Spatial prediction of soil organic carbon using machine learning techniques in western Iran
Estimation of soil organic carbon (SOC) is very useful for accurate monitoring of carbon sequestration. However, there are still significant gaps in the knowledge of SOC reserves in many parts of the world, including western Iran. To partially fill the gap, 865 soil samples were used with 101 auxili...
Saved in:
Published in | Geoderma Regional Vol. 21; p. e00260 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimation of soil organic carbon (SOC) is very useful for accurate monitoring of carbon sequestration. However, there are still significant gaps in the knowledge of SOC reserves in many parts of the world, including western Iran. To partially fill the gap, 865 soil samples were used with 101 auxiliary variables and 5 machine learning (ML) algorithms to digitally map SOC for the plough layer (0–30 cm) at a 90-m resolution in Kurdistan province. Results indicated that the most important auxiliary variables were rainfall (27.09%), valley depth (26.66%), terrain surface texture (23.42%), air temperature (20.18%), channel network base level (16.61%) and terrain vector roughness (14.47%). Results also showed that Random Forests (RF) performed best in predicting the spatial distribution of SOC (RMSE = 0.35% and R2 = 0.60), compared to the other ML algorithms (i.e. Cubist: CU, k-Nearest Neighbor: kNN, Extreme Gradient Boosting: XGBoost and Support Vector Machines: SVM). Furthermore, results estimated the total SOC stocks (SOCS) for the whole study area (~15,208 Tg) and amounts under different land uses. These were bareland (~6 Tg), orchard (~356 Tg), irrigated farming (~782 Tg), forest (~1773 Tg), grassland (~5991 Tg) and dry farming (~6297 Tg). As expected, the SOCS were highest in forest soils (652 g m−2) and lowest in bareland (437 g m−2). This result suggests that the conversion of native land (e.g. Forest) to cultivated land (e.g. Irrigated farming) could lead to significant loss of SOCS and appropriate management of land use could increase SOCS.
•Spatial distribution of SOC in western Iran at a fine resolution was predicted.•Different machine learning algorithms were compared.•SOC stocks was assessed in different land uses. |
---|---|
AbstractList | Estimation of soil organic carbon (SOC) is very useful for accurate monitoring of carbon sequestration. However, there are still significant gaps in the knowledge of SOC reserves in many parts of the world, including western Iran. To partially fill the gap, 865 soil samples were used with 101 auxiliary variables and 5 machine learning (ML) algorithms to digitally map SOC for the plough layer (0–30 cm) at a 90-m resolution in Kurdistan province. Results indicated that the most important auxiliary variables were rainfall (27.09%), valley depth (26.66%), terrain surface texture (23.42%), air temperature (20.18%), channel network base level (16.61%) and terrain vector roughness (14.47%). Results also showed that Random Forests (RF) performed best in predicting the spatial distribution of SOC (RMSE = 0.35% and R2 = 0.60), compared to the other ML algorithms (i.e. Cubist: CU, k-Nearest Neighbor: kNN, Extreme Gradient Boosting: XGBoost and Support Vector Machines: SVM). Furthermore, results estimated the total SOC stocks (SOCS) for the whole study area (~15,208 Tg) and amounts under different land uses. These were bareland (~6 Tg), orchard (~356 Tg), irrigated farming (~782 Tg), forest (~1773 Tg), grassland (~5991 Tg) and dry farming (~6297 Tg). As expected, the SOCS were highest in forest soils (652 g m−2) and lowest in bareland (437 g m−2). This result suggests that the conversion of native land (e.g. Forest) to cultivated land (e.g. Irrigated farming) could lead to significant loss of SOCS and appropriate management of land use could increase SOCS.
•Spatial distribution of SOC in western Iran at a fine resolution was predicted.•Different machine learning algorithms were compared.•SOC stocks was assessed in different land uses. Estimation of soil organic carbon (SOC) is very useful for accurate monitoring of carbon sequestration. However, there are still significant gaps in the knowledge of SOC reserves in many parts of the world, including western Iran. To partially fill the gap, 865 soil samples were used with 101 auxiliary variables and 5 machine learning (ML) algorithms to digitally map SOC for the plough layer (0–30 cm) at a 90-m resolution in Kurdistan province. Results indicated that the most important auxiliary variables were rainfall (27.09%), valley depth (26.66%), terrain surface texture (23.42%), air temperature (20.18%), channel network base level (16.61%) and terrain vector roughness (14.47%). Results also showed that Random Forests (RF) performed best in predicting the spatial distribution of SOC (RMSE = 0.35% and R² = 0.60), compared to the other ML algorithms (i.e. Cubist: CU, k-Nearest Neighbor: kNN, Extreme Gradient Boosting: XGBoost and Support Vector Machines: SVM). Furthermore, results estimated the total SOC stocks (SOCS) for the whole study area (~15,208 Tg) and amounts under different land uses. These were bareland (~6 Tg), orchard (~356 Tg), irrigated farming (~782 Tg), forest (~1773 Tg), grassland (~5991 Tg) and dry farming (~6297 Tg). As expected, the SOCS were highest in forest soils (652 g m⁻²) and lowest in bareland (437 g m⁻²). This result suggests that the conversion of native land (e.g. Forest) to cultivated land (e.g. Irrigated farming) could lead to significant loss of SOCS and appropriate management of land use could increase SOCS. |
ArticleNumber | e00260 |
Author | Kerry, Ruth Matinfar, Hamid Reza Taghizadeh-Mehrjardi, Ruhollah Mahmoudzadeh, Hamid |
Author_xml | – sequence: 1 givenname: Hamid surname: Mahmoudzadeh fullname: Mahmoudzadeh, Hamid email: mahmoudzadeh.ha@fa.lu.ac.ir organization: Department of Soil Science, College of Agriculture, Lorestan University, Khorramabad, Iran – sequence: 2 givenname: Hamid Reza surname: Matinfar fullname: Matinfar, Hamid Reza email: matinfar.h@lu.ac.ir organization: Department of Soil Science, College of Agriculture, Lorestan University, Khorramabad, Iran – sequence: 3 givenname: Ruhollah surname: Taghizadeh-Mehrjardi fullname: Taghizadeh-Mehrjardi, Ruhollah email: ruhollah.taghizadeh-mehrjardi@mnf.uni-tuebingen.de, rtaghizade@ardakan.ac.ir organization: Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany – sequence: 4 givenname: Ruth surname: Kerry fullname: Kerry, Ruth email: ruth_kerry@byu.edu organization: Department of Geography, Brigham Young University, Provo, UT, USA |
BookMark | eNqFkE1LAzEQhoNUsNb-Aw85emmdzX51PQhS_CgUPKgnDyGdnbQp26QmqeK_d5f1IB70MjO8vO8w85yygXWWGDtPYJpAUlxup2tytQ9TAQKmBCAKOGJDkeZiAlBlgx_zCRuHsIXWU-VpWYghe33aq2hUw_eeaoPROMud5sGZhju_VtYgR-VXrXwIxq75TuHGWOINKW87IRJurHk7UODG8g8KkbzlC6_sGTvWqgk0_u4j9nJ3-zx_mCwf7xfzm-UE07SKExJCQ01lrQlVnhY1VHUBRQJaF5hjViGUJaxwtdJiJqBGhZnQiGkOVeuq0hG76PfuvevuiHJnAlLTKEvuEKRIZ7Myy9raWq96K3oXgict0UTVfR29Mo1MQHZQ5Vb2UGUHVfZQ23D2K7z3Zqf853-x6z5GLYN3Q14GNGSx5e0Jo6yd-XvBFxKGlxg |
CitedBy_id | crossref_primary_10_1007_s42729_024_02182_1 crossref_primary_10_1134_S1064229322602128 crossref_primary_10_1007_s12517_023_11670_0 crossref_primary_10_3390_land12111984 crossref_primary_10_3390_su16051789 crossref_primary_10_1016_j_ecolind_2024_112450 crossref_primary_10_1134_S1064229323601762 crossref_primary_10_18599_grs_2022_1_8 crossref_primary_10_3390_agronomy13051267 crossref_primary_10_1002_agj2_21525 crossref_primary_10_1109_ACCESS_2020_3048415 crossref_primary_10_3390_rs15174241 crossref_primary_10_1016_j_geoderma_2020_114890 crossref_primary_10_3390_crops4030022 crossref_primary_10_3390_rs15204945 crossref_primary_10_3390_su132112236 crossref_primary_10_1038_s41598_024_68424_5 crossref_primary_10_3390_su15032587 crossref_primary_10_3389_fenvs_2024_1448601 crossref_primary_10_1007_s40710_024_00722_6 crossref_primary_10_1016_j_catena_2021_105835 crossref_primary_10_3390_s21113758 crossref_primary_10_1007_s40808_023_01723_4 crossref_primary_10_1016_j_ecolind_2021_108384 crossref_primary_10_1007_s41207_024_00512_4 crossref_primary_10_1007_s11119_024_10128_x crossref_primary_10_3390_rs13112223 crossref_primary_10_1016_j_measurement_2022_111706 crossref_primary_10_1007_s11368_023_03691_9 crossref_primary_10_3390_agronomy12112613 crossref_primary_10_1016_j_catena_2022_106077 crossref_primary_10_3390_agronomy11112266 crossref_primary_10_1016_j_ecolind_2021_107618 crossref_primary_10_3390_app13095249 crossref_primary_10_1007_s12665_024_11672_5 crossref_primary_10_3390_land12101841 crossref_primary_10_1007_s44353_024_00012_0 crossref_primary_10_1080_01431161_2022_2147037 crossref_primary_10_1016_j_ecohyd_2021_07_008 crossref_primary_10_1080_02723646_2021_1905594 crossref_primary_10_1016_j_catena_2021_105723 crossref_primary_10_1016_j_geodrs_2020_e00349 crossref_primary_10_3390_s24227317 crossref_primary_10_1016_j_scitotenv_2022_160602 crossref_primary_10_1007_s10661_024_13173_1 crossref_primary_10_3390_rs12142234 crossref_primary_10_3390_systems11060304 crossref_primary_10_1002_saj2_20525 crossref_primary_10_1007_s12517_021_07922_6 crossref_primary_10_3390_rs15123158 crossref_primary_10_1016_j_envpol_2024_124478 crossref_primary_10_1109_MM_2021_3121279 crossref_primary_10_1186_s13717_024_00515_7 crossref_primary_10_3390_land12010032 crossref_primary_10_1016_j_envadv_2022_100209 crossref_primary_10_1007_s40808_024_02158_1 crossref_primary_10_1016_j_catena_2021_105258 crossref_primary_10_1016_j_apr_2020_08_029 crossref_primary_10_1080_00103624_2025_2449946 crossref_primary_10_3390_rs14205151 crossref_primary_10_1007_s12665_024_11834_5 crossref_primary_10_3233_JIFS_224225 crossref_primary_10_1134_S1064229322600816 crossref_primary_10_1007_s10661_021_09543_8 crossref_primary_10_1186_s13007_022_00871_5 crossref_primary_10_1016_j_ecolind_2020_106736 crossref_primary_10_1080_22797254_2022_2045226 crossref_primary_10_3390_ijgi10040243 crossref_primary_10_1117_1_JRS_19_014520 crossref_primary_10_1007_s00500_023_08237_2 crossref_primary_10_3390_rs13152934 crossref_primary_10_3390_rs13091698 crossref_primary_10_1007_s12145_025_01799_9 crossref_primary_10_1016_j_eswa_2023_122557 crossref_primary_10_1080_00103624_2024_2406484 crossref_primary_10_1016_j_jia_2023_09_017 crossref_primary_10_3390_land13070915 crossref_primary_10_1080_17538947_2023_2192005 crossref_primary_10_1007_s41748_024_00553_3 crossref_primary_10_1111_sum_12753 crossref_primary_10_3390_rs13071229 crossref_primary_10_1016_j_iswcr_2024_10_002 crossref_primary_10_1080_10106049_2022_2138565 |
Cites_doi | 10.1016/j.geoderma.2014.06.032 10.1039/c1em10520e 10.1088/1748-9326/8/1/015011 10.1128/EC.00069-07 10.1038/nature04514 10.1016/j.geoderma.2010.06.017 10.1371/journal.pone.0125814 10.1371/journal.pone.0105519 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1007/s12040-009-0059-9 10.1016/j.geoderma.2010.03.002 10.1016/B978-0-12-405942-9.00001-3 10.1071/SR12353 10.1007/BF00994018 10.4172/2469-4134.1000200 10.1080/03650340.2015.1051472 10.1080/01431160110106113 10.1007/978-0-585-33173-7_5 10.1016/j.geoderma.2016.02.021 10.1016/j.geoderma.2016.09.024 10.1002/widm.1072 10.1007/s10533-007-9071-9 10.1016/j.geomorph.2010.11.008 10.1016/j.geomorph.2006.09.012 10.3390/s17102428 10.1016/j.geoderma.2015.07.016 10.1111/j.1365-2389.2009.01157.x 10.1016/j.geoderma.2019.01.023 10.1016/S1002-0160(09)60141-7 10.1126/science.1175084 10.1086/627044 10.1016/j.geoderma.2010.12.018 10.1016/j.ecolind.2015.08.036 10.1016/j.geoderma.2009.10.007 10.1016/j.enconman.2018.02.087 10.7717/peerj.5518 10.1016/j.still.2012.01.011 10.5194/hess-20-3361-2016 10.1016/B978-0-12-800137-0.00003-0 10.1029/2006GL025957 10.1111/ejss.12382 10.1016/j.geoderma.2012.05.022 10.1016/j.geoderma.2013.07.020 10.1016/j.geodrs.2015.12.002 10.1080/17583004.2017.1330593 10.1016/j.geoderma.2009.12.025 10.1016/j.geoderma.2003.11.003 10.1016/j.scitotenv.2016.03.085 10.2136/sssaj2004.0322 10.1016/j.foreco.2011.06.039 10.1111/j.1365-2486.2012.02699.x 10.1016/j.ecolind.2017.02.010 10.5194/gmd-8-1991-2015 10.1016/0034-4257(95)00186-7 10.1371/journal.pone.0139042 10.1590/18069657rbcs20170421 10.1016/j.ecolind.2014.12.028 10.1016/j.agee.2005.09.006 10.2136/sssaj2017.04.0122 10.1016/0034-4257(94)00114-3 10.3390/w11010062 10.1007/s10705-007-9138-y 10.1016/j.ecolind.2018.01.049 10.1016/j.asr.2007.07.043 10.1023/A:1010933404324 10.1371/journal.pone.0186675 10.3923/ajps.2012.9.18 10.1016/0098-3004(91)90048-I 10.1016/j.catena.2012.11.012 10.1016/j.geoderma.2008.05.008 10.1016/j.geoderma.2019.01.007 10.1016/j.geoderma.2018.09.006 10.1046/j.1466-822X.2001.00248.x 10.1080/014311697217369 10.1023/A:1009841519580 10.1097/00010694-193401000-00003 10.1029/2009GB003506 10.3390/rs71215882 10.1016/j.catena.2018.12.015 10.1016/j.scitotenv.2017.05.239 10.1016/j.geoderma.2008.06.011 10.1016/0034-4257(90)90085-Z 10.1111/gcb.12569 10.1111/j.1365-2486.2012.02761.x 10.1016/S0167-9473(01)00065-2 10.1016/j.foreco.2014.01.003 10.1371/journal.pone.0169748 10.1016/S0016-7061(03)00223-4 10.1016/j.foreco.2006.05.055 10.1071/SR13100 10.1016/j.rse.2013.03.006 10.1016/j.geoderma.2007.12.013 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2020.e00260 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2020_e00260 S2352009420300092 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-e22f0de7dfeca536d09d60610ff6c5c49c0770bcbbf2820dcac42fcc350961093 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Thu Aug 07 15:18:07 EDT 2025 Tue Jul 01 02:07:18 EDT 2025 Thu Apr 24 22:58:58 EDT 2025 Fri Feb 23 02:47:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatial prediction Machine learning algorithms Aridisols Soil organic carbon stocks Random forests Land use |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-e22f0de7dfeca536d09d60610ff6c5c49c0770bcbbf2820dcac42fcc350961093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2388744388 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2388744388 crossref_citationtrail_10_1016_j_geodrs_2020_e00260 crossref_primary_10_1016_j_geodrs_2020_e00260 elsevier_sciencedirect_doi_10_1016_j_geodrs_2020_e00260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vescovo, Gianelle (bb0495) 2008; 41 Melton (bb0315) 1965; 73 Davy, Koen (bb0080) 2014; 51 Hengl, Heuvelink, Kempen, Leenaars, Walsh, Shepherd, Sila, MacMillan, de Jesus, Tamene (bb0190) 2015; 10 Kuhn, Johnson (bb0235) 2013 Nawar, Mouazen (bb0350) 2017; 17 Schillaci, Acutis, Lombardo, Lipani, Fantappie, Märker, Saia (bb0410) 2017; 601 Freeman (bb0130) 1991; 17 Minasny, McBratney, Malone, Wheeler (bb0330) 2013; vol. 118 Li (bb0255) 2010; 159 Cortes, Vapnik (bb0065) 1995; 20 Zhao, Chen (bb0580) 2005; vol. 3 Madeira, Bedidi, Cervelle, Pouget, Flay (bb0275) 1997; 18 Han, Hu, Zheng, Du, Zhang (bb0185) 2010; 60 Yang, Rossiter, Liu, Lu, Yang, Yang, Zhao, Li, Zhang (bb0550) 2015; 10 Breiman (bb0045) 2001; 45 Pettorelli (bb0375) 2005; 20 Liu, Wang, Zhang, Song, Li, Li, Li, Duan (bb0265) 2006; 113 Viscarra Rossel, Behrens (bb0500) 2010; 158 Escadafal, Orstom (bb0110) 1994 Walkley, Black (bb0510) 1934; 37 Wiesmeier, Spörlein, Geuß, Hangen, Haug, Reischl, Schilling, von Lützow, Kögel-Knabner (bb0535) 2012; 18 Guo, Adhikari, Chellasamy, Greve, Owens, Greve (bb0180) 2019; 340 Schwanghart, Jarmer (bb0420) 2011; 126 Hengl, de Jesus, Heuvelink, Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger (bb0195) 2017; 12 Olson, La Cava, Mustahsan, Varik, Moore (bb0360) 2017 Sanchez, Ahamed, Carré, Hartemink, Hempel, Huising, Lagacherie, McBratney, McKenzie, de Lourdes Mendonça-Santos (bb0405) 2009; 325 Smith (bb0435) 2008; 81 Were, Bui, Dick, Singh (bb0530) 2015; 52 Shelukindo, Semu, Singh, Munishi (bb0430) 2014 Kuhn, Weston, Keefer, Coulter, Quinlan (bb0240) 2013 Grimm, Behrens, Märker, Elsenbeer (bb0170) 2008; 146 Brus, Hengl, Heuvelink, Kempen, Mulder, Olmedo, Poggio, Ribeiro, Thine Omuto, Yigini (bb0050) 2017 McRoberts (bb0305) 2012; 272 Gomez, Rossel, McBratney (bb0165) 2008; 146 Tang, Cheng, Fang (bb0470) 2017; 12 Maynard, Levi (bb0295) 2017; 285 Crippen (bb0070) 1990; 34 Garcia-Pausas, Casals, Camarero, Huguet, Sebastia, Thompson, Romanya (bb0140) 2007; 82 Li, Yue, Wang, Zhang, Yu, Li, Yang, Bai (bb0260) 2013; 104 Guisan, Weiss, Weiss (bb0175) 1999; 143 Böhner, Antonić (bb0030) 2009; 33 Ghaemi, Sanaeinejad, Astaraei (bb0145) 2012; 11 Sriwongsitanon, Gao, Savenije, Maekan, Saengsawang, Thianpopirug (bb0445) 2016; 20 Fan, Wang, Wu, Zhou, Zhang, Yu, Lu, Xiang (bb0120) 2018; 164 Wilding (bb0540) 1985 Dorji, Odeh, Field, Baillie (bb0090) 2014; 318 Huang, Wylie, Yang, Homer, Zylstra (bb0210) 2002; 23 Bonfatti, Hartemink, Giasson, Tornquist, Adhikari (bb0035) 2016; 261 Adhikari, Hartemink, Minasny, Kheir, Greve, Greve (bb0005) 2014; 9 Ottoy, De Vos, Sindayihebura, Hermy, Van Orshoven (bb0365) 2017; 77 Lymburner, Beggs, Jacobson (bb0270) 2000; 66 Ramcharan, Hengl, Nauman, Brungard, Waltman, Wills, Thompson (bb0380) 2018; 82 Kumar, Lal (bb0245) 2011; 13 Ayoubi, Karchegani, Mosaddeghi, Honarjoo (bb0025) 2012; 121 Roecker, Howell, Haydu-Houdeshell, Blinn (bb0390) 2010 Davidson, Janssens (bb0075) 2006; 440 Taghizadeh-Mehrjardi, Toomanian, Khavaninzadeh, Jafari, Triantafilis (bb0455) 2016; 67 Friedman (bb0135) 2002; 38 Bui, Henderson, Viergever (bb0055) 2009; 23 Hsu, Yu, Singh, Lue (bb0205) 2007; 6 Rondeaux, Steven, Baret (bb0395) 1996; 55 Escadafal, Huete (bb0105) 1991 Drake, Swisdak, Schoeffler, Rogers, Kobayashi (bb0095) 2006; 33 Thompson, Kolka (bb0475) 2005; 69 Mulder, De Bruin, Schaepman, Mayr (bb0340) 2011; 162 Dogan (bb0085) 2009; 118 Kumar, Lal, Liu (bb0250) 2012; 189 Jobbágy, Jackson (bb0225) 2000; 10 Taghizadeh-Mehrjardi, Neupane, Sood, Kumar (bb0460) 2017; 8 Meier, Souza, Francelino, Fernandes Filho, Schaefer (bb0310) 2018; 42 Tan, Lal, Smeck, Calhoun (bb0465) 2004; 121 Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie (bb0015) 2014; vol. 125 Falahatkar, Hosseini, Ayoubi, Salmanmahiny (bb0115) 2016; 62 Gitelson, Kaufman, Merzlyak (bb0150) 1996; 58 Wang, Wang, Jiang, Li, Hao (bb0515) 2015; 7 Zeraatpisheh, Ayoubi, Jafari, Tajik, Finke (bb0575) 2019; 338 Conrad, Bechtel, Bock, Dietrich, Fischer, Gerlitz, Wehberg, Wichmann, Böhner (bb0060) 2015; 8 Yun-Qiang, Zhang, Zhang, Shun-Ji (bb0570) 2009; 19 Iwahashi, Pike (bb0215) 2007; 86 Mozafari, Safarpour (bb0335) 2013; 6 Nabiollahi, Eskandari, Taghizadeh-Mehrjardi, Kerry, Triantafalis (bb0345) 2019 Yang, Zhang, Liu, Lu, Yang, Yang, Yang, Zhao, Li (bb0555) 2016; 60 Serrano, Shahidian, da Silva (bb0425) 2019; 11 Vasques, Grunwald, Comerford, Sickman (bb0490) 2010; 156 Kidd, Malone, McBratney, Minasny, Webb (bb0230) 2014; 52 Minasny, McBratney, Salvador-Blanes (bb0325) 2008; 144 Hengl, Nussbaum, Wright, Heuvelink, Gräler (bb0200) 2018; 6 Somarathna, Malone, Minasny (bb0440) 2016; 7 McBratney, Santos, Minasny (bb0300) 2003; 117 Vågen, Winowiecki, Abegaz, Hadgu (bb0485) 2013; 134 Goidts, Van Wesemael, Crucifix (bb0155) 2009; 60 Wilson, Gallant (bb0545) 2000 Boulesteix, Janitza, Kruppa, König (bb0040) 2012; 2 Taghizadeh-Mehrjardi, Minasny, Sarmadian, Malone (bb0450) 2014; 213 Akpa, Odeh, Bishop, Hartemink, Amapu (bb0010) 2016; 271 Reza Pahlavan Rad, Toomanian, Khormali, Brungard, Bayram Komaki, Bogaert (bb0385) 2014; 232 Jenny (bb0220) 1994 Malone, McBratney, Minasny, Laslett (bb0280) 2009; 154 Mansuy, Thiffault, Paré, Bernier, Guindon, Villemaire, Poirier, Beaudoin (bb0285) 2014; 235 Gomes, Faria, de Souza, Veloso, Schaefer, Fernandes Filho (bb0160) 2019; 340 Welikhe, Quansah, Fall, Elhenney (bb0525) 2017; 6 Mendoza Vega (bb0320) 2002 Viscarra Rossel, Webster, Bui, Baldock (bb0505) 2014; 20 Wang, Waters, Orgill, Cowie, Clark, Li Liu, Simpson, McGowen, Sides (bb0520) 2018; 88 Roujean, Breon (bb0400) 1995; 51 Martin, Wattenbach, Smith, Meersmans, Jolivet, Boulonne, Arrouays (bb0290) 2010 Yimer, Ledin, Abdelkadir (bb0565) 2006; 232 Schillaci, Acutis, Vesely, Saia (bb0415) 2019; 175 Yigini, Panagos (bb0560) 2016; 557 Arzani, King (bb0020) 2008 Padarian, Minasny, McBratney (bb0370) 2019; 2019 Foody, Cutler, Mcmorrow, Pelz, Tangki, Boyd, Douglas (bb0125) 2001; 10 Vågen, Winowiecki (bb0480) 2013; 8 Eclesia, Jobbagy, Jackson, Biganzoli, Piñeiro (bb0100) 2012; 18 Grimm (10.1016/j.geodrs.2020.e00260_bb0170) 2008; 146 Minasny (10.1016/j.geodrs.2020.e00260_bb0325) 2008; 144 Mendoza Vega (10.1016/j.geodrs.2020.e00260_bb0320) 2002 Yang (10.1016/j.geodrs.2020.e00260_bb0555) 2016; 60 Viscarra Rossel (10.1016/j.geodrs.2020.e00260_bb0505) 2014; 20 Mozafari (10.1016/j.geodrs.2020.e00260_bb0335) 2013; 6 Shelukindo (10.1016/j.geodrs.2020.e00260_bb0430) 2014 Vasques (10.1016/j.geodrs.2020.e00260_bb0490) 2010; 156 Madeira (10.1016/j.geodrs.2020.e00260_bb0275) 1997; 18 Gomez (10.1016/j.geodrs.2020.e00260_bb0165) 2008; 146 Kuhn (10.1016/j.geodrs.2020.e00260_bb0235) 2013 Friedman (10.1016/j.geodrs.2020.e00260_bb0135) 2002; 38 Pettorelli (10.1016/j.geodrs.2020.e00260_bb0375) 2005; 20 Thompson (10.1016/j.geodrs.2020.e00260_bb0475) 2005; 69 Nawar (10.1016/j.geodrs.2020.e00260_bb0350) 2017; 17 Brus (10.1016/j.geodrs.2020.e00260_bb0050) 2017 Guisan (10.1016/j.geodrs.2020.e00260_bb0175) 1999; 143 Gitelson (10.1016/j.geodrs.2020.e00260_bb0150) 1996; 58 Gomes (10.1016/j.geodrs.2020.e00260_bb0160) 2019; 340 Maynard (10.1016/j.geodrs.2020.e00260_bb0295) 2017; 285 Yimer (10.1016/j.geodrs.2020.e00260_bb0565) 2006; 232 Boulesteix (10.1016/j.geodrs.2020.e00260_bb0040) 2012; 2 Freeman (10.1016/j.geodrs.2020.e00260_bb0130) 1991; 17 Kidd (10.1016/j.geodrs.2020.e00260_bb0230) 2014; 52 Schwanghart (10.1016/j.geodrs.2020.e00260_bb0420) 2011; 126 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2020.e00260_bb0460) 2017; 8 Rondeaux (10.1016/j.geodrs.2020.e00260_bb0395) 1996; 55 Hengl (10.1016/j.geodrs.2020.e00260_bb0195) 2017; 12 Minasny (10.1016/j.geodrs.2020.e00260_bb0330) 2013; vol. 118 Hengl (10.1016/j.geodrs.2020.e00260_bb0200) 2018; 6 Jenny (10.1016/j.geodrs.2020.e00260_bb0220) 1994 Wilding (10.1016/j.geodrs.2020.e00260_bb0540) 1985 Martin (10.1016/j.geodrs.2020.e00260_bb0290) 2010 Wiesmeier (10.1016/j.geodrs.2020.e00260_bb0535) 2012; 18 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2020.e00260_bb0455) 2016; 67 Foody (10.1016/j.geodrs.2020.e00260_bb0125) 2001; 10 Padarian (10.1016/j.geodrs.2020.e00260_bb0370) 2019; 2019 Guo (10.1016/j.geodrs.2020.e00260_bb0180) 2019; 340 Sriwongsitanon (10.1016/j.geodrs.2020.e00260_bb0445) 2016; 20 Tang (10.1016/j.geodrs.2020.e00260_bb0470) 2017; 12 Li (10.1016/j.geodrs.2020.e00260_bb0255) 2010; 159 Fan (10.1016/j.geodrs.2020.e00260_bb0120) 2018; 164 Walkley (10.1016/j.geodrs.2020.e00260_bb0510) 1934; 37 Mansuy (10.1016/j.geodrs.2020.e00260_bb0285) 2014; 235 Wang (10.1016/j.geodrs.2020.e00260_bb0515) 2015; 7 Ottoy (10.1016/j.geodrs.2020.e00260_bb0365) 2017; 77 Han (10.1016/j.geodrs.2020.e00260_bb0185) 2010; 60 Tan (10.1016/j.geodrs.2020.e00260_bb0465) 2004; 121 Viscarra Rossel (10.1016/j.geodrs.2020.e00260_bb0500) 2010; 158 Wang (10.1016/j.geodrs.2020.e00260_bb0520) 2018; 88 Vågen (10.1016/j.geodrs.2020.e00260_bb0480) 2013; 8 Roujean (10.1016/j.geodrs.2020.e00260_bb0400) 1995; 51 Meier (10.1016/j.geodrs.2020.e00260_bb0310) 2018; 42 Bonfatti (10.1016/j.geodrs.2020.e00260_bb0035) 2016; 261 Were (10.1016/j.geodrs.2020.e00260_bb0530) 2015; 52 Adhikari (10.1016/j.geodrs.2020.e00260_bb0005) 2014; 9 Crippen (10.1016/j.geodrs.2020.e00260_bb0070) 1990; 34 Roecker (10.1016/j.geodrs.2020.e00260_bb0390) 2010 Jobbágy (10.1016/j.geodrs.2020.e00260_bb0225) 2000; 10 Yun-Qiang (10.1016/j.geodrs.2020.e00260_bb0570) 2009; 19 Huang (10.1016/j.geodrs.2020.e00260_bb0210) 2002; 23 Conrad (10.1016/j.geodrs.2020.e00260_bb0060) 2015; 8 Kumar (10.1016/j.geodrs.2020.e00260_bb0250) 2012; 189 Bui (10.1016/j.geodrs.2020.e00260_bb0055) 2009; 23 Davy (10.1016/j.geodrs.2020.e00260_bb0080) 2014; 51 Arzani (10.1016/j.geodrs.2020.e00260_bb0020) 2008 Böhner (10.1016/j.geodrs.2020.e00260_bb0030) 2009; 33 Nabiollahi (10.1016/j.geodrs.2020.e00260_bb0345) 2019 Sanchez (10.1016/j.geodrs.2020.e00260_bb0405) 2009; 325 Zhao (10.1016/j.geodrs.2020.e00260_bb0580) 2005; vol. 3 Schillaci (10.1016/j.geodrs.2020.e00260_bb0410) 2017; 601 Davidson (10.1016/j.geodrs.2020.e00260_bb0075) 2006; 440 Li (10.1016/j.geodrs.2020.e00260_bb0260) 2013; 104 Mulder (10.1016/j.geodrs.2020.e00260_bb0340) 2011; 162 Vescovo (10.1016/j.geodrs.2020.e00260_bb0495) 2008; 41 Somarathna (10.1016/j.geodrs.2020.e00260_bb0440) 2016; 7 Melton (10.1016/j.geodrs.2020.e00260_bb0315) 1965; 73 Malone (10.1016/j.geodrs.2020.e00260_bb0280) 2009; 154 Yigini (10.1016/j.geodrs.2020.e00260_bb0560) 2016; 557 Yang (10.1016/j.geodrs.2020.e00260_bb0550) 2015; 10 Falahatkar (10.1016/j.geodrs.2020.e00260_bb0115) 2016; 62 Hsu (10.1016/j.geodrs.2020.e00260_bb0205) 2007; 6 Dogan (10.1016/j.geodrs.2020.e00260_bb0085) 2009; 118 Liu (10.1016/j.geodrs.2020.e00260_bb0265) 2006; 113 Ramcharan (10.1016/j.geodrs.2020.e00260_bb0380) 2018; 82 Escadafal (10.1016/j.geodrs.2020.e00260_bb0110) 1994 Escadafal (10.1016/j.geodrs.2020.e00260_bb0105) 1991 Goidts (10.1016/j.geodrs.2020.e00260_bb0155) 2009; 60 McRoberts (10.1016/j.geodrs.2020.e00260_bb0305) 2012; 272 Smith (10.1016/j.geodrs.2020.e00260_bb0435) 2008; 81 Hengl (10.1016/j.geodrs.2020.e00260_bb0190) 2015; 10 Ghaemi (10.1016/j.geodrs.2020.e00260_bb0145) 2012; 11 Iwahashi (10.1016/j.geodrs.2020.e00260_bb0215) 2007; 86 Garcia-Pausas (10.1016/j.geodrs.2020.e00260_bb0140) 2007; 82 Welikhe (10.1016/j.geodrs.2020.e00260_bb0525) 2017; 6 Olson (10.1016/j.geodrs.2020.e00260_bb0360) 2017 Wilson (10.1016/j.geodrs.2020.e00260_bb0545) 2000 Drake (10.1016/j.geodrs.2020.e00260_bb0095) 2006; 33 Serrano (10.1016/j.geodrs.2020.e00260_bb0425) 2019; 11 Schillaci (10.1016/j.geodrs.2020.e00260_bb0415) 2019; 175 Kuhn (10.1016/j.geodrs.2020.e00260_bb0240) 2013 Kumar (10.1016/j.geodrs.2020.e00260_bb0245) 2011; 13 Vågen (10.1016/j.geodrs.2020.e00260_bb0485) 2013; 134 Dorji (10.1016/j.geodrs.2020.e00260_bb0090) 2014; 318 Zeraatpisheh (10.1016/j.geodrs.2020.e00260_bb0575) 2019; 338 McBratney (10.1016/j.geodrs.2020.e00260_bb0300) 2003; 117 Reza Pahlavan Rad (10.1016/j.geodrs.2020.e00260_bb0385) 2014; 232 Ayoubi (10.1016/j.geodrs.2020.e00260_bb0025) 2012; 121 Taghizadeh-Mehrjardi (10.1016/j.geodrs.2020.e00260_bb0450) 2014; 213 Lymburner (10.1016/j.geodrs.2020.e00260_bb0270) 2000; 66 Breiman (10.1016/j.geodrs.2020.e00260_bb0045) 2001; 45 Cortes (10.1016/j.geodrs.2020.e00260_bb0065) 1995; 20 Eclesia (10.1016/j.geodrs.2020.e00260_bb0100) 2012; 18 Akpa (10.1016/j.geodrs.2020.e00260_bb0010) 2016; 271 Arrouays (10.1016/j.geodrs.2020.e00260_bb0015) 2014; vol. 125 |
References_xml | – volume: vol. 118 start-page: 1 year: 2013 end-page: 47 ident: bb0330 article-title: Digital mapping of soil carbon publication-title: Advances in Agronomy – start-page: 1385 year: 1991 end-page: 1391 ident: bb0105 article-title: Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil noise publication-title: C.R. Acad. Sc. Paris, 312, Sér.II – volume: 338 start-page: 445 year: 2019 end-page: 452 ident: bb0575 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran publication-title: Geoderma – volume: 41 start-page: 1764 year: 2008 end-page: 1772 ident: bb0495 article-title: Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy) publication-title: Adv. Space Res. – volume: 164 start-page: 102 year: 2018 end-page: 111 ident: bb0120 article-title: Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China publication-title: Energy Convers. Manag. – year: 2013 ident: bb0240 article-title: Cubist: Rule-and Instance-Based Regression Modeling. R package version 0.0. 15 – volume: 7 start-page: 17246 year: 2015 end-page: 17257 ident: bb0515 article-title: An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data publication-title: Remote Sens. – volume: 52 start-page: 394 year: 2015 end-page: 403 ident: bb0530 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. – volume: 271 start-page: 202 year: 2016 end-page: 215 ident: bb0010 article-title: Total soil organic carbon and carbon sequestration potential in Nigeria publication-title: Geoderma – volume: 11 start-page: 62 year: 2019 ident: bb0425 article-title: Evaluation of Normalized Difference Water Index as a Tool for Monitoring Pasture Seasonal and Inter-Annual Variability in a Mediterranean Agro-Silvo-Pastoral System publication-title: Water – volume: 23 start-page: 1741 year: 2002 end-page: 1748 ident: bb0210 article-title: Derivation of a Tasselled Cap Transformation Based on Landsat 7 At-Satellite Reflectance publication-title: Int. J. Remote Sens. – volume: 52 start-page: 107 year: 2014 end-page: 119 ident: bb0230 article-title: Digital mapping of a soil drainage index for irrigated enterprise suitability in Tasmania, Australia publication-title: Soil Res. – year: 2013 ident: bb0235 article-title: Applied Predictive Modeling – volume: 318 start-page: 91 year: 2014 end-page: 102 ident: bb0090 article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas publication-title: For. Ecol. Manag. – volume: 557 start-page: 838 year: 2016 end-page: 850 ident: bb0560 article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe publication-title: Sci. Total Environ. – volume: 82 start-page: 279 year: 2007 end-page: 289 ident: bb0140 article-title: Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography publication-title: Biogeochemistry – volume: 121 start-page: 187 year: 2004 end-page: 195 ident: bb0465 article-title: Relationships between surface soil organic carbon pool and site variables publication-title: Geoderma – volume: 143 start-page: 107 year: 1999 end-page: 122 ident: bb0175 article-title: GLM versus CCA spatial modeling of plant species distribution. Kluwer academic publishers publication-title: Plant Ecol. – volume: 62 start-page: 375 year: 2016 end-page: 393 ident: bb0115 article-title: Predicting soil organic carbon density using auxiliary environmental variables in northern Iran publication-title: Arch. Agron. Soil Sci. – year: 2017 ident: bb0360 article-title: Data-driven advice for applying machine learning to bioinformatics problems publication-title: arXiv preprint – volume: 9 year: 2014 ident: bb0005 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS One – volume: 10 start-page: 423 year: 2000 end-page: 436 ident: bb0225 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. – volume: 272 start-page: 3 year: 2012 end-page: 12 ident: bb0305 article-title: Estimating forest attribute parameters for small areas using nearest neighbors techniques publication-title: For. Ecol. Manag. – volume: 113 start-page: 73 year: 2006 end-page: 81 ident: bb0265 article-title: Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China: agriculture publication-title: Ecosyst. Environ. – volume: 325 start-page: 680 year: 2009 end-page: 681 ident: bb0405 article-title: Digital soil map of the world publication-title: Science – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0300 article-title: On digital soil mapping publication-title: Geoderma – volume: 126 start-page: 252 year: 2011 end-page: 263 ident: bb0420 article-title: Linking spatial patterns of soil organic carbon to topography—a case study from south-eastern Spain publication-title: Geomorphology – year: 1994 ident: bb0220 article-title: Factors of Soil Formation: A System of Quantitative Pedology – volume: 82 start-page: 186 year: 2018 end-page: 201 ident: bb0380 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. – volume: 156 start-page: 326 year: 2010 end-page: 336 ident: bb0490 article-title: Regional modelling of soil carbon at multiple depths within a subtropical watershed publication-title: Geoderma – volume: 73 start-page: 1 year: 1965 end-page: 38 ident: bb0315 article-title: The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona publication-title: J. Geol. – volume: 23 year: 2009 ident: bb0055 article-title: Using knowledge discovery with data mining from the Australian soil resource information system database to inform soil carbon mapping in Australia publication-title: Global Biogeochem. Cycle – volume: 18 start-page: 2233 year: 2012 end-page: 2245 ident: bb0535 article-title: Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth publication-title: Glob. Chang. Biol. – volume: 189 start-page: 627 year: 2012 end-page: 634 ident: bb0250 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma – volume: 6 start-page: 1330 year: 2007 end-page: 1338 ident: bb0205 article-title: Mutual dependence of publication-title: Eukaryot. Cell – volume: 144 start-page: 140 year: 2008 end-page: 157 ident: bb0325 article-title: Quantitative models for pedogenesis—a review publication-title: Geoderma – start-page: 166 year: 1985 end-page: 194 ident: bb0540 article-title: Spatial variability: its documentation, accommodation and implication to soil surveys publication-title: Proceedings Soil Spatial Variability. Workshop – volume: 146 start-page: 102 year: 2008 end-page: 113 ident: bb0170 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using random forests analysis publication-title: Geoderma – volume: 51 start-page: 631 year: 2014 end-page: 644 ident: bb0080 article-title: Variations in soil organic carbon for two soil types and six land uses in the Murray catchment, New South Wales, Australia publication-title: Soil Res. – volume: 60 start-page: 870 year: 2016 end-page: 878 ident: bb0555 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. – volume: 285 start-page: 94 year: 2017 end-page: 109 ident: bb0295 article-title: Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability publication-title: Geoderma – volume: 20 start-page: 10 year: 2005 ident: bb0375 article-title: Using the satellite-derived NDVI to assess ecological responses to environmental change publication-title: Trends Ecol. Evol. – volume: 10 start-page: 379 year: 2001 end-page: 387 ident: bb0125 article-title: Mapping the biomass of Bornean tropical rain forest from remotely sensed data publication-title: J. Global Ecol. Biogeogr. – volume: 69 start-page: 1086 year: 2005 end-page: 1093 ident: bb0475 article-title: Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling publication-title: Soil Sci. Soc. Am. J. – volume: 12 year: 2017 ident: bb0195 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One – volume: 159 start-page: 63 year: 2010 end-page: 75 ident: bb0255 article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information? publication-title: Geoderma – volume: 66 start-page: 183 year: 2000 end-page: 191 ident: bb0270 article-title: Estimation of Canopy-Average Surface-Specific Leaf Area Using Landsat TM Data publication-title: Photogramm. Eng. Remote. Sens. – volume: 8 start-page: 015011 year: 2013 ident: bb0480 article-title: Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential publication-title: Environ. Res. Lett. – volume: 88 start-page: 425 year: 2018 end-page: 438 ident: bb0520 article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia publication-title: Ecol. Indic. – volume: 17 start-page: 2428 year: 2017 ident: bb0350 article-title: Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon publication-title: Sensors – volume: 232 start-page: 90 year: 2006 end-page: 99 ident: bb0565 article-title: Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia publication-title: For. Ecol. Manag. – volume: 10 year: 2015 ident: bb0190 article-title: Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions publication-title: PLoS One – volume: 18 start-page: 3237 year: 2012 end-page: 3251 ident: bb0100 article-title: Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America publication-title: Glob. Chang. Biol. – volume: 58 start-page: 289 year: 1996 end-page: 298 ident: bb0150 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS – start-page: 369 year: 2010 end-page: 384 ident: bb0390 article-title: A Qualitative Comparison of Conventional Soil Survey and Digital Soil Mapping Approaches – volume: 162 start-page: 1 year: 2011 end-page: 19 ident: bb0340 article-title: The use of remote sensing in soil and terrain mapping—a review publication-title: Geoderma – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: bb0135 article-title: Stochastic gradient boosting publication-title: Comput. Statist. Data Anal. – volume: 146 start-page: 403 year: 2008 end-page: 411 ident: bb0165 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study publication-title: Geoderma – volume: 86 start-page: 409 year: 2007 end-page: 440 ident: bb0215 article-title: Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature publication-title: Geomorphology – volume: 10 year: 2015 ident: bb0550 article-title: Predictive mapping of topsoil organic carbon in an alpine environment aided by Landsat TM publication-title: PLoS One – start-page: 1 year: 2019 end-page: 15 ident: bb0345 article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models publication-title: Carbon Manag. – year: 2010 ident: bb0290 article-title: Spatial Distribution of Soil Organic Carbon Stocks in France: Discussion Paper: Biogeosciences Discussions – volume: 67 start-page: 707 year: 2016 end-page: 725 ident: bb0455 article-title: Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran publication-title: Eur. J. Soil Sci. – volume: 134 start-page: 266 year: 2013 end-page: 275 ident: bb0485 article-title: Landsat-based approaches for mapping of land degradation prevalence and soil functional properties in Ethiopia publication-title: Remote Sens. Environ. – volume: 34 start-page: 71 year: 1990 end-page: 73 ident: bb0070 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. – volume: 6 start-page: 200 year: 2017 ident: bb0525 article-title: Estimation of Soil Moisture Percentage Using LANDSAT-based Moisture Stress Index publication-title: Journal of Remote Sensing & GIS – year: 2002 ident: bb0320 article-title: Influences of land use/land cover and soil type on amounts of soil organic carbon and soil characteristics – volume: 213 start-page: 15 year: 2014 end-page: 28 ident: bb0450 article-title: Digital mapping of soil salinity in Ardakan region, Central Iran publication-title: Geoderma – volume: 6 year: 2013 ident: bb0335 article-title: Ecological model of zoning of pastures in Kurdistan province with emphasis on climatic elements of temperature and precipitation publication-title: Geogr. Environ. Sustain. – volume: 81 start-page: 169 year: 2008 end-page: 178 ident: bb0435 article-title: Land use change and soil organic carbon dynamics publication-title: Nutr. Cycl. Agroecosyst. – volume: 6 year: 2018 ident: bb0200 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ – volume: 18 start-page: 2835 year: 1997 end-page: 2852 ident: bb0275 article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil publication-title: Int. J. Remote Sens. – volume: 42 year: 2018 ident: bb0310 article-title: Digital soil mapping using machine learning algorithms in a tropical mountainous area publication-title: Revista Brasileira de Ciência do Solo – year: 2008 ident: bb0020 article-title: Application of remote sensing (Landsat TM data) for vegetation parameters measurement in Western division of NSW – volume: 104 start-page: 210 year: 2013 end-page: 218 ident: bb0260 article-title: Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach publication-title: Catena – volume: vol. 3 start-page: 1666 year: 2005 ident: bb0580 article-title: Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+ publication-title: Proceedings International Geoscience And Remote Sensing Symposium – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0045 article-title: Random forests publication-title: Mach. Learn. – start-page: 71 year: 1994 end-page: 87 ident: bb0110 article-title: Soil Spectral Properties and Their Relationships with Environmental Parameters - Examples from Arid Regions publication-title: Imaging Spectrometry a Tool for Environmental Observations – volume: 440 start-page: 165 year: 2006 ident: bb0075 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 60 start-page: 723 year: 2009 end-page: 739 ident: bb0155 article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales publication-title: Eur. J. Soil Sci. – volume: 51 start-page: 375 year: 1995 end-page: 384 ident: bb0400 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sens. Environ. – volume: 13 start-page: 3128 year: 2011 end-page: 3135 ident: bb0245 article-title: Mapping the organic carbon stocks of surface soils using local spatial interpolator publication-title: J. Environ. Monit. – year: 2014 ident: bb0430 article-title: Predictor Variables for Soil Organic Carbon Contents in the Miombo Woodlands Ecosystem of Kitonga Forest Reserve – volume: 261 start-page: 204 year: 2016 end-page: 221 ident: bb0035 article-title: Digital mapping of soil carbon in a viticultural region of southern Brazil publication-title: Geoderma – volume: 118 start-page: 701 year: 2009 end-page: 710 ident: bb0085 article-title: Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing publication-title: J. Earth Sys. Sci. – year: 2017 ident: bb0050 article-title: Soil Organic Carbon Mapping: GSOC Map Cookbook Manual – volume: 60 start-page: 136 year: 2010 end-page: 143 ident: bb0185 article-title: Spatial variability of soil organic carbon in a catchment of the Loess Plateau publication-title: Acta Agricu. Scand. Sec. B–Soil Plant Sci. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0065 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 19 start-page: 486 year: 2009 end-page: 495 ident: bb0570 article-title: Spatial variability of soil organic carbon in a watershed on the Loess Plateau publication-title: Pedosphere – volume: 340 start-page: 303 year: 2019 end-page: 312 ident: bb0180 article-title: Selection of terrain attributes and its scale dependency on soil organic carbon prediction publication-title: Geoderma – volume: 8 start-page: 277 year: 2017 end-page: 291 ident: bb0460 article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA publication-title: Carbon Manag. – volume: 77 start-page: 139 year: 2017 end-page: 150 ident: bb0365 article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation publication-title: Ecol. Indic. – volume: 175 start-page: 110 year: 2019 end-page: 122 ident: bb0415 article-title: A simple pipeline for the assessment of legacy soil datasets: an example and test with soil organic carbon from a highly variable area publication-title: Catena – volume: 2 start-page: 493 year: 2012 end-page: 507 ident: bb0040 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics: wiley interdisciplinary reviews publication-title: Data Min. Knowl. Disc. – year: 2000 ident: bb0545 article-title: Terrain Analysis: Principles and Applications – volume: 20 start-page: 3361 year: 2016 end-page: 3377 ident: bb0445 article-title: Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model publication-title: Hydrol. Earth Syst. Sci. – volume: 11 start-page: 9 year: 2012 end-page: 18 ident: bb0145 article-title: Vegetation Cover Assessment Based on Soil Properties in Arid and Semi-Arid Areas using Landsat Images: A Case Study in Neyshaboor Area publication-title: Asian J. Plant Sci. – volume: 340 start-page: 337 year: 2019 end-page: 350 ident: bb0160 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma – volume: 154 start-page: 138 year: 2009 end-page: 152 ident: bb0280 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – volume: 20 start-page: 2953 year: 2014 end-page: 2970 ident: bb0505 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. – volume: 55 start-page: 95 year: 1996 end-page: 107 ident: bb0395 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. – volume: 12 year: 2017 ident: bb0470 article-title: The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon publication-title: PLoS One – volume: 232 start-page: 232 year: 2014 ident: bb0385 article-title: Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran publication-title: Geoderma – volume: 8 start-page: 1991 year: 2015 end-page: 2007 ident: bb0060 article-title: System for automated geoscientific analyses (SAGA) v. 2.1. 4 publication-title: Geosci. Model Dev. – volume: 33 year: 2006 ident: bb0095 article-title: Formation of secondary islands during magnetic reconnection publication-title: Geophys. Res. Lett. – volume: 601 start-page: 821 year: 2017 end-page: 832 ident: bb0410 article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling publication-title: Sci. Total Environ. – volume: 7 start-page: 38 year: 2016 end-page: 48 ident: bb0440 article-title: Mapping soil organic carbon content over New South Wales, Australia using local regression kriging publication-title: Geoderma Regional – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: bb0510 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 158 start-page: 46 year: 2010 end-page: 54 ident: bb0500 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – volume: 2019 start-page: 1 year: 2019 end-page: 29 ident: bb0370 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil Discuss – volume: 235 start-page: 59 year: 2014 end-page: 73 ident: bb0285 article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method publication-title: Geoderma – volume: 17 start-page: 413 year: 1991 end-page: 422 ident: bb0130 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Comput. Geosci. – volume: 121 start-page: 18 year: 2012 end-page: 26 ident: bb0025 article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran publication-title: Soil Tillage Res. – volume: 33 start-page: 195 year: 2009 end-page: 226 ident: bb0030 article-title: Chapter 8 Land-Surface Parameters Specific to TopoClimatology publication-title: Dev. Soil Sci. – volume: vol. 125 start-page: 93 year: 2014 end-page: 134 ident: bb0015 article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties publication-title: Advances in Agronomy – volume: 235 start-page: 59 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0285 article-title: Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.032 – volume: 13 start-page: 3128 issue: 11 year: 2011 ident: 10.1016/j.geodrs.2020.e00260_bb0245 article-title: Mapping the organic carbon stocks of surface soils using local spatial interpolator publication-title: J. Environ. Monit. doi: 10.1039/c1em10520e – volume: 8 start-page: 015011 issue: 1 year: 2013 ident: 10.1016/j.geodrs.2020.e00260_bb0480 article-title: Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/1/015011 – start-page: 369 year: 2010 ident: 10.1016/j.geodrs.2020.e00260_bb0390 – volume: 6 start-page: 1330 issue: 8 year: 2007 ident: 10.1016/j.geodrs.2020.e00260_bb0205 article-title: Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation publication-title: Eukaryot. Cell doi: 10.1128/EC.00069-07 – volume: 440 start-page: 165 issue: 7081 year: 2006 ident: 10.1016/j.geodrs.2020.e00260_bb0075 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – year: 2013 ident: 10.1016/j.geodrs.2020.e00260_bb0240 – volume: 159 start-page: 63 issue: 1–2 year: 2010 ident: 10.1016/j.geodrs.2020.e00260_bb0255 article-title: Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information? publication-title: Geoderma doi: 10.1016/j.geoderma.2010.06.017 – volume: 10 issue: 6 year: 2015 ident: 10.1016/j.geodrs.2020.e00260_bb0190 article-title: Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions publication-title: PLoS One doi: 10.1371/journal.pone.0125814 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0005 article-title: Digital mapping of soil organic carbon contents and stocks in Denmark publication-title: PLoS One doi: 10.1371/journal.pone.0105519 – volume: 10 start-page: 423 issue: 2 year: 2000 ident: 10.1016/j.geodrs.2020.e00260_bb0225 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – volume: 118 start-page: 701 issue: 6 year: 2009 ident: 10.1016/j.geodrs.2020.e00260_bb0085 article-title: Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing publication-title: J. Earth Sys. Sci. doi: 10.1007/s12040-009-0059-9 – volume: 156 start-page: 326 issue: 3–4 year: 2010 ident: 10.1016/j.geodrs.2020.e00260_bb0490 article-title: Regional modelling of soil carbon at multiple depths within a subtropical watershed publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.002 – volume: vol. 118 start-page: 1 year: 2013 ident: 10.1016/j.geodrs.2020.e00260_bb0330 article-title: Digital mapping of soil carbon doi: 10.1016/B978-0-12-405942-9.00001-3 – volume: 51 start-page: 631 issue: 8 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0080 article-title: Variations in soil organic carbon for two soil types and six land uses in the Murray catchment, New South Wales, Australia publication-title: Soil Res. doi: 10.1071/SR12353 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.geodrs.2020.e00260_bb0065 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 6 start-page: 200 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0525 article-title: Estimation of Soil Moisture Percentage Using LANDSAT-based Moisture Stress Index publication-title: Journal of Remote Sensing & GIS doi: 10.4172/2469-4134.1000200 – volume: 62 start-page: 375 issue: 3 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0115 article-title: Predicting soil organic carbon density using auxiliary environmental variables in northern Iran publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2015.1051472 – volume: 20 start-page: 10 issue: 503 year: 2005 ident: 10.1016/j.geodrs.2020.e00260_bb0375 article-title: Using the satellite-derived NDVI to assess ecological responses to environmental change publication-title: Trends Ecol. Evol. – volume: 23 start-page: 1741 issue: 8 year: 2002 ident: 10.1016/j.geodrs.2020.e00260_bb0210 article-title: Derivation of a Tasselled Cap Transformation Based on Landsat 7 At-Satellite Reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110106113 – start-page: 71 year: 1994 ident: 10.1016/j.geodrs.2020.e00260_bb0110 article-title: Soil Spectral Properties and Their Relationships with Environmental Parameters - Examples from Arid Regions publication-title: Imaging Spectrometry a Tool for Environmental Observations doi: 10.1007/978-0-585-33173-7_5 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.geodrs.2020.e00260_bb0370 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil Discuss – volume: 271 start-page: 202 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0010 article-title: Total soil organic carbon and carbon sequestration potential in Nigeria publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.021 – volume: 285 start-page: 94 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0295 article-title: Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability publication-title: Geoderma doi: 10.1016/j.geoderma.2016.09.024 – volume: 2 start-page: 493 issue: 6 year: 2012 ident: 10.1016/j.geodrs.2020.e00260_bb0040 article-title: Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics: wiley interdisciplinary reviews publication-title: Data Min. Knowl. Disc. doi: 10.1002/widm.1072 – volume: 82 start-page: 279 issue: 3 year: 2007 ident: 10.1016/j.geodrs.2020.e00260_bb0140 article-title: Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography publication-title: Biogeochemistry doi: 10.1007/s10533-007-9071-9 – year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0430 – volume: 126 start-page: 252 issue: 1–2 year: 2011 ident: 10.1016/j.geodrs.2020.e00260_bb0420 article-title: Linking spatial patterns of soil organic carbon to topography—a case study from south-eastern Spain publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.11.008 – volume: 86 start-page: 409 issue: 3-4 year: 2007 ident: 10.1016/j.geodrs.2020.e00260_bb0215 article-title: Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.09.012 – volume: 17 start-page: 2428 issue: 10 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0350 article-title: Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon publication-title: Sensors doi: 10.3390/s17102428 – volume: 261 start-page: 204 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0035 article-title: Digital mapping of soil carbon in a viticultural region of southern Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.07.016 – volume: 60 start-page: 723 issue: 5 year: 2009 ident: 10.1016/j.geodrs.2020.e00260_bb0155 article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01157.x – volume: 340 start-page: 303 year: 2019 ident: 10.1016/j.geodrs.2020.e00260_bb0180 article-title: Selection of terrain attributes and its scale dependency on soil organic carbon prediction publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.023 – volume: 19 start-page: 486 issue: 4 year: 2009 ident: 10.1016/j.geodrs.2020.e00260_bb0570 article-title: Spatial variability of soil organic carbon in a watershed on the Loess Plateau publication-title: Pedosphere doi: 10.1016/S1002-0160(09)60141-7 – volume: 325 start-page: 680 issue: 5941 year: 2009 ident: 10.1016/j.geodrs.2020.e00260_bb0405 article-title: Digital soil map of the world publication-title: Science doi: 10.1126/science.1175084 – volume: 73 start-page: 1 year: 1965 ident: 10.1016/j.geodrs.2020.e00260_bb0315 article-title: The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona publication-title: J. Geol. doi: 10.1086/627044 – year: 1994 ident: 10.1016/j.geodrs.2020.e00260_bb0220 – volume: 162 start-page: 1 issue: 1–2 year: 2011 ident: 10.1016/j.geodrs.2020.e00260_bb0340 article-title: The use of remote sensing in soil and terrain mapping—a review publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.018 – volume: 60 start-page: 870 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0555 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.08.036 – start-page: 1385 year: 1991 ident: 10.1016/j.geodrs.2020.e00260_bb0105 article-title: Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil noise – volume: 154 start-page: 138 issue: 1–2 year: 2009 ident: 10.1016/j.geodrs.2020.e00260_bb0280 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – volume: 164 start-page: 102 year: 2018 ident: 10.1016/j.geodrs.2020.e00260_bb0120 article-title: Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.087 – volume: 6 year: 2018 ident: 10.1016/j.geodrs.2020.e00260_bb0200 article-title: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables publication-title: PeerJ doi: 10.7717/peerj.5518 – year: 2010 ident: 10.1016/j.geodrs.2020.e00260_bb0290 – volume: 121 start-page: 18 year: 2012 ident: 10.1016/j.geodrs.2020.e00260_bb0025 article-title: Soil aggregation and organic carbon as affected by topography and land use change in western Iran publication-title: Soil Tillage Res. doi: 10.1016/j.still.2012.01.011 – volume: 20 start-page: 3361 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0445 article-title: Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-3361-2016 – volume: vol. 125 start-page: 93 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0015 article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties doi: 10.1016/B978-0-12-800137-0.00003-0 – volume: 33 issue: 13 year: 2006 ident: 10.1016/j.geodrs.2020.e00260_bb0095 article-title: Formation of secondary islands during magnetic reconnection publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL025957 – start-page: 1 year: 2019 ident: 10.1016/j.geodrs.2020.e00260_bb0345 article-title: Assessing soil organic carbon stocks under land-use change scenarios using random forest models publication-title: Carbon Manag. – volume: 67 start-page: 707 issue: 6 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0455 article-title: Predicting and mapping of soil particle-size fractions with adaptive neuro-fuzzy inference and ant colony optimization in central Iran publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12382 – volume: 189 start-page: 627 year: 2012 ident: 10.1016/j.geodrs.2020.e00260_bb0250 article-title: A geographically weighted regression kriging approach for mapping soil organic carbon stock publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.022 – volume: 213 start-page: 15 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0450 article-title: Digital mapping of soil salinity in Ardakan region, Central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.020 – volume: 7 start-page: 38 issue: 1 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0440 article-title: Mapping soil organic carbon content over New South Wales, Australia using local regression kriging publication-title: Geoderma Regional doi: 10.1016/j.geodrs.2015.12.002 – year: 2002 ident: 10.1016/j.geodrs.2020.e00260_bb0320 – volume: 8 start-page: 277 issue: 3 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0460 article-title: Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA publication-title: Carbon Manag. doi: 10.1080/17583004.2017.1330593 – volume: 158 start-page: 46 issue: 1–2 year: 2010 ident: 10.1016/j.geodrs.2020.e00260_bb0500 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 – volume: 121 start-page: 187 issue: 3–4 year: 2004 ident: 10.1016/j.geodrs.2020.e00260_bb0465 article-title: Relationships between surface soil organic carbon pool and site variables publication-title: Geoderma doi: 10.1016/j.geoderma.2003.11.003 – volume: 557 start-page: 838 year: 2016 ident: 10.1016/j.geodrs.2020.e00260_bb0560 article-title: Assessment of soil organic carbon stocks under future climate and land cover changes in Europe publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.085 – volume: 69 start-page: 1086 issue: 4 year: 2005 ident: 10.1016/j.geodrs.2020.e00260_bb0475 article-title: Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.0322 – volume: 272 start-page: 3 year: 2012 ident: 10.1016/j.geodrs.2020.e00260_bb0305 article-title: Estimating forest attribute parameters for small areas using nearest neighbors techniques publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2011.06.039 – volume: 18 start-page: 2233 issue: 7 year: 2012 ident: 10.1016/j.geodrs.2020.e00260_bb0535 article-title: Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02699.x – volume: 77 start-page: 139 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0365 article-title: Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2017.02.010 – volume: 66 start-page: 183 issue: 2 year: 2000 ident: 10.1016/j.geodrs.2020.e00260_bb0270 article-title: Estimation of Canopy-Average Surface-Specific Leaf Area Using Landsat TM Data publication-title: Photogramm. Eng. Remote. Sens. – volume: 8 start-page: 1991 issue: 7 year: 2015 ident: 10.1016/j.geodrs.2020.e00260_bb0060 article-title: System for automated geoscientific analyses (SAGA) v. 2.1. 4 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-1991-2015 – volume: 55 start-page: 95 year: 1996 ident: 10.1016/j.geodrs.2020.e00260_bb0395 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00186-7 – year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0050 – volume: 10 issue: 10 year: 2015 ident: 10.1016/j.geodrs.2020.e00260_bb0550 article-title: Predictive mapping of topsoil organic carbon in an alpine environment aided by Landsat TM publication-title: PLoS One doi: 10.1371/journal.pone.0139042 – volume: 42 year: 2018 ident: 10.1016/j.geodrs.2020.e00260_bb0310 article-title: Digital soil mapping using machine learning algorithms in a tropical mountainous area publication-title: Revista Brasileira de Ciência do Solo doi: 10.1590/18069657rbcs20170421 – volume: 52 start-page: 394 year: 2015 ident: 10.1016/j.geodrs.2020.e00260_bb0530 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – volume: 113 start-page: 73 issue: 1–4 year: 2006 ident: 10.1016/j.geodrs.2020.e00260_bb0265 article-title: Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China: agriculture publication-title: Ecosyst. Environ. doi: 10.1016/j.agee.2005.09.006 – volume: 82 start-page: 186 issue: 1 year: 2018 ident: 10.1016/j.geodrs.2020.e00260_bb0380 article-title: Soil property and class maps of the conterminous United States at 100-meter spatial resolution publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2017.04.0122 – volume: 51 start-page: 375 issue: 3 year: 1995 ident: 10.1016/j.geodrs.2020.e00260_bb0400 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00114-3 – volume: 11 start-page: 62 year: 2019 ident: 10.1016/j.geodrs.2020.e00260_bb0425 article-title: Evaluation of Normalized Difference Water Index as a Tool for Monitoring Pasture Seasonal and Inter-Annual Variability in a Mediterranean Agro-Silvo-Pastoral System publication-title: Water doi: 10.3390/w11010062 – volume: 81 start-page: 169 issue: 2 year: 2008 ident: 10.1016/j.geodrs.2020.e00260_bb0435 article-title: Land use change and soil organic carbon dynamics publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-007-9138-y – volume: 88 start-page: 425 year: 2018 ident: 10.1016/j.geodrs.2020.e00260_bb0520 article-title: Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.01.049 – volume: 41 start-page: 1764 issue: 11 year: 2008 ident: 10.1016/j.geodrs.2020.e00260_bb0495 article-title: Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy) publication-title: Adv. Space Res. doi: 10.1016/j.asr.2007.07.043 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.geodrs.2020.e00260_bb0045 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 12 issue: 11 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0470 article-title: The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon publication-title: PLoS One doi: 10.1371/journal.pone.0186675 – year: 2000 ident: 10.1016/j.geodrs.2020.e00260_bb0545 – volume: 11 start-page: 9 year: 2012 ident: 10.1016/j.geodrs.2020.e00260_bb0145 article-title: Vegetation Cover Assessment Based on Soil Properties in Arid and Semi-Arid Areas using Landsat Images: A Case Study in Neyshaboor Area publication-title: Asian J. Plant Sci. doi: 10.3923/ajps.2012.9.18 – volume: 60 start-page: 136 issue: 2 year: 2010 ident: 10.1016/j.geodrs.2020.e00260_bb0185 article-title: Spatial variability of soil organic carbon in a catchment of the Loess Plateau publication-title: Acta Agricu. Scand. Sec. B–Soil Plant Sci. – volume: 58 start-page: 289 issue: 3 year: 1996 ident: 10.1016/j.geodrs.2020.e00260_bb0150 article-title: Use of a green channel in remote sensing of global vegetation from EOS-MODIS – volume: 17 start-page: 413 year: 1991 ident: 10.1016/j.geodrs.2020.e00260_bb0130 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Comput. Geosci. doi: 10.1016/0098-3004(91)90048-I – start-page: 166 year: 1985 ident: 10.1016/j.geodrs.2020.e00260_bb0540 article-title: Spatial variability: its documentation, accommodation and implication to soil surveys – volume: 104 start-page: 210 year: 2013 ident: 10.1016/j.geodrs.2020.e00260_bb0260 article-title: Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach publication-title: Catena doi: 10.1016/j.catena.2012.11.012 – volume: 146 start-page: 102 issue: 1–2 year: 2008 ident: 10.1016/j.geodrs.2020.e00260_bb0170 article-title: Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using random forests analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.008 – volume: 340 start-page: 337 year: 2019 ident: 10.1016/j.geodrs.2020.e00260_bb0160 article-title: Modelling and mapping soil organic carbon stocks in Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.007 – volume: 338 start-page: 445 year: 2019 ident: 10.1016/j.geodrs.2020.e00260_bb0575 article-title: Digital mapping of soil properties using multiple machine learning in a semi-arid region, Central Iran publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.006 – volume: 10 start-page: 379 year: 2001 ident: 10.1016/j.geodrs.2020.e00260_bb0125 article-title: Mapping the biomass of Bornean tropical rain forest from remotely sensed data publication-title: J. Global Ecol. Biogeogr. doi: 10.1046/j.1466-822X.2001.00248.x – volume: 18 start-page: 2835 issue: 13 year: 1997 ident: 10.1016/j.geodrs.2020.e00260_bb0275 article-title: Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil publication-title: Int. J. Remote Sens. doi: 10.1080/014311697217369 – volume: 143 start-page: 107 year: 1999 ident: 10.1016/j.geodrs.2020.e00260_bb0175 article-title: GLM versus CCA spatial modeling of plant species distribution. Kluwer academic publishers publication-title: Plant Ecol. doi: 10.1023/A:1009841519580 – volume: 33 start-page: 195 year: 2009 ident: 10.1016/j.geodrs.2020.e00260_bb0030 article-title: Chapter 8 Land-Surface Parameters Specific to TopoClimatology publication-title: Dev. Soil Sci. – volume: 37 start-page: 29 issue: 1 year: 1934 ident: 10.1016/j.geodrs.2020.e00260_bb0510 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 23 issue: 4 year: 2009 ident: 10.1016/j.geodrs.2020.e00260_bb0055 article-title: Using knowledge discovery with data mining from the Australian soil resource information system database to inform soil carbon mapping in Australia publication-title: Global Biogeochem. Cycle doi: 10.1029/2009GB003506 – volume: 7 start-page: 17246 year: 2015 ident: 10.1016/j.geodrs.2020.e00260_bb0515 article-title: An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data publication-title: Remote Sens. doi: 10.3390/rs71215882 – volume: 175 start-page: 110 year: 2019 ident: 10.1016/j.geodrs.2020.e00260_bb0415 article-title: A simple pipeline for the assessment of legacy soil datasets: an example and test with soil organic carbon from a highly variable area publication-title: Catena doi: 10.1016/j.catena.2018.12.015 – volume: 601 start-page: 821 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0410 article-title: Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: the role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.239 – year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0360 article-title: Data-driven advice for applying machine learning to bioinformatics problems publication-title: arXiv preprint – volume: 146 start-page: 403 issue: 3–4 year: 2008 ident: 10.1016/j.geodrs.2020.e00260_bb0165 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.011 – volume: vol. 3 start-page: 1666 year: 2005 ident: 10.1016/j.geodrs.2020.e00260_bb0580 article-title: Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+ – year: 2008 ident: 10.1016/j.geodrs.2020.e00260_bb0020 – volume: 34 start-page: 71 issue: 1 year: 1990 ident: 10.1016/j.geodrs.2020.e00260_bb0070 article-title: Calculating the vegetation index faster publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(90)90085-Z – year: 2013 ident: 10.1016/j.geodrs.2020.e00260_bb0235 – volume: 6 year: 2013 ident: 10.1016/j.geodrs.2020.e00260_bb0335 article-title: Ecological model of zoning of pastures in Kurdistan province with emphasis on climatic elements of temperature and precipitation publication-title: Geogr. Environ. Sustain. – volume: 20 start-page: 2953 issue: 9 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0505 article-title: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12569 – volume: 18 start-page: 3237 issue: 10 year: 2012 ident: 10.1016/j.geodrs.2020.e00260_bb0100 article-title: Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02761.x – volume: 232 start-page: 232 issue: 97 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0385 article-title: Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran publication-title: Geoderma – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.geodrs.2020.e00260_bb0135 article-title: Stochastic gradient boosting publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 318 start-page: 91 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0090 article-title: Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2014.01.003 – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.geodrs.2020.e00260_bb0195 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0169748 – volume: 117 start-page: 3 issue: 1–2 year: 2003 ident: 10.1016/j.geodrs.2020.e00260_bb0300 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 232 start-page: 90 issue: 1–3 year: 2006 ident: 10.1016/j.geodrs.2020.e00260_bb0565 article-title: Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2006.05.055 – volume: 52 start-page: 107 issue: 2 year: 2014 ident: 10.1016/j.geodrs.2020.e00260_bb0230 article-title: Digital mapping of a soil drainage index for irrigated enterprise suitability in Tasmania, Australia publication-title: Soil Res. doi: 10.1071/SR13100 – volume: 134 start-page: 266 year: 2013 ident: 10.1016/j.geodrs.2020.e00260_bb0485 article-title: Landsat-based approaches for mapping of land degradation prevalence and soil functional properties in Ethiopia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.006 – volume: 144 start-page: 140 issue: 1–2 year: 2008 ident: 10.1016/j.geodrs.2020.e00260_bb0325 article-title: Quantitative models for pedogenesis—a review publication-title: Geoderma doi: 10.1016/j.geoderma.2007.12.013 |
SSID | ssj0002953762 |
Score | 2.498336 |
Snippet | Estimation of soil organic carbon (SOC) is very useful for accurate monitoring of carbon sequestration. However, there are still significant gaps in the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00260 |
SubjectTerms | air temperature Aridisols carbon sequestration dryland farming forest soils forests grasslands Iran irrigated farming Land use landscapes Machine learning algorithms orchards prediction rain Random forests roughness soil organic carbon Soil organic carbon stocks soil sampling Spatial prediction support vector machines texture |
Title | Spatial prediction of soil organic carbon using machine learning techniques in western Iran |
URI | https://dx.doi.org/10.1016/j.geodrs.2020.e00260 https://www.proquest.com/docview/2388744388 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze_FFFBXnjQi-xmXp_XEMx-ZwD-pw4ENIcxmT2Y5u-__mtOlAQQa-tDQkpXw9Pclpzvk-hO5jHUVaBIZI0YUAhQYk0X5MhI2HEm0DhiiGQuHnSTic-k-zYNZA_boWBtIqne-vfHrprV1Lx6HZWS0WnVfmlZRBPrN2CtRBB6jFvCS0pt3qjcbDye5XC0uAs4SVMnMBIzCmLqIrM73mOlcFUHcz-qBLkq2_Jqlf7rqcgwbH6MgtHnGver4T1NDZKfoAVWFrRXhVwKYLAI1zg9f5YokrzSaJpShS2wxJ7nP8VeZPauwEI-Z4x-O6xosMO-4EPLKz2BmaDh7f-kPiJBOItNhuiGbMUKUjZbQUgRcqmigbonSpMaEMpJ9IGkU0lWlqbKxFlRTSZ0ZKD1hggFnqHDWzPNMXCCtl_EAZIwPQtApFCmRdJoWISbCQddvIqzHi0vGJg6zFkteJY5-8QpYDsrxCto3IbtSq4tPY0z-q4ec_7IJbl79n5F39trj9ZGAfRGQ639pOXgyk__Z4-e-7X6FDuKqSxq5Rc1Ns9Y1dnmzSW2d-cB6_vI-_AR0X5ng |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD3A56EUXF-TOC17oubfrjOIZjcz8ubjDwENL8GJPZjm77_81r04GCDLz0kCalfPv60te8fB5Cz5EKQ8WpdgRvQ4DiUidWfuRwEw_FygQMYQQbhceToD_z3-Z0XkPdai8MpFVa31_69MJb25aWVbO1Xi5b78QrkEE-MXYK6KAj1AA6Fa2jRmcw7E_2v1pIDMwSUpSZo8SBMdUmuiLTa6EymQO6m7gvqoBs_TVJ_XLXxRzUO0On9uMRd8r7O0c1lV6gD6gqbKwIr3NYdAGhcabxJluucFmzSWDB88Q0Q5L7An8V-ZMK24IRC7znuG7wMsWWnYAHZha7RLPe67Tbd2zJBEcYbbeOIkS7UoVSK8GpF0g3liZEabtaB4IKPxZuGLqJSBJtYi1XCi58ooXwgAIDZKkrVE-zVF0jLKX2qdRaUKhpFfAEYF06gYiJk4C0m8irNGLC8sShrMWKVYljn6xUloGyrFS2iZz9qHXJ0zjQP6zkZz_sghmXf2DkU_W0mHllYB2EpyrbmU5eBNB_c7z599Uf0XF_Oh6x0WAyvEUncKZMILtD9W2-U_fmU2WbPFhT_AbA9ee7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+soil+organic+carbon+using+machine+learning+techniques+in+western+Iran&rft.jtitle=Geoderma+Regional&rft.au=Mahmoudzadeh%2C+Hamid&rft.au=Matinfar%2C+Hamid+Reza&rft.au=Taghizadeh-Mehrjardi%2C+Ruhollah&rft.au=Kerry%2C+R&rft.date=2020-06-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=21+p.e00260-&rft_id=info:doi/10.1016%2Fj.geodrs.2020.e00260&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |