The investigation on the attrition of hematite oxygen carrier particles in a fluidization-based chemical looping system

The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was b...

Full description

Saved in:
Bibliographic Details
Published inFuel processing technology Vol. 236; p. 107441
Main Authors Li, Heyu, Sun, Zhe, Tian, Lijun, Gao, Lei, Xu, YuSheng, Cao, Yan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was built based on the modified ASTM D5727, followed by investigations on attrition characteristics of one selected hematite oxygen carrier under multiple conditions. After the careful removal effects from the coal ash, the real-time attrition curves and particle size distribution of attrition particles have been obtained. Studies revealed that the initial attrition rate was higher at ambient and elevated temperatures. The bed material's fluid dynamics and physical properties primarily affected the attrition rate during a steady-state period. The temperature elevation helped improve the attrition resistance of hematite in fluidization conditions. Under the reactive condition, SEM, XRD, and total iron content analysis implied that the chemical stress caused by crystalline phase change would bring cracks and enhance the attrition rate. The fitting results of the Gwyn kinetic equation revealed that the particles were more susceptible to surface abrasion under an elevated temperature. •An air jet attrition test device during thermochemical reaction process was designed and built based on the standard ASTM D5727.•The attrition of hematite oxygen carrier particles under mechanical, thermal and chemical stress was investigated.•Better attrition resistance of hematite oxygen carrier under non-reactive conditions was observed with elevated temperature.•Thermochemical-reaction derived chemical stress significantly increased the attrition of hematite particles.•More serious attrition was observed during the reduction stage than that of oxidation stage.
AbstractList The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was built based on the modified ASTM D5727, followed by investigations on attrition characteristics of one selected hematite oxygen carrier under multiple conditions. After the careful removal effects from the coal ash, the real-time attrition curves and particle size distribution of attrition particles have been obtained. Studies revealed that the initial attrition rate was higher at ambient and elevated temperatures. The bed material's fluid dynamics and physical properties primarily affected the attrition rate during a steady-state period. The temperature elevation helped improve the attrition resistance of hematite in fluidization conditions. Under the reactive condition, SEM, XRD, and total iron content analysis implied that the chemical stress caused by crystalline phase change would bring cracks and enhance the attrition rate. The fitting results of the Gwyn kinetic equation revealed that the particles were more susceptible to surface abrasion under an elevated temperature. •An air jet attrition test device during thermochemical reaction process was designed and built based on the standard ASTM D5727.•The attrition of hematite oxygen carrier particles under mechanical, thermal and chemical stress was investigated.•Better attrition resistance of hematite oxygen carrier under non-reactive conditions was observed with elevated temperature.•Thermochemical-reaction derived chemical stress significantly increased the attrition of hematite particles.•More serious attrition was observed during the reduction stage than that of oxidation stage.
The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress. Therefore, the attrition of oxygen carriers, leading to the loss of oxygen carriers, cannot be ignored. In this work, an attrition device was built based on the modified ASTM D5727, followed by investigations on attrition characteristics of one selected hematite oxygen carrier under multiple conditions. After the careful removal effects from the coal ash, the real-time attrition curves and particle size distribution of attrition particles have been obtained. Studies revealed that the initial attrition rate was higher at ambient and elevated temperatures. The bed material's fluid dynamics and physical properties primarily affected the attrition rate during a steady-state period. The temperature elevation helped improve the attrition resistance of hematite in fluidization conditions. Under the reactive condition, SEM, XRD, and total iron content analysis implied that the chemical stress caused by crystalline phase change would bring cracks and enhance the attrition rate. The fitting results of the Gwyn kinetic equation revealed that the particles were more susceptible to surface abrasion under an elevated temperature.
ArticleNumber 107441
Author Cao, Yan
Li, Heyu
Gao, Lei
Sun, Zhe
Tian, Lijun
Xu, YuSheng
Author_xml – sequence: 1
  givenname: Heyu
  surname: Li
  fullname: Li, Heyu
  organization: University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 2
  givenname: Zhe
  surname: Sun
  fullname: Sun, Zhe
  organization: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 3
  givenname: Lijun
  surname: Tian
  fullname: Tian, Lijun
  organization: Shanxi Science and Technology Research Institute of Jinneng Holding Group, Taiyuan 030032, China
– sequence: 4
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
  organization: Shanxi Science and Technology Research Institute of Jinneng Holding Group, Taiyuan 030032, China
– sequence: 5
  givenname: YuSheng
  surname: Xu
  fullname: Xu, YuSheng
  organization: Shanxi Science and Technology Research Institute of Jinneng Holding Group, Taiyuan 030032, China
– sequence: 6
  givenname: Yan
  surname: Cao
  fullname: Cao, Yan
  email: caoyan@ms.giec.ac.cn
  organization: University of Chinese Academy of Sciences, Beijing 100049, China
BookMark eNqFkE1LAzEURYMoWKv_wEWWbqYmk2lm6kIQ8QsEN7oOmeSlfWU6qUmq1l9v7LhyoRAI3NxzIeeI7Pe-B0JOOZtwxuX5cuI26-DNpGRlmaO6qvgeGfGmFkXNm2afjJiom0I0JTskRzEuGWPT6awekffnBVDs3yAmnOuEvqf5pBzqlAIOgaMLWOXHBNR_bOfQU6NDQAh0rUNC00HMG1RT123Q4udup2h1BEtNRtHojnber7Gf07iNCVbH5MDpLsLJzz0mL7c3z9f3xePT3cP11WNhhJilAhom21a2UgtbMssclFJOhXDWNHraWCFsKwznLXPWcZk7UhthrAQnoXROjMnZsJv9vG7yL9UKo4Gu0z34TVRl9iOqWVVVuVoNVRN8jAGcWgdc6bBVnKlvz2qpBs_q27MaPGfs4hdmMO0MpKCx-w--HGDIDt6yURUNQm_AYgCTlPX498AXUIehog
CitedBy_id crossref_primary_10_1016_j_renene_2024_121291
crossref_primary_10_1016_j_fuel_2024_133400
crossref_primary_10_1016_j_jaecs_2023_100227
crossref_primary_10_1016_j_cej_2024_151326
crossref_primary_10_1007_s10311_023_01656_5
crossref_primary_10_1021_acs_energyfuels_4c03304
crossref_primary_10_1016_j_fuel_2023_128681
crossref_primary_10_1016_j_jaecs_2023_100172
crossref_primary_10_1016_j_fuel_2022_125782
crossref_primary_10_1016_j_fuel_2023_129426
crossref_primary_10_1016_j_fuel_2025_134284
crossref_primary_10_1016_j_cej_2023_148065
crossref_primary_10_1016_j_seppur_2024_126414
crossref_primary_10_1016_j_cej_2024_152999
crossref_primary_10_1016_j_fuproc_2023_107694
crossref_primary_10_1016_j_fuel_2023_127828
crossref_primary_10_1016_j_fuel_2023_130373
Cites_doi 10.1021/ef050228d
10.1023/A:1023070016230
10.1021/nl2010274
10.1016/j.fuproc.2016.03.004
10.1016/j.powtec.2014.06.013
10.1016/j.proci.2014.07.010
10.1016/j.powtec.2010.02.029
10.3390/catal10080926
10.1016/j.fuel.2021.120238
10.1021/ie049813c
10.1016/j.powtec.2016.08.016
10.1016/j.fuproc.2020.106711
10.1515/ijcre-2015-0073
10.2516/ogst/2010035
10.1021/ef050424k
10.1021/acs.energyfuels.0c02967
10.1002/aic.690150112
10.1021/acs.est.6b04043
10.1016/j.powtec.2012.01.013
10.1016/j.pecs.2017.07.005
10.1016/j.rser.2021.111510
10.1021/ef900856d
10.1016/j.proci.2018.09.002
10.1021/acs.energyfuels.0c00776
10.1016/j.fuproc.2021.106895
10.1016/j.ces.2011.11.008
10.1016/j.powtec.2015.01.001
10.1016/j.apcatb.2018.07.062
10.1016/j.cej.2016.02.115
10.1016/j.apenergy.2021.116507
10.1021/acs.energyfuels.5b00048
10.1002/aic.690430210
10.1016/S0032-5910(99)00064-9
10.1016/j.energy.2020.119044
10.1016/j.fuproc.2021.106743
10.1016/j.fuproc.2011.03.005
10.1016/j.powtec.2014.01.085
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.fuproc.2022.107441
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7188
ExternalDocumentID 10_1016_j_fuproc_2022_107441
S0378382022002818
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
TWZ
UHS
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
GROUPED_DOAJ
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-e806bb6b6a3d20d0fe266533fdc8a58d33db3c11b0fdf16d206ac3cd6ef6e2ff3
IEDL.DBID .~1
ISSN 0378-3820
IngestDate Thu Jul 10 18:08:56 EDT 2025
Tue Jul 01 03:04:42 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CO2 capture
Chemical Looping
Attrition
Hematite oxygen carrier
Coal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-e806bb6b6a3d20d0fe266533fdc8a58d33db3c11b0fdf16d206ac3cd6ef6e2ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718349444
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718349444
crossref_primary_10_1016_j_fuproc_2022_107441
crossref_citationtrail_10_1016_j_fuproc_2022_107441
elsevier_sciencedirect_doi_10_1016_j_fuproc_2022_107441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Fuel processing technology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Yi, Jiang (bb0195) 2012; 221
Cabello, Gayán, García-Labiano (bb0150) 2016; 148
Yang, Zhao, Wang (bb0070) 2015; 35
Li, Tao, Yan (bb0160) 2021; 150
Cao, Casenas, Pan (bb0025) 2006; 20
Qin, Yang, Scholz (bb0190) 2011; 11
Siriwardane, Riley, Benincosa (bb0050) 2021; 286
Mei, Soleimanisalim, Linderholm (bb0075) 2021; 215
Larring, Braley, Pishahang (bb0045) 2015; 29
Knight, Ellis, Grace (bb0155) 2014; 266
Broek (bb0205) 1982
Adánez, Cuadrat, Abad (bb0080) 2010; 24
Amblard, Bertholin, Bobin (bb0095) 2015; 274
Johansson, Mattisson, Lyngfelt (bb0125) 2004; 43
Bayham, Breault, Monazam (bb0120) 2016; 302
Scala, Cammarota, Chirone (bb0115) 1997; 43
Cocco, Arrington, Hays (bb0135) 2010; 200
Neil, Bridgwater (bb0210) 1999; 106
Chen, Zhang, Zheng (bb0165) 2021; 292
Hartman, Svoboda, Pohořelý (bb0170) 2012; 106
Zheng, Shen (bb0060) 2016; 14
Rydén, Moldenhauer, Lindqvist (bb0130) 2014; 256
Gwyn (bb0140) 1969; 15
Callister, Rethwisch (bb0200) 2018
Wang, Li, Liang (bb0055) 2020; 34
He, Linak, Deng (bb0185) 2017; 51
Lupiáñez, Scala, Salatino (bb0110) 2011; 92
De Vos, Jacobs, Van Der Voort (bb0030) 2020; 10
Niu, Shen, Jiang (bb0040) 2016; 294
Adánez, Abad (bb0100) 2019; 37
Wei, Zhou, Huang (bb0065) 2021; 215
Kramp, Thon, Hartge (bb0090) 2011; 66
Adánez, Abad, Mendiara (bb0005) 2018; 65
Liu, Li, Wu (bb0015) 2021; 213
Scala, Chirone, Salatino (bb0105) 2013
Ma, Zhang, Lu (bb0085) 2020; 34
Brown, Scala, Scott (bb0180) 2012; 71
Cao, Pan (bb0010) 2006; 20
Wang, Guo, Xu (bb0020) 2021; 220
ASTM (bb0145) 2011
Hidaka, Anraku, Otsuka (bb0175) 2003; 59
Liu, Dong, Xiang (bb0035) 2018; 238
Larring (10.1016/j.fuproc.2022.107441_bb0045) 2015; 29
Siriwardane (10.1016/j.fuproc.2022.107441_bb0050) 2021; 286
Cao (10.1016/j.fuproc.2022.107441_bb0025) 2006; 20
Wang (10.1016/j.fuproc.2022.107441_bb0055) 2020; 34
Mei (10.1016/j.fuproc.2022.107441_bb0075) 2021; 215
Johansson (10.1016/j.fuproc.2022.107441_bb0125) 2004; 43
Wei (10.1016/j.fuproc.2022.107441_bb0065) 2021; 215
Hidaka (10.1016/j.fuproc.2022.107441_bb0175) 2003; 59
Qin (10.1016/j.fuproc.2022.107441_bb0190) 2011; 11
Knight (10.1016/j.fuproc.2022.107441_bb0155) 2014; 266
Neil (10.1016/j.fuproc.2022.107441_bb0210) 1999; 106
Chen (10.1016/j.fuproc.2022.107441_bb0165) 2021; 292
Brown (10.1016/j.fuproc.2022.107441_bb0180) 2012; 71
Bayham (10.1016/j.fuproc.2022.107441_bb0120) 2016; 302
Niu (10.1016/j.fuproc.2022.107441_bb0040) 2016; 294
Cabello (10.1016/j.fuproc.2022.107441_bb0150) 2016; 148
Adánez (10.1016/j.fuproc.2022.107441_bb0080) 2010; 24
Amblard (10.1016/j.fuproc.2022.107441_bb0095) 2015; 274
Lupiáñez (10.1016/j.fuproc.2022.107441_bb0110) 2011; 92
Callister (10.1016/j.fuproc.2022.107441_bb0200) 2018
Hartman (10.1016/j.fuproc.2022.107441_bb0170) 2012; 106
Liu (10.1016/j.fuproc.2022.107441_bb0015) 2021; 213
De Vos (10.1016/j.fuproc.2022.107441_bb0030) 2020; 10
Scala (10.1016/j.fuproc.2022.107441_bb0115) 1997; 43
Cocco (10.1016/j.fuproc.2022.107441_bb0135) 2010; 200
Broek (10.1016/j.fuproc.2022.107441_bb0205) 1982
ASTM (10.1016/j.fuproc.2022.107441_bb0145) 2011
Zheng (10.1016/j.fuproc.2022.107441_bb0060) 2016; 14
Wang (10.1016/j.fuproc.2022.107441_bb0020) 2021; 220
Gwyn (10.1016/j.fuproc.2022.107441_bb0140) 1969; 15
Kramp (10.1016/j.fuproc.2022.107441_bb0090) 2011; 66
Adánez (10.1016/j.fuproc.2022.107441_bb0100) 2019; 37
He (10.1016/j.fuproc.2022.107441_bb0185) 2017; 51
Liu (10.1016/j.fuproc.2022.107441_bb0035) 2018; 238
Adánez (10.1016/j.fuproc.2022.107441_bb0005) 2018; 65
Rydén (10.1016/j.fuproc.2022.107441_bb0130) 2014; 256
Huang (10.1016/j.fuproc.2022.107441_bb0195) 2012; 221
Ma (10.1016/j.fuproc.2022.107441_bb0085) 2020; 34
Scala (10.1016/j.fuproc.2022.107441_bb0105) 2013
Yang (10.1016/j.fuproc.2022.107441_bb0070) 2015; 35
Cao (10.1016/j.fuproc.2022.107441_bb0010) 2006; 20
Li (10.1016/j.fuproc.2022.107441_bb0160) 2021; 150
References_xml – volume: 215
  year: 2021
  ident: bb0065
  article-title: Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO
  publication-title: Energy
– volume: 71
  start-page: 449
  year: 2012
  end-page: 467
  ident: bb0180
  article-title: The attrition behaviour of oxygen-carriers under inert and reacting conditions
  publication-title: Chem. Eng. Sci.
– volume: 65
  start-page: 6
  year: 2018
  end-page: 66
  ident: bb0005
  article-title: Chemical looping combustion of solid fuels
  publication-title: Prog. Energy Combust. Sci.
– volume: 10
  start-page: 926
  year: 2020
  ident: bb0030
  article-title: Development of stable oxygen carrier materials for chemical looping processes-a review
  publication-title: Catalysts
– start-page: 254
  year: 2013
  end-page: 315
  ident: bb0105
  article-title: 6-Attrition phenomena relevant to fluidized bed combustion and gasification systems
  publication-title: Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification
– volume: 43
  start-page: 6978
  year: 2004
  end-page: 6987
  ident: bb0125
  article-title: Investigation of Fe
  publication-title: Ind. Eng. Chem. Res.
– volume: 294
  start-page: 185
  year: 2016
  end-page: 192
  ident: bb0040
  article-title: Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu-Fe oxygen carrier
  publication-title: Chem. Eng. J.
– volume: 286
  year: 2021
  ident: bb0050
  article-title: Development of CuFeMnAlO
  publication-title: Appl. Energy
– volume: 221
  start-page: 284
  year: 2012
  end-page: 291
  ident: bb0195
  article-title: Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets
  publication-title: Powder Technol.
– volume: 43
  start-page: 363
  year: 1997
  end-page: 373
  ident: bb0115
  article-title: Comminution of limestone during batch fluidized-bed calcination and sulfation
  publication-title: AICHE J.
– volume: 24
  start-page: 1402
  year: 2010
  end-page: 1413
  ident: bb0080
  article-title: Ilmenite activation during consecutive redox cycles in chemical-looping combustion
  publication-title: Energy Fuel
– volume: 266
  start-page: 412
  year: 2014
  end-page: 423
  ident: bb0155
  article-title: CO
  publication-title: Powder Technol.
– volume: 220
  year: 2021
  ident: bb0020
  article-title: Synergistic reaction investigation of the NiO modified CaSO
  publication-title: Fuel Process. Technol.
– volume: 302
  start-page: 42
  year: 2016
  end-page: 62
  ident: bb0120
  article-title: Particulate solid attrition in CFB systems-an assessment for emerging technologies
  publication-title: Powder Technol.
– volume: 20
  start-page: 1845
  year: 2006
  end-page: 1854
  ident: bb0025
  article-title: Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier
  publication-title: Energy Fuel
– volume: 215
  year: 2021
  ident: bb0075
  article-title: Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kW
  publication-title: Fuel Process. Technol.
– volume: 20
  start-page: 1836
  year: 2006
  end-page: 1844
  ident: bb0010
  article-title: Investigation of chemical looping combustion by solid fuels. 1. Process analysis
  publication-title: Energy Fuel
– volume: 14
  start-page: 637
  year: 2016
  end-page: 652
  ident: bb0060
  article-title: In situ gasification chemical looping combustion of coal using the mixed oxygen carrier of natural anhydrite ore and calcined limestone
  publication-title: Int. J. Chem. React. Eng.
– volume: 292
  year: 2021
  ident: bb0165
  article-title: Thermal properties and product distribution from pyrolysis at high heating rate of Naomaohu coal
  publication-title: Fuel
– volume: 106
  start-page: 37
  year: 1999
  end-page: 44
  ident: bb0210
  article-title: Towards a parameter characterising attrition
  publication-title: Powder Technol.
– volume: 29
  start-page: 3438
  year: 2015
  end-page: 3445
  ident: bb0045
  article-title: Evaluation of a mixed Fe-Mn oxide system for chemical looping combustion
  publication-title: Energy Fuel
– volume: 213
  year: 2021
  ident: bb0015
  article-title: Conversion characteristics of lignite and petroleum coke in chemical looping combustion coupled with an annular carbon stripper
  publication-title: Fuel Process. Technol.
– volume: 34
  start-page: 7316
  year: 2020
  end-page: 7328
  ident: bb0055
  article-title: Chemical looping combustion characteristics of coal with a novel CaSO
  publication-title: Energy Fuel
– year: 2011
  ident: bb0145
  article-title: D5757-11: Standard Test Method for Determination of Attrition of FCC Catalysts by Air Jets
– volume: 150
  year: 2021
  ident: bb0160
  article-title: Review of microwave-based treatments of biomass gasification tar
  publication-title: Renew. Sust. Energ. Rev.
– volume: 66
  start-page: 277
  year: 2011
  end-page: 290
  ident: bb0090
  article-title: The role of attrition and solids recovery in a chemical looping combustion process
  publication-title: Oil Gas Sci. Technol.
– volume: 37
  start-page: 4303
  year: 2019
  end-page: 4317
  ident: bb0100
  article-title: Chemical-looping combustion: status and research needs
  publication-title: Proc. Combust. Inst.
– volume: 256
  start-page: 75
  year: 2014
  end-page: 86
  ident: bb0130
  article-title: Measuring attrition resistance of oxygen carrier particles for chemical looping combustion with a customized jet cup
  publication-title: Powder Technol.
– year: 1982
  ident: bb0205
  article-title: Elementary Engineering Fracture Mechanics
– volume: 15
  start-page: 35
  year: 1969
  end-page: 39
  ident: bb0140
  article-title: On the particle size distribution function and the attrition of cracking catalysts
  publication-title: AICHE J.
– volume: 200
  start-page: 224
  year: 2010
  end-page: 233
  ident: bb0135
  article-title: Jet cup attrition testing
  publication-title: Powder Technol.
– volume: 238
  start-page: 647
  year: 2018
  end-page: 655
  ident: bb0035
  article-title: Crossing-link of experimental reducibility tests, XPS characterizations and DFT estimates on ferrite oxygen carriers in CLC
  publication-title: Appl. Catal. B Environ.
– volume: 35
  start-page: 2811
  year: 2015
  end-page: 2818
  ident: bb0070
  article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion
  publication-title: Proc. Combust. Inst.
– volume: 11
  start-page: 2503
  year: 2011
  end-page: 2509
  ident: bb0190
  article-title: Unexpected oxidation behavior of Cu nanoparticles embedded in porous alumina films produced by molecular layer deposition
  publication-title: Nano Lett.
– volume: 92
  start-page: 1449
  year: 2011
  end-page: 1456
  ident: bb0110
  article-title: Primary fragmentation of limestone under oxy-firing conditions in a bubbling fluidized bed
  publication-title: Fuel Process. Technol.
– volume: 106
  start-page: 844
  year: 2012
  end-page: 846
  ident: bb0170
  article-title: Attrition of a mineral catalyst in a gasification fluidized-bed gasification reactor
  publication-title: Chem. List.
– volume: 274
  start-page: 455
  year: 2015
  end-page: 465
  ident: bb0095
  article-title: Development of an attrition evaluation method using a Jet Cup rig
  publication-title: Powder Technol.
– volume: 34
  start-page: 16350
  year: 2020
  end-page: 16355
  ident: bb0085
  article-title: Activation mechanism of Fe
  publication-title: Energy Fuel
– volume: 51
  start-page: 2482
  year: 2017
  end-page: 2490
  ident: bb0185
  article-title: Particulate formation from a copper oxide-based oxygen carrier in chemical looping combustion for CO
  publication-title: Environ. Sci. Technol.
– volume: 59
  start-page: 97
  year: 2003
  end-page: 113
  ident: bb0175
  article-title: Deformation of iron oxides upon tensile tests at 600-1250°C
  publication-title: Oxid. Met.
– volume: 148
  start-page: 188
  year: 2016
  end-page: 197
  ident: bb0150
  article-title: On the attrition evaluation of oxygen carriers in chemical looping combustion
  publication-title: Fuel Process. Technol.
– year: 2018
  ident: bb0200
  article-title: Materials Science and Engineering: An Introduction
– volume: 20
  start-page: 1836
  year: 2006
  ident: 10.1016/j.fuproc.2022.107441_bb0010
  article-title: Investigation of chemical looping combustion by solid fuels. 1. Process analysis
  publication-title: Energy Fuel
  doi: 10.1021/ef050228d
– start-page: 254
  year: 2013
  ident: 10.1016/j.fuproc.2022.107441_bb0105
  article-title: 6-Attrition phenomena relevant to fluidized bed combustion and gasification systems
– volume: 59
  start-page: 97
  year: 2003
  ident: 10.1016/j.fuproc.2022.107441_bb0175
  article-title: Deformation of iron oxides upon tensile tests at 600-1250°C
  publication-title: Oxid. Met.
  doi: 10.1023/A:1023070016230
– volume: 11
  start-page: 2503
  year: 2011
  ident: 10.1016/j.fuproc.2022.107441_bb0190
  article-title: Unexpected oxidation behavior of Cu nanoparticles embedded in porous alumina films produced by molecular layer deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl2010274
– volume: 148
  start-page: 188
  year: 2016
  ident: 10.1016/j.fuproc.2022.107441_bb0150
  article-title: On the attrition evaluation of oxygen carriers in chemical looping combustion
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.03.004
– volume: 266
  start-page: 412
  year: 2014
  ident: 10.1016/j.fuproc.2022.107441_bb0155
  article-title: CO2 sorbent attrition testing for fluidized bed systems
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.06.013
– year: 2018
  ident: 10.1016/j.fuproc.2022.107441_bb0200
– volume: 35
  start-page: 2811
  year: 2015
  ident: 10.1016/j.fuproc.2022.107441_bb0070
  article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.07.010
– volume: 200
  start-page: 224
  year: 2010
  ident: 10.1016/j.fuproc.2022.107441_bb0135
  article-title: Jet cup attrition testing
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.02.029
– volume: 10
  start-page: 926
  year: 2020
  ident: 10.1016/j.fuproc.2022.107441_bb0030
  article-title: Development of stable oxygen carrier materials for chemical looping processes-a review
  publication-title: Catalysts
  doi: 10.3390/catal10080926
– volume: 292
  year: 2021
  ident: 10.1016/j.fuproc.2022.107441_bb0165
  article-title: Thermal properties and product distribution from pyrolysis at high heating rate of Naomaohu coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120238
– volume: 43
  start-page: 6978
  year: 2004
  ident: 10.1016/j.fuproc.2022.107441_bb0125
  article-title: Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049813c
– volume: 302
  start-page: 42
  year: 2016
  ident: 10.1016/j.fuproc.2022.107441_bb0120
  article-title: Particulate solid attrition in CFB systems-an assessment for emerging technologies
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.08.016
– volume: 213
  year: 2021
  ident: 10.1016/j.fuproc.2022.107441_bb0015
  article-title: Conversion characteristics of lignite and petroleum coke in chemical looping combustion coupled with an annular carbon stripper
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2020.106711
– year: 2011
  ident: 10.1016/j.fuproc.2022.107441_bb0145
– year: 1982
  ident: 10.1016/j.fuproc.2022.107441_bb0205
– volume: 14
  start-page: 637
  year: 2016
  ident: 10.1016/j.fuproc.2022.107441_bb0060
  article-title: In situ gasification chemical looping combustion of coal using the mixed oxygen carrier of natural anhydrite ore and calcined limestone
  publication-title: Int. J. Chem. React. Eng.
  doi: 10.1515/ijcre-2015-0073
– volume: 66
  start-page: 277
  year: 2011
  ident: 10.1016/j.fuproc.2022.107441_bb0090
  article-title: The role of attrition and solids recovery in a chemical looping combustion process
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst/2010035
– volume: 20
  start-page: 1845
  year: 2006
  ident: 10.1016/j.fuproc.2022.107441_bb0025
  article-title: Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier
  publication-title: Energy Fuel
  doi: 10.1021/ef050424k
– volume: 34
  start-page: 16350
  year: 2020
  ident: 10.1016/j.fuproc.2022.107441_bb0085
  article-title: Activation mechanism of Fe2O3-Al2O3 oxygen carrier in chemical looping combustion
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.0c02967
– volume: 15
  start-page: 35
  year: 1969
  ident: 10.1016/j.fuproc.2022.107441_bb0140
  article-title: On the particle size distribution function and the attrition of cracking catalysts
  publication-title: AICHE J.
  doi: 10.1002/aic.690150112
– volume: 51
  start-page: 2482
  year: 2017
  ident: 10.1016/j.fuproc.2022.107441_bb0185
  article-title: Particulate formation from a copper oxide-based oxygen carrier in chemical looping combustion for CO2 capture
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04043
– volume: 221
  start-page: 284
  year: 2012
  ident: 10.1016/j.fuproc.2022.107441_bb0195
  article-title: Mechanisms of strength decrease in the initial reduction of iron ore oxide pellets
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.01.013
– volume: 65
  start-page: 6
  year: 2018
  ident: 10.1016/j.fuproc.2022.107441_bb0005
  article-title: Chemical looping combustion of solid fuels
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2017.07.005
– volume: 150
  year: 2021
  ident: 10.1016/j.fuproc.2022.107441_bb0160
  article-title: Review of microwave-based treatments of biomass gasification tar
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2021.111510
– volume: 24
  start-page: 1402
  year: 2010
  ident: 10.1016/j.fuproc.2022.107441_bb0080
  article-title: Ilmenite activation during consecutive redox cycles in chemical-looping combustion
  publication-title: Energy Fuel
  doi: 10.1021/ef900856d
– volume: 37
  start-page: 4303
  year: 2019
  ident: 10.1016/j.fuproc.2022.107441_bb0100
  article-title: Chemical-looping combustion: status and research needs
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.09.002
– volume: 34
  start-page: 7316
  year: 2020
  ident: 10.1016/j.fuproc.2022.107441_bb0055
  article-title: Chemical looping combustion characteristics of coal with a novel CaSO4-Ca2CuO3 mixed oxygen carrier
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.0c00776
– volume: 220
  year: 2021
  ident: 10.1016/j.fuproc.2022.107441_bb0020
  article-title: Synergistic reaction investigation of the NiO modified CaSO4 oxygen carrier with lignite for simultaneous CO2 capture and SO2 removal
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2021.106895
– volume: 71
  start-page: 449
  year: 2012
  ident: 10.1016/j.fuproc.2022.107441_bb0180
  article-title: The attrition behaviour of oxygen-carriers under inert and reacting conditions
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.11.008
– volume: 274
  start-page: 455
  year: 2015
  ident: 10.1016/j.fuproc.2022.107441_bb0095
  article-title: Development of an attrition evaluation method using a Jet Cup rig
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.01.001
– volume: 238
  start-page: 647
  year: 2018
  ident: 10.1016/j.fuproc.2022.107441_bb0035
  article-title: Crossing-link of experimental reducibility tests, XPS characterizations and DFT estimates on ferrite oxygen carriers in CLC
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.07.062
– volume: 294
  start-page: 185
  year: 2016
  ident: 10.1016/j.fuproc.2022.107441_bb0040
  article-title: Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu-Fe oxygen carrier
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.02.115
– volume: 286
  year: 2021
  ident: 10.1016/j.fuproc.2022.107441_bb0050
  article-title: Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116507
– volume: 29
  start-page: 3438
  year: 2015
  ident: 10.1016/j.fuproc.2022.107441_bb0045
  article-title: Evaluation of a mixed Fe-Mn oxide system for chemical looping combustion
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.5b00048
– volume: 43
  start-page: 363
  year: 1997
  ident: 10.1016/j.fuproc.2022.107441_bb0115
  article-title: Comminution of limestone during batch fluidized-bed calcination and sulfation
  publication-title: AICHE J.
  doi: 10.1002/aic.690430210
– volume: 106
  start-page: 37
  year: 1999
  ident: 10.1016/j.fuproc.2022.107441_bb0210
  article-title: Towards a parameter characterising attrition
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(99)00064-9
– volume: 215
  year: 2021
  ident: 10.1016/j.fuproc.2022.107441_bb0065
  article-title: Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119044
– volume: 215
  year: 2021
  ident: 10.1016/j.fuproc.2022.107441_bb0075
  article-title: Reactivity and lifetime assessment of an oxygen releasable manganese ore with biomass fuels in a 10 kWth pilot rig for chemical looping combustion
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2021.106743
– volume: 92
  start-page: 1449
  year: 2011
  ident: 10.1016/j.fuproc.2022.107441_bb0110
  article-title: Primary fragmentation of limestone under oxy-firing conditions in a bubbling fluidized bed
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2011.03.005
– volume: 256
  start-page: 75
  year: 2014
  ident: 10.1016/j.fuproc.2022.107441_bb0130
  article-title: Measuring attrition resistance of oxygen carrier particles for chemical looping combustion with a customized jet cup
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.01.085
– volume: 106
  start-page: 844
  year: 2012
  ident: 10.1016/j.fuproc.2022.107441_bb0170
  article-title: Attrition of a mineral catalyst in a gasification fluidized-bed gasification reactor
  publication-title: Chem. List.
SSID ssj0005597
Score 2.4735522
Snippet The oxygen carrier particle is usually used in the fluidization-based chemical looping system, which is subject to mechanical, thermal, and chemical stress....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107441
SubjectTerms ash (inorganic matter)
Attrition
Chemical Looping
CO2 capture
Coal
equations
fluid mechanics
hematite
Hematite oxygen carrier
oxygen
particle size distribution
phase transition
temperature
Title The investigation on the attrition of hematite oxygen carrier particles in a fluidization-based chemical looping system
URI https://dx.doi.org/10.1016/j.fuproc.2022.107441
https://www.proquest.com/docview/2718349444
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNBK_ZbZs2uz2KKKviXnTBW8gTVpZ20S7qxd_uTJv6AlkQemmYhJKZzDdpZr4Qchq5NMsM98xZrViaxwnLYc_GtBVK6Di3cf1r4HYkhuP0-iF76JDzthYG0yqD7298eu2tQ0svzGZvNpn07iLeH3AAsATzDAB3sII97aOVd9-_pXlk9QUrKMxQui2fq3O8_BxhootjdDEzMY3_gqdfjrpGn8t1shbCRnrWfNkG6bhik6x-IxPcIi-gcTr5os0oCwoPxHdUVYFxn5aeNiStlaPl6xsYDzXqCS-to7M2RQ7GoIr66XxiQ40mQ6iz1ARuATot6yor2rBAb5Px5cX9-ZCFaxWY4TyvmBtEQmuhheI2iWzkHYA0RH3emoHKBpZzq7mJYx1562MBMkIZbqxwXrjEe75DloqycLuEWg9tBo8OHex8PIRzufC4BYKlnWaK7xHezqY0gXMcr76Yyja57FE2OpCoA9noYI-wz16zhnNjgXy_VZT8YTsSYGFBz5NWrxKWFZ6VqMKV82eZAGYjc0-a7v979AOygm9N5eIhWaqe5u4IQphKH9c2ekyWz65uhqMPMFr0Mw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Bcig9IApF0BZqpF7NJnFiNkeEipbXXgCJm-WntGiVrGhW0H_fmcQBioSQkHJyxlbksecbxzPfAPxKfF4UVgTundE8L9OMl3hm48ZJLU1aurT9NXA5keOb_Oy2uF2C4z4XhsIqo-3vbHprrWPLMM7mcD6dDq8ScTgSCGAZxRkg7izDCrFTFQNYOTo9H0-eIz2KtsYKyXPq0GfQtWFeYUFIcUDDHFBwYp6-hVCvbHULQCfrsBY9R3bUfdwXWPLVBnx-wSe4CQ-odDZ9Zs6oK4YPunhMN5F0n9WBdTytjWf1419cP8zqe6pbx-Z9lByOwTQLs8XUxTRNTmjnmI30AmxWt4lWrCOC_go3J7-vj8c8VlbgVoiy4X6USGOkkVq4LHFJ8IjT6PgFZ0e6GDkhnBE2TU0SXEglykhthXXSB-mzEMQWDKq68tvAXMA2S7eHHg8_AT26UgY6BeHuzgstdkD0s6lspB2n6hcz1ceX3alOB4p0oDod7AB_6jXvaDfekT_sFaX-Wz4KkeGdnvu9XhXuLLou0ZWvF39UhrBN5D15_u3Do_-ET-Prywt1cTo5_w6r9KZLZPwBg-Z-4XfRo2nMXlyx_wCHgPbk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+investigation+on+the+attrition+of+hematite+oxygen+carrier+particles+in+a+fluidization-based+chemical+looping+system&rft.jtitle=Fuel+processing+technology&rft.au=Li%2C+Heyu&rft.au=Sun%2C+Zhe&rft.au=Tian%2C+Lijun&rft.au=Gao%2C+Lei&rft.date=2022-11-01&rft.issn=0378-3820&rft.volume=236+p.107441-&rft_id=info:doi/10.1016%2Fj.fuproc.2022.107441&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon