The investigation on the attrition of hematite oxygen carrier particles in a fluidization-based chemical looping system
The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was b...
Saved in:
Published in | Fuel processing technology Vol. 236; p. 107441 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was built based on the modified ASTM D5727, followed by investigations on attrition characteristics of one selected hematite oxygen carrier under multiple conditions. After the careful removal effects from the coal ash, the real-time attrition curves and particle size distribution of attrition particles have been obtained. Studies revealed that the initial attrition rate was higher at ambient and elevated temperatures. The bed material's fluid dynamics and physical properties primarily affected the attrition rate during a steady-state period. The temperature elevation helped improve the attrition resistance of hematite in fluidization conditions. Under the reactive condition, SEM, XRD, and total iron content analysis implied that the chemical stress caused by crystalline phase change would bring cracks and enhance the attrition rate. The fitting results of the Gwyn kinetic equation revealed that the particles were more susceptible to surface abrasion under an elevated temperature.
•An air jet attrition test device during thermochemical reaction process was designed and built based on the standard ASTM D5727.•The attrition of hematite oxygen carrier particles under mechanical, thermal and chemical stress was investigated.•Better attrition resistance of hematite oxygen carrier under non-reactive conditions was observed with elevated temperature.•Thermochemical-reaction derived chemical stress significantly increased the attrition of hematite particles.•More serious attrition was observed during the reduction stage than that of oxidation stage. |
---|---|
AbstractList | The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was built based on the modified ASTM D5727, followed by investigations on attrition characteristics of one selected hematite oxygen carrier under multiple conditions. After the careful removal effects from the coal ash, the real-time attrition curves and particle size distribution of attrition particles have been obtained. Studies revealed that the initial attrition rate was higher at ambient and elevated temperatures. The bed material's fluid dynamics and physical properties primarily affected the attrition rate during a steady-state period. The temperature elevation helped improve the attrition resistance of hematite in fluidization conditions. Under the reactive condition, SEM, XRD, and total iron content analysis implied that the chemical stress caused by crystalline phase change would bring cracks and enhance the attrition rate. The fitting results of the Gwyn kinetic equation revealed that the particles were more susceptible to surface abrasion under an elevated temperature.
•An air jet attrition test device during thermochemical reaction process was designed and built based on the standard ASTM D5727.•The attrition of hematite oxygen carrier particles under mechanical, thermal and chemical stress was investigated.•Better attrition resistance of hematite oxygen carrier under non-reactive conditions was observed with elevated temperature.•Thermochemical-reaction derived chemical stress significantly increased the attrition of hematite particles.•More serious attrition was observed during the reduction stage than that of oxidation stage. The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was built based on the modified ASTM D5727, followed by investigations on attrition characteristics of one selected hematite oxygen carrier under multiple conditions. After the careful removal effects from the coal ash, the real-time attrition curves and particle size distribution of attrition particles have been obtained. Studies revealed that the initial attrition rate was higher at ambient and elevated temperatures. The bed material's fluid dynamics and physical properties primarily affected the attrition rate during a steady-state period. The temperature elevation helped improve the attrition resistance of hematite in fluidization conditions. Under the reactive condition, SEM, XRD, and total iron content analysis implied that the chemical stress caused by crystalline phase change would bring cracks and enhance the attrition rate. The fitting results of the Gwyn kinetic equation revealed that the particles were more susceptible to surface abrasion under an elevated temperature. |
ArticleNumber | 107441 |
Author | Cao, Yan Li, Heyu Gao, Lei Sun, Zhe Tian, Lijun Xu, YuSheng |
Author_xml | – sequence: 1 givenname: Heyu surname: Li fullname: Li, Heyu organization: University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 2 givenname: Zhe surname: Sun fullname: Sun, Zhe organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China – sequence: 3 givenname: Lijun surname: Tian fullname: Tian, Lijun organization: Shanxi Science and Technology Research Institute of Jinneng Holding Group, Taiyuan 030032, China – sequence: 4 givenname: Lei surname: Gao fullname: Gao, Lei organization: Shanxi Science and Technology Research Institute of Jinneng Holding Group, Taiyuan 030032, China – sequence: 5 givenname: YuSheng surname: Xu fullname: Xu, YuSheng organization: Shanxi Science and Technology Research Institute of Jinneng Holding Group, Taiyuan 030032, China – sequence: 6 givenname: Yan surname: Cao fullname: Cao, Yan email: caoyan@ms.giec.ac.cn organization: University of Chinese Academy of Sciences, Beijing 100049, China |
BookMark | eNqFkE1LAzEURYMoWKv_wEWWbqYmk2lm6kIQ8QsEN7oOmeSlfWU6qUmq1l9v7LhyoRAI3NxzIeeI7Pe-B0JOOZtwxuX5cuI26-DNpGRlmaO6qvgeGfGmFkXNm2afjJiom0I0JTskRzEuGWPT6awekffnBVDs3yAmnOuEvqf5pBzqlAIOgaMLWOXHBNR_bOfQU6NDQAh0rUNC00HMG1RT123Q4udup2h1BEtNRtHojnber7Gf07iNCVbH5MDpLsLJzz0mL7c3z9f3xePT3cP11WNhhJilAhom21a2UgtbMssclFJOhXDWNHraWCFsKwznLXPWcZk7UhthrAQnoXROjMnZsJv9vG7yL9UKo4Gu0z34TVRl9iOqWVVVuVoNVRN8jAGcWgdc6bBVnKlvz2qpBs_q27MaPGfs4hdmMO0MpKCx-w--HGDIDt6yURUNQm_AYgCTlPX498AXUIehog |
CitedBy_id | crossref_primary_10_1016_j_renene_2024_121291 crossref_primary_10_1016_j_fuel_2024_133400 crossref_primary_10_1016_j_jaecs_2023_100227 crossref_primary_10_1016_j_cej_2024_151326 crossref_primary_10_1007_s10311_023_01656_5 crossref_primary_10_1021_acs_energyfuels_4c03304 crossref_primary_10_1016_j_fuel_2023_128681 crossref_primary_10_1016_j_jaecs_2023_100172 crossref_primary_10_1016_j_fuel_2022_125782 crossref_primary_10_1016_j_fuel_2023_129426 crossref_primary_10_1016_j_fuel_2025_134284 crossref_primary_10_1016_j_cej_2023_148065 crossref_primary_10_1016_j_seppur_2024_126414 crossref_primary_10_1016_j_cej_2024_152999 crossref_primary_10_1016_j_fuproc_2023_107694 crossref_primary_10_1016_j_fuel_2023_127828 crossref_primary_10_1016_j_fuel_2023_130373 |
Cites_doi | 10.1021/ef050228d 10.1023/A:1023070016230 10.1021/nl2010274 10.1016/j.fuproc.2016.03.004 10.1016/j.powtec.2014.06.013 10.1016/j.proci.2014.07.010 10.1016/j.powtec.2010.02.029 10.3390/catal10080926 10.1016/j.fuel.2021.120238 10.1021/ie049813c 10.1016/j.powtec.2016.08.016 10.1016/j.fuproc.2020.106711 10.1515/ijcre-2015-0073 10.2516/ogst/2010035 10.1021/ef050424k 10.1021/acs.energyfuels.0c02967 10.1002/aic.690150112 10.1021/acs.est.6b04043 10.1016/j.powtec.2012.01.013 10.1016/j.pecs.2017.07.005 10.1016/j.rser.2021.111510 10.1021/ef900856d 10.1016/j.proci.2018.09.002 10.1021/acs.energyfuels.0c00776 10.1016/j.fuproc.2021.106895 10.1016/j.ces.2011.11.008 10.1016/j.powtec.2015.01.001 10.1016/j.apcatb.2018.07.062 10.1016/j.cej.2016.02.115 10.1016/j.apenergy.2021.116507 10.1021/acs.energyfuels.5b00048 10.1002/aic.690430210 10.1016/S0032-5910(99)00064-9 10.1016/j.energy.2020.119044 10.1016/j.fuproc.2021.106743 10.1016/j.fuproc.2011.03.005 10.1016/j.powtec.2014.01.085 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fuproc.2022.107441 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
ExternalDocumentID | 10_1016_j_fuproc_2022_107441 S0378382022002818 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-e806bb6b6a3d20d0fe266533fdc8a58d33db3c11b0fdf16d206ac3cd6ef6e2ff3 |
IEDL.DBID | .~1 |
ISSN | 0378-3820 |
IngestDate | Thu Jul 10 18:08:56 EDT 2025 Tue Jul 01 03:04:42 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO2 capture Chemical Looping Attrition Hematite oxygen carrier Coal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-e806bb6b6a3d20d0fe266533fdc8a58d33db3c11b0fdf16d206ac3cd6ef6e2ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2718349444 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718349444 crossref_primary_10_1016_j_fuproc_2022_107441 crossref_citationtrail_10_1016_j_fuproc_2022_107441 elsevier_sciencedirect_doi_10_1016_j_fuproc_2022_107441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Fuel processing technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Huang, Yi, Jiang (bb0195) 2012; 221 Cabello, Gayán, García-Labiano (bb0150) 2016; 148 Yang, Zhao, Wang (bb0070) 2015; 35 Li, Tao, Yan (bb0160) 2021; 150 Cao, Casenas, Pan (bb0025) 2006; 20 Qin, Yang, Scholz (bb0190) 2011; 11 Siriwardane, Riley, Benincosa (bb0050) 2021; 286 Mei, Soleimanisalim, Linderholm (bb0075) 2021; 215 Larring, Braley, Pishahang (bb0045) 2015; 29 Knight, Ellis, Grace (bb0155) 2014; 266 Broek (bb0205) 1982 Adánez, Cuadrat, Abad (bb0080) 2010; 24 Amblard, Bertholin, Bobin (bb0095) 2015; 274 Johansson, Mattisson, Lyngfelt (bb0125) 2004; 43 Bayham, Breault, Monazam (bb0120) 2016; 302 Scala, Cammarota, Chirone (bb0115) 1997; 43 Cocco, Arrington, Hays (bb0135) 2010; 200 Neil, Bridgwater (bb0210) 1999; 106 Chen, Zhang, Zheng (bb0165) 2021; 292 Hartman, Svoboda, Pohořelý (bb0170) 2012; 106 Zheng, Shen (bb0060) 2016; 14 Rydén, Moldenhauer, Lindqvist (bb0130) 2014; 256 Gwyn (bb0140) 1969; 15 Callister, Rethwisch (bb0200) 2018 Wang, Li, Liang (bb0055) 2020; 34 He, Linak, Deng (bb0185) 2017; 51 Lupiáñez, Scala, Salatino (bb0110) 2011; 92 De Vos, Jacobs, Van Der Voort (bb0030) 2020; 10 Niu, Shen, Jiang (bb0040) 2016; 294 Adánez, Abad (bb0100) 2019; 37 Wei, Zhou, Huang (bb0065) 2021; 215 Kramp, Thon, Hartge (bb0090) 2011; 66 Adánez, Abad, Mendiara (bb0005) 2018; 65 Liu, Li, Wu (bb0015) 2021; 213 Scala, Chirone, Salatino (bb0105) 2013 Ma, Zhang, Lu (bb0085) 2020; 34 Brown, Scala, Scott (bb0180) 2012; 71 Cao, Pan (bb0010) 2006; 20 Wang, Guo, Xu (bb0020) 2021; 220 ASTM (bb0145) 2011 Hidaka, Anraku, Otsuka (bb0175) 2003; 59 Liu, Dong, Xiang (bb0035) 2018; 238 Larring (10.1016/j.fuproc.2022.107441_bb0045) 2015; 29 Siriwardane (10.1016/j.fuproc.2022.107441_bb0050) 2021; 286 Cao (10.1016/j.fuproc.2022.107441_bb0025) 2006; 20 Wang (10.1016/j.fuproc.2022.107441_bb0055) 2020; 34 Mei (10.1016/j.fuproc.2022.107441_bb0075) 2021; 215 Johansson (10.1016/j.fuproc.2022.107441_bb0125) 2004; 43 Wei (10.1016/j.fuproc.2022.107441_bb0065) 2021; 215 Hidaka (10.1016/j.fuproc.2022.107441_bb0175) 2003; 59 Qin (10.1016/j.fuproc.2022.107441_bb0190) 2011; 11 Knight (10.1016/j.fuproc.2022.107441_bb0155) 2014; 266 Neil (10.1016/j.fuproc.2022.107441_bb0210) 1999; 106 Chen (10.1016/j.fuproc.2022.107441_bb0165) 2021; 292 Brown (10.1016/j.fuproc.2022.107441_bb0180) 2012; 71 Bayham (10.1016/j.fuproc.2022.107441_bb0120) 2016; 302 Niu (10.1016/j.fuproc.2022.107441_bb0040) 2016; 294 Cabello (10.1016/j.fuproc.2022.107441_bb0150) 2016; 148 Adánez (10.1016/j.fuproc.2022.107441_bb0080) 2010; 24 Amblard (10.1016/j.fuproc.2022.107441_bb0095) 2015; 274 Lupiáñez (10.1016/j.fuproc.2022.107441_bb0110) 2011; 92 Callister (10.1016/j.fuproc.2022.107441_bb0200) 2018 Hartman (10.1016/j.fuproc.2022.107441_bb0170) 2012; 106 Liu (10.1016/j.fuproc.2022.107441_bb0015) 2021; 213 De Vos (10.1016/j.fuproc.2022.107441_bb0030) 2020; 10 Scala (10.1016/j.fuproc.2022.107441_bb0115) 1997; 43 Cocco (10.1016/j.fuproc.2022.107441_bb0135) 2010; 200 Broek (10.1016/j.fuproc.2022.107441_bb0205) 1982 ASTM (10.1016/j.fuproc.2022.107441_bb0145) 2011 Zheng (10.1016/j.fuproc.2022.107441_bb0060) 2016; 14 Wang (10.1016/j.fuproc.2022.107441_bb0020) 2021; 220 Gwyn (10.1016/j.fuproc.2022.107441_bb0140) 1969; 15 Kramp (10.1016/j.fuproc.2022.107441_bb0090) 2011; 66 Adánez (10.1016/j.fuproc.2022.107441_bb0100) 2019; 37 He (10.1016/j.fuproc.2022.107441_bb0185) 2017; 51 Liu (10.1016/j.fuproc.2022.107441_bb0035) 2018; 238 Adánez (10.1016/j.fuproc.2022.107441_bb0005) 2018; 65 Rydén (10.1016/j.fuproc.2022.107441_bb0130) 2014; 256 Huang (10.1016/j.fuproc.2022.107441_bb0195) 2012; 221 Ma (10.1016/j.fuproc.2022.107441_bb0085) 2020; 34 Scala (10.1016/j.fuproc.2022.107441_bb0105) 2013 Yang (10.1016/j.fuproc.2022.107441_bb0070) 2015; 35 Cao (10.1016/j.fuproc.2022.107441_bb0010) 2006; 20 Li (10.1016/j.fuproc.2022.107441_bb0160) 2021; 150 |
References_xml | – volume: 215 year: 2021 ident: bb0065 article-title: Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO publication-title: Energy – volume: 71 start-page: 449 year: 2012 end-page: 467 ident: bb0180 article-title: The attrition behaviour of oxygen-carriers under inert and reacting conditions publication-title: Chem. Eng. Sci. – volume: 65 start-page: 6 year: 2018 end-page: 66 ident: bb0005 article-title: Chemical looping combustion of solid fuels publication-title: Prog. Energy Combust. Sci. – volume: 10 start-page: 926 year: 2020 ident: bb0030 article-title: Development of stable oxygen carrier materials for chemical looping processes-a review publication-title: Catalysts – start-page: 254 year: 2013 end-page: 315 ident: bb0105 article-title: 6-Attrition phenomena relevant to fluidized bed combustion and gasification systems publication-title: Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification – volume: 43 start-page: 6978 year: 2004 end-page: 6987 ident: bb0125 article-title: Investigation of Fe publication-title: Ind. Eng. Chem. Res. – volume: 294 start-page: 185 year: 2016 end-page: 192 ident: bb0040 article-title: Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu-Fe oxygen carrier publication-title: Chem. Eng. J. – volume: 286 year: 2021 ident: bb0050 article-title: Development of CuFeMnAlO publication-title: Appl. Energy – volume: 221 start-page: 284 year: 2012 end-page: 291 ident: bb0195 article-title: Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets publication-title: Powder Technol. – volume: 43 start-page: 363 year: 1997 end-page: 373 ident: bb0115 article-title: Comminution of limestone during batch fluidized-bed calcination and sulfation publication-title: AICHE J. – volume: 24 start-page: 1402 year: 2010 end-page: 1413 ident: bb0080 article-title: Ilmenite activation during consecutive redox cycles in chemical-looping combustion publication-title: Energy Fuel – volume: 266 start-page: 412 year: 2014 end-page: 423 ident: bb0155 article-title: CO publication-title: Powder Technol. – volume: 220 year: 2021 ident: bb0020 article-title: Synergistic reaction investigation of the NiO modified CaSO publication-title: Fuel Process. Technol. – volume: 302 start-page: 42 year: 2016 end-page: 62 ident: bb0120 article-title: Particulate solid attrition in CFB systems-an assessment for emerging technologies publication-title: Powder Technol. – volume: 20 start-page: 1845 year: 2006 end-page: 1854 ident: bb0025 article-title: Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier publication-title: Energy Fuel – volume: 215 year: 2021 ident: bb0075 article-title: Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kW publication-title: Fuel Process. Technol. – volume: 20 start-page: 1836 year: 2006 end-page: 1844 ident: bb0010 article-title: Investigation of chemical looping combustion by solid fuels. 1. Process analysis publication-title: Energy Fuel – volume: 14 start-page: 637 year: 2016 end-page: 652 ident: bb0060 article-title: In situ gasification chemical looping combustion of coal using the mixed oxygen carrier of natural anhydrite ore and calcined limestone publication-title: Int. J. Chem. React. Eng. – volume: 292 year: 2021 ident: bb0165 article-title: Thermal properties and product distribution from pyrolysis at high heating rate of Naomaohu coal publication-title: Fuel – volume: 106 start-page: 37 year: 1999 end-page: 44 ident: bb0210 article-title: Towards a parameter characterising attrition publication-title: Powder Technol. – volume: 29 start-page: 3438 year: 2015 end-page: 3445 ident: bb0045 article-title: Evaluation of a mixed Fe-Mn oxide system for chemical looping combustion publication-title: Energy Fuel – volume: 213 year: 2021 ident: bb0015 article-title: Conversion characteristics of lignite and petroleum coke in chemical looping combustion coupled with an annular carbon stripper publication-title: Fuel Process. Technol. – volume: 34 start-page: 7316 year: 2020 end-page: 7328 ident: bb0055 article-title: Chemical looping combustion characteristics of coal with a novel CaSO publication-title: Energy Fuel – year: 2011 ident: bb0145 article-title: D5757-11: Standard Test Method for Determination of Attrition of FCC Catalysts by Air Jets – volume: 150 year: 2021 ident: bb0160 article-title: Review of microwave-based treatments of biomass gasification tar publication-title: Renew. Sust. Energ. Rev. – volume: 66 start-page: 277 year: 2011 end-page: 290 ident: bb0090 article-title: The role of attrition and solids recovery in a chemical looping combustion process publication-title: Oil Gas Sci. Technol. – volume: 37 start-page: 4303 year: 2019 end-page: 4317 ident: bb0100 article-title: Chemical-looping combustion: status and research needs publication-title: Proc. Combust. Inst. – volume: 256 start-page: 75 year: 2014 end-page: 86 ident: bb0130 article-title: Measuring attrition resistance of oxygen carrier particles for chemical looping combustion with a customized jet cup publication-title: Powder Technol. – year: 1982 ident: bb0205 article-title: Elementary Engineering Fracture Mechanics – volume: 15 start-page: 35 year: 1969 end-page: 39 ident: bb0140 article-title: On the particle size distribution function and the attrition of cracking catalysts publication-title: AICHE J. – volume: 200 start-page: 224 year: 2010 end-page: 233 ident: bb0135 article-title: Jet cup attrition testing publication-title: Powder Technol. – volume: 238 start-page: 647 year: 2018 end-page: 655 ident: bb0035 article-title: Crossing-link of experimental reducibility tests, XPS characterizations and DFT estimates on ferrite oxygen carriers in CLC publication-title: Appl. Catal. B Environ. – volume: 35 start-page: 2811 year: 2015 end-page: 2818 ident: bb0070 article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion publication-title: Proc. Combust. Inst. – volume: 11 start-page: 2503 year: 2011 end-page: 2509 ident: bb0190 article-title: Unexpected oxidation behavior of Cu nanoparticles embedded in porous alumina films produced by molecular layer deposition publication-title: Nano Lett. – volume: 92 start-page: 1449 year: 2011 end-page: 1456 ident: bb0110 article-title: Primary fragmentation of limestone under oxy-firing conditions in a bubbling fluidized bed publication-title: Fuel Process. Technol. – volume: 106 start-page: 844 year: 2012 end-page: 846 ident: bb0170 article-title: Attrition of a mineral catalyst in a gasification fluidized-bed gasification reactor publication-title: Chem. List. – volume: 274 start-page: 455 year: 2015 end-page: 465 ident: bb0095 article-title: Development of an attrition evaluation method using a Jet Cup rig publication-title: Powder Technol. – volume: 34 start-page: 16350 year: 2020 end-page: 16355 ident: bb0085 article-title: Activation mechanism of Fe publication-title: Energy Fuel – volume: 51 start-page: 2482 year: 2017 end-page: 2490 ident: bb0185 article-title: Particulate formation from a copper oxide-based oxygen carrier in chemical looping combustion for CO publication-title: Environ. Sci. Technol. – volume: 59 start-page: 97 year: 2003 end-page: 113 ident: bb0175 article-title: Deformation of iron oxides upon tensile tests at 600-1250°C publication-title: Oxid. Met. – volume: 148 start-page: 188 year: 2016 end-page: 197 ident: bb0150 article-title: On the attrition evaluation of oxygen carriers in chemical looping combustion publication-title: Fuel Process. Technol. – year: 2018 ident: bb0200 article-title: Materials Science and Engineering: An Introduction – volume: 20 start-page: 1836 year: 2006 ident: 10.1016/j.fuproc.2022.107441_bb0010 article-title: Investigation of chemical looping combustion by solid fuels. 1. Process analysis publication-title: Energy Fuel doi: 10.1021/ef050228d – start-page: 254 year: 2013 ident: 10.1016/j.fuproc.2022.107441_bb0105 article-title: 6-Attrition phenomena relevant to fluidized bed combustion and gasification systems – volume: 59 start-page: 97 year: 2003 ident: 10.1016/j.fuproc.2022.107441_bb0175 article-title: Deformation of iron oxides upon tensile tests at 600-1250°C publication-title: Oxid. Met. doi: 10.1023/A:1023070016230 – volume: 11 start-page: 2503 year: 2011 ident: 10.1016/j.fuproc.2022.107441_bb0190 article-title: Unexpected oxidation behavior of Cu nanoparticles embedded in porous alumina films produced by molecular layer deposition publication-title: Nano Lett. doi: 10.1021/nl2010274 – volume: 148 start-page: 188 year: 2016 ident: 10.1016/j.fuproc.2022.107441_bb0150 article-title: On the attrition evaluation of oxygen carriers in chemical looping combustion publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.03.004 – volume: 266 start-page: 412 year: 2014 ident: 10.1016/j.fuproc.2022.107441_bb0155 article-title: CO2 sorbent attrition testing for fluidized bed systems publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.06.013 – year: 2018 ident: 10.1016/j.fuproc.2022.107441_bb0200 – volume: 35 start-page: 2811 year: 2015 ident: 10.1016/j.fuproc.2022.107441_bb0070 article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.07.010 – volume: 200 start-page: 224 year: 2010 ident: 10.1016/j.fuproc.2022.107441_bb0135 article-title: Jet cup attrition testing publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.02.029 – volume: 10 start-page: 926 year: 2020 ident: 10.1016/j.fuproc.2022.107441_bb0030 article-title: Development of stable oxygen carrier materials for chemical looping processes-a review publication-title: Catalysts doi: 10.3390/catal10080926 – volume: 292 year: 2021 ident: 10.1016/j.fuproc.2022.107441_bb0165 article-title: Thermal properties and product distribution from pyrolysis at high heating rate of Naomaohu coal publication-title: Fuel doi: 10.1016/j.fuel.2021.120238 – volume: 43 start-page: 6978 year: 2004 ident: 10.1016/j.fuproc.2022.107441_bb0125 article-title: Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie049813c – volume: 302 start-page: 42 year: 2016 ident: 10.1016/j.fuproc.2022.107441_bb0120 article-title: Particulate solid attrition in CFB systems-an assessment for emerging technologies publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.08.016 – volume: 213 year: 2021 ident: 10.1016/j.fuproc.2022.107441_bb0015 article-title: Conversion characteristics of lignite and petroleum coke in chemical looping combustion coupled with an annular carbon stripper publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2020.106711 – year: 2011 ident: 10.1016/j.fuproc.2022.107441_bb0145 – year: 1982 ident: 10.1016/j.fuproc.2022.107441_bb0205 – volume: 14 start-page: 637 year: 2016 ident: 10.1016/j.fuproc.2022.107441_bb0060 article-title: In situ gasification chemical looping combustion of coal using the mixed oxygen carrier of natural anhydrite ore and calcined limestone publication-title: Int. J. Chem. React. Eng. doi: 10.1515/ijcre-2015-0073 – volume: 66 start-page: 277 year: 2011 ident: 10.1016/j.fuproc.2022.107441_bb0090 article-title: The role of attrition and solids recovery in a chemical looping combustion process publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2010035 – volume: 20 start-page: 1845 year: 2006 ident: 10.1016/j.fuproc.2022.107441_bb0025 article-title: Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier publication-title: Energy Fuel doi: 10.1021/ef050424k – volume: 34 start-page: 16350 year: 2020 ident: 10.1016/j.fuproc.2022.107441_bb0085 article-title: Activation mechanism of Fe2O3-Al2O3 oxygen carrier in chemical looping combustion publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c02967 – volume: 15 start-page: 35 year: 1969 ident: 10.1016/j.fuproc.2022.107441_bb0140 article-title: On the particle size distribution function and the attrition of cracking catalysts publication-title: AICHE J. doi: 10.1002/aic.690150112 – volume: 51 start-page: 2482 year: 2017 ident: 10.1016/j.fuproc.2022.107441_bb0185 article-title: Particulate formation from a copper oxide-based oxygen carrier in chemical looping combustion for CO2 capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04043 – volume: 221 start-page: 284 year: 2012 ident: 10.1016/j.fuproc.2022.107441_bb0195 article-title: Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.01.013 – volume: 65 start-page: 6 year: 2018 ident: 10.1016/j.fuproc.2022.107441_bb0005 article-title: Chemical looping combustion of solid fuels publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.07.005 – volume: 150 year: 2021 ident: 10.1016/j.fuproc.2022.107441_bb0160 article-title: Review of microwave-based treatments of biomass gasification tar publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2021.111510 – volume: 24 start-page: 1402 year: 2010 ident: 10.1016/j.fuproc.2022.107441_bb0080 article-title: Ilmenite activation during consecutive redox cycles in chemical-looping combustion publication-title: Energy Fuel doi: 10.1021/ef900856d – volume: 37 start-page: 4303 year: 2019 ident: 10.1016/j.fuproc.2022.107441_bb0100 article-title: Chemical-looping combustion: status and research needs publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.09.002 – volume: 34 start-page: 7316 year: 2020 ident: 10.1016/j.fuproc.2022.107441_bb0055 article-title: Chemical looping combustion characteristics of coal with a novel CaSO4-Ca2CuO3 mixed oxygen carrier publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c00776 – volume: 220 year: 2021 ident: 10.1016/j.fuproc.2022.107441_bb0020 article-title: Synergistic reaction investigation of the NiO modified CaSO4 oxygen carrier with lignite for simultaneous CO2 capture and SO2 removal publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2021.106895 – volume: 71 start-page: 449 year: 2012 ident: 10.1016/j.fuproc.2022.107441_bb0180 article-title: The attrition behaviour of oxygen-carriers under inert and reacting conditions publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.11.008 – volume: 274 start-page: 455 year: 2015 ident: 10.1016/j.fuproc.2022.107441_bb0095 article-title: Development of an attrition evaluation method using a Jet Cup rig publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.01.001 – volume: 238 start-page: 647 year: 2018 ident: 10.1016/j.fuproc.2022.107441_bb0035 article-title: Crossing-link of experimental reducibility tests, XPS characterizations and DFT estimates on ferrite oxygen carriers in CLC publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.07.062 – volume: 294 start-page: 185 year: 2016 ident: 10.1016/j.fuproc.2022.107441_bb0040 article-title: Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu-Fe oxygen carrier publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.02.115 – volume: 286 year: 2021 ident: 10.1016/j.fuproc.2022.107441_bb0050 article-title: Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116507 – volume: 29 start-page: 3438 year: 2015 ident: 10.1016/j.fuproc.2022.107441_bb0045 article-title: Evaluation of a mixed Fe-Mn oxide system for chemical looping combustion publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.5b00048 – volume: 43 start-page: 363 year: 1997 ident: 10.1016/j.fuproc.2022.107441_bb0115 article-title: Comminution of limestone during batch fluidized-bed calcination and sulfation publication-title: AICHE J. doi: 10.1002/aic.690430210 – volume: 106 start-page: 37 year: 1999 ident: 10.1016/j.fuproc.2022.107441_bb0210 article-title: Towards a parameter characterising attrition publication-title: Powder Technol. doi: 10.1016/S0032-5910(99)00064-9 – volume: 215 year: 2021 ident: 10.1016/j.fuproc.2022.107441_bb0065 article-title: Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting publication-title: Energy doi: 10.1016/j.energy.2020.119044 – volume: 215 year: 2021 ident: 10.1016/j.fuproc.2022.107441_bb0075 article-title: Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2021.106743 – volume: 92 start-page: 1449 year: 2011 ident: 10.1016/j.fuproc.2022.107441_bb0110 article-title: Primary fragmentation of limestone under oxy-firing conditions in a bubbling fluidized bed publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2011.03.005 – volume: 256 start-page: 75 year: 2014 ident: 10.1016/j.fuproc.2022.107441_bb0130 article-title: Measuring attrition resistance of oxygen carrier particles for chemical looping combustion with a customized jet cup publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.01.085 – volume: 106 start-page: 844 year: 2012 ident: 10.1016/j.fuproc.2022.107441_bb0170 article-title: Attrition of a mineral catalyst in a gasification fluidized-bed gasification reactor publication-title: Chem. List. |
SSID | ssj0005597 |
Score | 2.4735522 |
Snippet | The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107441 |
SubjectTerms | ash (inorganic matter) Attrition Chemical Looping CO2 capture Coal equations fluid mechanics hematite Hematite oxygen carrier oxygen particle size distribution phase transition temperature |
Title | The investigation on the attrition of hematite oxygen carrier particles in a fluidization-based chemical looping system |
URI | https://dx.doi.org/10.1016/j.fuproc.2022.107441 https://www.proquest.com/docview/2718349444 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNBK_ZbZs2uz2KKKviXnTBW8gTVpZ20S7qxd_uTJv6AlkQemmYhJKZzDdpZr4Qchq5NMsM98xZrViaxwnLYc_GtBVK6Di3cf1r4HYkhuP0-iF76JDzthYG0yqD7298eu2tQ0svzGZvNpn07iLeH3AAsATzDAB3sII97aOVd9-_pXlk9QUrKMxQui2fq3O8_BxhootjdDEzMY3_gqdfjrpGn8t1shbCRnrWfNkG6bhik6x-IxPcIi-gcTr5os0oCwoPxHdUVYFxn5aeNiStlaPl6xsYDzXqCS-to7M2RQ7GoIr66XxiQ40mQ6iz1ARuATot6yor2rBAb5Px5cX9-ZCFaxWY4TyvmBtEQmuhheI2iWzkHYA0RH3emoHKBpZzq7mJYx1562MBMkIZbqxwXrjEe75DloqycLuEWg9tBo8OHex8PIRzufC4BYKlnWaK7xHezqY0gXMcr76Yyja57FE2OpCoA9noYI-wz16zhnNjgXy_VZT8YTsSYGFBz5NWrxKWFZ6VqMKV82eZAGYjc0-a7v979AOygm9N5eIhWaqe5u4IQphKH9c2ekyWz65uhqMPMFr0Mw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Bcig9IApF0BZqpF7NJnFiNkeEipbXXgCJm-WntGiVrGhW0H_fmcQBioSQkHJyxlbksecbxzPfAPxKfF4UVgTundE8L9OMl3hm48ZJLU1aurT9NXA5keOb_Oy2uF2C4z4XhsIqo-3vbHprrWPLMM7mcD6dDq8ScTgSCGAZxRkg7izDCrFTFQNYOTo9H0-eIz2KtsYKyXPq0GfQtWFeYUFIcUDDHFBwYp6-hVCvbHULQCfrsBY9R3bUfdwXWPLVBnx-wSe4CQ-odDZ9Zs6oK4YPunhMN5F0n9WBdTytjWf1419cP8zqe6pbx-Z9lByOwTQLs8XUxTRNTmjnmI30AmxWt4lWrCOC_go3J7-vj8c8VlbgVoiy4X6USGOkkVq4LHFJ8IjT6PgFZ0e6GDkhnBE2TU0SXEglykhthXXSB-mzEMQWDKq68tvAXMA2S7eHHg8_AT26UgY6BeHuzgstdkD0s6lspB2n6hcz1ceX3alOB4p0oDod7AB_6jXvaDfekT_sFaX-Wz4KkeGdnvu9XhXuLLou0ZWvF39UhrBN5D15_u3Do_-ET-Prywt1cTo5_w6r9KZLZPwBg-Z-4XfRo2nMXlyx_wCHgPbk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+investigation+on+the+attrition+of+hematite+oxygen+carrier+particles+in+a+fluidization-based+chemical+looping+system&rft.jtitle=Fuel+processing+technology&rft.au=Li%2C+Heyu&rft.au=Sun%2C+Zhe&rft.au=Tian%2C+Lijun&rft.au=Gao%2C+Lei&rft.date=2022-11-01&rft.issn=0378-3820&rft.volume=236+p.107441-&rft_id=info:doi/10.1016%2Fj.fuproc.2022.107441&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |