.epage=106&rft_id=info:doi/10.1016%2Fj.asoc.2019.03.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_03_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon