Neural Network Renormalization Group
We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural ne...
Saved in:
Published in | Physical review letters Vol. 121; no. 26; p. 260601 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
28.12.2018
|
Online Access | Get more information |
Cover
Loading…
Abstract | We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG. |
---|---|
AbstractList | We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG. |
Author | Li, Shuo-Hui Wang, Lei |
Author_xml | – sequence: 1 givenname: Shuo-Hui surname: Li fullname: Li, Shuo-Hui organization: University of Chinese Academy of Sciences, Beijing 100049, China – sequence: 2 givenname: Lei surname: Wang fullname: Wang, Lei organization: Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30636161$$D View this record in MEDLINE/PubMed |
BookMark | eNo1zk1Lw0AQgOFFFPuhf6Hk4DVxZjfONkcpWoVQpei5zG4mGM0Xm0Spv96DenpvD-9CnbZdK0qtEBJEMNfPb8dhL5-5jGOCGhNNQIAnao5gs9gipjO1GIZ3AEBN63M1M0CGkHCurnYyBa6jnYxfXfiI9tJ2oeG6-uax6tpoG7qpv1BnJdeDXP51qV7v7142D3H-tH3c3OaxNyYb40LIcJaW3lhI2VlyxrF3JXsiCzekjba-1IzOmAKlQC1aUkzZw9r6zOmlWv26_eQaKQ59qBoOx8P_rv4BR_JEcg |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_043322 crossref_primary_10_1140_epja_s10050_023_01154_w crossref_primary_10_1103_PhysRevD_104_114507 crossref_primary_10_1103_PhysRevX_10_021020 crossref_primary_10_1103_PhysRevLett_128_081603 crossref_primary_10_1016_j_physd_2024_134505 crossref_primary_10_1103_PhysRevResearch_6_033041 crossref_primary_10_3390_e22050587 crossref_primary_10_1103_PhysRevLett_129_136402 crossref_primary_10_3390_sym14030486 crossref_primary_10_1088_2632_2153_ad0101 crossref_primary_10_7566_JPSJ_93_064002 crossref_primary_10_1088_0256_307X_39_5_050701 crossref_primary_10_1080_23746149_2020_1797528 crossref_primary_10_1016_j_ppnp_2023_104084 crossref_primary_10_1103_PhysRevX_13_041038 crossref_primary_10_1088_1361_648X_abb895 crossref_primary_10_1016_j_jcp_2025_113806 crossref_primary_10_7498_aps_72_20230701 crossref_primary_10_1088_1742_5468_ad5c5c crossref_primary_10_1103_PhysRevD_100_034515 crossref_primary_10_1038_s41524_022_00736_4 crossref_primary_10_1088_0256_307X_40_2_020501 crossref_primary_10_1007_JHEP07_2022_015 crossref_primary_10_1088_0256_307X_40_12_120201 crossref_primary_10_1103_RevModPhys_91_045002 crossref_primary_10_1002_esp_5984 crossref_primary_10_1103_PRXQuantum_2_040201 crossref_primary_10_1103_PhysRevLett_124_097201 crossref_primary_10_1103_PhysRevE_102_013307 crossref_primary_10_1103_PhysRevResearch_2_023369 crossref_primary_10_1021_acs_jpcb_0c08645 crossref_primary_10_1103_PhysRevB_101_220409 crossref_primary_10_1088_1367_2630_acef4e crossref_primary_10_1103_PhysRevB_110_L140202 crossref_primary_10_1103_PhysRevD_102_101902 crossref_primary_10_1021_acs_jcim_1c01438 crossref_primary_10_1002_ett_4865 crossref_primary_10_1088_1751_8121_ad72ba crossref_primary_10_1038_s41598_021_85683_8 crossref_primary_10_1007_s10489_019_01546_w crossref_primary_10_1007_s11633_022_1340_5 crossref_primary_10_1088_2632_2153_acb488 crossref_primary_10_1103_PhysRevD_103_074504 crossref_primary_10_1103_PhysRevD_106_074506 crossref_primary_10_1103_PhysRevE_99_023304 crossref_primary_10_1103_PhysRevLett_125_140604 crossref_primary_10_3389_frai_2020_00030 crossref_primary_10_1103_PhysRevResearch_3_L042024 crossref_primary_10_1103_PhysRevResearch_4_L042005 crossref_primary_10_1103_PhysRevB_105_214205 crossref_primary_10_1109_TGRS_2023_3304297 crossref_primary_10_1103_PhysRevD_109_094514 crossref_primary_10_7566_JPSJ_91_062001 crossref_primary_10_1103_PhysRevB_101_241105 crossref_primary_10_1088_2632_2153_ac48a2 crossref_primary_10_1088_2632_2153_ac4f69 crossref_primary_10_1103_PhysRevD_107_056001 crossref_primary_10_1103_PhysRevX_10_011037 crossref_primary_10_1103_PhysRevB_99_075113 crossref_primary_10_1088_2632_2153_acbe91 crossref_primary_10_1103_PhysRevB_105_245149 crossref_primary_10_1103_PhysRevB_100_224202 crossref_primary_10_1103_PhysRevB_105_205139 crossref_primary_10_1103_PhysRevE_99_062106 crossref_primary_10_3390_e25010026 crossref_primary_10_1016_j_commatsci_2022_111634 crossref_primary_10_1063_5_0018903 crossref_primary_10_1103_PhysRevLett_125_121601 crossref_primary_10_7566_JPSJ_88_054002 crossref_primary_10_3390_e23010123 crossref_primary_10_1103_PhysRevD_104_094507 crossref_primary_10_1103_PhysRevE_101_023304 crossref_primary_10_1016_j_physa_2022_128276 crossref_primary_10_1103_PhysRevResearch_2_023266 crossref_primary_10_1103_PhysRevResearch_2_023300 crossref_primary_10_1103_PhysRevX_11_031059 crossref_primary_10_1088_2632_2153_ac8393 crossref_primary_10_1103_PhysRevLett_122_080602 crossref_primary_10_1021_acs_chemrev_0c01195 crossref_primary_10_1038_s42254_023_00616_w crossref_primary_10_1145_3654662 crossref_primary_10_7566_JPSJ_89_022001 crossref_primary_10_1103_PhysRevB_100_020302 crossref_primary_10_1103_PhysRevResearch_3_013134 crossref_primary_10_1103_PhysRevLett_128_032003 crossref_primary_10_1038_s41598_021_88605_w crossref_primary_10_1103_PhysRevLett_131_126501 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.121.260601 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 30636161 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c339t-de63a94fc3704ab76b3bacbfac6670562327cf2a1b33d1ed12e2e414ac087c9b2 |
IngestDate | Thu Jan 02 23:01:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c339t-de63a94fc3704ab76b3bacbfac6670562327cf2a1b33d1ed12e2e414ac087c9b2 |
PMID | 30636161 |
ParticipantIDs | pubmed_primary_30636161 |
PublicationCentury | 2000 |
PublicationDate | 2018-Dec-28 |
PublicationDateYYYYMMDD | 2018-12-28 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2018 |
SSID | ssj0001268 |
Score | 2.625652 |
Snippet | We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 260601 |
Title | Neural Network Renormalization Group |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30636161 |
Volume | 121 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5WUXoR32_ZQ69bN5vdze5RRClSi2gLvZU8saBtwdaDv97JY9taK1QvYUnYkMyXDDOTfBOEaixRUlAehQUx0SpJdciKBIcyJdLcqcxpbPjOD62s0Unuu2l39gqfZZeMeV18LuWV_AdVqANcDUv2D8hOO4UK-AZ8oQSEoVwJY5NZA0Tccle5QVQDY4G-emrlXFzJW5-PJSiesPJquTxTq7ppT_afXybDsDHpz0LtTh00VX8-RIBzc93CU66VU2sRLUKKHV1zqvccNdkDHH9TY5lJ07Jcw0Ym04MZ75P6MJQjk5-i_vMHkNTozcodnBKS4WyF1oXM12VTBVXABzCPmppITLWMn2W5Z3zDkK6WD6iKtspOFtwGaz60d9C2t_uDawfiLlpTgz206QB530c1B2XgoQwWoAwslAeoc3fbvmmE_gGLUBBSjEOpMgIrXwtCo4RxmnHCmeCaCdgF1vKMqdAxw5wQiZXEsYpVghMmopyKgseHaH0wHKhjFKhcZ5oQBd6gTmSaF3HEZGrOpU1MSNATdOSm1xu5LCW9cuKnv7acoepstZyjDQ3bQl2AjTXml1bYX5PlI6Y |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Renormalization+Group&rft.jtitle=Physical+review+letters&rft.au=Li%2C+Shuo-Hui&rft.au=Wang%2C+Lei&rft.date=2018-12-28&rft.eissn=1079-7114&rft.volume=121&rft.issue=26&rft.spage=260601&rft_id=info:doi/10.1103%2FPhysRevLett.121.260601&rft_id=info%3Apmid%2F30636161&rft_id=info%3Apmid%2F30636161&rft.externalDocID=30636161 |