Neural Network Renormalization Group

We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural ne...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 121; no. 26; p. 260601
Main Authors Li, Shuo-Hui, Wang, Lei
Format Journal Article
LanguageEnglish
Published United States 28.12.2018
Online AccessGet more information

Cover

Loading…
Abstract We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.
AbstractList We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs hierarchical change-of-variables transformations from the physical space to a latent space with reduced mutual information. Conversely, the neural network directly maps independent Gaussian noises to physical configurations following the inverse RG flow. The model has an exact and tractable likelihood, which allows unbiased training and direct access to the renormalized energy function of the latent variables. To train the model, we employ probability density distillation for the bare energy function of the physical problem, in which the training loss provides a variational upper bound of the physical free energy. We demonstrate practical usage of the approach by identifying mutually independent collective variables of the Ising model and performing accelerated hybrid Monte Carlo sampling in the latent space. Lastly, we comment on the connection of the present approach to the wavelet formulation of RG and the modern pursuit of information preserving RG.
Author Li, Shuo-Hui
Wang, Lei
Author_xml – sequence: 1
  givenname: Shuo-Hui
  surname: Li
  fullname: Li, Shuo-Hui
  organization: University of Chinese Academy of Sciences, Beijing 100049, China
– sequence: 2
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30636161$$D View this record in MEDLINE/PubMed
BookMark eNo1zk1Lw0AQgOFFFPuhf6Hk4DVxZjfONkcpWoVQpei5zG4mGM0Xm0Spv96DenpvD-9CnbZdK0qtEBJEMNfPb8dhL5-5jGOCGhNNQIAnao5gs9gipjO1GIZ3AEBN63M1M0CGkHCurnYyBa6jnYxfXfiI9tJ2oeG6-uax6tpoG7qpv1BnJdeDXP51qV7v7142D3H-tH3c3OaxNyYb40LIcJaW3lhI2VlyxrF3JXsiCzekjba-1IzOmAKlQC1aUkzZw9r6zOmlWv26_eQaKQ59qBoOx8P_rv4BR_JEcg
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_043322
crossref_primary_10_1140_epja_s10050_023_01154_w
crossref_primary_10_1103_PhysRevD_104_114507
crossref_primary_10_1103_PhysRevX_10_021020
crossref_primary_10_1103_PhysRevLett_128_081603
crossref_primary_10_1016_j_physd_2024_134505
crossref_primary_10_1103_PhysRevResearch_6_033041
crossref_primary_10_3390_e22050587
crossref_primary_10_1103_PhysRevLett_129_136402
crossref_primary_10_3390_sym14030486
crossref_primary_10_1088_2632_2153_ad0101
crossref_primary_10_7566_JPSJ_93_064002
crossref_primary_10_1088_0256_307X_39_5_050701
crossref_primary_10_1080_23746149_2020_1797528
crossref_primary_10_1016_j_ppnp_2023_104084
crossref_primary_10_1103_PhysRevX_13_041038
crossref_primary_10_1088_1361_648X_abb895
crossref_primary_10_1016_j_jcp_2025_113806
crossref_primary_10_7498_aps_72_20230701
crossref_primary_10_1088_1742_5468_ad5c5c
crossref_primary_10_1103_PhysRevD_100_034515
crossref_primary_10_1038_s41524_022_00736_4
crossref_primary_10_1088_0256_307X_40_2_020501
crossref_primary_10_1007_JHEP07_2022_015
crossref_primary_10_1088_0256_307X_40_12_120201
crossref_primary_10_1103_RevModPhys_91_045002
crossref_primary_10_1002_esp_5984
crossref_primary_10_1103_PRXQuantum_2_040201
crossref_primary_10_1103_PhysRevLett_124_097201
crossref_primary_10_1103_PhysRevE_102_013307
crossref_primary_10_1103_PhysRevResearch_2_023369
crossref_primary_10_1021_acs_jpcb_0c08645
crossref_primary_10_1103_PhysRevB_101_220409
crossref_primary_10_1088_1367_2630_acef4e
crossref_primary_10_1103_PhysRevB_110_L140202
crossref_primary_10_1103_PhysRevD_102_101902
crossref_primary_10_1021_acs_jcim_1c01438
crossref_primary_10_1002_ett_4865
crossref_primary_10_1088_1751_8121_ad72ba
crossref_primary_10_1038_s41598_021_85683_8
crossref_primary_10_1007_s10489_019_01546_w
crossref_primary_10_1007_s11633_022_1340_5
crossref_primary_10_1088_2632_2153_acb488
crossref_primary_10_1103_PhysRevD_103_074504
crossref_primary_10_1103_PhysRevD_106_074506
crossref_primary_10_1103_PhysRevE_99_023304
crossref_primary_10_1103_PhysRevLett_125_140604
crossref_primary_10_3389_frai_2020_00030
crossref_primary_10_1103_PhysRevResearch_3_L042024
crossref_primary_10_1103_PhysRevResearch_4_L042005
crossref_primary_10_1103_PhysRevB_105_214205
crossref_primary_10_1109_TGRS_2023_3304297
crossref_primary_10_1103_PhysRevD_109_094514
crossref_primary_10_7566_JPSJ_91_062001
crossref_primary_10_1103_PhysRevB_101_241105
crossref_primary_10_1088_2632_2153_ac48a2
crossref_primary_10_1088_2632_2153_ac4f69
crossref_primary_10_1103_PhysRevD_107_056001
crossref_primary_10_1103_PhysRevX_10_011037
crossref_primary_10_1103_PhysRevB_99_075113
crossref_primary_10_1088_2632_2153_acbe91
crossref_primary_10_1103_PhysRevB_105_245149
crossref_primary_10_1103_PhysRevB_100_224202
crossref_primary_10_1103_PhysRevB_105_205139
crossref_primary_10_1103_PhysRevE_99_062106
crossref_primary_10_3390_e25010026
crossref_primary_10_1016_j_commatsci_2022_111634
crossref_primary_10_1063_5_0018903
crossref_primary_10_1103_PhysRevLett_125_121601
crossref_primary_10_7566_JPSJ_88_054002
crossref_primary_10_3390_e23010123
crossref_primary_10_1103_PhysRevD_104_094507
crossref_primary_10_1103_PhysRevE_101_023304
crossref_primary_10_1016_j_physa_2022_128276
crossref_primary_10_1103_PhysRevResearch_2_023266
crossref_primary_10_1103_PhysRevResearch_2_023300
crossref_primary_10_1103_PhysRevX_11_031059
crossref_primary_10_1088_2632_2153_ac8393
crossref_primary_10_1103_PhysRevLett_122_080602
crossref_primary_10_1021_acs_chemrev_0c01195
crossref_primary_10_1038_s42254_023_00616_w
crossref_primary_10_1145_3654662
crossref_primary_10_7566_JPSJ_89_022001
crossref_primary_10_1103_PhysRevB_100_020302
crossref_primary_10_1103_PhysRevResearch_3_013134
crossref_primary_10_1103_PhysRevLett_128_032003
crossref_primary_10_1038_s41598_021_88605_w
crossref_primary_10_1103_PhysRevLett_131_126501
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.121.260601
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 30636161
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c339t-de63a94fc3704ab76b3bacbfac6670562327cf2a1b33d1ed12e2e414ac087c9b2
IngestDate Thu Jan 02 23:01:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-de63a94fc3704ab76b3bacbfac6670562327cf2a1b33d1ed12e2e414ac087c9b2
PMID 30636161
ParticipantIDs pubmed_primary_30636161
PublicationCentury 2000
PublicationDate 2018-Dec-28
PublicationDateYYYYMMDD 2018-12-28
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
SSID ssj0001268
Score 2.625652
Snippet We present a variational renormalization group (RG) approach based on a reversible generative model with hierarchical architecture. The model performs...
SourceID pubmed
SourceType Index Database
StartPage 260601
Title Neural Network Renormalization Group
URI https://www.ncbi.nlm.nih.gov/pubmed/30636161
Volume 121
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5WUXoR32_ZQ69bN5vdze5RRClSi2gLvZU8saBtwdaDv97JY9taK1QvYUnYkMyXDDOTfBOEaixRUlAehQUx0SpJdciKBIcyJdLcqcxpbPjOD62s0Unuu2l39gqfZZeMeV18LuWV_AdVqANcDUv2D8hOO4UK-AZ8oQSEoVwJY5NZA0Tccle5QVQDY4G-emrlXFzJW5-PJSiesPJquTxTq7ppT_afXybDsDHpz0LtTh00VX8-RIBzc93CU66VU2sRLUKKHV1zqvccNdkDHH9TY5lJ07Jcw0Ym04MZ75P6MJQjk5-i_vMHkNTozcodnBKS4WyF1oXM12VTBVXABzCPmppITLWMn2W5Z3zDkK6WD6iKtspOFtwGaz60d9C2t_uDawfiLlpTgz206QB530c1B2XgoQwWoAwslAeoc3fbvmmE_gGLUBBSjEOpMgIrXwtCo4RxmnHCmeCaCdgF1vKMqdAxw5wQiZXEsYpVghMmopyKgseHaH0wHKhjFKhcZ5oQBd6gTmSaF3HEZGrOpU1MSNATdOSm1xu5LCW9cuKnv7acoepstZyjDQ3bQl2AjTXml1bYX5PlI6Y
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Renormalization+Group&rft.jtitle=Physical+review+letters&rft.au=Li%2C+Shuo-Hui&rft.au=Wang%2C+Lei&rft.date=2018-12-28&rft.eissn=1079-7114&rft.volume=121&rft.issue=26&rft.spage=260601&rft_id=info:doi/10.1103%2FPhysRevLett.121.260601&rft_id=info%3Apmid%2F30636161&rft_id=info%3Apmid%2F30636161&rft.externalDocID=30636161