Global boundedness in quasilinear attraction–repulsion chemotaxis system with logistic source
This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv, τ∈{0,1}, 0=Δw+γu−δw, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, D,Φ,Ψ∈C2[0,+∞) nonnegative, with D(s)≥(s+...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 30; pp. 1 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv, τ∈{0,1}, 0=Δw+γu−δw, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, D,Φ,Ψ∈C2[0,+∞) nonnegative, with D(s)≥(s+1)p for s≥0, Φ(s)≤χsq, ξsr≤Ψ(s)≤ζsr for s>1, and f smooth satisfying f(s)≤μs(1−sk) for s>0, f(0)≥0. It is proved that if the attraction is dominated by one of the other three mechanisms with max{r,k,p+2N}>q, then the solutions are globally bounded. Under more interesting balance situations, the behavior of solutions depends on the coefficients involved, i.e., the upper bound coefficient χ for the attraction, the lower bound coefficient ξ for the repulsion, the logistic source coefficient μ, as well as the constants α and γ describing the capacity of the cells u to produce chemoattractant and chemorepellent respectively. Three balance situations (attraction–repulsion balance, attraction–logistic source balance, and attraction–repulsion–logistic source balance) are considered to establish the boundedness of solutions for the parabolic–elliptic–elliptic case (with τ=0) and the parabolic–parabolic–elliptic case (with τ=1) respectively. |
---|---|
AbstractList | This paper studies the quasilinear attraction-repulsion chemotaxis system with logistic source u sub(t)=(grad) times (D(u)(grad)u)- chi (grad) times ( Phi (u)(grad)v)+ xi (grad) times ( psi (u)(grad)w)+f(u)ut=(grad) times (D(u)(grad)u)- chi (grad) times ( Phi (u)(grad)v)+ xi (grad) times ( psi (u)(grad)w)+f(u), tau v sub(t)= Delta v+ alpha u- beta v tau vt= Delta v+ alpha u- beta v, tau [isin]{0,1} tau [isin]{0,1}, 0= Delta w+ gamma u- delta w0= Delta w+ gamma u- delta w, in bounded domain Omega sub(R) super(N)W sub(RN, N greater than or equal to 1N greater than or equal to 1, subject to the homogeneous Neumann boundary conditions, D, Phi , psi [isin]C) super(2)0,+ infinity )D, Phi , psi [isin]C2[0,+ infinity ) nonnegative, with D(s) greater than or equal to (s+1) super(p)D(s) greater than or equal to (s+1)p for s greater than or equal to 0s greater than or equal to 0, Phi (s) less than or equal to chi s super(q) Phi (s) less than or equal to chi sq, xi s super(r) less than or equal to psi (s) less than or equal to zeta s super(r) xi sr less than or equal to psi (s) less than or equal to zeta sr for s>1s>1, and ff smooth satisfying f(s) less than or equal to mu s(1-s super(k))f(s) less than or equal to mu s(1-sk) for s>0s>0, f(0) greater than or equal to 0f(0) greater than or equal to 0. It is proved that if the attraction is dominated by one of the other three mechanisms with View the MathML sourcemax{r,k,p+2N}>q, then the solutions are globally bounded. Under more interesting balance situations, the behavior of solutions depends on the coefficients involved, i.e., the upper bound coefficient chi chi for the attraction, the lower bound coefficient xi xi for the repulsion, the logistic source coefficient mu mu , as well as the constants alpha alpha and gamma gamma describing the capacity of the cells uu to produce chemoattractant and chemorepellent respectively. Three balance situations (attraction-repulsion balance, attraction-logistic source balance, and attraction-repulsion-logistic source balance) are considered to establish the boundedness of solutions for the parabolic-elliptic-elliptic case (with tau =0 tau =0) and the parabolic-parabolic-elliptic case (with tau =1 tau =1) respectively. This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv, τ∈{0,1}, 0=Δw+γu−δw, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, D,Φ,Ψ∈C2[0,+∞) nonnegative, with D(s)≥(s+1)p for s≥0, Φ(s)≤χsq, ξsr≤Ψ(s)≤ζsr for s>1, and f smooth satisfying f(s)≤μs(1−sk) for s>0, f(0)≥0. It is proved that if the attraction is dominated by one of the other three mechanisms with max{r,k,p+2N}>q, then the solutions are globally bounded. Under more interesting balance situations, the behavior of solutions depends on the coefficients involved, i.e., the upper bound coefficient χ for the attraction, the lower bound coefficient ξ for the repulsion, the logistic source coefficient μ, as well as the constants α and γ describing the capacity of the cells u to produce chemoattractant and chemorepellent respectively. Three balance situations (attraction–repulsion balance, attraction–logistic source balance, and attraction–repulsion–logistic source balance) are considered to establish the boundedness of solutions for the parabolic–elliptic–elliptic case (with τ=0) and the parabolic–parabolic–elliptic case (with τ=1) respectively. |
Author | Tian, Miaoqing He, Xiao Zheng, Sining |
Author_xml | – sequence: 1 givenname: Miaoqing surname: Tian fullname: Tian, Miaoqing email: npctian@126.com organization: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China – sequence: 2 givenname: Xiao surname: He fullname: He, Xiao email: xiaohe@mail.dlut.edu.cn organization: Department of Mathematics, Dalian Nationalities University, Dalian 116600, PR China – sequence: 3 givenname: Sining surname: Zheng fullname: Zheng, Sining email: snzheng@dlut.edu.cn organization: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China |
BookMark | eNqFkLFuFDEQhi0UJJLAG1BsSbOLZ71366VAQhEJSJFooLa841nik8--eLyEdLwDb8iT4NNRUUA1v0b__2vmuxBnMUUS4iXIDiRsX--6usgPtuslbDqATsrhiTgHPep2M8J0VvWw1S30oJ-JC-adlDCCgnNhbkKabWjmtEZHLhJz42Nzv1r2wUeyubGlZIvFp_jrx89MhzVw1Q3e0T4V-91zw49caN88-HLXhPTVc_HYcFoz0nPxdLGB6cWfeSm-XL__fPWhvf108_Hq3W2LSk2ldehomTYW-skt0zIgolxAumncolu0Xno1qw3Uo8dJ9_OASkol-17OMyrQg7oUr069h5zuV-Ji9p6RQrCR0soGNGzl1Gslq_XNyYo5MWdaDPpij__VP30wIM2RqtmZE1VzpGoATKVaw8Nf4UP2e5sf_xd7e4pRZfDNUzaMniKS85mwGJf8vwt-AyBJmYs |
CitedBy_id | crossref_primary_10_1016_j_jmaa_2025_129228 crossref_primary_10_1186_s13660_024_03195_1 crossref_primary_10_1016_j_jde_2019_10_027 crossref_primary_10_1016_j_nonrwa_2018_09_020 crossref_primary_10_1016_j_nonrwa_2017_07_002 crossref_primary_10_1016_j_jmaa_2019_123703 crossref_primary_10_1016_j_jmaa_2021_125763 crossref_primary_10_1016_j_jmaa_2021_125861 crossref_primary_10_1142_S0129167X23500775 crossref_primary_10_3934_math_2024822 crossref_primary_10_1142_S021820251850029X crossref_primary_10_1007_s10473_024_0308_7 crossref_primary_10_1016_j_jmaa_2024_128882 crossref_primary_10_1016_j_nonrwa_2023_104016 crossref_primary_10_1016_j_nonrwa_2020_103095 crossref_primary_10_1016_j_nonrwa_2016_09_007 crossref_primary_10_58997_ejde_2022_48 crossref_primary_10_1016_j_jde_2021_06_040 crossref_primary_10_3934_dcdsb_2021306 crossref_primary_10_1016_j_na_2023_113232 crossref_primary_10_1016_j_nonrwa_2022_103796 crossref_primary_10_1080_00036811_2017_1366989 crossref_primary_10_1142_S0218202520500517 |
Cites_doi | 10.1080/03605309708821314 10.1016/j.jde.2013.12.007 10.1007/s00332-010-9082-x 10.1016/j.na.2009.07.045 10.1016/j.jde.2010.02.008 10.1016/j.matpur.2013.01.020 10.1080/03605300701319003 10.1080/17513758.2011.571722 10.1007/s00332-014-9205-x 10.1016/j.jde.2011.08.019 10.1080/03605300903473426 10.1142/S0218202512500443 10.1016/j.jmaa.2014.03.084 10.1002/mma.2992 10.1016/j.jmaa.2014.09.049 10.1016/j.jmaa.2013.10.061 10.1016/j.jde.2004.10.022 10.1016/j.jmaa.2015.04.093 10.1090/S0002-9947-1992-1046835-6 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.nonrwa.2015.11.004 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
EndPage | 15 |
ExternalDocumentID | 10_1016_j_nonrwa_2015_11_004 S1468121815001479 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11171048 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c339t-dcdef95a129df9f4ccc0f10d976cdf88f23b3511717982b4c30030220bbc31843 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Sun Aug 31 06:29:36 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Tue Jul 01 04:03:11 EDT 2025 Fri Feb 23 02:27:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Logistic source Chemotaxis Boundedness Attraction–repulsion Quasilinear |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-dcdef95a129df9f4ccc0f10d976cdf88f23b3511717982b4c30030220bbc31843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816092830 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1816092830 crossref_citationtrail_10_1016_j_nonrwa_2015_11_004 crossref_primary_10_1016_j_nonrwa_2015_11_004 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2015_11_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 2016-08-00 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tello, Winkler (br000040) 2007; 32 Painter, Hillen (br000095) 2002; 10 Winkler (br000030) 2013; 100 Zhang, Li (br000105) 2014; 418 Tao, Winkler (br000060) 2012; 252 Horstmann, Winkler (br000015) 2005; 215 Herrero, Velázquez (br000005) 1997; 24 Jäger, Luckhaus (br000020) 1992; 329 Tao, Wang (br000100) 2013; 23 Winkler (br000045) 2010; 35 Yang, Cao, Jiang, Zheng (br000075) 2015; 430 Horstmann (br000080) 2011; 21 Jin (br000085) 2015; 422 Winkler (br000120) 2014; 24 Zhang, Li (br000110) 2015 Hieber, Prüss (br000125) 1997; 22 Horstmann (br000010) 2003; 105 Wang, Mu, Zheng (br000065) 2014; 256 Winkler (br000025) 2010; 248 Cao, Zheng (br000055) 2014; 37 Cao (br000050) 2014; 412 Ladyzenskaja, Solonnikov, Ural’ceva (br000115) 1968 Osaki, Yagi (br000035) 2002; 12 Liu, Wang (br000090) 2012; 6 Winkler, Djie (br000070) 2010; 72 Cao (10.1016/j.nonrwa.2015.11.004_br000050) 2014; 412 Winkler (10.1016/j.nonrwa.2015.11.004_br000025) 2010; 248 Jäger (10.1016/j.nonrwa.2015.11.004_br000020) 1992; 329 Winkler (10.1016/j.nonrwa.2015.11.004_br000070) 2010; 72 Zhang (10.1016/j.nonrwa.2015.11.004_br000105) 2014; 418 Cao (10.1016/j.nonrwa.2015.11.004_br000055) 2014; 37 Horstmann (10.1016/j.nonrwa.2015.11.004_br000080) 2011; 21 Wang (10.1016/j.nonrwa.2015.11.004_br000065) 2014; 256 Jin (10.1016/j.nonrwa.2015.11.004_br000085) 2015; 422 Liu (10.1016/j.nonrwa.2015.11.004_br000090) 2012; 6 Zhang (10.1016/j.nonrwa.2015.11.004_br000110) 2015 Osaki (10.1016/j.nonrwa.2015.11.004_br000035) 2002; 12 Tao (10.1016/j.nonrwa.2015.11.004_br000100) 2013; 23 Horstmann (10.1016/j.nonrwa.2015.11.004_br000015) 2005; 215 Hieber (10.1016/j.nonrwa.2015.11.004_br000125) 1997; 22 Yang (10.1016/j.nonrwa.2015.11.004_br000075) 2015; 430 Painter (10.1016/j.nonrwa.2015.11.004_br000095) 2002; 10 Ladyzenskaja (10.1016/j.nonrwa.2015.11.004_br000115) 1968 Herrero (10.1016/j.nonrwa.2015.11.004_br000005) 1997; 24 Horstmann (10.1016/j.nonrwa.2015.11.004_br000010) 2003; 105 Winkler (10.1016/j.nonrwa.2015.11.004_br000030) 2013; 100 Tao (10.1016/j.nonrwa.2015.11.004_br000060) 2012; 252 Winkler (10.1016/j.nonrwa.2015.11.004_br000120) 2014; 24 Winkler (10.1016/j.nonrwa.2015.11.004_br000045) 2010; 35 Tello (10.1016/j.nonrwa.2015.11.004_br000040) 2007; 32 |
References_xml | – volume: 21 start-page: 231 year: 2011 end-page: 270 ident: br000080 article-title: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species publication-title: J. Nonlinear Sci. – volume: 37 start-page: 2326 year: 2014 end-page: 2330 ident: br000055 article-title: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source publication-title: Math. Methods Appl. Sci. – volume: 412 start-page: 181 year: 2014 end-page: 188 ident: br000050 article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source publication-title: J. Math. Anal. Appl. – volume: 24 start-page: 633 year: 1997 end-page: 683 ident: br000005 article-title: A blow-up mechanism for a chemotaxis model publication-title: Ann. Scuola Norm. Sup. – volume: 10 start-page: 501 year: 2002 end-page: 543 ident: br000095 article-title: Volume-filling and quorum-sensing in models for chemosensitive movement publication-title: Can. Appl. Math. Q. – volume: 256 start-page: 1847 year: 2014 end-page: 1872 ident: br000065 article-title: On a quasilinear parabolic–elliptic chemotaxis system with logistic source publication-title: J. Differential Equations – volume: 100 start-page: 748 year: 2013 end-page: 767 ident: br000030 article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system publication-title: J. Math. Pures Appl. – volume: 215 start-page: 52 year: 2005 end-page: 107 ident: br000015 article-title: Boundedness vs. blow-up in a chemotaxis system publication-title: J. Differential Equations – volume: 12 start-page: 587 year: 2002 end-page: 606 ident: br000035 article-title: Global existence of a chemotaxis-growth system in publication-title: Adv. Math. Sci. Appl. – volume: 418 start-page: 47 year: 2014 end-page: 63 ident: br000105 article-title: Global existence and asymptotic properties of the solution to a two-species chemotaxis system publication-title: J. Math. Anal. Appl. – start-page: 1 year: 2015 end-page: 15 ident: br000110 article-title: An attraction–repulsion chemotaxis system with logistic source publication-title: ZAMM Z. Angew. Math. Mech. – volume: 35 start-page: 1516 year: 2010 end-page: 1537 ident: br000045 article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source publication-title: Comm. Partial Differential Equations – volume: 422 start-page: 1463 year: 2015 end-page: 1478 ident: br000085 article-title: Boundedness of the attraction–repulsion Keller–Segel system publication-title: J. Math. Anal. Appl. – volume: 23 start-page: 1 year: 2013 end-page: 36 ident: br000100 article-title: Competing effects of attraction vs. repulsion in chemotaxis publication-title: Math. Models Methods Appl. Sci. – volume: 32 start-page: 849 year: 2007 end-page: 877 ident: br000040 article-title: A chemotaxis system with logistic source publication-title: Comm. Partial Differential Equations – volume: 24 start-page: 809 year: 2014 end-page: 855 ident: br000120 article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? publication-title: J. Nonlinear Sci. – volume: 72 start-page: 1044 year: 2010 end-page: 1064 ident: br000070 article-title: Boundedness and finite-time collapse in a chemotaxis system with volume-filing effect publication-title: Nonlinear Anal. – volume: 329 start-page: 819 year: 1992 end-page: 824 ident: br000020 article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis publication-title: Trans. Amer. Math. Soc. – year: 1968 ident: br000115 article-title: Linear and Quasi-Linear Equations of Parabolic Type – volume: 252 start-page: 692 year: 2012 end-page: 715 ident: br000060 article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity publication-title: J. Differential Equations – volume: 248 start-page: 2889 year: 2010 end-page: 2905 ident: br000025 article-title: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model publication-title: J. Differential Equations – volume: 6 start-page: 31 year: 2012 end-page: 41 ident: br000090 article-title: Classical solutions and steady states of an attraction–repulsion chemotaxis in one dimension publication-title: J. Biol. Dyn. – volume: 105 start-page: 103 year: 2003 end-page: 165 ident: br000010 article-title: From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I publication-title: Jahresber. Deutsch. Math.-Verein. – volume: 22 start-page: 1647 year: 1997 end-page: 1669 ident: br000125 article-title: Heat kernels and maximal publication-title: Comm. Partial Differential Equations – volume: 430 start-page: 585 year: 2015 end-page: 591 ident: br000075 article-title: Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source publication-title: J. Math. Anal. Appl. – volume: 22 start-page: 1647 year: 1997 ident: 10.1016/j.nonrwa.2015.11.004_br000125 article-title: Heat kernels and maximal Lp–Lq estimates for parabolic evolution equations publication-title: Comm. Partial Differential Equations doi: 10.1080/03605309708821314 – volume: 256 start-page: 1847 year: 2014 ident: 10.1016/j.nonrwa.2015.11.004_br000065 article-title: On a quasilinear parabolic–elliptic chemotaxis system with logistic source publication-title: J. Differential Equations doi: 10.1016/j.jde.2013.12.007 – volume: 21 start-page: 231 year: 2011 ident: 10.1016/j.nonrwa.2015.11.004_br000080 article-title: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-010-9082-x – volume: 72 start-page: 1044 year: 2010 ident: 10.1016/j.nonrwa.2015.11.004_br000070 article-title: Boundedness and finite-time collapse in a chemotaxis system with volume-filing effect publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.07.045 – volume: 248 start-page: 2889 year: 2010 ident: 10.1016/j.nonrwa.2015.11.004_br000025 article-title: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model publication-title: J. Differential Equations doi: 10.1016/j.jde.2010.02.008 – volume: 100 start-page: 748 year: 2013 ident: 10.1016/j.nonrwa.2015.11.004_br000030 article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2013.01.020 – volume: 32 start-page: 849 year: 2007 ident: 10.1016/j.nonrwa.2015.11.004_br000040 article-title: A chemotaxis system with logistic source publication-title: Comm. Partial Differential Equations doi: 10.1080/03605300701319003 – volume: 6 start-page: 31 year: 2012 ident: 10.1016/j.nonrwa.2015.11.004_br000090 article-title: Classical solutions and steady states of an attraction–repulsion chemotaxis in one dimension publication-title: J. Biol. Dyn. doi: 10.1080/17513758.2011.571722 – volume: 24 start-page: 809 year: 2014 ident: 10.1016/j.nonrwa.2015.11.004_br000120 article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-014-9205-x – volume: 252 start-page: 692 year: 2012 ident: 10.1016/j.nonrwa.2015.11.004_br000060 article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity publication-title: J. Differential Equations doi: 10.1016/j.jde.2011.08.019 – volume: 12 start-page: 587 year: 2002 ident: 10.1016/j.nonrwa.2015.11.004_br000035 article-title: Global existence of a chemotaxis-growth system in R2 publication-title: Adv. Math. Sci. Appl. – volume: 35 start-page: 1516 year: 2010 ident: 10.1016/j.nonrwa.2015.11.004_br000045 article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source publication-title: Comm. Partial Differential Equations doi: 10.1080/03605300903473426 – start-page: 1 year: 2015 ident: 10.1016/j.nonrwa.2015.11.004_br000110 article-title: An attraction–repulsion chemotaxis system with logistic source publication-title: ZAMM Z. Angew. Math. Mech. – volume: 23 start-page: 1 year: 2013 ident: 10.1016/j.nonrwa.2015.11.004_br000100 article-title: Competing effects of attraction vs. repulsion in chemotaxis publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202512500443 – volume: 418 start-page: 47 year: 2014 ident: 10.1016/j.nonrwa.2015.11.004_br000105 article-title: Global existence and asymptotic properties of the solution to a two-species chemotaxis system publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.03.084 – volume: 37 start-page: 2326 year: 2014 ident: 10.1016/j.nonrwa.2015.11.004_br000055 article-title: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.2992 – volume: 10 start-page: 501 year: 2002 ident: 10.1016/j.nonrwa.2015.11.004_br000095 article-title: Volume-filling and quorum-sensing in models for chemosensitive movement publication-title: Can. Appl. Math. Q. – volume: 422 start-page: 1463 year: 2015 ident: 10.1016/j.nonrwa.2015.11.004_br000085 article-title: Boundedness of the attraction–repulsion Keller–Segel system publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.09.049 – volume: 24 start-page: 633 year: 1997 ident: 10.1016/j.nonrwa.2015.11.004_br000005 article-title: A blow-up mechanism for a chemotaxis model publication-title: Ann. Scuola Norm. Sup. – year: 1968 ident: 10.1016/j.nonrwa.2015.11.004_br000115 – volume: 412 start-page: 181 year: 2014 ident: 10.1016/j.nonrwa.2015.11.004_br000050 article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.10.061 – volume: 215 start-page: 52 year: 2005 ident: 10.1016/j.nonrwa.2015.11.004_br000015 article-title: Boundedness vs. blow-up in a chemotaxis system publication-title: J. Differential Equations doi: 10.1016/j.jde.2004.10.022 – volume: 105 start-page: 103 year: 2003 ident: 10.1016/j.nonrwa.2015.11.004_br000010 article-title: From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I publication-title: Jahresber. Deutsch. Math.-Verein. – volume: 430 start-page: 585 year: 2015 ident: 10.1016/j.nonrwa.2015.11.004_br000075 article-title: Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.04.093 – volume: 329 start-page: 819 year: 1992 ident: 10.1016/j.nonrwa.2015.11.004_br000020 article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1992-1046835-6 |
SSID | ssj0017131 |
Score | 2.2419605 |
Snippet | This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv,... This paper studies the quasilinear attraction-repulsion chemotaxis system with logistic source u sub(t)=(grad) times (D(u)(grad)u)- chi (grad) times ( Phi... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Attraction Attraction–repulsion Boundaries Boundedness Chemotaxis Constants Logistic source Logistics Lower bounds Nonlinearity Quasilinear Upper bounds |
Title | Global boundedness in quasilinear attraction–repulsion chemotaxis system with logistic source |
URI | https://dx.doi.org/10.1016/j.nonrwa.2015.11.004 https://www.proquest.com/docview/1816092830 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-QwEA-iL_pw6J3i-o8c3Gt3mzZt2kdZlL3TE7m7hX0LyaSByrKu3S76JH4Hv6GfxEzTLtwhLNxTaUlLmZnMTJL5_YaQbxG3Srg8NgANOuCZgUDpJAyyxAqjLGcGmgLZm3Q05j8myWSDDDssDJZVtr7f-_TGW7dPBq00B_OyHPxG0BDDCJVgni8QxMe5QCvvP6_KPJhbhLEOYYSjO_hcU-PlVtjVI7IPsaSPXJ5tu7YPwtM_jrqJPpe75FObNtJz_2d7ZKOYfSY7P1ecq4svRHr6fqqxUVJh0IXRckYflmpRYi6pKqrquvJAhreX16qYL6e4V0ad3pzC1FO5oJ7YmeLuLPXgoBKo3-DfJ-PLiz_DUdC2TwggjvM6MGAKmyfKRXRjc8sBILQsNC4BAWOzzEaxxmNEgZxlkeYQ44yPolBriLENzAHZdAIqDglVillgXBdaCZ5Cnolch9raVAkGSRb1SNxJTULLLY4tLqayKyK7k17WEmXtlh3SybpHgtVbc8-tsWa86BQi_7IR6dz_mje_dvqTbvrgmYiaFffLhXTmk4Y5sqAd_ffXj8m2u0t9WeAJ2ayrZXHqUpVanzW2eEa2zoe_rm_x-v1qdPMOkrLvXA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rHtSD-MS3EbzWbdr0dZRFWZ8XFbyFZNJAZVnXbhc9if_Bf-gvMdO0C4ogeG2TUuY9ycw3hBwF3MjExrEeKFAeTzV4UkW-l0Ym0dJwpqEukL2J-_f84iF66JBe2wuDZZWN7Xc2vbbWzZNuQ83uqCi6t9g0xNBDRRjnJ9kMmeNWfXGMwfHbtM6D2SyMtS1GuLztn6uLvGyKXb4g_BCLjhHMs5nX9ot_-mGpa_dztkyWmriRnrhfWyGdfLhKFq-noKvjNSIcfj9VOCkp12jDaDGkzxM5LjCYlCWVVVW6TobP948yH00GeFhGLeMsx-RrMaYO2Zni8Sx13UEFUHfCv07uz07ven2vmZ_gQRhmladB5yaLpHXp2mSGA4BvmK9tBALapKkJQoX3iAmClgWKQ4gqHwS-UhDiHJgNMmsJlG8SKiUzwLjKlUx4DFmaZMpXxsQyYRClwRYJW6oJaMDFccbFQLRVZI_C0VogrW3eISytt4g33TVy4Bp_rE9ahohvQiKs_f9j52HLP2H1By9F5DB_moyFlZ_YzxAGbfvfXz8g8_276ytxdX5zuUMW7JvY1QjuktmqnOR7Nm6p1H4tl1-TCO9V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+boundedness+in+quasilinear+attraction%E2%80%93repulsion+chemotaxis+system+with+logistic+source&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Tian%2C+Miaoqing&rft.au=He%2C+Xiao&rft.au=Zheng%2C+Sining&rft.date=2016-08-01&rft.issn=1468-1218&rft.volume=30&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.nonrwa.2015.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2015_11_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |