Identification of stellar-mass black hole binaries and the validity of linear orbital motion approximation in microlensing

ABSTRACT Gravitational microlensing is unique in detecting binary black (BH) holes with wide (a few au) separations. Models predict that about 1 per cent of microlensing binaries should be due to binary BHs, and yet zero has been robustly identified. Using simulated events with binary BH lenses, we...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 513; no. 4; pp. 5088 - 5096
Main Authors Ma, Xiaoyi, Zhu, Wei, Yang, Hongjing
Format Journal Article
LanguageEnglish
Published Oxford University Press 24.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Gravitational microlensing is unique in detecting binary black (BH) holes with wide (a few au) separations. Models predict that about 1 per cent of microlensing binaries should be due to binary BHs, and yet zero has been robustly identified. Using simulated events with binary BH lenses, we show that the microlensing parallax effect in a typical binary BH event cannot be reliably detected. Given the crucial role of the parallax parameter in determining the mass of dark microlenses, this may explain the non-detection of binary BHs. Additionally, we show that in only a small fraction ($\lesssim 7\ \rm{per\ cent}$) of the simulated events the full orbital motion of the binary lens cannot be modelled with the linear orbital motion approximation. This approximation has been frequently used in modellings of binary microlensing events.
AbstractList ABSTRACT Gravitational microlensing is unique in detecting binary black (BH) holes with wide (a few au) separations. Models predict that about 1 per cent of microlensing binaries should be due to binary BHs, and yet zero has been robustly identified. Using simulated events with binary BH lenses, we show that the microlensing parallax effect in a typical binary BH event cannot be reliably detected. Given the crucial role of the parallax parameter in determining the mass of dark microlenses, this may explain the non-detection of binary BHs. Additionally, we show that in only a small fraction ($\lesssim 7\ \rm{per\ cent}$) of the simulated events the full orbital motion of the binary lens cannot be modelled with the linear orbital motion approximation. This approximation has been frequently used in modellings of binary microlensing events.
Gravitational microlensing is unique in detecting binary black (BH) holes with wide (a few au) separations. Models predict that about 1 per cent of microlensing binaries should be due to binary BHs, and yet zero has been robustly identified. Using simulated events with binary BH lenses, we show that the microlensing parallax effect in a typical binary BH event cannot be reliably detected. Given the crucial role of the parallax parameter in determining the mass of dark microlenses, this may explain the non-detection of binary BHs. Additionally, we show that in only a small fraction ($\lesssim 7\ \rm{per\ cent}$) of the simulated events the full orbital motion of the binary lens cannot be modelled with the linear orbital motion approximation. This approximation has been frequently used in modellings of binary microlensing events.
Author Zhu, Wei
Yang, Hongjing
Ma, Xiaoyi
Author_xml – sequence: 1
  givenname: Xiaoyi
  orcidid: 0000-0003-2622-6895
  surname: Ma
  fullname: Ma, Xiaoyi
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-4027-4711
  surname: Zhu
  fullname: Zhu, Wei
– sequence: 3
  givenname: Hongjing
  orcidid: 0000-0003-0626-8465
  surname: Yang
  fullname: Yang, Hongjing
BookMark eNqFkDtPwzAUhS1UJNrCyuyVIa0dJ04yoopHpUosMEc3flCDY0e2QZRfT9rCgoSY7vR9554zQxPnnULokpIFJQ1b9i5AXMYEguZ5eYKmlPEyyxvOJ2hKCCuzuqL0DM1ifCGEFCznU_S5lsolo42AZLzDXuOYlLUQsh5ixJ0F8Yq33ircGQfBqIjBSZy2Cr-DNdKk3R6yxikI2IfOJLC49wcbDEPwH6Y_uo3DvRFhdLlo3PM5OtVgo7r4vnP0dHvzuLrPNg9369X1JhOMNSlTrC450Vx2QomyynPeaKYqCaoTuiIVLxvScAm6qKRkwDpSSNnVNRBRyJwoNkeLo3eMjjEo3Q5hfCnsWkra_XLtYbn2Z7kRKH4BYiy1r5ACGPs3dnXE_NvwX8QXO_mKjA
CitedBy_id crossref_primary_10_1051_0004_6361_202450450
crossref_primary_10_1051_0004_6361_202243490
Cites_doi 10.1051/0004-6361/201527130
10.3847/0004-637X/828/1/53
10.1088/0004-637X/794/1/52
10.1086/171443
10.1086/308865
10.1093/mnras/stt927
10.1086/317037
10.1088/0004-637X/782/1/47
10.1126/science.abb3363
10.1051/0004-6361/201936557
10.1088/0004-637X/799/2/237
10.1088/0004-637X/695/2/970
10.1126/science.aau4005
10.1016/j.ascom.2018.11.001
10.1038/s41592-019-0686-2
10.1093/mnrasl/slaa121
10.1088/1674-4527/ac3c44
10.3847/1538-3881/aa8ef1
10.1088/0004-637X/735/2/85
10.1086/187191
10.5303/JKAS.2016.49.1.037
10.1088/1538-3873/128/970/124401
10.1093/mnras/stw426
10.32023/0001-5237/71.2.1
10.1046/j.1365-8711.2002.04986.x
10.1093/mnras/sty1791
10.1086/186066
10.1086/382782
10.1146/annurev-astro-081710-102602
10.3847/1538-4365/aafb69
10.1086/342225
10.1086/164140
10.1111/j.1365-2966.2010.17265.x
10.1088/0004-637X/738/1/87
10.1086/518536
10.3847/1538-4357/ab5fd3
10.1088/0004-637X/814/2/111
10.1038/nature10092
10.1086/381241
10.1086/343758
10.1088/0004-637X/810/2/155
10.1093/mnras/134.3.315
10.1086/670067
10.1086/468182
10.1088/0004-637X/755/2/91
ContentType Journal Article
Copyright 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
Copyright_xml – notice: 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022
DBID AAYXX
CITATION
DOI 10.1093/mnras/stac1225
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 5096
ExternalDocumentID 10_1093_mnras_stac1225
10.1093/mnras/stac1225
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c339t-e38560f6dbcec572269f3e7daebcf707659096daf47dd3a3b04ddb88a0c4d20e3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Tue Jul 01 01:23:47 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Wed Aug 28 03:17:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords gravitational lensing: micro
methods: data analysis
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-e38560f6dbcec572269f3e7daebcf707659096daf47dd3a3b04ddb88a0c4d20e3
ORCID 0000-0003-2622-6895
0000-0003-4027-4711
0000-0003-0626-8465
PageCount 9
ParticipantIDs crossref_primary_10_1093_mnras_stac1225
crossref_citationtrail_10_1093_mnras_stac1225
oup_primary_10_1093_mnras_stac1225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-24
PublicationDateYYYYMMDD 2022-05-24
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-24
  day: 24
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Corral-Santana (2022052409071713400_bib8) 2016; 587
Wyrzykowski (2022052409071713400_bib47) 2016; 458
Bennett (2022052409071713400_bib5) 2002; 579
Paczynski (2022052409071713400_bib30) 1986; 304
Henderson (2022052409071713400_bib20) 2016; 128
Refsdal (2022052409071713400_bib36) 1966; 134
Yoo (2022052409071713400_bib50) 2004; 603
Poleski (2022052409071713400_bib34) 2019; 26
Yee (2022052409071713400_bib49) 2015; 810
Dong (2022052409071713400_bib9) 2007; 664
Gould (2022052409071713400_bib13) 1992; 392
Miller-Jones (2022052409071713400_bib27) 2021; 371
Skowron (2022052409071713400_bib41) 2011; 738
Poindexter (2022052409071713400_bib33) 2005; 633
Agol (2022052409071713400_bib4) 2002; 576
Thompson (2022052409071713400_bib43) 2019; 366
Gould (2022052409071713400_bib14) 1994; 421
Penny (2022052409071713400_bib32) 2019; 241
Foreman-Mackey (2022052409071713400_bib12) 2013; 125
Abbott (2022052409071713400_bib1) 2016; 116
Abbott (2022052409071713400_bib3) 2021; 11
Lam (2022052409071713400_bib23) 2020; 889
Sumi (2022052409071713400_bib42) 2011; 473
Dong (2022052409071713400_bib10) 2009; 695
Gould (2022052409071713400_bib17) 2004; 606
Olejak (2022052409071713400_bib29) 2020; 638
Bozza (2022052409071713400_bib6) 2010; 408
Abbott (2022052409071713400_bib2) 2019; 9
Bozza (2022052409071713400_bib7) 2018; 479
Duchêne (2022052409071713400_bib11) 2013; 51
Shvartzvald (2022052409071713400_bib40) 2015; 814
Zhu (2022052409071713400_bib51) 2017; 154
Lam (2022052409071713400_bib24) 2022
Poleski (2022052409071713400_bib35) 2014; 782
Han (2022052409071713400_bib18) 2016; 828
Mao (2022052409071713400_bib26) 2002; 329
Gould (2022052409071713400_bib16) 2000; 542
Sahu (2022052409071713400_bib37) 2022
Virtanen (2022052409071713400_bib46) 2020; 17
Udalski (2022052409071713400_bib44) 2015; 65
Shin (2022052409071713400_bib39) 2012; 755
Penny (2022052409071713400_bib31) 2013; 434
Henderson (2022052409071713400_bib19) 2014; 794
Kim (2022052409071713400_bib22) 2016; 49
Mao (2022052409071713400_bib25) 1991; 374
Udalski (2022052409071713400_bib45) 2015; 799
Karolinski (2022052409071713400_bib21) 2020; 498
Mróz (2022052409071713400_bib28) 2021; 71
Yan (2022052409071713400_bib48) 2022; 22
Gould (2022052409071713400_bib15) 2000; 535
Shin (2022052409071713400_bib38) 2011; 735
References_xml – volume: 587
  start-page: A61
  year: 2016
  ident: 2022052409071713400_bib8
  publication-title: A&A
  doi: 10.1051/0004-6361/201527130
– volume: 828
  start-page: 53
  year: 2016
  ident: 2022052409071713400_bib18
  publication-title: ApJ
  doi: 10.3847/0004-637X/828/1/53
– volume: 794
  start-page: 52
  year: 2014
  ident: 2022052409071713400_bib19
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/1/52
– volume: 392
  start-page: 442
  year: 1992
  ident: 2022052409071713400_bib13
  publication-title: ApJ
  doi: 10.1086/171443
– volume: 535
  start-page: 928
  year: 2000
  ident: 2022052409071713400_bib15
  publication-title: ApJ
  doi: 10.1086/308865
– volume: 434
  start-page: 2
  year: 2013
  ident: 2022052409071713400_bib31
  publication-title: MNRAS
  doi: 10.1093/mnras/stt927
– volume: 542
  start-page: 785
  year: 2000
  ident: 2022052409071713400_bib16
  publication-title: ApJ
  doi: 10.1086/317037
– volume: 782
  start-page: 47
  year: 2014
  ident: 2022052409071713400_bib35
  publication-title: ApJ
  doi: 10.1088/0004-637X/782/1/47
– volume: 11
  year: 2021
  ident: 2022052409071713400_bib3
  publication-title: Phys. Rev. X
– volume: 371
  start-page: 1046
  year: 2021
  ident: 2022052409071713400_bib27
  publication-title: Science
  doi: 10.1126/science.abb3363
– volume: 638
  start-page: A94
  year: 2020
  ident: 2022052409071713400_bib29
  publication-title: A&A
  doi: 10.1051/0004-6361/201936557
– volume: 799
  start-page: 237
  year: 2015
  ident: 2022052409071713400_bib45
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/237
– volume: 695
  start-page: 970
  year: 2009
  ident: 2022052409071713400_bib10
  publication-title: ApJ
  doi: 10.1088/0004-637X/695/2/970
– volume: 366
  start-page: 637
  year: 2019
  ident: 2022052409071713400_bib43
  publication-title: Science
  doi: 10.1126/science.aau4005
– volume: 26
  start-page: 35
  year: 2019
  ident: 2022052409071713400_bib34
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2018.11.001
– volume: 17
  start-page: 261
  year: 2020
  ident: 2022052409071713400_bib46
  publication-title: Nat. Meth.
  doi: 10.1038/s41592-019-0686-2
– volume: 498
  start-page: L25
  year: 2020
  ident: 2022052409071713400_bib21
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa121
– year: 2022
  ident: 2022052409071713400_bib24
– volume: 65
  start-page: 1
  year: 2015
  ident: 2022052409071713400_bib44
  publication-title: AcA
– volume: 22
  start-page: 025006
  year: 2022
  ident: 2022052409071713400_bib48
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/ac3c44
– volume: 154
  start-page: 210
  year: 2017
  ident: 2022052409071713400_bib51
  publication-title: AJ
  doi: 10.3847/1538-3881/aa8ef1
– volume: 735
  start-page: 85
  year: 2011
  ident: 2022052409071713400_bib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/735/2/85
– volume: 421
  start-page: L75
  year: 1994
  ident: 2022052409071713400_bib14
  publication-title: ApJ
  doi: 10.1086/187191
– volume: 49
  start-page: 37
  year: 2016
  ident: 2022052409071713400_bib22
  publication-title: J. Korean Astron. Soc.
  doi: 10.5303/JKAS.2016.49.1.037
– volume: 9
  year: 2019
  ident: 2022052409071713400_bib2
  publication-title: Phys. Rev. X
– volume: 128
  start-page: 124401
  year: 2016
  ident: 2022052409071713400_bib20
  publication-title: PASP
  doi: 10.1088/1538-3873/128/970/124401
– volume: 458
  start-page: 3012
  year: 2016
  ident: 2022052409071713400_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stw426
– volume: 71
  start-page: 89
  year: 2021
  ident: 2022052409071713400_bib28
  publication-title: AcA
  doi: 10.32023/0001-5237/71.2.1
– volume: 329
  start-page: 349
  year: 2002
  ident: 2022052409071713400_bib26
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.04986.x
– volume: 479
  start-page: 5157
  year: 2018
  ident: 2022052409071713400_bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1791
– volume: 374
  start-page: L37
  year: 1991
  ident: 2022052409071713400_bib25
  publication-title: ApJ
  doi: 10.1086/186066
– volume: 606
  start-page: 319
  year: 2004
  ident: 2022052409071713400_bib17
  publication-title: ApJ
  doi: 10.1086/382782
– volume: 51
  start-page: 269
  year: 2013
  ident: 2022052409071713400_bib11
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081710-102602
– volume: 241
  start-page: 3
  year: 2019
  ident: 2022052409071713400_bib32
  publication-title: ApJS
  doi: 10.3847/1538-4365/aafb69
– volume: 579
  start-page: 639
  year: 2002
  ident: 2022052409071713400_bib5
  publication-title: ApJ
  doi: 10.1086/342225
– volume: 304
  start-page: 1
  year: 1986
  ident: 2022052409071713400_bib30
  publication-title: ApJ
  doi: 10.1086/164140
– volume: 408
  start-page: 2188
  year: 2010
  ident: 2022052409071713400_bib6
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17265.x
– volume: 738
  start-page: 87
  year: 2011
  ident: 2022052409071713400_bib41
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/87
– volume: 664
  start-page: 862
  year: 2007
  ident: 2022052409071713400_bib9
  publication-title: ApJ
  doi: 10.1086/518536
– volume: 889
  start-page: 31
  year: 2020
  ident: 2022052409071713400_bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5fd3
– volume: 814
  start-page: 111
  year: 2015
  ident: 2022052409071713400_bib40
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/2/111
– volume: 116
  year: 2016
  ident: 2022052409071713400_bib1
  publication-title: Phys. Rev. Lett.
– year: 2022
  ident: 2022052409071713400_bib37
– volume: 473
  start-page: 349
  year: 2011
  ident: 2022052409071713400_bib42
  publication-title: Nature
  doi: 10.1038/nature10092
– volume: 603
  start-page: 139
  year: 2004
  ident: 2022052409071713400_bib50
  publication-title: ApJ
  doi: 10.1086/381241
– volume: 576
  start-page: L131
  year: 2002
  ident: 2022052409071713400_bib4
  publication-title: ApJ
  doi: 10.1086/343758
– volume: 810
  start-page: 155
  year: 2015
  ident: 2022052409071713400_bib49
  publication-title: ApJ
  doi: 10.1088/0004-637X/810/2/155
– volume: 134
  start-page: 315
  year: 1966
  ident: 2022052409071713400_bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/134.3.315
– volume: 125
  start-page: 306
  year: 2013
  ident: 2022052409071713400_bib12
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1086/670067
– volume: 633
  start-page: 914
  year: 2005
  ident: 2022052409071713400_bib33
  publication-title: ApJ
  doi: 10.1086/468182
– volume: 755
  start-page: 91
  year: 2012
  ident: 2022052409071713400_bib39
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/91
SSID ssj0004326
Score 2.407881
Snippet ABSTRACT Gravitational microlensing is unique in detecting binary black (BH) holes with wide (a few au) separations. Models predict that about 1 per cent of...
Gravitational microlensing is unique in detecting binary black (BH) holes with wide (a few au) separations. Models predict that about 1 per cent of...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 5088
Title Identification of stellar-mass black hole binaries and the validity of linear orbital motion approximation in microlensing
Volume 513
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7iyYtoVVpfDCJ6Ct022dexFEsR1EsLvZU8ZaHdld0K6q93kt3WB4redtnJZWdIvkzyfR8hl8qmobFW0jjUmjqzbSoUTylPIhUkKjVa-tsW99F4ym9n4awRi65-OMJPWXeZl6LqIlZSPSw-nG1xBXYq-ZOH2QcDknljNS_AiFuA3kae8fvwL8uPo7R9Wk1Ge2S3gYEwqPO2T7ZM3iLtQeUa08XyFa7AP9d9h6pFOncIbovS98Dx43CRIdL0bwfkrSbb2qb7BoWFynFDREmXCI1Buh4dOB9ckI59i3tjELkGhH6AdZZpBOJukAOcooSilM5IBGp_H_Ci4y9ZzXCELIelu8K3cPfe88dDMh3dTIZj2lgqUMVYuqKGJQhxbKSlMiqMEXullplYCyOVjYM4ClPc02hheaw1E0wGXGuZJCJQXPcDw47Idl7kpk2ASyN1qnHG4xFHXCQZIoe-SBROC8zYuEPo-k_PVaM37mwvFvP63JvNfWbm68x0yPUm_qlW2vg18gIT90fQ8X-CTshO39EZgpD2-SnZXpXP5gxBxkqe-_p6B2NF1kI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+stellar-mass+black+hole+binaries+and+the+validity+of+linear+orbital+motion+approximation+in+microlensing&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Ma%2C+Xiaoyi&rft.au=Zhu%2C+Wei&rft.au=Yang%2C+Hongjing&rft.date=2022-05-24&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=513&rft.issue=4&rft.spage=5088&rft.epage=5096&rft_id=info:doi/10.1093%2Fmnras%2Fstac1225&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stac1225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon