Using Chaos to Guide a Spacecraft to the moon
Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987, made use of the sensitive dependence on initial conditions in the classical three-body problem to maneuver ISEE-3 spacecraft towards a comet by...
Saved in:
Published in | Acta astronautica Vol. 47; no. 12; pp. 871 - 878 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987, made use of the sensitive dependence on initial conditions in the classical three-body problem to maneuver ISEE-3 spacecraft towards a comet by means of small correction, which requires only a small amount of fuel. Later, the spacecraft Hiten was sent to the Moon by using a ballistic lunar capture transfer that was accomplished by the use of regions of chaotic motion in the phase space. However, these methods imply long transport times. This happens because in chaotic Hamiltonian systems, besides the coexistence of interwoven chaotic and quasi-periodic regions, the phase space is divided into layered components which are separated from each other by Cantori. Typically, a trajectory initialized in one layer of the chaotic region wanders in that layer for a long time before it crosses the Cantori and wanders in the next region. In this article, we show how the transport time for a Hamiltonian chaotic system can be substantially reduced by using a targeting method that was originally devised for a chaotic scattering. The method takes explicit advantage of the sensitive dependence on initial conditions. It finds, from an ensemble of trajectories, the trajectory that passes closest to the overlapping parts of certain resonance regions that form natural barriers to the transport. By using small perturbations, we construct the final trajectory that conducts from source to the target regions, and passes through the layers of the chaotic Hamiltonian system. As an example, the technique is applied in the planar, circular, restricted three-body problem to model the dynamics of a spacecraft moving in the Earth–Moon system. Comparisons are made between our method and other targeting strategies. |
---|---|
AbstractList | Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987, made use of the sensitive dependence on initial conditions in the classical three-body problem to maneuver ISEE-3 spacecraft towards a comet by means of small correction, which requires only a small amount of fuel. Later, the spacecraft Hiten was sent to the Moon by using a ballistic lunar capture transfer that was accomplished by the use of regions of chaotic motion in the phase space. However, these methods imply long transport times. This happens because in chaotic Hamiltonian systems, besides the coexistence of interwoven chaotic and quasi-periodic regions, the phase space is divided into layered components which are separated from each other by Cantori. Typically, a trajectory initialized in one layer of the chaotic region wanders in that layer for a long time before it crosses the Cantori and wanders in the next region. In this article, we show how the transport time for a Hamiltonian chaotic system can be substantially reduced by using a targeting method that was originally devised for a chaotic scattering. The method takes explicit advantage of the sensitive dependence on initial conditions. It finds, from an ensemble of trajectories, the trajectory that passes closest to the overlapping parts of certain resonance regions that form natural barriers to the transport. By using small perturbations, we construct the final trajectory that conducts from source to the target regions, and passes through the layers of the chaotic Hamiltonian system. As an example, the technique is applied in the planar, circular, restricted three-body problem to model the dynamics of a spacecraft moving in the Earth-Moon system. Comparisons are made between our method and other targeting strategies. |
Author | Macau, Elbert E.N |
Author_xml | – sequence: 1 givenname: Elbert E.N surname: Macau fullname: Macau, Elbert E.N organization: LIT - Instituto Nacional de Pesquisas Espaciais - INPE, C. Postal’, 515, 12227-010 São José dos Campos, São Paulo, Brazil |
BookMark | eNqFkEFLAzEUhINUsK3-BGFv6iH6kmw2m5NI0SoUPNSeQzb71kbaTU22gv_e3Va8enowfDOPmQkZtaFFQi4Z3DJgxd0SQOdUqkJeA9wAMC6pPiFjVipNOQgYkfEfckYmKX0AgOKlHhO6Sr59z2ZrG1LWhWy-9zVmNlvurEMXbdMNarfGbBtCe05OG7tJePF7p2T19Pg2e6aL1_nL7GFBnRC6o6hqCbLMwQqh-k-NZpZD2YAqRVmLhjMmHauEsFbkUJRW2Ao4VrKSkFvmxJRcHXN3MXzuMXVm65PDzca2GPbJqLwAzbhSPSmPpIshpYiN2UW_tfHbMDDDOuawjhmqGwBzWMfo3nd_9GFf48tjNMl5bB3WPqLrTB38Pwk_5R1qwg |
CitedBy_id | crossref_primary_10_3389_frspt_2022_920456 crossref_primary_10_1007_s10509_015_2577_z crossref_primary_10_1016_j_actaastro_2020_07_046 crossref_primary_10_1007_s11071_024_09302_7 crossref_primary_10_1088_1742_6596_465_1_012018 crossref_primary_10_1016_j_chaos_2017_10_009 crossref_primary_10_1007_s40314_018_0760_x crossref_primary_10_1007_s10569_013_9513_8 crossref_primary_10_1016_j_actaastro_2018_11_038 crossref_primary_10_1007_s40314_017_0499_9 crossref_primary_10_1016_j_ecolmodel_2024_110714 crossref_primary_10_32604_cmes_2022_022585 crossref_primary_10_1051_jnwpu_20183610035 crossref_primary_10_1142_S0218127415500777 crossref_primary_10_1098_rsta_2006_1835 |
Cites_doi | 10.1016/0375-9601(88)90102-8 10.1103/PhysRevE.57.5337 10.1063/1.165984 10.1103/PhysRevE.47.86 10.1063/1.456017 10.1063/1.165949 10.1063/1.166277 10.1103/PhysRevLett.65.3215 10.1016/0007-1226(94)90134-1 10.1103/PhysRevA.38.930 10.1016/0167-2789(90)90114-5 10.1016/0375-9601(95)00502-T 10.1029/92JA00955 10.1103/PhysRevLett.52.697 10.1103/PhysRevE.47.305 10.1016/0375-9601(91)90355-C 10.1088/0305-4470/20/17/030 10.1016/S0167-2789(98)90012-4 10.1063/1.165956 10.1103/PhysRevE.48.709 10.1103/PhysRevLett.64.1196 10.1016/0019-1035(86)90089-8 10.1103/PhysRevA.42.7025 10.1016/0167-2789(94)00189-W |
ContentType | Journal Article |
Copyright | 2001 |
Copyright_xml | – notice: 2001 |
DBID | AAYXX CITATION 7TC |
DOI | 10.1016/S0094-5765(00)00125-9 |
DatabaseName | CrossRef Mechanical Engineering Abstracts |
DatabaseTitle | CrossRef Mechanical Engineering Abstracts |
DatabaseTitleList | Mechanical Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2030 |
EndPage | 878 |
ExternalDocumentID | 10_1016_S0094_5765_00_00125_9 S0094576500001259 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELOY BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H VH1 VOH WUQ ZMT ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7TC |
ID | FETCH-LOGICAL-c339t-e7d505840a337007f91a208f07838d3f2115c1b33aa34068a3ab02eb5b504a1c3 |
IEDL.DBID | AIKHN |
ISSN | 0094-5765 |
IngestDate | Fri Oct 25 09:55:51 EDT 2024 Thu Sep 26 18:31:16 EDT 2024 Fri Feb 23 02:21:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-e7d505840a337007f91a208f07838d3f2115c1b33aa34068a3ab02eb5b504a1c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 746091277 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_746091277 crossref_primary_10_1016_S0094_5765_00_00125_9 elsevier_sciencedirect_doi_10_1016_S0094_5765_00_00125_9 |
PublicationCentury | 2000 |
PublicationDate | 2000-12-01 |
PublicationDateYYYYMMDD | 2000-12-01 |
PublicationDate_xml | – month: 12 year: 2000 text: 2000-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Acta astronautica |
PublicationYear | 2000 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | 15 011. Petit, J.-M. and Henon, M. Ott, E., Grebogi, C. and Yorke, J. A. 930. Belbruno, E. and Miller, J. Hsu, G.-H., Ott, E. and Grebogi, C. Bate, R. R., Mueller, D. D. and White, J. E. Dover Publications, New York, 1971. Boyd, P. T. and McMillan, S. L. W. 417. 87. 3rd edn. Adam Hilger, Bristol, 1988. Gaspard, P. and Rice, S. A. Bleher, S., Grebogi, C. and Ott, E. Hietarinta, J. and Mikkola, S. Ott, E. and Tél, T. Ding, M., Grebogi, C., Ott, E. and Yorke, J. A. 305. Mackay, R. S., Meiss. J. D. and Percival, I. C. Schroer, C. G. and Ott, E. 373. 1990 507. 199. Sitinikov, K., [Doklady Akademii Nauk SSR 3215. Bleher, S., Grebogi, C., Ott, E. and Brown, R. 647] 1960, 133. 1987 1986 2nd Edn. Willmann-Bell, Richmond, 1992. 1984 709. Roy, A. E. 1988 Belbruno, E. 512. 697. Danby, J. M. A. 89. 536. 7025. 21. 1998 Lai, Y.-C., Ding, M. and Grebogi, C. 1997 73. Bollt, E. M. and Meiss, J. D. 1996 1995 280. 2225. 1994 Macau, E. E. N. 1993 183. 1992 1991 1196. Kostelich, E. J., Grebogi, C., Ott, E. and Yorke, J. A. 5337. 86. Chen, J. 1961 5971. Lai, Y.-C., Tél, T. and Grebogi, C. 4. Eckhardt, B. Shinbrot, T., Ott, E., Grebogi, C. and Yorke, J. A. 10.1016/S0094-5765(00)00125-9_BIB29 10.1016/S0094-5765(00)00125-9_BIB27 10.1016/S0094-5765(00)00125-9_BIB28 10.1016/S0094-5765(00)00125-9_BIB25 10.1016/S0094-5765(00)00125-9_BIB26 10.1016/S0094-5765(00)00125-9_BIB23 10.1016/S0094-5765(00)00125-9_BIB24 10.1016/S0094-5765(00)00125-9_BIB7 10.1016/S0094-5765(00)00125-9_BIB8 10.1016/S0094-5765(00)00125-9_BIB9 10.1016/S0094-5765(00)00125-9_BIB3 10.1016/S0094-5765(00)00125-9_BIB10 10.1016/S0094-5765(00)00125-9_BIB4 10.1016/S0094-5765(00)00125-9_BIB11 10.1016/S0094-5765(00)00125-9_BIB5 10.1016/S0094-5765(00)00125-9_BIB6 10.1016/S0094-5765(00)00125-9_BIB1 10.1016/S0094-5765(00)00125-9_BIB2 10.1016/S0094-5765(00)00125-9_BIB18 10.1016/S0094-5765(00)00125-9_BIB19 10.1016/S0094-5765(00)00125-9_BIB16 10.1016/S0094-5765(00)00125-9_BIB17 10.1016/S0094-5765(00)00125-9_BIB14 10.1016/S0094-5765(00)00125-9_BIB15 10.1016/S0094-5765(00)00125-9_BIB12 10.1016/S0094-5765(00)00125-9_BIB13 10.1016/S0094-5765(00)00125-9_BIB21 10.1016/S0094-5765(00)00125-9_BIB22 10.1016/S0094-5765(00)00125-9_BIB20 |
References_xml | – ident: 10.1016/S0094-5765(00)00125-9_BIB21 doi: 10.1016/0375-9601(88)90102-8 – ident: 10.1016/S0094-5765(00)00125-9_BIB11 doi: 10.1103/PhysRevE.57.5337 – ident: 10.1016/S0094-5765(00)00125-9_BIB19 doi: 10.1063/1.165984 – ident: 10.1016/S0094-5765(00)00125-9_BIB7 doi: 10.1103/PhysRevE.47.86 – ident: 10.1016/S0094-5765(00)00125-9_BIB16 doi: 10.1063/1.456017 – ident: 10.1016/S0094-5765(00)00125-9_BIB12 doi: 10.1063/1.165949 – ident: 10.1016/S0094-5765(00)00125-9_BIB28 – ident: 10.1016/S0094-5765(00)00125-9_BIB29 doi: 10.1063/1.166277 – ident: 10.1016/S0094-5765(00)00125-9_BIB9 doi: 10.1103/PhysRevLett.65.3215 – ident: 10.1016/S0094-5765(00)00125-9_BIB2 – ident: 10.1016/S0094-5765(00)00125-9_BIB3 doi: 10.1016/0007-1226(94)90134-1 – ident: 10.1016/S0094-5765(00)00125-9_BIB13 doi: 10.1103/PhysRevA.38.930 – ident: 10.1016/S0094-5765(00)00125-9_BIB22 doi: 10.1016/0167-2789(90)90114-5 – ident: 10.1016/S0094-5765(00)00125-9_BIB5 doi: 10.1016/0375-9601(95)00502-T – ident: 10.1016/S0094-5765(00)00125-9_BIB26 – ident: 10.1016/S0094-5765(00)00125-9_BIB15 doi: 10.1029/92JA00955 – ident: 10.1016/S0094-5765(00)00125-9_BIB10 doi: 10.1103/PhysRevLett.52.697 – ident: 10.1016/S0094-5765(00)00125-9_BIB27 – ident: 10.1016/S0094-5765(00)00125-9_BIB6 doi: 10.1103/PhysRevE.47.305 – ident: 10.1016/S0094-5765(00)00125-9_BIB24 doi: 10.1016/0375-9601(91)90355-C – ident: 10.1016/S0094-5765(00)00125-9_BIB25 doi: 10.1088/0305-4470/20/17/030 – ident: 10.1016/S0094-5765(00)00125-9_BIB20 doi: 10.1016/S0167-2789(98)90012-4 – ident: 10.1016/S0094-5765(00)00125-9_BIB14 doi: 10.1063/1.165956 – ident: 10.1016/S0094-5765(00)00125-9_BIB8 doi: 10.1103/PhysRevE.48.709 – ident: 10.1016/S0094-5765(00)00125-9_BIB18 – ident: 10.1016/S0094-5765(00)00125-9_BIB1 doi: 10.1103/PhysRevLett.64.1196 – ident: 10.1016/S0094-5765(00)00125-9_BIB17 doi: 10.1016/0019-1035(86)90089-8 – ident: 10.1016/S0094-5765(00)00125-9_BIB23 doi: 10.1103/PhysRevA.42.7025 – ident: 10.1016/S0094-5765(00)00125-9_BIB4 doi: 10.1016/0167-2789(94)00189-W |
SSID | ssj0007289 |
Score | 1.6696072 |
Snippet | Significant results were already achieved in the guidance of spacecrafts by using the characteristics of the chaotic system. The space agency NASA, in 1987,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 871 |
SubjectTerms | Chaos theory Mathematical models Moon Problem solving Resonance Sensitivity analysis Transport properties |
Title | Using Chaos to Guide a Spacecraft to the moon |
URI | https://dx.doi.org/10.1016/S0094-5765(00)00125-9 https://search.proquest.com/docview/746091277 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELb6WGBAPEV5VB4YYHCbxHHsjFVFKSB1gUrdLMdxRAeSiqYrv52zk1BAQkisJ90p-Xy6-y6-uyB0BQeZGioY0ZlISaijjCjNI-IzYVhivDjRrkF2Fk3n4cOCLVpo3MzC2LbKOvZXMd1F61oyrNEcrpZLO-Mbh8CWmftADSy-jbqQjgJw7e7o_nE6-wzIPBAVC45DYhW2gzyVESe89rwbZ4fEv6WoH8HaZaDJPtqrqSMeVU93gFomP0S7XxYKHiHiOgDw-EUVa1wW-G6zTA1W-AkqY-CHKiutFDgffi2K_BjNJ7fP4ympf4hANKVxSQxPgbBASaYo5fBeWeyrwBOZvYoTKc2gmGPaTyhVikKiFoqqxAtMwhLmhcrX9AR18iI3pwgLBgDTmAHbS0MN6okSXDGfcxOyTAc9NGgwkKtq74XcNoQBaNKCJj27XBRAk3EPiQYp-e0AJcTmv1Rxg6wE57Y3Fio3xWYteRgBnwk4P_u_9XO048bnXQvKBeqUbxtzCUSiTPqoPXj3-7W7fABr2r9A |
link.rule.ids | 315,783,787,4510,24129,27937,27938,45598,45692 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YEBBpcktmtnRBWlQOlCK3WzHMcRHUgqmq78ds5OqgISQmI9xafks3X3Xe5hhC5hI1NLJScmkylhppMRbUSHhFxantggTowvkB12-mP2OOGTBuoue2FcWWVt-yub7q11Lbmp0byZTaeuxzdmwJa5_0ENLH4NrTM3bhwOdftjVechIllx4JgR9_iqjadS4YVXQXDttZD4Nwf1w1R7_9PbQds1ccS31bvtoobN99DWl3GC-4j4_D_uvupijssC3y-mqcUav0BcDOxQZ6WTAuPDb0WRH6Bx727U7ZP6OgRiKI1LYkUKdAUCMk2pgO_K4lBHgcxcIk6mNINQjpswoVRrCm5aaqqTILIJT3jAdGjoIWrmRW6PEJYc4KUxB66XMgPLEy2F5qEQlvHMRC3UXmKgZtXUC7UqBwPQlANNBW60KICm4haSS6TUt-1TYJn_WoqXyCo42i5foXNbLOZKsA6wmUiI4_9rv0Ab_dHzQA0ehk8naNM30vtilFPULN8X9gwoRZmc-yPzCRNtwBk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Chaos+to+Guide+a+Spacecraft+to+the+moon&rft.jtitle=Acta+astronautica&rft.au=Macau%2C+Elbert+E.N&rft.date=2000-12-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.eissn=1879-2030&rft.volume=47&rft.issue=12&rft.spage=871&rft.epage=878&rft_id=info:doi/10.1016%2FS0094-5765%2800%2900125-9&rft.externalDocID=S0094576500001259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon |