Global boundedness in quasilinear attraction–repulsion chemotaxis system with logistic source

This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv, τ∈{0,1}, 0=Δw+γu−δw, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, D,Φ,Ψ∈C2[0,+∞) nonnegative, with D(s)≥(s+...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 30; pp. 1 - 15
Main Authors Tian, Miaoqing, He, Xiao, Zheng, Sining
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv, τ∈{0,1}, 0=Δw+γu−δw, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, D,Φ,Ψ∈C2[0,+∞) nonnegative, with D(s)≥(s+1)p for s≥0, Φ(s)≤χsq, ξsr≤Ψ(s)≤ζsr for s>1, and f smooth satisfying f(s)≤μs(1−sk) for s>0, f(0)≥0. It is proved that if the attraction is dominated by one of the other three mechanisms with max{r,k,p+2N}>q, then the solutions are globally bounded. Under more interesting balance situations, the behavior of solutions depends on the coefficients involved, i.e., the upper bound coefficient χ for the attraction, the lower bound coefficient ξ for the repulsion, the logistic source coefficient μ, as well as the constants α and γ describing the capacity of the cells u to produce chemoattractant and chemorepellent respectively. Three balance situations (attraction–repulsion balance, attraction–logistic source balance, and attraction–repulsion–logistic source balance) are considered to establish the boundedness of solutions for the parabolic–elliptic–elliptic case (with τ=0) and the parabolic–parabolic–elliptic case (with τ=1) respectively.
AbstractList This paper studies the quasilinear attraction-repulsion chemotaxis system with logistic source u sub(t)=(grad) times (D(u)(grad)u)- chi (grad) times ( Phi (u)(grad)v)+ xi (grad) times ( psi (u)(grad)w)+f(u)ut=(grad) times (D(u)(grad)u)- chi (grad) times ( Phi (u)(grad)v)+ xi (grad) times ( psi (u)(grad)w)+f(u), tau v sub(t)= Delta v+ alpha u- beta v tau vt= Delta v+ alpha u- beta v, tau [isin]{0,1} tau [isin]{0,1}, 0= Delta w+ gamma u- delta w0= Delta w+ gamma u- delta w, in bounded domain Omega sub(R) super(N)W sub(RN, N greater than or equal to 1N greater than or equal to 1, subject to the homogeneous Neumann boundary conditions, D, Phi , psi [isin]C) super(2)0,+ infinity )D, Phi , psi [isin]C2[0,+ infinity ) nonnegative, with D(s) greater than or equal to (s+1) super(p)D(s) greater than or equal to (s+1)p for s greater than or equal to 0s greater than or equal to 0, Phi (s) less than or equal to chi s super(q) Phi (s) less than or equal to chi sq, xi s super(r) less than or equal to psi (s) less than or equal to zeta s super(r) xi sr less than or equal to psi (s) less than or equal to zeta sr for s>1s>1, and ff smooth satisfying f(s) less than or equal to mu s(1-s super(k))f(s) less than or equal to mu s(1-sk) for s>0s>0, f(0) greater than or equal to 0f(0) greater than or equal to 0. It is proved that if the attraction is dominated by one of the other three mechanisms with View the MathML sourcemax{r,k,p+2N}>q, then the solutions are globally bounded. Under more interesting balance situations, the behavior of solutions depends on the coefficients involved, i.e., the upper bound coefficient chi chi for the attraction, the lower bound coefficient xi xi for the repulsion, the logistic source coefficient mu mu , as well as the constants alpha alpha and gamma gamma describing the capacity of the cells uu to produce chemoattractant and chemorepellent respectively. Three balance situations (attraction-repulsion balance, attraction-logistic source balance, and attraction-repulsion-logistic source balance) are considered to establish the boundedness of solutions for the parabolic-elliptic-elliptic case (with tau =0 tau =0) and the parabolic-parabolic-elliptic case (with tau =1 tau =1) respectively.
This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv, τ∈{0,1}, 0=Δw+γu−δw, in bounded domain Ω⊂RN, N≥1, subject to the homogeneous Neumann boundary conditions, D,Φ,Ψ∈C2[0,+∞) nonnegative, with D(s)≥(s+1)p for s≥0, Φ(s)≤χsq, ξsr≤Ψ(s)≤ζsr for s>1, and f smooth satisfying f(s)≤μs(1−sk) for s>0, f(0)≥0. It is proved that if the attraction is dominated by one of the other three mechanisms with max{r,k,p+2N}>q, then the solutions are globally bounded. Under more interesting balance situations, the behavior of solutions depends on the coefficients involved, i.e., the upper bound coefficient χ for the attraction, the lower bound coefficient ξ for the repulsion, the logistic source coefficient μ, as well as the constants α and γ describing the capacity of the cells u to produce chemoattractant and chemorepellent respectively. Three balance situations (attraction–repulsion balance, attraction–logistic source balance, and attraction–repulsion–logistic source balance) are considered to establish the boundedness of solutions for the parabolic–elliptic–elliptic case (with τ=0) and the parabolic–parabolic–elliptic case (with τ=1) respectively.
Author Tian, Miaoqing
He, Xiao
Zheng, Sining
Author_xml – sequence: 1
  givenname: Miaoqing
  surname: Tian
  fullname: Tian, Miaoqing
  email: npctian@126.com
  organization: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China
– sequence: 2
  givenname: Xiao
  surname: He
  fullname: He, Xiao
  email: xiaohe@mail.dlut.edu.cn
  organization: Department of Mathematics, Dalian Nationalities University, Dalian 116600, PR China
– sequence: 3
  givenname: Sining
  surname: Zheng
  fullname: Zheng, Sining
  email: snzheng@dlut.edu.cn
  organization: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China
BookMark eNqFkLFuFDEQhi0UJJLAG1BsSbOLZ71366VAQhEJSJFooLa841nik8--eLyEdLwDb8iT4NNRUUA1v0b__2vmuxBnMUUS4iXIDiRsX--6usgPtuslbDqATsrhiTgHPep2M8J0VvWw1S30oJ-JC-adlDCCgnNhbkKabWjmtEZHLhJz42Nzv1r2wUeyubGlZIvFp_jrx89MhzVw1Q3e0T4V-91zw49caN88-HLXhPTVc_HYcFoz0nPxdLGB6cWfeSm-XL__fPWhvf108_Hq3W2LSk2ldehomTYW-skt0zIgolxAumncolu0Xno1qw3Uo8dJ9_OASkol-17OMyrQg7oUr069h5zuV-Ji9p6RQrCR0soGNGzl1Gslq_XNyYo5MWdaDPpij__VP30wIM2RqtmZE1VzpGoATKVaw8Nf4UP2e5sf_xd7e4pRZfDNUzaMniKS85mwGJf8vwt-AyBJmYs
CitedBy_id crossref_primary_10_1016_j_jmaa_2025_129228
crossref_primary_10_1186_s13660_024_03195_1
crossref_primary_10_1016_j_jde_2019_10_027
crossref_primary_10_1016_j_nonrwa_2018_09_020
crossref_primary_10_1016_j_nonrwa_2017_07_002
crossref_primary_10_1016_j_jmaa_2019_123703
crossref_primary_10_1016_j_jmaa_2021_125763
crossref_primary_10_1016_j_jmaa_2021_125861
crossref_primary_10_1142_S0129167X23500775
crossref_primary_10_3934_math_2024822
crossref_primary_10_1142_S021820251850029X
crossref_primary_10_1007_s10473_024_0308_7
crossref_primary_10_1016_j_jmaa_2024_128882
crossref_primary_10_1016_j_nonrwa_2023_104016
crossref_primary_10_1016_j_nonrwa_2020_103095
crossref_primary_10_1016_j_nonrwa_2016_09_007
crossref_primary_10_58997_ejde_2022_48
crossref_primary_10_1016_j_jde_2021_06_040
crossref_primary_10_3934_dcdsb_2021306
crossref_primary_10_1016_j_na_2023_113232
crossref_primary_10_1016_j_nonrwa_2022_103796
crossref_primary_10_1080_00036811_2017_1366989
crossref_primary_10_1142_S0218202520500517
Cites_doi 10.1080/03605309708821314
10.1016/j.jde.2013.12.007
10.1007/s00332-010-9082-x
10.1016/j.na.2009.07.045
10.1016/j.jde.2010.02.008
10.1016/j.matpur.2013.01.020
10.1080/03605300701319003
10.1080/17513758.2011.571722
10.1007/s00332-014-9205-x
10.1016/j.jde.2011.08.019
10.1080/03605300903473426
10.1142/S0218202512500443
10.1016/j.jmaa.2014.03.084
10.1002/mma.2992
10.1016/j.jmaa.2014.09.049
10.1016/j.jmaa.2013.10.061
10.1016/j.jde.2004.10.022
10.1016/j.jmaa.2015.04.093
10.1090/S0002-9947-1992-1046835-6
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.nonrwa.2015.11.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
EndPage 15
ExternalDocumentID 10_1016_j_nonrwa_2015_11_004
S1468121815001479
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11171048
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-dcdef95a129df9f4ccc0f10d976cdf88f23b3511717982b4c30030220bbc31843
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Sun Aug 31 06:29:36 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Tue Jul 01 04:03:11 EDT 2025
Fri Feb 23 02:27:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Logistic source
Chemotaxis
Boundedness
Attraction–repulsion
Quasilinear
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-dcdef95a129df9f4ccc0f10d976cdf88f23b3511717982b4c30030220bbc31843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816092830
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1816092830
crossref_citationtrail_10_1016_j_nonrwa_2015_11_004
crossref_primary_10_1016_j_nonrwa_2015_11_004
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2015_11_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2016
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tello, Winkler (br000040) 2007; 32
Painter, Hillen (br000095) 2002; 10
Winkler (br000030) 2013; 100
Zhang, Li (br000105) 2014; 418
Tao, Winkler (br000060) 2012; 252
Horstmann, Winkler (br000015) 2005; 215
Herrero, Velázquez (br000005) 1997; 24
Jäger, Luckhaus (br000020) 1992; 329
Tao, Wang (br000100) 2013; 23
Winkler (br000045) 2010; 35
Yang, Cao, Jiang, Zheng (br000075) 2015; 430
Horstmann (br000080) 2011; 21
Jin (br000085) 2015; 422
Winkler (br000120) 2014; 24
Zhang, Li (br000110) 2015
Hieber, Prüss (br000125) 1997; 22
Horstmann (br000010) 2003; 105
Wang, Mu, Zheng (br000065) 2014; 256
Winkler (br000025) 2010; 248
Cao, Zheng (br000055) 2014; 37
Cao (br000050) 2014; 412
Ladyzenskaja, Solonnikov, Ural’ceva (br000115) 1968
Osaki, Yagi (br000035) 2002; 12
Liu, Wang (br000090) 2012; 6
Winkler, Djie (br000070) 2010; 72
Cao (10.1016/j.nonrwa.2015.11.004_br000050) 2014; 412
Winkler (10.1016/j.nonrwa.2015.11.004_br000025) 2010; 248
Jäger (10.1016/j.nonrwa.2015.11.004_br000020) 1992; 329
Winkler (10.1016/j.nonrwa.2015.11.004_br000070) 2010; 72
Zhang (10.1016/j.nonrwa.2015.11.004_br000105) 2014; 418
Cao (10.1016/j.nonrwa.2015.11.004_br000055) 2014; 37
Horstmann (10.1016/j.nonrwa.2015.11.004_br000080) 2011; 21
Wang (10.1016/j.nonrwa.2015.11.004_br000065) 2014; 256
Jin (10.1016/j.nonrwa.2015.11.004_br000085) 2015; 422
Liu (10.1016/j.nonrwa.2015.11.004_br000090) 2012; 6
Zhang (10.1016/j.nonrwa.2015.11.004_br000110) 2015
Osaki (10.1016/j.nonrwa.2015.11.004_br000035) 2002; 12
Tao (10.1016/j.nonrwa.2015.11.004_br000100) 2013; 23
Horstmann (10.1016/j.nonrwa.2015.11.004_br000015) 2005; 215
Hieber (10.1016/j.nonrwa.2015.11.004_br000125) 1997; 22
Yang (10.1016/j.nonrwa.2015.11.004_br000075) 2015; 430
Painter (10.1016/j.nonrwa.2015.11.004_br000095) 2002; 10
Ladyzenskaja (10.1016/j.nonrwa.2015.11.004_br000115) 1968
Herrero (10.1016/j.nonrwa.2015.11.004_br000005) 1997; 24
Horstmann (10.1016/j.nonrwa.2015.11.004_br000010) 2003; 105
Winkler (10.1016/j.nonrwa.2015.11.004_br000030) 2013; 100
Tao (10.1016/j.nonrwa.2015.11.004_br000060) 2012; 252
Winkler (10.1016/j.nonrwa.2015.11.004_br000120) 2014; 24
Winkler (10.1016/j.nonrwa.2015.11.004_br000045) 2010; 35
Tello (10.1016/j.nonrwa.2015.11.004_br000040) 2007; 32
References_xml – volume: 21
  start-page: 231
  year: 2011
  end-page: 270
  ident: br000080
  article-title: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species
  publication-title: J. Nonlinear Sci.
– volume: 37
  start-page: 2326
  year: 2014
  end-page: 2330
  ident: br000055
  article-title: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source
  publication-title: Math. Methods Appl. Sci.
– volume: 412
  start-page: 181
  year: 2014
  end-page: 188
  ident: br000050
  article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source
  publication-title: J. Math. Anal. Appl.
– volume: 24
  start-page: 633
  year: 1997
  end-page: 683
  ident: br000005
  article-title: A blow-up mechanism for a chemotaxis model
  publication-title: Ann. Scuola Norm. Sup.
– volume: 10
  start-page: 501
  year: 2002
  end-page: 543
  ident: br000095
  article-title: Volume-filling and quorum-sensing in models for chemosensitive movement
  publication-title: Can. Appl. Math. Q.
– volume: 256
  start-page: 1847
  year: 2014
  end-page: 1872
  ident: br000065
  article-title: On a quasilinear parabolic–elliptic chemotaxis system with logistic source
  publication-title: J. Differential Equations
– volume: 100
  start-page: 748
  year: 2013
  end-page: 767
  ident: br000030
  article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system
  publication-title: J. Math. Pures Appl.
– volume: 215
  start-page: 52
  year: 2005
  end-page: 107
  ident: br000015
  article-title: Boundedness vs. blow-up in a chemotaxis system
  publication-title: J. Differential Equations
– volume: 12
  start-page: 587
  year: 2002
  end-page: 606
  ident: br000035
  article-title: Global existence of a chemotaxis-growth system in
  publication-title: Adv. Math. Sci. Appl.
– volume: 418
  start-page: 47
  year: 2014
  end-page: 63
  ident: br000105
  article-title: Global existence and asymptotic properties of the solution to a two-species chemotaxis system
  publication-title: J. Math. Anal. Appl.
– start-page: 1
  year: 2015
  end-page: 15
  ident: br000110
  article-title: An attraction–repulsion chemotaxis system with logistic source
  publication-title: ZAMM Z. Angew. Math. Mech.
– volume: 35
  start-page: 1516
  year: 2010
  end-page: 1537
  ident: br000045
  article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source
  publication-title: Comm. Partial Differential Equations
– volume: 422
  start-page: 1463
  year: 2015
  end-page: 1478
  ident: br000085
  article-title: Boundedness of the attraction–repulsion Keller–Segel system
  publication-title: J. Math. Anal. Appl.
– volume: 23
  start-page: 1
  year: 2013
  end-page: 36
  ident: br000100
  article-title: Competing effects of attraction vs. repulsion in chemotaxis
  publication-title: Math. Models Methods Appl. Sci.
– volume: 32
  start-page: 849
  year: 2007
  end-page: 877
  ident: br000040
  article-title: A chemotaxis system with logistic source
  publication-title: Comm. Partial Differential Equations
– volume: 24
  start-page: 809
  year: 2014
  end-page: 855
  ident: br000120
  article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities?
  publication-title: J. Nonlinear Sci.
– volume: 72
  start-page: 1044
  year: 2010
  end-page: 1064
  ident: br000070
  article-title: Boundedness and finite-time collapse in a chemotaxis system with volume-filing effect
  publication-title: Nonlinear Anal.
– volume: 329
  start-page: 819
  year: 1992
  end-page: 824
  ident: br000020
  article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis
  publication-title: Trans. Amer. Math. Soc.
– year: 1968
  ident: br000115
  article-title: Linear and Quasi-Linear Equations of Parabolic Type
– volume: 252
  start-page: 692
  year: 2012
  end-page: 715
  ident: br000060
  article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity
  publication-title: J. Differential Equations
– volume: 248
  start-page: 2889
  year: 2010
  end-page: 2905
  ident: br000025
  article-title: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model
  publication-title: J. Differential Equations
– volume: 6
  start-page: 31
  year: 2012
  end-page: 41
  ident: br000090
  article-title: Classical solutions and steady states of an attraction–repulsion chemotaxis in one dimension
  publication-title: J. Biol. Dyn.
– volume: 105
  start-page: 103
  year: 2003
  end-page: 165
  ident: br000010
  article-title: From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I
  publication-title: Jahresber. Deutsch. Math.-Verein.
– volume: 22
  start-page: 1647
  year: 1997
  end-page: 1669
  ident: br000125
  article-title: Heat kernels and maximal
  publication-title: Comm. Partial Differential Equations
– volume: 430
  start-page: 585
  year: 2015
  end-page: 591
  ident: br000075
  article-title: Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source
  publication-title: J. Math. Anal. Appl.
– volume: 22
  start-page: 1647
  year: 1997
  ident: 10.1016/j.nonrwa.2015.11.004_br000125
  article-title: Heat kernels and maximal Lp–Lq estimates for parabolic evolution equations
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605309708821314
– volume: 256
  start-page: 1847
  year: 2014
  ident: 10.1016/j.nonrwa.2015.11.004_br000065
  article-title: On a quasilinear parabolic–elliptic chemotaxis system with logistic source
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2013.12.007
– volume: 21
  start-page: 231
  year: 2011
  ident: 10.1016/j.nonrwa.2015.11.004_br000080
  article-title: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-010-9082-x
– volume: 72
  start-page: 1044
  year: 2010
  ident: 10.1016/j.nonrwa.2015.11.004_br000070
  article-title: Boundedness and finite-time collapse in a chemotaxis system with volume-filing effect
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.07.045
– volume: 248
  start-page: 2889
  year: 2010
  ident: 10.1016/j.nonrwa.2015.11.004_br000025
  article-title: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2010.02.008
– volume: 100
  start-page: 748
  year: 2013
  ident: 10.1016/j.nonrwa.2015.11.004_br000030
  article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2013.01.020
– volume: 32
  start-page: 849
  year: 2007
  ident: 10.1016/j.nonrwa.2015.11.004_br000040
  article-title: A chemotaxis system with logistic source
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605300701319003
– volume: 6
  start-page: 31
  year: 2012
  ident: 10.1016/j.nonrwa.2015.11.004_br000090
  article-title: Classical solutions and steady states of an attraction–repulsion chemotaxis in one dimension
  publication-title: J. Biol. Dyn.
  doi: 10.1080/17513758.2011.571722
– volume: 24
  start-page: 809
  year: 2014
  ident: 10.1016/j.nonrwa.2015.11.004_br000120
  article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities?
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-014-9205-x
– volume: 252
  start-page: 692
  year: 2012
  ident: 10.1016/j.nonrwa.2015.11.004_br000060
  article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2011.08.019
– volume: 12
  start-page: 587
  year: 2002
  ident: 10.1016/j.nonrwa.2015.11.004_br000035
  article-title: Global existence of a chemotaxis-growth system in R2
  publication-title: Adv. Math. Sci. Appl.
– volume: 35
  start-page: 1516
  year: 2010
  ident: 10.1016/j.nonrwa.2015.11.004_br000045
  article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605300903473426
– start-page: 1
  year: 2015
  ident: 10.1016/j.nonrwa.2015.11.004_br000110
  article-title: An attraction–repulsion chemotaxis system with logistic source
  publication-title: ZAMM Z. Angew. Math. Mech.
– volume: 23
  start-page: 1
  year: 2013
  ident: 10.1016/j.nonrwa.2015.11.004_br000100
  article-title: Competing effects of attraction vs. repulsion in chemotaxis
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202512500443
– volume: 418
  start-page: 47
  year: 2014
  ident: 10.1016/j.nonrwa.2015.11.004_br000105
  article-title: Global existence and asymptotic properties of the solution to a two-species chemotaxis system
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.03.084
– volume: 37
  start-page: 2326
  year: 2014
  ident: 10.1016/j.nonrwa.2015.11.004_br000055
  article-title: Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.2992
– volume: 10
  start-page: 501
  year: 2002
  ident: 10.1016/j.nonrwa.2015.11.004_br000095
  article-title: Volume-filling and quorum-sensing in models for chemosensitive movement
  publication-title: Can. Appl. Math. Q.
– volume: 422
  start-page: 1463
  year: 2015
  ident: 10.1016/j.nonrwa.2015.11.004_br000085
  article-title: Boundedness of the attraction–repulsion Keller–Segel system
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.09.049
– volume: 24
  start-page: 633
  year: 1997
  ident: 10.1016/j.nonrwa.2015.11.004_br000005
  article-title: A blow-up mechanism for a chemotaxis model
  publication-title: Ann. Scuola Norm. Sup.
– year: 1968
  ident: 10.1016/j.nonrwa.2015.11.004_br000115
– volume: 412
  start-page: 181
  year: 2014
  ident: 10.1016/j.nonrwa.2015.11.004_br000050
  article-title: Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.10.061
– volume: 215
  start-page: 52
  year: 2005
  ident: 10.1016/j.nonrwa.2015.11.004_br000015
  article-title: Boundedness vs. blow-up in a chemotaxis system
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2004.10.022
– volume: 105
  start-page: 103
  year: 2003
  ident: 10.1016/j.nonrwa.2015.11.004_br000010
  article-title: From 1970 until present: The Keller–Segel model in chemotaxis and its consequences I
  publication-title: Jahresber. Deutsch. Math.-Verein.
– volume: 430
  start-page: 585
  year: 2015
  ident: 10.1016/j.nonrwa.2015.11.004_br000075
  article-title: Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2015.04.093
– volume: 329
  start-page: 819
  year: 1992
  ident: 10.1016/j.nonrwa.2015.11.004_br000020
  article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1992-1046835-6
SSID ssj0017131
Score 2.2419605
Snippet This paper studies the quasilinear attraction–repulsion chemotaxis system with logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(Φ(u)∇v)+ξ∇⋅(Ψ(u)∇w)+f(u), τvt=Δv+αu−βv,...
This paper studies the quasilinear attraction-repulsion chemotaxis system with logistic source u sub(t)=(grad) times (D(u)(grad)u)- chi (grad) times ( Phi...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Attraction
Attraction–repulsion
Boundaries
Boundedness
Chemotaxis
Constants
Logistic source
Logistics
Lower bounds
Nonlinearity
Quasilinear
Upper bounds
Title Global boundedness in quasilinear attraction–repulsion chemotaxis system with logistic source
URI https://dx.doi.org/10.1016/j.nonrwa.2015.11.004
https://www.proquest.com/docview/1816092830
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-QwEA-iL_pw6J3i-o8c3Gt3mzZt2kdZlL3TE7m7hX0LyaSByrKu3S76JH4Hv6GfxEzTLtwhLNxTaUlLmZnMTJL5_YaQbxG3Srg8NgANOuCZgUDpJAyyxAqjLGcGmgLZm3Q05j8myWSDDDssDJZVtr7f-_TGW7dPBq00B_OyHPxG0BDDCJVgni8QxMe5QCvvP6_KPJhbhLEOYYSjO_hcU-PlVtjVI7IPsaSPXJ5tu7YPwtM_jrqJPpe75FObNtJz_2d7ZKOYfSY7P1ecq4svRHr6fqqxUVJh0IXRckYflmpRYi6pKqrquvJAhreX16qYL6e4V0ad3pzC1FO5oJ7YmeLuLPXgoBKo3-DfJ-PLiz_DUdC2TwggjvM6MGAKmyfKRXRjc8sBILQsNC4BAWOzzEaxxmNEgZxlkeYQ44yPolBriLENzAHZdAIqDglVillgXBdaCZ5Cnolch9raVAkGSRb1SNxJTULLLY4tLqayKyK7k17WEmXtlh3SybpHgtVbc8-tsWa86BQi_7IR6dz_mje_dvqTbvrgmYiaFffLhXTmk4Y5sqAd_ffXj8m2u0t9WeAJ2ayrZXHqUpVanzW2eEa2zoe_rm_x-v1qdPMOkrLvXA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rHtSD-MS3EbzWbdr0dZRFWZ8XFbyFZNJAZVnXbhc9if_Bf-gvMdO0C4ogeG2TUuY9ycw3hBwF3MjExrEeKFAeTzV4UkW-l0Ym0dJwpqEukL2J-_f84iF66JBe2wuDZZWN7Xc2vbbWzZNuQ83uqCi6t9g0xNBDRRjnJ9kMmeNWfXGMwfHbtM6D2SyMtS1GuLztn6uLvGyKXb4g_BCLjhHMs5nX9ot_-mGpa_dztkyWmriRnrhfWyGdfLhKFq-noKvjNSIcfj9VOCkp12jDaDGkzxM5LjCYlCWVVVW6TobP948yH00GeFhGLeMsx-RrMaYO2Zni8Sx13UEFUHfCv07uz07ven2vmZ_gQRhmladB5yaLpHXp2mSGA4BvmK9tBALapKkJQoX3iAmClgWKQ4gqHwS-UhDiHJgNMmsJlG8SKiUzwLjKlUx4DFmaZMpXxsQyYRClwRYJW6oJaMDFccbFQLRVZI_C0VogrW3eISytt4g33TVy4Bp_rE9ahohvQiKs_f9j52HLP2H1By9F5DB_moyFlZ_YzxAGbfvfXz8g8_276ytxdX5zuUMW7JvY1QjuktmqnOR7Nm6p1H4tl1-TCO9V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+boundedness+in+quasilinear+attraction%E2%80%93repulsion+chemotaxis+system+with+logistic+source&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Tian%2C+Miaoqing&rft.au=He%2C+Xiao&rft.au=Zheng%2C+Sining&rft.date=2016-08-01&rft.issn=1468-1218&rft.volume=30&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1016%2Fj.nonrwa.2015.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2015_11_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon