A novel hybrid model for short-term wind power forecasting
Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance...
Saved in:
Published in | Applied soft computing Vol. 80; pp. 93 - 106 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance prediction accuracy, this study developed a hybrid model that incorporates the following stages. First, an improved complete ensemble empirical mode decomposition with adaptive noise technology was applied to decompose the wind energy series for eliminating noise and extracting the main features of original data. Next, to achieve high accurate and stable forecasts, an improved wavelet neural network optimized by optimization methods was built and used to implement wind energy prediction. Finally, hypothesis testing, stability test and four case studies including eighteen comparison models were utilized to test the abilities of prediction models. The experimental results show that the average values of the mean absolute percent errors of the proposed hybrid model are 5.0116% (one-step ahead), 7.7877% (two-step ahead) and 10.6968% (three-step ahead), which are much lower than comparison models.
•Propose a novel hybrid forecasting model based on multi-objective optimization.•The proposed model is superior to 18 comparison models for wind power prediction.•The proposed hybrid model demonstrates higher prediction accuracy and reliability.•Hypothesis testing is used to make a comprehensive evaluation for proposed model. |
---|---|
AbstractList | Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high volatility and intermittency, it is difficult to model and predict wind power series through traditional forecasting approaches. To enhance prediction accuracy, this study developed a hybrid model that incorporates the following stages. First, an improved complete ensemble empirical mode decomposition with adaptive noise technology was applied to decompose the wind energy series for eliminating noise and extracting the main features of original data. Next, to achieve high accurate and stable forecasts, an improved wavelet neural network optimized by optimization methods was built and used to implement wind energy prediction. Finally, hypothesis testing, stability test and four case studies including eighteen comparison models were utilized to test the abilities of prediction models. The experimental results show that the average values of the mean absolute percent errors of the proposed hybrid model are 5.0116% (one-step ahead), 7.7877% (two-step ahead) and 10.6968% (three-step ahead), which are much lower than comparison models.
•Propose a novel hybrid forecasting model based on multi-objective optimization.•The proposed model is superior to 18 comparison models for wind power prediction.•The proposed hybrid model demonstrates higher prediction accuracy and reliability.•Hypothesis testing is used to make a comprehensive evaluation for proposed model. |
Author | Wang, Jianzhou Yang, Wendong Niu, Tong Du, Pei |
Author_xml | – sequence: 1 givenname: Pei surname: Du fullname: Du, Pei – sequence: 2 givenname: Jianzhou surname: Wang fullname: Wang, Jianzhou email: wjzdufe@126.com – sequence: 3 givenname: Wendong surname: Yang fullname: Yang, Wendong – sequence: 4 givenname: Tong surname: Niu fullname: Niu, Tong |
BookMark | eNp9j8tKAzEUhoNUsK2-gKt5gRmTSSYXcVOKVqHgRtchk4tNaSclCS19ezPUlYvCD-f8HL4D3wxMhjBYAB4RbBBE9GnbqBR000IkGohLuhswRZy1taAcTcreUV4TQegdmKW0hQUSLZ-C50U1hKPdVZtzH72p9sGU4kKs0ibEXGcb99XJD6Y6hJON48VqlbIffu7BrVO7ZB_-5hx8v71-Ld_r9efqY7lY1xpjkWurtEEd01ow5YjWxPDeOEVsyzhzhsNO9UpTblAPCaXYEeQExayF0FHFCJ6D9vJXx5BStE4eot-reJYIytFebuVoL0d7CXFJVyD-D9I-q-zDkKPyu-voywW1RerobZRJeztoa3xxz9IEfw3_BVg4eKg |
CitedBy_id | crossref_primary_10_1016_j_asoc_2021_107941 crossref_primary_10_1177_0958305X241228515 crossref_primary_10_1002_for_3189 crossref_primary_10_1016_j_egyr_2022_05_265 crossref_primary_10_1016_j_apr_2020_04_010 crossref_primary_10_1016_j_eswa_2023_122487 crossref_primary_10_1016_j_asoc_2020_106463 crossref_primary_10_1016_j_cles_2023_100068 crossref_primary_10_1108_GS_02_2020_0023 crossref_primary_10_1016_j_prime_2024_100511 crossref_primary_10_1016_j_isatra_2019_07_009 crossref_primary_10_55974_utbd_1132336 crossref_primary_10_1002_adc2_59 crossref_primary_10_1007_s10668_022_02299_2 crossref_primary_10_3389_fenvs_2022_873939 crossref_primary_10_1016_j_jclepro_2019_119386 crossref_primary_10_3390_su151813424 crossref_primary_10_1007_s10462_025_11140_x crossref_primary_10_1155_2021_7653091 crossref_primary_10_1016_j_asoc_2021_107288 crossref_primary_10_1016_j_energy_2022_125826 crossref_primary_10_1016_j_asoc_2020_106555 crossref_primary_10_1016_j_jclepro_2020_120378 crossref_primary_10_1007_s10489_023_04599_0 crossref_primary_10_1016_j_apenergy_2019_05_016 crossref_primary_10_1016_j_seta_2020_100757 crossref_primary_10_32604_cmes_2022_019245 crossref_primary_10_1016_j_energy_2023_128226 crossref_primary_10_1016_j_eswa_2024_125376 crossref_primary_10_1016_j_apenergy_2021_116545 crossref_primary_10_1016_j_jclepro_2020_124628 crossref_primary_10_1016_j_asoc_2021_107935 crossref_primary_10_1088_1742_6596_1748_3_032015 crossref_primary_10_1177_0309524X211046382 crossref_primary_10_1016_j_eswa_2020_114364 crossref_primary_10_1155_2019_1510257 crossref_primary_10_1016_j_scitotenv_2019_135447 crossref_primary_10_3389_fenrg_2021_720406 crossref_primary_10_1002_2050_7038_13010 crossref_primary_10_1016_j_energy_2020_116905 crossref_primary_10_1016_j_renene_2020_09_109 crossref_primary_10_1016_j_knosys_2019_07_024 crossref_primary_10_1063_5_0020759 crossref_primary_10_1109_ACCESS_2020_2973746 crossref_primary_10_1016_j_apenergy_2019_114139 crossref_primary_10_1016_j_egyr_2023_05_181 crossref_primary_10_1016_j_apenergy_2019_114137 crossref_primary_10_1016_j_neucom_2021_07_084 crossref_primary_10_1016_j_jbi_2020_103575 crossref_primary_10_1063_5_0065937 crossref_primary_10_1016_j_engappai_2020_104133 crossref_primary_10_1007_s00521_019_04570_6 crossref_primary_10_1007_s40314_020_01315_3 crossref_primary_10_1016_j_apm_2020_07_019 crossref_primary_10_1186_s42162_024_00373_9 crossref_primary_10_1016_j_jclepro_2020_120407 crossref_primary_10_1108_GS_02_2023_0013 crossref_primary_10_1016_j_heliyon_2022_e11599 crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_1016_j_egyr_2023_09_028 crossref_primary_10_1007_s12206_021_0423_5 crossref_primary_10_1016_j_oceaneng_2022_112258 crossref_primary_10_1016_j_asoc_2021_107848 crossref_primary_10_1049_rpg2_13159 crossref_primary_10_1016_j_ecmx_2025_100919 crossref_primary_10_3390_electronics10030261 crossref_primary_10_24012_dumf_1079230 crossref_primary_10_1016_j_asoc_2019_105972 crossref_primary_10_3390_jmse13010045 crossref_primary_10_1109_TII_2024_3383018 crossref_primary_10_1007_s00521_024_09923_4 crossref_primary_10_1016_j_jenvman_2019_109855 crossref_primary_10_1016_j_asoc_2019_106029 crossref_primary_10_1016_j_oceaneng_2023_114964 crossref_primary_10_1016_j_asoc_2020_106900 crossref_primary_10_1016_j_apm_2020_08_080 crossref_primary_10_1016_j_enconman_2023_117891 crossref_primary_10_1007_s10489_022_04312_7 crossref_primary_10_1016_j_neucom_2021_05_048 crossref_primary_10_1109_ACCESS_2020_2966641 crossref_primary_10_1109_ACCESS_2024_3440631 crossref_primary_10_1016_j_egyr_2022_07_005 crossref_primary_10_1016_j_renene_2021_08_044 crossref_primary_10_2139_ssrn_4133030 crossref_primary_10_2174_0118722121251451230925033743 crossref_primary_10_1016_j_rser_2020_109912 crossref_primary_10_1016_j_asoc_2020_106476 crossref_primary_10_1016_j_egyr_2024_06_006 crossref_primary_10_59400_esc_v2i3_538 crossref_primary_10_1016_j_enconman_2021_113917 crossref_primary_10_3390_en15249657 crossref_primary_10_1016_j_measurement_2023_113811 crossref_primary_10_1007_s11069_024_06747_2 crossref_primary_10_1016_j_eswa_2023_121438 crossref_primary_10_1109_ACCESS_2019_2936828 crossref_primary_10_1016_j_jclepro_2019_119318 crossref_primary_10_1016_j_scitotenv_2021_150859 crossref_primary_10_1155_2020_8303152 crossref_primary_10_1109_TSTE_2021_3067436 crossref_primary_10_1016_j_energy_2023_128762 crossref_primary_10_1177_01445987241248201 crossref_primary_10_1016_j_apenergy_2024_124035 crossref_primary_10_1109_MCI_2021_3084416 crossref_primary_10_3233_JIFS_210779 crossref_primary_10_1016_j_jclepro_2019_118573 crossref_primary_10_1080_15435075_2024_2399189 crossref_primary_10_1371_journal_pone_0225362 crossref_primary_10_1109_ACCESS_2021_3086583 crossref_primary_10_1016_j_renene_2023_119241 crossref_primary_10_1016_j_apenergy_2023_121749 crossref_primary_10_1007_s10462_023_10554_9 crossref_primary_10_1146_annurev_environ_020220_061831 crossref_primary_10_3390_pr7110843 crossref_primary_10_1016_j_cie_2022_108331 crossref_primary_10_1016_j_renene_2023_119391 crossref_primary_10_1063_5_0059809 crossref_primary_10_1186_s43067_023_00091_4 crossref_primary_10_1177_0309524X231191163 crossref_primary_10_1016_j_jfranklin_2022_06_028 crossref_primary_10_3389_fceng_2021_665415 crossref_primary_10_1016_j_rser_2021_111758 crossref_primary_10_1109_ACCESS_2019_2957174 crossref_primary_10_1016_j_asej_2020_07_019 crossref_primary_10_1016_j_apenergy_2022_118851 crossref_primary_10_1016_j_apenergy_2024_122889 crossref_primary_10_1016_j_epsr_2022_107886 crossref_primary_10_1109_ACCESS_2019_2942012 crossref_primary_10_1016_j_engappai_2020_103783 crossref_primary_10_1109_TII_2022_3230726 crossref_primary_10_1080_1331677X_2023_2183420 crossref_primary_10_1109_ACCESS_2019_2957062 crossref_primary_10_1016_j_asoc_2019_105548 crossref_primary_10_1016_j_energy_2019_04_096 crossref_primary_10_1016_j_jclepro_2019_118556 crossref_primary_10_3390_electronics12173683 crossref_primary_10_1016_j_apenergy_2022_119608 crossref_primary_10_1016_j_jenvman_2019_05_124 crossref_primary_10_3390_en14144184 crossref_primary_10_1016_j_jweia_2025_106035 crossref_primary_10_3390_atmos12081020 crossref_primary_10_1016_j_egyr_2020_12_020 crossref_primary_10_1016_j_asoc_2023_110873 crossref_primary_10_1016_j_enconman_2020_113680 crossref_primary_10_1016_j_enconman_2022_115583 crossref_primary_10_1016_j_renene_2022_06_143 crossref_primary_10_3934_math_20231251 crossref_primary_10_1088_1361_6501_abc964 crossref_primary_10_3390_en14237943 crossref_primary_10_1016_j_apenergy_2019_04_188 crossref_primary_10_1016_j_renene_2020_09_087 crossref_primary_10_1016_j_apm_2019_10_022 crossref_primary_10_1155_2021_5541650 crossref_primary_10_1016_j_energy_2024_130402 crossref_primary_10_1109_ACCESS_2020_2966268 crossref_primary_10_1016_j_enconman_2020_113324 crossref_primary_10_3390_e26121062 crossref_primary_10_1007_s13198_022_01754_7 crossref_primary_10_1016_j_rineng_2024_103626 crossref_primary_10_1109_ACCESS_2019_2952555 crossref_primary_10_2174_2666255815666220316154957 crossref_primary_10_1080_15325008_2023_2220688 crossref_primary_10_1016_j_energy_2021_122333 crossref_primary_10_3233_JIFS_237479 crossref_primary_10_1016_j_epsr_2021_107518 crossref_primary_10_3390_en16104060 crossref_primary_10_1016_j_rser_2020_109856 crossref_primary_10_1063_5_0019002 crossref_primary_10_1038_s41598_024_64233_y crossref_primary_10_3390_atmos13050758 crossref_primary_10_3390_en13184964 crossref_primary_10_1016_j_enconman_2020_112492 crossref_primary_10_3390_app12105100 crossref_primary_10_1016_j_energy_2021_121275 crossref_primary_10_1016_j_energy_2022_123857 crossref_primary_10_1007_s00521_021_06255_5 crossref_primary_10_1016_j_asoc_2020_106620 crossref_primary_10_1016_j_ijepes_2021_107712 crossref_primary_10_3390_en15249261 crossref_primary_10_1049_rpg2_12597 crossref_primary_10_1088_1755_1315_838_1_012002 crossref_primary_10_1063_5_0048686 crossref_primary_10_3390_smartcities5030045 crossref_primary_10_1016_j_isci_2022_105804 crossref_primary_10_1016_j_seta_2021_101940 crossref_primary_10_1016_j_asoc_2019_105587 crossref_primary_10_3390_en13061524 crossref_primary_10_1016_j_enconman_2021_114983 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1155_2022_8443619 crossref_primary_10_3390_pr8010035 crossref_primary_10_1109_ACCESS_2020_3027065 crossref_primary_10_1016_j_eswa_2024_123141 crossref_primary_10_1016_j_energy_2022_124957 |
Cites_doi | 10.1016/j.asoc.2014.06.027 10.1016/j.enconman.2014.10.001 10.1098/rspa.1998.0193 10.1080/07350015.1995.10524599 10.1016/j.enconman.2016.02.013 10.1016/j.asoc.2018.07.022 10.3390/su8080754 10.1109/ICACCI.2016.7732428 10.1016/j.asoc.2017.05.057 10.1016/j.renene.2018.11.061 10.1016/j.renene.2016.03.103 10.1016/j.renene.2013.07.001 10.1061/(ASCE)0733-947X(2005)131:10(771) 10.1016/j.enconman.2017.08.014 10.3390/en11040712 10.1016/j.apenergy.2017.04.008 10.1109/72.165591 10.1016/j.knosys.2017.07.018 10.1016/j.apm.2015.11.030 10.1016/j.enconman.2010.11.007 10.1016/j.apenergy.2018.09.012 10.1016/j.enconman.2017.07.065 10.1016/j.knosys.2011.04.019 10.1016/j.renene.2018.01.113 10.1016/j.renene.2011.05.033 10.1016/j.apenergy.2018.11.012 10.1016/j.renene.2008.09.006 10.1016/j.knosys.2015.07.006 10.1016/j.renene.2009.10.028 10.1016/j.asoc.2017.01.033 10.1016/j.renene.2008.03.014 10.1016/j.asoc.2018.09.005 10.1016/j.apm.2019.01.039 10.1016/j.apenergy.2011.04.051 10.1109/TSTE.2019.2890875 10.1016/j.renene.2017.06.095 10.1016/j.knosys.2018.10.036 10.1016/j.apm.2018.10.019 10.1016/j.apenergy.2017.10.031 10.1016/j.cnsns.2016.12.017 10.1016/j.renene.2017.03.064 10.1016/j.bspc.2014.06.009 10.1016/j.renene.2016.10.030 10.1016/j.renene.2011.06.023 10.1016/j.apenergy.2017.04.039 10.1016/j.energy.2015.08.039 10.1016/j.apenergy.2009.12.013 10.1109/TSP.2013.2288675 10.1016/j.renene.2015.04.054 10.1142/S1793536910000422 10.1016/j.enconman.2010.07.053 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2019.03.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 106 |
ExternalDocumentID | 10_1016_j_asoc_2019_03_035 S1568494619301619 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c339t-eacd157cc97af4cc4d8bdfa4e2787fd805abac68d1b04663f41f9637200f6a743 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 22:59:45 EDT 2025 Tue Jul 01 01:50:02 EDT 2025 Fri Feb 23 02:24:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wavelet neural network Wind power forecasting Hybrid forecasting model Multi-objective Optimization Algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-eacd157cc97af4cc4d8bdfa4e2787fd805abac68d1b04663f41f9637200f6a743 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2019_03_035 crossref_citationtrail_10_1016_j_asoc_2019_03_035 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_03_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jiang, Yang, Heng (b6) 2019 Jiang, Adeli (b25) 2005 Zjavka (b42) 2015 Wang, Yang, Du, Niu (b62) 2018 Wang, Luo, Grunder, Lin (b7) 2017 El Aziz, Ewees, Hassanien (b51) 2017 Nor, Shaaban, Abdul Rahman (b35) 2014 Zhao, Guo, Su, Zhao, Xiao, Liu (b46) 2016 Hao, C, Tian (b14) 2019 Du, Wang, Yang, Niu (b4) 2018 Diebold, Mariano (b63) 1995 Wu, Huang (b55) 2008; 1 Sun, Qiao, Wei, Wang (b28) 2017 Meng, Ge, Yin, Chen (b21) 2016 Li, Shi (b19) 2010 Ma, Xie, Wu, Zeng, Wang, Wu (b30) 2019 Guo, Zhao, Lu, Wang (b44) 2012 Xiao, Shao, Yu, Ma, Jin (b22) 2017 Ma, sheng Hu, bin Liu (b29) 2017 Vikas, S.J. Nanda, Multi-objective moth flame optimization, in: 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016, 2016, pp. 2470–2476. Huang, Shen, Long, Wu, Snin, Zheng, Yen, Tung, Liu (b54) 1998 Zhao, Guo, Su, Zhao, Xiao, Liu (b9) 2016 Lahouar, Ben Hadj Slama (b11) 2017 Yin, Dong, Chen, Ge, Lai, Vaccaro, Meng (b32) 2017 Pourmousavi Kani, Ardehali (b20) 2011 Wang, Zhang, Li, Wang, Dang (b61) 2014 Jiang, Li, Li (b2) 2019 . Zhang, Benveniste (b48) 1992 Lei (b23) 2018 Kavasseri, Seetharaman (b40) 2009 Du, Wang, Guo, Yang (b12) 2017 Du, Jin, Zhang (b45) 2016 Wang, Niu, Lu, Yang, Du (b3) 2019 Li, Wang, Li, Lu (b26) 2019 Dragomiretskiy, Zosso (b56) 2014 Tian, Hao (b24) 2018 Zhou, Shi, Li (b43) 2011 Foley, Leahy, Marvuglia, McKeogh (b60) 2012 Chitsaz, Amjady, Zareipour (b47) 2015 Colominas, Schlotthauer, Torres (b34) 2014 Wang, Du, Niu, Yang (b5) 2017 Gallego, Pinson, Madsen, Costa, Cuerva (b37) 2011 Lazić, Pejanović, Živković (b36) 2010 Ma, Jin, Dong (b18) 2017 Wang, Du, Lu, Yang, Niu (b58) 2018 Jiang, Li, Li, Yang (b13) 2019 Dong, Sun, Li (b10) 2017 Cadenas, Rivera (b41) 2009 Wang, Hu (b64) 2015 Ng Shin Mei, Sulaiman, Mustaffa, Daniyal (b50) 2017 Brown, Katz, Murphy (b38) 1984 Zhao, Wang, Sun, Wang (b1) 2019 Yang, Wang, Niu, Du (b16) 2019 Mirjalili, Jangir, Mirjalili, Saremi, Trivedi (b59) 2017 Mirjalili (b49) 2015 Sotavento Galicia Li, Zhu (b15) 2018 Grigonyte, E (b39) 2016; 62 Wang, Zhang, Wu, Wang (b31) 2016 Yeh, Shieh, Huang (b57) 2010; 2 Niu, Sun, Wu, Yu, Wang (b17) 2016 Tian, Hao, Hu (b33) 2018 Wang, Wang, Wei (b8) 2015 Guo, Wu, Lu, Wang (b27) 2011 Xiao (10.1016/j.asoc.2019.03.035_b22) 2017 Ng Shin Mei (10.1016/j.asoc.2019.03.035_b50) 2017 Yeh (10.1016/j.asoc.2019.03.035_b57) 2010; 2 Zhao (10.1016/j.asoc.2019.03.035_b1) 2019 Pourmousavi Kani (10.1016/j.asoc.2019.03.035_b20) 2011 Wang (10.1016/j.asoc.2019.03.035_b62) 2018 Dragomiretskiy (10.1016/j.asoc.2019.03.035_b56) 2014 Lei (10.1016/j.asoc.2019.03.035_b23) 2018 Li (10.1016/j.asoc.2019.03.035_b19) 2010 Guo (10.1016/j.asoc.2019.03.035_b44) 2012 Du (10.1016/j.asoc.2019.03.035_b12) 2017 Tian (10.1016/j.asoc.2019.03.035_b24) 2018 Wang (10.1016/j.asoc.2019.03.035_b7) 2017 10.1016/j.asoc.2019.03.035_b53 Jiang (10.1016/j.asoc.2019.03.035_b25) 2005 Ma (10.1016/j.asoc.2019.03.035_b18) 2017 Zhao (10.1016/j.asoc.2019.03.035_b46) 2016 Du (10.1016/j.asoc.2019.03.035_b45) 2016 10.1016/j.asoc.2019.03.035_b52 Li (10.1016/j.asoc.2019.03.035_b26) 2019 Ma (10.1016/j.asoc.2019.03.035_b30) 2019 Grigonyte (10.1016/j.asoc.2019.03.035_b39) 2016; 62 Dong (10.1016/j.asoc.2019.03.035_b10) 2017 Wang (10.1016/j.asoc.2019.03.035_b8) 2015 El Aziz (10.1016/j.asoc.2019.03.035_b51) 2017 Wang (10.1016/j.asoc.2019.03.035_b61) 2014 Mirjalili (10.1016/j.asoc.2019.03.035_b59) 2017 Yang (10.1016/j.asoc.2019.03.035_b16) 2019 Gallego (10.1016/j.asoc.2019.03.035_b37) 2011 Wu (10.1016/j.asoc.2019.03.035_b55) 2008; 1 Zjavka (10.1016/j.asoc.2019.03.035_b42) 2015 Foley (10.1016/j.asoc.2019.03.035_b60) 2012 Jiang (10.1016/j.asoc.2019.03.035_b13) 2019 Zhang (10.1016/j.asoc.2019.03.035_b48) 1992 Guo (10.1016/j.asoc.2019.03.035_b27) 2011 Ma (10.1016/j.asoc.2019.03.035_b29) 2017 Brown (10.1016/j.asoc.2019.03.035_b38) 1984 Sun (10.1016/j.asoc.2019.03.035_b28) 2017 Cadenas (10.1016/j.asoc.2019.03.035_b41) 2009 Nor (10.1016/j.asoc.2019.03.035_b35) 2014 Huang (10.1016/j.asoc.2019.03.035_b54) 1998 Jiang (10.1016/j.asoc.2019.03.035_b6) 2019 Lazić (10.1016/j.asoc.2019.03.035_b36) 2010 Tian (10.1016/j.asoc.2019.03.035_b33) 2018 Wang (10.1016/j.asoc.2019.03.035_b31) 2016 Colominas (10.1016/j.asoc.2019.03.035_b34) 2014 Wang (10.1016/j.asoc.2019.03.035_b64) 2015 Wang (10.1016/j.asoc.2019.03.035_b5) 2017 Niu (10.1016/j.asoc.2019.03.035_b17) 2016 Yin (10.1016/j.asoc.2019.03.035_b32) 2017 Mirjalili (10.1016/j.asoc.2019.03.035_b49) 2015 Li (10.1016/j.asoc.2019.03.035_b15) 2018 Diebold (10.1016/j.asoc.2019.03.035_b63) 1995 Kavasseri (10.1016/j.asoc.2019.03.035_b40) 2009 Chitsaz (10.1016/j.asoc.2019.03.035_b47) 2015 Wang (10.1016/j.asoc.2019.03.035_b3) 2019 Hao (10.1016/j.asoc.2019.03.035_b14) 2019 Zhao (10.1016/j.asoc.2019.03.035_b9) 2016 Zhou (10.1016/j.asoc.2019.03.035_b43) 2011 Lahouar (10.1016/j.asoc.2019.03.035_b11) 2017 Meng (10.1016/j.asoc.2019.03.035_b21) 2016 Jiang (10.1016/j.asoc.2019.03.035_b2) 2019 Wang (10.1016/j.asoc.2019.03.035_b58) 2018 Du (10.1016/j.asoc.2019.03.035_b4) 2018 |
References_xml | – year: 2016 ident: b9 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl. Energy – start-page: 786 year: 2019 end-page: 801 ident: b6 article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting publication-title: Appl. Energy – year: 2019 ident: b1 article-title: Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system publication-title: Renew. Energy – year: 2017 ident: b11 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renew. Energy – year: 2016 ident: b45 article-title: A hybrid multi-step rolling forecasting model based on SSA and simulated annealing-adaptive particle swarm optimization for wind speed publication-title: Sustain – year: 2015 ident: b64 article-title: A robust combination approach for short-term wind speed forecasting and analysis - combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model publication-title: Energy – year: 2016 ident: b31 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew. Energy – reference: Sotavento Galicia, – year: 2017 ident: b5 article-title: A novel hybrid system based on a new proposed algorithm—Multi-objective whale optimization algorithm for wind speed forecasting publication-title: Appl. Energy – year: 1998 ident: b54 article-title: The empirical mode decomposition and the hubert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – year: 2009 ident: b40 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy – year: 2017 ident: b59 article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm publication-title: Knowl. Based Syst. – year: 2015 ident: b8 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China publication-title: Energy – year: 2011 ident: b27 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl. Based Syst. – year: 2018 ident: b23 article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction publication-title: Appl. Soft Comput. J. – year: 2012 ident: b44 article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model publication-title: Renew. Energy – year: 2017 ident: b18 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl. Soft Comput. J. – year: 2010 ident: b19 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl. Energy. – year: 2014 ident: b61 article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network publication-title: Appl. Soft Comput. J. – year: 2018 ident: b4 article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system publication-title: Renew. Energy – year: 2015 ident: b42 article-title: Wind speed forecast correction models using polynomial neural networks publication-title: Renew. Energy – year: 2011 ident: b20 article-title: Very short-term wind speed prediction: A new artificial neural network-Markov chain model publication-title: Energy Convers. Manag. – year: 2019 ident: b26 article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index publication-title: J. Clean. Prod. – year: 2017 ident: b10 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China publication-title: Renew. Energy – year: 2017 ident: b32 article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization publication-title: Energy Convers. Manag. – year: 2017 ident: b12 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manag. – year: 2019 ident: b14 article-title: The study and application of a novel hybrid system for air quality early-warning publication-title: Appl. Soft Comput. J. – year: 2017 ident: b22 article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting publication-title: Appl. Energy – year: 2014 ident: b34 article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing publication-title: Biomed. Signal Process. Control – year: 2009 ident: b41 article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks publication-title: Renew. Energy – year: 2011 ident: b43 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manag. – year: 2019 ident: b30 article-title: The novel fractional discrete multivariate grey system model and its applications publication-title: Appl. Math. Model. – year: 2011 ident: b37 article-title: Influence of local wind speed and direction on wind power dynamics - Application to offshore very short-term forecasting publication-title: Appl. Energy – year: 2016 ident: b21 article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm publication-title: Energy Convers. Manag. – reference: Vikas, S.J. Nanda, Multi-objective moth flame optimization, in: 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016, 2016, pp. 2470–2476. – year: 2005 ident: b25 article-title: Dynamic wavelet neural network model for traffic flow forecasting publication-title: J. Transp. Eng. – year: 2010 ident: b36 article-title: Wind forecasts for wind power generation using the Eta model publication-title: Renew. Energy – year: 2019 ident: b3 article-title: A novel framework of reservoir computing for deterministic and probabilistic wind power forecasting publication-title: IEEE Trans. Sustain. Energy – year: 2012 ident: b60 article-title: Current methods and advances in forecasting of wind power generation publication-title: Renew. Energy – year: 2015 ident: b47 article-title: Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm publication-title: Energy Convers. Manag. – year: 2018 ident: b62 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Convers. Manag. – year: 2018 ident: b15 article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China publication-title: Sci. Total Environ. – year: 2014 ident: b56 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. – year: 2017 ident: b50 article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique publication-title: Appl. Soft Comput. J. – year: 2017 ident: b28 article-title: A new dynamic integrated approach for wind speed forecasting publication-title: Appl. Energy – year: 2018 ident: b58 article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting publication-title: Appl. Soft Comput. J. – year: 2015 ident: b49 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl. Based Syst. – volume: 62 start-page: 45 year: 2016 end-page: 55 ident: b39 article-title: Butkeviciute short-term wind speed forecasting using ARIMA model publication-title: Energetika – year: 2019 ident: b13 article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation publication-title: Knowl. Based Syst. – year: 1984 ident: b38 article-title: Time series models to simulate and forecast wind speeds and power publication-title: J. Clim. Appl. Meteorol. – year: 2016 ident: b46 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl. Energy – year: 2017 ident: b7 article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction publication-title: Renew. Energy – year: 2017 ident: b51 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. – volume: 2 year: 2010 ident: b57 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. – year: 1995 ident: b63 article-title: Comparing predictive accuracy publication-title: J. Bus. Econom. Statist. – year: 2019 ident: b16 article-title: A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting publication-title: Appl. Energy – year: 2017 ident: b29 article-title: A novel kernel regularized nonhomogeneous grey model and its applications publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 1 year: 2008 ident: b55 article-title: Ensemble empirical mode decomposition: a noiseassisted data analysis method publication-title: Adv. Adapt. Data Anal. – reference: . – year: 1992 ident: b48 article-title: Wavelet networks publication-title: IEEE Trans. Neural Netw. – year: 2014 ident: b35 article-title: Feasibility assessment of wind energy resources in Malaysia based on NWP models publication-title: Renew. Energy – year: 2016 ident: b17 article-title: An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting publication-title: Appl. Math. Model. – year: 2018 ident: b33 article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization publication-title: Appl. Energy – year: 2018 ident: b24 article-title: A novel nonlinear combined forecasting system for short-term load forecasting publication-title: Energies – year: 2019 ident: b2 article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model publication-title: Appl. Math. Model. – year: 2014 ident: 10.1016/j.asoc.2019.03.035_b61 article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2014.06.027 – year: 2016 ident: 10.1016/j.asoc.2019.03.035_b9 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl. Energy – year: 2015 ident: 10.1016/j.asoc.2019.03.035_b47 article-title: Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.10.001 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b26 article-title: Novel analysis–forecast system based on multi-objective optimization for air quality index publication-title: J. Clean. Prod. – year: 1998 ident: 10.1016/j.asoc.2019.03.035_b54 article-title: The empirical mode decomposition and the hubert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – year: 1995 ident: 10.1016/j.asoc.2019.03.035_b63 article-title: Comparing predictive accuracy publication-title: J. Bus. Econom. Statist. doi: 10.1080/07350015.1995.10524599 – year: 2016 ident: 10.1016/j.asoc.2019.03.035_b21 article-title: Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.02.013 – year: 2015 ident: 10.1016/j.asoc.2019.03.035_b64 publication-title: Energy – year: 2018 ident: 10.1016/j.asoc.2019.03.035_b58 article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.07.022 – year: 2016 ident: 10.1016/j.asoc.2019.03.035_b45 article-title: A hybrid multi-step rolling forecasting model based on SSA and simulated annealing-adaptive particle swarm optimization for wind speed publication-title: Sustain doi: 10.3390/su8080754 – ident: 10.1016/j.asoc.2019.03.035_b52 doi: 10.1109/ICACCI.2016.7732428 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b50 article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2017.05.057 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b1 article-title: Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system publication-title: Renew. Energy doi: 10.1016/j.renene.2018.11.061 – year: 2016 ident: 10.1016/j.asoc.2019.03.035_b31 article-title: Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method publication-title: Renew. Energy doi: 10.1016/j.renene.2016.03.103 – year: 2014 ident: 10.1016/j.asoc.2019.03.035_b35 article-title: Feasibility assessment of wind energy resources in Malaysia based on NWP models publication-title: Renew. Energy doi: 10.1016/j.renene.2013.07.001 – year: 2018 ident: 10.1016/j.asoc.2019.03.035_b15 article-title: Research and application of a novel hybrid air quality early-warning system: A case study in China publication-title: Sci. Total Environ. – year: 2005 ident: 10.1016/j.asoc.2019.03.035_b25 article-title: Dynamic wavelet neural network model for traffic flow forecasting publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2005)131:10(771) – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b32 article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.08.014 – year: 2018 ident: 10.1016/j.asoc.2019.03.035_b24 article-title: A novel nonlinear combined forecasting system for short-term load forecasting publication-title: Energies doi: 10.3390/en11040712 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b28 article-title: A new dynamic integrated approach for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.008 – year: 1992 ident: 10.1016/j.asoc.2019.03.035_b48 article-title: Wavelet networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.165591 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b59 article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.07.018 – year: 2016 ident: 10.1016/j.asoc.2019.03.035_b17 article-title: An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.11.030 – year: 2011 ident: 10.1016/j.asoc.2019.03.035_b43 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.11.007 – year: 2018 ident: 10.1016/j.asoc.2019.03.035_b33 article-title: A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.012 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b12 article-title: Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.07.065 – volume: 1 issue: 1e41 year: 2008 ident: 10.1016/j.asoc.2019.03.035_b55 article-title: Ensemble empirical mode decomposition: a noiseassisted data analysis method publication-title: Adv. Adapt. Data Anal. – year: 2011 ident: 10.1016/j.asoc.2019.03.035_b27 article-title: A case study on a hybrid wind speed forecasting method using BP neural network publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2011.04.019 – year: 2018 ident: 10.1016/j.asoc.2019.03.035_b4 article-title: Multi-step ahead forecasting in electrical power system using a hybrid forecasting system publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.113 – year: 2012 ident: 10.1016/j.asoc.2019.03.035_b60 article-title: Current methods and advances in forecasting of wind power generation publication-title: Renew. Energy doi: 10.1016/j.renene.2011.05.033 – year: 2016 ident: 10.1016/j.asoc.2019.03.035_b46 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Appl. Energy – year: 2018 ident: 10.1016/j.asoc.2019.03.035_b62 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Convers. Manag. – start-page: 786 year: 2019 ident: 10.1016/j.asoc.2019.03.035_b6 article-title: A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.11.012 – year: 2009 ident: 10.1016/j.asoc.2019.03.035_b40 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy doi: 10.1016/j.renene.2008.09.006 – year: 2015 ident: 10.1016/j.asoc.2019.03.035_b49 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 62 start-page: 45 issue: 1–2 year: 2016 ident: 10.1016/j.asoc.2019.03.035_b39 article-title: Butkeviciute short-term wind speed forecasting using ARIMA model publication-title: Energetika – year: 2010 ident: 10.1016/j.asoc.2019.03.035_b36 article-title: Wind forecasts for wind power generation using the Eta model publication-title: Renew. Energy doi: 10.1016/j.renene.2009.10.028 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b18 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2017.01.033 – year: 2009 ident: 10.1016/j.asoc.2019.03.035_b41 article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2008.03.014 – ident: 10.1016/j.asoc.2019.03.035_b53 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b14 article-title: The study and application of a novel hybrid system for air quality early-warning publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.09.005 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b30 article-title: The novel fractional discrete multivariate grey system model and its applications publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.01.039 – year: 2011 ident: 10.1016/j.asoc.2019.03.035_b37 article-title: Influence of local wind speed and direction on wind power dynamics - Application to offshore very short-term forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.04.051 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b3 article-title: A novel framework of reservoir computing for deterministic and probabilistic wind power forecasting publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2019.2890875 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b7 article-title: Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction publication-title: Renew. Energy doi: 10.1016/j.renene.2017.06.095 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b13 article-title: An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.10.036 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b2 article-title: Multi-objective algorithm for the design of prediction intervals for wind power forecasting model publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.10.019 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b5 article-title: A novel hybrid system based on a new proposed algorithm—Multi-objective whale optimization algorithm for wind speed forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.10.031 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b29 article-title: A novel kernel regularized nonhomogeneous grey model and its applications publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.12.017 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b11 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renew. Energy doi: 10.1016/j.renene.2017.03.064 – year: 2014 ident: 10.1016/j.asoc.2019.03.035_b34 article-title: Improved complete ensemble EMD: A suitable tool for biomedical signal processing publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.06.009 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b10 article-title: A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China publication-title: Renew. Energy doi: 10.1016/j.renene.2016.10.030 – year: 2012 ident: 10.1016/j.asoc.2019.03.035_b44 article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model publication-title: Renew. Energy doi: 10.1016/j.renene.2011.06.023 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b22 article-title: Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.039 – year: 2015 ident: 10.1016/j.asoc.2019.03.035_b8 article-title: A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China publication-title: Energy doi: 10.1016/j.energy.2015.08.039 – year: 2010 ident: 10.1016/j.asoc.2019.03.035_b19 article-title: On comparing three artificial neural networks for wind speed forecasting publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2009.12.013 – year: 2014 ident: 10.1016/j.asoc.2019.03.035_b56 article-title: Variational mode decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – year: 2015 ident: 10.1016/j.asoc.2019.03.035_b42 article-title: Wind speed forecast correction models using polynomial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2015.04.054 – year: 2017 ident: 10.1016/j.asoc.2019.03.035_b51 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. – year: 2018 ident: 10.1016/j.asoc.2019.03.035_b23 article-title: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction publication-title: Appl. Soft Comput. J. – volume: 2 year: 2010 ident: 10.1016/j.asoc.2019.03.035_b57 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000422 – year: 2011 ident: 10.1016/j.asoc.2019.03.035_b20 article-title: Very short-term wind speed prediction: A new artificial neural network-Markov chain model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.07.053 – year: 2019 ident: 10.1016/j.asoc.2019.03.035_b16 article-title: A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting publication-title: Appl. Energy – year: 1984 ident: 10.1016/j.asoc.2019.03.035_b38 article-title: Time series models to simulate and forecast wind speeds and power publication-title: J. Clim. Appl. Meteorol. doi: 10.1175/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2 |
SSID | ssj0016928 |
Score | 2.6167064 |
Snippet | Wind energy prediction has a significant effect on the planning, economic operation and security maintenance of the wind power system. However, due to the high... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | Hybrid forecasting model Multi-objective Optimization Algorithm Wavelet neural network Wind power forecasting |
Title | A novel hybrid model for short-term wind power forecasting |
URI | https://dx.doi.org/10.1016/j.asoc.2019.03.035 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvvjitzg_Rh58k7i1TZvGtzEc82uIOthbSdOETUY33FR88W_3rk1FQfYgFErbSyiX3OUOfnc_Qk790GRSC8mkMJzBeZwxqUybWcGVVdKaEk14N4j6Q349Ckc10q1qYRBW6Xx_6dMLb-3etJw2W_PJpPUImUfMJYcMIMC4BYv4OBe4y88_v2EeXiQLflUUZijtCmdKjJcCDSC8q2x0WlC-_XE4_Thweltkw0WKtFP-zDapmXyHbFYsDNQZ5S656NB89mamdPyB1Ve04LahEIvSxRhia4a-l75D6k3nyIiGX4xWC4Q775Fh7_Kp22eOEYHpIJBLBl4y80KhtRTKcq15FqeZVdz4YHc2i9uhSpWO4sxLIe-NAss9CxYmwBRspCBY2Cf1fJabA0IFTBinkfYDpbnPgxRs34_bsKBcGxvrBvEqVSTatQtH1oppUuHCnhNUX4LqS9oBXGGDnH2PmZfNMlZKh5WGk19LnoA3XzHu8J_jjsg6PpVY22NSX768mhOIKJZps9gyTbLW6T7c3uP96qY_-ALwmcx8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNAFL34WOjGt1ifs9CVjG2SyWMEF6KW1qobW-guTiYztFLaYqvFjT_lD3onmRQFcSEUskoyw-Tkcu69cGYOwLHrq5TLkFMeKkYxH6eUC1WhOmRCC65Vria8fwhqLXbb9ttz8FnshTGySsv9OadnbG3vlC2a5WG3W37EziNinGEH4Jm6hVtlZUO9T7BvG13Ur_Enn7hu9aZ5VaPWWoBKz-NjinSTOn4oJQ-FZlKyNEpSLZhyMYB1GlV8kQgZRKmTYAMZeJo5GkM1xJjSgcCsi_POwyJDujC2CWcfU12JE_DM0NWsjprl2Z06uahMIORGT5afrJp5zP2SDb9luOoarNjSlFzmX78Oc6q_AauF7QOxLLAJ55ekP3hTPdJ5N9u9SGamQ7D4JaMOFvPUkD2ZYK9PhsaCzTxRUoyMvnoLWjPBaRsW-oO-2gES4oRREkjXE5K5zEuQbNyoghHEpNKRLIFTQBFLez65scnoxYUQ7Tk28MUGvrji4eWX4HQ6ZpifzvHn236BcPwjxmJMH3-M2_3nuCNYqjXv7-K7-kNjD5bNk1zouw8L45dXdYDlzDg5zMKHwNOs4_ULU6kH6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+model+for+short-term+wind+power+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Du%2C+Pei&rft.au=Wang%2C+Jianzhou&rft.au=Yang%2C+Wendong&rft.au=Niu%2C+Tong&rft.date=2019-07-01&rft.issn=1568-4946&rft.volume=80&rft.spage=93&rft.epage=106&rft_id=info:doi/10.1016%2Fj.asoc.2019.03.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_03_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |