Using Chaos to Guide a Spacecraft to the moon

Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987, made use of the sensitive dependence on initial conditions in the classical three-body problem to maneuver ISEE-3 spacecraft towards a comet by...

Full description

Saved in:
Bibliographic Details
Published inActa astronautica Vol. 47; no. 12; pp. 871 - 878
Main Author Macau, Elbert E.N
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987, made use of the sensitive dependence on initial conditions in the classical three-body problem to maneuver ISEE-3 spacecraft towards a comet by means of small correction, which requires only a small amount of fuel. Later, the spacecraft Hiten was sent to the Moon by using a ballistic lunar capture transfer that was accomplished by the use of regions of chaotic motion in the phase space. However, these methods imply long transport times. This happens because in chaotic Hamiltonian systems, besides the coexistence of interwoven chaotic and quasi-periodic regions, the phase space is divided into layered components which are separated from each other by Cantori. Typically, a trajectory initialized in one layer of the chaotic region wanders in that layer for a long time before it crosses the Cantori and wanders in the next region. In this article, we show how the transport time for a Hamiltonian chaotic system can be substantially reduced by using a targeting method that was originally devised for a chaotic scattering. The method takes explicit advantage of the sensitive dependence on initial conditions. It finds, from an ensemble of trajectories, the trajectory that passes closest to the overlapping parts of certain resonance regions that form natural barriers to the transport. By using small perturbations, we construct the final trajectory that conducts from source to the target regions, and passes through the layers of the chaotic Hamiltonian system. As an example, the technique is applied in the planar, circular, restricted three-body problem to model the dynamics of a spacecraft moving in the Earth–Moon system. Comparisons are made between our method and other targeting strategies.
AbstractList Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987, made use of the sensitive dependence on initial conditions in the classical three-body problem to maneuver ISEE-3 spacecraft towards a comet by means of small correction, which requires only a small amount of fuel. Later, the spacecraft Hiten was sent to the Moon by using a ballistic lunar capture transfer that was accomplished by the use of regions of chaotic motion in the phase space. However, these methods imply long transport times. This happens because in chaotic Hamiltonian systems, besides the coexistence of interwoven chaotic and quasi-periodic regions, the phase space is divided into layered components which are separated from each other by Cantori. Typically, a trajectory initialized in one layer of the chaotic region wanders in that layer for a long time before it crosses the Cantori and wanders in the next region. In this article, we show how the transport time for a Hamiltonian chaotic system can be substantially reduced by using a targeting method that was originally devised for a chaotic scattering. The method takes explicit advantage of the sensitive dependence on initial conditions. It finds, from an ensemble of trajectories, the trajectory that passes closest to the overlapping parts of certain resonance regions that form natural barriers to the transport. By using small perturbations, we construct the final trajectory that conducts from source to the target regions, and passes through the layers of the chaotic Hamiltonian system. As an example, the technique is applied in the planar, circular, restricted three-body problem to model the dynamics of a spacecraft moving in the Earth-Moon system. Comparisons are made between our method and other targeting strategies.
Author Macau, Elbert E.N
Author_xml – sequence: 1
  givenname: Elbert E.N
  surname: Macau
  fullname: Macau, Elbert E.N
  organization: LIT - Instituto Nacional de Pesquisas Espaciais - INPE, C. Postal’, 515, 12227-010 São José dos Campos, São Paulo, Brazil
BookMark eNqFkEFLAzEUhINUsK3-BGFv6iH6kmw2m5NI0SoUPNSeQzb71kbaTU22gv_e3Va8enowfDOPmQkZtaFFQi4Z3DJgxd0SQOdUqkJeA9wAMC6pPiFjVipNOQgYkfEfckYmKX0AgOKlHhO6Sr59z2ZrG1LWhWy-9zVmNlvurEMXbdMNarfGbBtCe05OG7tJePF7p2T19Pg2e6aL1_nL7GFBnRC6o6hqCbLMwQqh-k-NZpZD2YAqRVmLhjMmHauEsFbkUJRW2Ao4VrKSkFvmxJRcHXN3MXzuMXVm65PDzca2GPbJqLwAzbhSPSmPpIshpYiN2UW_tfHbMDDDOuawjhmqGwBzWMfo3nd_9GFf48tjNMl5bB3WPqLrTB38Pwk_5R1qwg
CitedBy_id crossref_primary_10_3389_frspt_2022_920456
crossref_primary_10_1007_s10509_015_2577_z
crossref_primary_10_1016_j_actaastro_2020_07_046
crossref_primary_10_1007_s11071_024_09302_7
crossref_primary_10_1088_1742_6596_465_1_012018
crossref_primary_10_1016_j_chaos_2017_10_009
crossref_primary_10_1007_s40314_018_0760_x
crossref_primary_10_1007_s10569_013_9513_8
crossref_primary_10_1016_j_actaastro_2018_11_038
crossref_primary_10_1007_s40314_017_0499_9
crossref_primary_10_1016_j_ecolmodel_2024_110714
crossref_primary_10_32604_cmes_2022_022585
crossref_primary_10_1051_jnwpu_20183610035
crossref_primary_10_1142_S0218127415500777
crossref_primary_10_1098_rsta_2006_1835
Cites_doi 10.1016/0375-9601(88)90102-8
10.1103/PhysRevE.57.5337
10.1063/1.165984
10.1103/PhysRevE.47.86
10.1063/1.456017
10.1063/1.165949
10.1063/1.166277
10.1103/PhysRevLett.65.3215
10.1016/0007-1226(94)90134-1
10.1103/PhysRevA.38.930
10.1016/0167-2789(90)90114-5
10.1016/0375-9601(95)00502-T
10.1029/92JA00955
10.1103/PhysRevLett.52.697
10.1103/PhysRevE.47.305
10.1016/0375-9601(91)90355-C
10.1088/0305-4470/20/17/030
10.1016/S0167-2789(98)90012-4
10.1063/1.165956
10.1103/PhysRevE.48.709
10.1103/PhysRevLett.64.1196
10.1016/0019-1035(86)90089-8
10.1103/PhysRevA.42.7025
10.1016/0167-2789(94)00189-W
ContentType Journal Article
Copyright 2001
Copyright_xml – notice: 2001
DBID AAYXX
CITATION
7TC
DOI 10.1016/S0094-5765(00)00125-9
DatabaseName CrossRef
Mechanical Engineering Abstracts
DatabaseTitle CrossRef
Mechanical Engineering Abstracts
DatabaseTitleList Mechanical Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2030
EndPage 878
ExternalDocumentID 10_1016_S0094_5765_00_00125_9
S0094576500001259
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TC
ID FETCH-LOGICAL-c339t-e7d505840a337007f91a208f07838d3f2115c1b33aa34068a3ab02eb5b504a1c3
IEDL.DBID AIKHN
ISSN 0094-5765
IngestDate Fri Oct 25 09:55:51 EDT 2024
Thu Sep 26 18:31:16 EDT 2024
Fri Feb 23 02:21:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-e7d505840a337007f91a208f07838d3f2115c1b33aa34068a3ab02eb5b504a1c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 746091277
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_746091277
crossref_primary_10_1016_S0094_5765_00_00125_9
elsevier_sciencedirect_doi_10_1016_S0094_5765_00_00125_9
PublicationCentury 2000
PublicationDate 2000-12-01
PublicationDateYYYYMMDD 2000-12-01
PublicationDate_xml – month: 12
  year: 2000
  text: 2000-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Acta astronautica
PublicationYear 2000
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References 15 011.
Petit, J.-M. and Henon, M.
Ott, E., Grebogi, C. and Yorke, J. A.
930.
Belbruno, E. and Miller, J.
Hsu, G.-H., Ott, E. and Grebogi, C.
Bate, R. R., Mueller, D. D. and White, J. E.
Dover Publications, New York, 1971.
Boyd, P. T. and McMillan, S. L. W.
417.
87.
3rd edn. Adam Hilger, Bristol, 1988.
Gaspard, P. and Rice, S. A.
Bleher, S., Grebogi, C. and Ott, E.
Hietarinta, J. and Mikkola, S.
Ott, E. and Tél, T.
Ding, M., Grebogi, C., Ott, E. and Yorke, J. A.
305.
Mackay, R. S., Meiss. J. D. and Percival, I. C.
Schroer, C. G. and Ott, E.
373.
1990
507.
199.
Sitinikov, K., [Doklady Akademii Nauk SSR
3215.
Bleher, S., Grebogi, C., Ott, E. and Brown, R.
647] 1960, 133.
1987
1986
2nd Edn. Willmann-Bell, Richmond, 1992.
1984
709.
Roy, A. E.
1988
Belbruno, E.
512.
697.
Danby, J. M. A.
89.
536.
7025.
21.
1998
Lai, Y.-C., Ding, M. and Grebogi, C.
1997
73.
Bollt, E. M. and Meiss, J. D.
1996
1995
280.
2225.
1994
Macau, E. E. N.
1993
183.
1992
1991
1196.
Kostelich, E. J., Grebogi, C., Ott, E. and Yorke, J. A.
5337.
86.
Chen, J.
1961
5971.
Lai, Y.-C., Tél, T. and Grebogi, C.
4.
Eckhardt, B.
Shinbrot, T., Ott, E., Grebogi, C. and Yorke, J. A.
10.1016/S0094-5765(00)00125-9_BIB29
10.1016/S0094-5765(00)00125-9_BIB27
10.1016/S0094-5765(00)00125-9_BIB28
10.1016/S0094-5765(00)00125-9_BIB25
10.1016/S0094-5765(00)00125-9_BIB26
10.1016/S0094-5765(00)00125-9_BIB23
10.1016/S0094-5765(00)00125-9_BIB24
10.1016/S0094-5765(00)00125-9_BIB7
10.1016/S0094-5765(00)00125-9_BIB8
10.1016/S0094-5765(00)00125-9_BIB9
10.1016/S0094-5765(00)00125-9_BIB3
10.1016/S0094-5765(00)00125-9_BIB10
10.1016/S0094-5765(00)00125-9_BIB4
10.1016/S0094-5765(00)00125-9_BIB11
10.1016/S0094-5765(00)00125-9_BIB5
10.1016/S0094-5765(00)00125-9_BIB6
10.1016/S0094-5765(00)00125-9_BIB1
10.1016/S0094-5765(00)00125-9_BIB2
10.1016/S0094-5765(00)00125-9_BIB18
10.1016/S0094-5765(00)00125-9_BIB19
10.1016/S0094-5765(00)00125-9_BIB16
10.1016/S0094-5765(00)00125-9_BIB17
10.1016/S0094-5765(00)00125-9_BIB14
10.1016/S0094-5765(00)00125-9_BIB15
10.1016/S0094-5765(00)00125-9_BIB12
10.1016/S0094-5765(00)00125-9_BIB13
10.1016/S0094-5765(00)00125-9_BIB21
10.1016/S0094-5765(00)00125-9_BIB22
10.1016/S0094-5765(00)00125-9_BIB20
References_xml – ident: 10.1016/S0094-5765(00)00125-9_BIB21
  doi: 10.1016/0375-9601(88)90102-8
– ident: 10.1016/S0094-5765(00)00125-9_BIB11
  doi: 10.1103/PhysRevE.57.5337
– ident: 10.1016/S0094-5765(00)00125-9_BIB19
  doi: 10.1063/1.165984
– ident: 10.1016/S0094-5765(00)00125-9_BIB7
  doi: 10.1103/PhysRevE.47.86
– ident: 10.1016/S0094-5765(00)00125-9_BIB16
  doi: 10.1063/1.456017
– ident: 10.1016/S0094-5765(00)00125-9_BIB12
  doi: 10.1063/1.165949
– ident: 10.1016/S0094-5765(00)00125-9_BIB28
– ident: 10.1016/S0094-5765(00)00125-9_BIB29
  doi: 10.1063/1.166277
– ident: 10.1016/S0094-5765(00)00125-9_BIB9
  doi: 10.1103/PhysRevLett.65.3215
– ident: 10.1016/S0094-5765(00)00125-9_BIB2
– ident: 10.1016/S0094-5765(00)00125-9_BIB3
  doi: 10.1016/0007-1226(94)90134-1
– ident: 10.1016/S0094-5765(00)00125-9_BIB13
  doi: 10.1103/PhysRevA.38.930
– ident: 10.1016/S0094-5765(00)00125-9_BIB22
  doi: 10.1016/0167-2789(90)90114-5
– ident: 10.1016/S0094-5765(00)00125-9_BIB5
  doi: 10.1016/0375-9601(95)00502-T
– ident: 10.1016/S0094-5765(00)00125-9_BIB26
– ident: 10.1016/S0094-5765(00)00125-9_BIB15
  doi: 10.1029/92JA00955
– ident: 10.1016/S0094-5765(00)00125-9_BIB10
  doi: 10.1103/PhysRevLett.52.697
– ident: 10.1016/S0094-5765(00)00125-9_BIB27
– ident: 10.1016/S0094-5765(00)00125-9_BIB6
  doi: 10.1103/PhysRevE.47.305
– ident: 10.1016/S0094-5765(00)00125-9_BIB24
  doi: 10.1016/0375-9601(91)90355-C
– ident: 10.1016/S0094-5765(00)00125-9_BIB25
  doi: 10.1088/0305-4470/20/17/030
– ident: 10.1016/S0094-5765(00)00125-9_BIB20
  doi: 10.1016/S0167-2789(98)90012-4
– ident: 10.1016/S0094-5765(00)00125-9_BIB14
  doi: 10.1063/1.165956
– ident: 10.1016/S0094-5765(00)00125-9_BIB8
  doi: 10.1103/PhysRevE.48.709
– ident: 10.1016/S0094-5765(00)00125-9_BIB18
– ident: 10.1016/S0094-5765(00)00125-9_BIB1
  doi: 10.1103/PhysRevLett.64.1196
– ident: 10.1016/S0094-5765(00)00125-9_BIB17
  doi: 10.1016/0019-1035(86)90089-8
– ident: 10.1016/S0094-5765(00)00125-9_BIB23
  doi: 10.1103/PhysRevA.42.7025
– ident: 10.1016/S0094-5765(00)00125-9_BIB4
  doi: 10.1016/0167-2789(94)00189-W
SSID ssj0007289
Score 1.6696072
Snippet Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 871
SubjectTerms Chaos theory
Mathematical models
Moon
Problem solving
Resonance
Sensitivity analysis
Transport properties
Title Using Chaos to Guide a Spacecraft to the moon
URI https://dx.doi.org/10.1016/S0094-5765(00)00125-9
https://search.proquest.com/docview/746091277
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELb6WGBAPEV5VB4YYHCbxHHsjFVFKSB1gUrdLMdxRAeSiqYrv52zk1BAQkisJ90p-Xy6-y6-uyB0BQeZGioY0ZlISaijjCjNI-IzYVhivDjRrkF2Fk3n4cOCLVpo3MzC2LbKOvZXMd1F61oyrNEcrpZLO-Mbh8CWmftADSy-jbqQjgJw7e7o_nE6-wzIPBAVC45DYhW2gzyVESe89rwbZ4fEv6WoH8HaZaDJPtqrqSMeVU93gFomP0S7XxYKHiHiOgDw-EUVa1wW-G6zTA1W-AkqY-CHKiutFDgffi2K_BjNJ7fP4ympf4hANKVxSQxPgbBASaYo5fBeWeyrwBOZvYoTKc2gmGPaTyhVikKiFoqqxAtMwhLmhcrX9AR18iI3pwgLBgDTmAHbS0MN6okSXDGfcxOyTAc9NGgwkKtq74XcNoQBaNKCJj27XBRAk3EPiQYp-e0AJcTmv1Rxg6wE57Y3Fio3xWYteRgBnwk4P_u_9XO048bnXQvKBeqUbxtzCUSiTPqoPXj3-7W7fABr2r9A
link.rule.ids 315,783,787,4510,24129,27937,27938,45598,45692
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEBBpcktmtnRBWlQOlCK3WzHMcRHUgqmq78ds5OqgISQmI9xafks3X3Xe5hhC5hI1NLJScmkylhppMRbUSHhFxantggTowvkB12-mP2OOGTBuoue2FcWWVt-yub7q11Lbmp0byZTaeuxzdmwJa5_0ENLH4NrTM3bhwOdftjVechIllx4JgR9_iqjadS4YVXQXDttZD4Nwf1w1R7_9PbQds1ccS31bvtoobN99DWl3GC-4j4_D_uvupijssC3y-mqcUav0BcDOxQZ6WTAuPDb0WRH6Bx727U7ZP6OgRiKI1LYkUKdAUCMk2pgO_K4lBHgcxcIk6mNINQjpswoVRrCm5aaqqTILIJT3jAdGjoIWrmRW6PEJYc4KUxB66XMgPLEy2F5qEQlvHMRC3UXmKgZtXUC7UqBwPQlANNBW60KICm4haSS6TUt-1TYJn_WoqXyCo42i5foXNbLOZKsA6wmUiI4_9rv0Ab_dHzQA0ehk8naNM30vtilFPULN8X9gwoRZmc-yPzCRNtwBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Chaos+to+Guide+a+Spacecraft+to+the+moon&rft.jtitle=Acta+astronautica&rft.au=Macau%2C+Elbert+E.N&rft.date=2000-12-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=47&rft.issue=12&rft.spage=871&rft.epage=878&rft_id=info:doi/10.1016%2FS0094-5765%2800%2900125-9&rft.externalDocID=S0094576500001259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon