Evaluating low-cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia
Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have...
Saved in:
Published in | Geoderma Regional Vol. 20; p. e00240 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have become available. This study aims to compare the accuracy of near infrared reflectance (NIR) instruments with different sizes and wavelength ranges on the prediction of soil properties. Soil samples were taken from southern New South Wales and northern Victoria, comprised of Chromosols, Dermosols, Kandosols, and Sodosols. In total, the dataset consists of 392 soil samples from the top 1 m. The study compared two research-grade Vis-NIR spectrometers (350–2500 nm) and two miniaturized NIR spectrometers with limited wavelengths (NeoSpectra operating at 1250–2500 nm and NIRVascan operating at 900–1700 nm). Cubist regression tree and Partial Least Squares Regression (PLSR) were used to build calibration models. The results showed that both modelling procedures are reliable for estimating soil properties. Cubist models gave greater validation r2 values for ten soil properties investigated for all four instruments. Based on the Cubist model, promising results were found in predictions of clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca (r2: 0.43–0.81). The results are also comparable to published studies for all instruments. As expected, the research-grade spectrometers provided the best prediction accuracies (r2: 0.56–0.81). Results from NeoSpectra provided a comparable accuracy with the Vis-NIR spectrometers in prediction of soil pH, CEC and exchangeable Ca and Mg (r2 > 0.63–0.78). NeoSpectra produced a slightly less accurate prediction of total carbon, sand, and clay. While NIRVascan showed the lowest accuracy, it still can be used in prediction of soil texture and total carbon with reasonable accuracy (r2 clay: 0.73; sand: 0.63; total carbon: 0.73). This study demonstrates the potential of miniaturized spectrometers with reduced wavelength ranges as cheaper instruments in soil analysis.
•Miniaturized NIR spectrometers with limited spectral range were evaluated for soil analysis.•Good prediction accuracy was obtained for clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca.•Spectrometer 1250–2500 nm provided comparable accuracy compared to Vis-NIR spectrometers.•Low cost spectrometers are potentially useful for soil analysis. |
---|---|
AbstractList | Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have become available. This study aims to compare the accuracy of near infrared reflectance (NIR) instruments with different sizes and wavelength ranges on the prediction of soil properties. Soil samples were taken from southern New South Wales and northern Victoria, comprised of Chromosols, Dermosols, Kandosols, and Sodosols. In total, the dataset consists of 392 soil samples from the top 1 m. The study compared two research-grade Vis-NIR spectrometers (350–2500 nm) and two miniaturized NIR spectrometers with limited wavelengths (NeoSpectra operating at 1250–2500 nm and NIRVascan operating at 900–1700 nm). Cubist regression tree and Partial Least Squares Regression (PLSR) were used to build calibration models. The results showed that both modelling procedures are reliable for estimating soil properties. Cubist models gave greater validation r2 values for ten soil properties investigated for all four instruments. Based on the Cubist model, promising results were found in predictions of clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca (r2: 0.43–0.81). The results are also comparable to published studies for all instruments. As expected, the research-grade spectrometers provided the best prediction accuracies (r2: 0.56–0.81). Results from NeoSpectra provided a comparable accuracy with the Vis-NIR spectrometers in prediction of soil pH, CEC and exchangeable Ca and Mg (r2 > 0.63–0.78). NeoSpectra produced a slightly less accurate prediction of total carbon, sand, and clay. While NIRVascan showed the lowest accuracy, it still can be used in prediction of soil texture and total carbon with reasonable accuracy (r2 clay: 0.73; sand: 0.63; total carbon: 0.73). This study demonstrates the potential of miniaturized spectrometers with reduced wavelength ranges as cheaper instruments in soil analysis.
•Miniaturized NIR spectrometers with limited spectral range were evaluated for soil analysis.•Good prediction accuracy was obtained for clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca.•Spectrometer 1250–2500 nm provided comparable accuracy compared to Vis-NIR spectrometers.•Low cost spectrometers are potentially useful for soil analysis. Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have become available. This study aims to compare the accuracy of near infrared reflectance (NIR) instruments with different sizes and wavelength ranges on the prediction of soil properties. Soil samples were taken from southern New South Wales and northern Victoria, comprised of Chromosols, Dermosols, Kandosols, and Sodosols. In total, the dataset consists of 392 soil samples from the top 1 m. The study compared two research-grade Vis-NIR spectrometers (350–2500 nm) and two miniaturized NIR spectrometers with limited wavelengths (NeoSpectra operating at 1250–2500 nm and NIRVascan operating at 900–1700 nm). Cubist regression tree and Partial Least Squares Regression (PLSR) were used to build calibration models. The results showed that both modelling procedures are reliable for estimating soil properties. Cubist models gave greater validation r² values for ten soil properties investigated for all four instruments. Based on the Cubist model, promising results were found in predictions of clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca (r²: 0.43–0.81). The results are also comparable to published studies for all instruments. As expected, the research-grade spectrometers provided the best prediction accuracies (r²: 0.56–0.81). Results from NeoSpectra provided a comparable accuracy with the Vis-NIR spectrometers in prediction of soil pH, CEC and exchangeable Ca and Mg (r² > 0.63–0.78). NeoSpectra produced a slightly less accurate prediction of total carbon, sand, and clay. While NIRVascan showed the lowest accuracy, it still can be used in prediction of soil texture and total carbon with reasonable accuracy (r² clay: 0.73; sand: 0.63; total carbon: 0.73). This study demonstrates the potential of miniaturized spectrometers with reduced wavelength ranges as cheaper instruments in soil analysis. |
ArticleNumber | e00240 |
Author | Tang, Yijia Minasny, Budiman Jones, Edward |
Author_xml | – sequence: 1 givenname: Yijia surname: Tang fullname: Tang, Yijia email: ytan6449@uni.sydney.edu.au – sequence: 2 givenname: Edward surname: Jones fullname: Jones, Edward – sequence: 3 givenname: Budiman surname: Minasny fullname: Minasny, Budiman |
BookMark | eNqFkE1v1DAQhi3USpS2_4CDj1yyOLaT1ByQqmr5kCpxaDlbs86kePHay4xT1H9PqnBAHOA0I837vNI8r8RJLhmFeN2qTava_u1-84BlJN5o1boNKqWteiHOtOl0o5SzJ3_sL8Ul814tGdeZoddn4vv2EdIMNeYHmcrPJhSu8liowi6hzAgkY54ICEfJmLkQy6mQJDjGUUKG9MSRZZkkl5iWG5WDvCtz_Sa3wBUpy-uZK0GKcCFOJ0iMl7_nufj6YXt_86m5_fLx8831bROMcbUZXdBgd7sejQVnr0ywoDUMve3GKxg6NZgeBzOFdtCTc8H2E7gxgHEdggk7cy7erL1HKj9m5OoPkQOmBBnLzF6bttN9a7VdonaNBirMhJM_UjwAPflW-We9fu9Xvf5Zr1_1Lti7v7AQ6yKx5OXTmP4Hv19hXBw8RiTPIWIOOEbCUP1Y4r8LfgHP9Zzt |
CitedBy_id | crossref_primary_10_1021_acs_est_0c04130 crossref_primary_10_1002_saj2_70028 crossref_primary_10_1016_j_geoderma_2023_116651 crossref_primary_10_1016_j_compag_2020_105630 crossref_primary_10_1016_j_biosystemseng_2024_07_001 crossref_primary_10_3390_s21113927 crossref_primary_10_1139_cjss_2023_0084 crossref_primary_10_1002_saj2_20607 crossref_primary_10_3390_rs17050771 crossref_primary_10_1016_j_geoderma_2020_114794 crossref_primary_10_1002_chem_202002838 crossref_primary_10_1016_j_tifs_2024_104850 crossref_primary_10_1016_j_compag_2024_109233 crossref_primary_10_1080_10408347_2022_2047607 crossref_primary_10_1080_10408347_2024_2351820 crossref_primary_10_1080_26895293_2024_2422109 crossref_primary_10_1177_09670335211049506 crossref_primary_10_1016_j_wasman_2021_03_045 crossref_primary_10_1016_j_soisec_2021_100023 crossref_primary_10_1071_AN21069 crossref_primary_10_1007_s10661_020_08642_2 crossref_primary_10_1016_j_geoderma_2022_116182 crossref_primary_10_7717_peerj_11042 crossref_primary_10_1002_saj2_20678 crossref_primary_10_1111_ejss_13481 crossref_primary_10_1111_ejss_13145 crossref_primary_10_5194_soil_8_467_2022 crossref_primary_10_1016_j_soisec_2022_100061 crossref_primary_10_1016_j_biosystemseng_2022_10_011 crossref_primary_10_3390_soilsystems6030066 crossref_primary_10_3390_su13126588 crossref_primary_10_46604_aiti_2023_12683 crossref_primary_10_1111_gcb_14815 crossref_primary_10_1016_j_dib_2024_111229 crossref_primary_10_1111_ejss_70053 crossref_primary_10_59717_j_xinn_geo_2023_100015 crossref_primary_10_3390_rs15061624 crossref_primary_10_5194_bg_19_1435_2022 crossref_primary_10_3390_rs13214439 crossref_primary_10_1016_j_geoderma_2020_114728 crossref_primary_10_1111_sum_12952 crossref_primary_10_3390_land10010063 |
Cites_doi | 10.18637/jss.v018.i02 10.1002/anie.200885575 10.3390/rs8010042 10.1016/j.rse.2007.02.005 10.1366/13-07228 10.1016/j.catena.2017.01.012 10.1021/ac60214a047 10.1016/j.chemolab.2008.06.003 10.1016/S0065-2113(10)07005-7 10.1180/claymin.2008.043.1.03 10.1016/j.biosystemseng.2017.06.017 10.1016/j.geoderma.2018.08.006 10.1016/j.geoderma.2011.08.001 10.1016/j.geoderma.2018.12.031 10.1016/j.still.2016.05.008 10.1016/j.geoderma.2004.06.007 10.1029/JB095iB08p12653 10.1016/j.geoderma.2009.04.005 10.1255/jnirs.1035 10.1080/05704928.2013.811081 10.1016/j.earscirev.2016.01.012 10.3390/s17010099 10.1016/j.geoderma.2008.06.011 10.1016/bs.agron.2015.02.002 10.1097/00010694-199504000-00005 10.1016/j.geodrs.2014.08.001 10.1071/SR02137 10.1016/j.soilbio.2015.01.012 10.1016/j.geoderma.2010.03.001 10.1016/j.geoderma.2009.07.021 10.1016/j.still.2006.03.009 10.1097/ss.0b013e31804fa202 10.1016/j.geoderma.2019.06.016 10.2136/sssaj1992.03615995005600030031x 10.1007/BFb0062108 10.2134/jeq1997.00472425002600010005x |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2019.e00240 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2019_e00240 S2352009419302391 |
GeographicLocations | New South Wales |
GeographicLocations_xml | – name: New South Wales |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-d9c2a4bb6e34a9483c4a22a7645d8a750736e73fc172f99c46fa9dca395ea3cb3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Mon Jul 21 09:28:31 EDT 2025 Tue Jul 01 02:07:18 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Fri Feb 23 02:47:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Near infrared spectroscopy Low-cost sensors Accuracy Luvisols Portable sensors Cubist Proximal sensing Lixisols Solonetz Partial Least Squares Regression |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-d9c2a4bb6e34a9483c4a22a7645d8a750736e73fc172f99c46fa9dca395ea3cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2315261424 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2315261424 crossref_primary_10_1016_j_geodrs_2019_e00240 crossref_citationtrail_10_1016_j_geodrs_2019_e00240 elsevier_sciencedirect_doi_10_1016_j_geodrs_2019_e00240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Procter, Gill, Fay, Polley, Jackson (bb0155) 2015; 83 Ng, Minasny, Montazerolghaem, Padarian, Ferguson, Bailey, McBratney (bb0135) 2019; 352 Gomez, Viscarra Rossel, Mcbratney (bb0065) 2008; 146 Ross, Robert (bb0180) 2008 Wold, Martens, Wold (bb0230) 1983; 973 Barthès, Kouakoua, Clairotte, Lallemand, Chapuis-Lardy, Rabenarivo, Roussel (bb0010) 2019; 338 Dos Santos, Lopo, Páscoa, Lopes (bb0040) 2013; 67 Aitkenhead, Gaskin, Lafouge, Hawes, Aitkenhead (bb0005) 2017; 17 Ben-Dor, Banin (bb0015) 1995; 159 Clark, King, Klejwa, Swayze, Vergo, CLARK (bb0030) 1990; 95 Xu, Zeng, Huang, Wu, Vanleeuwen (bb0235) 2016; 8 Soriano-Disla, Janik, Allen, Mclaughlin (bb0205) 2017; 161 Mouazen, Kuang, De Baerdemaeker, Ramon (bb0125) 2010; 158 Minasny, McBratney (bb0110) 2008; 94 Peng, Biswas, Jiang, Zhao, Hu, Hu, Shi (bb0150) 2019; 337 Padarian, Minasny, McBratney (bb0145) 2019; 16 Rayment, Lyons (bb0165) 2011 Nelson, Sommers (bb0130) 1996 Islam, Singh, McBratney (bb0080) 2003; 41 Henderson, Bui, Moran, Simon (bb0075) 2005; 124 Vohland, Besold, Hill, Fründ (bb0220) 2011; 166 Minasny, Tranter, Mcbratney, Brough, Murphy (bb0115) 2009; 153 Stenberg, Viscarra Rossel, Mouazen, Wetterlind (bb0210) 2010; 107 Cohen, Mylavarapu, Bogrekci, Lee, Clark (bb0035) 2007; 172 Reeves (bb0170) 2010; 158 Knadel, Stenberg, Deng, Thomsen, Greve (bb0085) 2013; 21 Malone, Hughes, Mcbratney, Minasny (bb0100) 2014; 1 Bouma (bb0025) 1997; 26 Savitzky, Golay (bb0195) 1964; 36 Gee, Bauder (bb0055) 1986 Kuhn, Weston, Keefer, Coulter, Quinlan (bb0095) 2018 Nocita, Stevens, Van Wesemael, Aitkenhead, Bachmaann, Wetterlind (bb0140) 2015; 132 Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Ji (bb0215) 2016; 155 Farifteh, Van Der Meer, Atzberger, Carranza (bb0050) 2007; 110 Kuhn, Johnson (bb0090) 2013 Rayment, Higginson (bb0160) 1992 Rodionov, Pätzold, Welp, Pude, Amelung (bb0175) 2016; 163 Mevik, Wehrens (bb0105) 2007; 18 Fajardo, Mcbratney, Minasny (bb0045) 2017; 152 Warncke, Brown (bb0225) 1998; Vol. 221 Bishop, Lane, Dyar, Brown (bb0020) 2008; 43 Salzer (bb0190) 2008; 47 Soriano-Disla, Janik, Rossel, Macdonald, Mclaughlin (bb0200) 2014; 49 Mouazen, Maleki, De Baerdemaeker, Ramon (bb0120) 2007; 93 Henderson, Baumgardner, Franzmeier, Stott, Coster (bb0070) 1992; 56 Rulequest Research (bb0185) 2007 Geeves, Cresswell, Murphy (bb0060) 1995 Knadel (10.1016/j.geodrs.2019.e00240_bb0085) 2013; 21 Dos Santos (10.1016/j.geodrs.2019.e00240_bb0040) 2013; 67 Rayment (10.1016/j.geodrs.2019.e00240_bb0165) 2011 Warncke (10.1016/j.geodrs.2019.e00240_bb0225) 1998; Vol. 221 Mouazen (10.1016/j.geodrs.2019.e00240_bb0120) 2007; 93 Salzer (10.1016/j.geodrs.2019.e00240_bb0190) 2008; 47 Henderson (10.1016/j.geodrs.2019.e00240_bb0070) 1992; 56 Bishop (10.1016/j.geodrs.2019.e00240_bb0020) 2008; 43 Cohen (10.1016/j.geodrs.2019.e00240_bb0035) 2007; 172 Gee (10.1016/j.geodrs.2019.e00240_bb0055) 1986 Minasny (10.1016/j.geodrs.2019.e00240_bb0110) 2008; 94 Minasny (10.1016/j.geodrs.2019.e00240_bb0115) 2009; 153 Islam (10.1016/j.geodrs.2019.e00240_bb0080) 2003; 41 Ben-Dor (10.1016/j.geodrs.2019.e00240_bb0015) 1995; 159 Barthès (10.1016/j.geodrs.2019.e00240_bb0010) 2019; 338 Savitzky (10.1016/j.geodrs.2019.e00240_bb0195) 1964; 36 Stenberg (10.1016/j.geodrs.2019.e00240_bb0210) 2010; 107 Aitkenhead (10.1016/j.geodrs.2019.e00240_bb0005) 2017; 17 Vohland (10.1016/j.geodrs.2019.e00240_bb0220) 2011; 166 Peng (10.1016/j.geodrs.2019.e00240_bb0150) 2019; 337 Kuhn (10.1016/j.geodrs.2019.e00240_bb0095) 2018 Soriano-Disla (10.1016/j.geodrs.2019.e00240_bb0200) 2014; 49 Ng (10.1016/j.geodrs.2019.e00240_bb0135) 2019; 352 Rodionov (10.1016/j.geodrs.2019.e00240_bb0175) 2016; 163 Rayment (10.1016/j.geodrs.2019.e00240_bb0160) 1992 Kuhn (10.1016/j.geodrs.2019.e00240_bb0090) 2013 Rulequest Research (10.1016/j.geodrs.2019.e00240_bb0185) 2007 Clark (10.1016/j.geodrs.2019.e00240_bb0030) 1990; 95 Henderson (10.1016/j.geodrs.2019.e00240_bb0075) 2005; 124 Procter (10.1016/j.geodrs.2019.e00240_bb0155) 2015; 83 Reeves (10.1016/j.geodrs.2019.e00240_bb0170) 2010; 158 Xu (10.1016/j.geodrs.2019.e00240_bb0235) 2016; 8 Malone (10.1016/j.geodrs.2019.e00240_bb0100) 2014; 1 Mouazen (10.1016/j.geodrs.2019.e00240_bb0125) 2010; 158 Padarian (10.1016/j.geodrs.2019.e00240_bb0145) 2019; 16 Bouma (10.1016/j.geodrs.2019.e00240_bb0025) 1997; 26 Viscarra Rossel (10.1016/j.geodrs.2019.e00240_bb0215) 2016; 155 Mevik (10.1016/j.geodrs.2019.e00240_bb0105) 2007; 18 Ross (10.1016/j.geodrs.2019.e00240_bb0180) 2008 Geeves (10.1016/j.geodrs.2019.e00240_bb0060) 1995 Farifteh (10.1016/j.geodrs.2019.e00240_bb0050) 2007; 110 Nelson (10.1016/j.geodrs.2019.e00240_bb0130) 1996 Fajardo (10.1016/j.geodrs.2019.e00240_bb0045) 2017; 152 Wold (10.1016/j.geodrs.2019.e00240_bb0230) 1983; 973 Gomez (10.1016/j.geodrs.2019.e00240_bb0065) 2008; 146 Nocita (10.1016/j.geodrs.2019.e00240_bb0140) 2015; 132 Soriano-Disla (10.1016/j.geodrs.2019.e00240_bb0205) 2017; 161 |
References_xml | – start-page: 173 year: 2013 end-page: 220 ident: bb0090 article-title: Regression trees and rule-based models publication-title: Applied Predictive Modeling. New York – volume: 83 start-page: 66 year: 2015 end-page: 75 ident: bb0155 article-title: Soil carbon responses to past and future CO2 in three Texas prairie soils publication-title: Soil Biol. Biochem. – volume: 163 start-page: 89 year: 2016 end-page: 98 ident: bb0175 article-title: Proximal field Vis-NIR spectroscopy of soil organic carbon: a solution to clear obstacles related to vegetation and straw cover publication-title: Soil Tillage Res. – volume: 67 start-page: 1215 year: 2013 end-page: 1233 ident: bb0040 article-title: Review of a review on the applications of portable near-infrared spectrometers in the agro-food industry publication-title: Appl. Spectrosc. – volume: 1 start-page: 31 year: 2014 end-page: 47 ident: bb0100 article-title: A model for the identification of terrons in the Lower Hunter Valley, Australia publication-title: Geoderma Reg. – volume: 158 start-page: 3 year: 2010 end-page: 14 ident: bb0170 article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma – volume: 146 start-page: 403 year: 2008 end-page: 411 ident: bb0065 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study publication-title: Geoderma – volume: 107 start-page: 163 year: 2010 end-page: 215 ident: bb0210 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. – year: 2018 ident: bb0095 article-title: Cubist: Rule-and Instance-Based Regression Modeling – volume: 161 start-page: 24 year: 2017 end-page: 36 ident: bb0205 article-title: Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties publication-title: Biosyst. Eng. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: bb0195 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – year: 2008 ident: bb0180 article-title: R: A Language and Environment for Statistical Computing – volume: 94 start-page: 72 year: 2008 end-page: 79 ident: bb0110 article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy publication-title: Chemom. Intell. Lab. Syst. – year: 2007 ident: bb0185 article-title: Cubist Version 2.04. Rulequest Research – volume: 93 start-page: 13 year: 2007 end-page: 27 ident: bb0120 article-title: On-line measurement of some selected soil properties using a VIS–NIR sensor publication-title: Soil Tillage Res. – volume: 49 start-page: 139 year: 2014 end-page: 186 ident: bb0200 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. – volume: 17 start-page: 99 year: 2017 ident: bb0005 article-title: PHYLIS: a low-cost portable visible range spectrometer for soil and plants publication-title: Sensors (Basel) – volume: 18 year: 2007 ident: bb0105 article-title: The pls package: principal component and partial least squares regression in R publication-title: J. Stat. Softw. – volume: 155 start-page: 198 year: 2016 end-page: 230 ident: bb0215 article-title: A global spectral library to characterize the world's soil publication-title: Earth Sci. Rev. – volume: 158 start-page: 23 year: 2010 end-page: 31 ident: bb0125 article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy publication-title: Geoderma – volume: 43 start-page: 35 year: 2008 end-page: 54 ident: bb0020 article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas publication-title: Clay Miner. – volume: 337 start-page: 1309 year: 2019 end-page: 1319 ident: bb0150 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma – volume: 166 start-page: 198 year: 2011 end-page: 205 ident: bb0220 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma – volume: 41 start-page: 1101 year: 2003 end-page: 1114 ident: bb0080 article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy publication-title: Aust. J. Soil Res. – volume: 26 start-page: 26 year: 1997 ident: bb0025 article-title: Soil environmental quality: a European perspective publication-title: J. Environ. Qual. – volume: 56 start-page: 865 year: 1992 end-page: 872 ident: bb0070 article-title: High dimensional reflectance analysis of soil organic matter publication-title: Soil Sci. Soc. Am. J. – volume: 47 start-page: 4628 year: 2008 end-page: 4629 ident: bb0190 article-title: Practical guide to interpretive near-infrared spectroscopy. By Jerry Workman, Jr. and Lois Weyer publication-title: Angew. Chem. Int. Ed. – volume: 153 start-page: 155 year: 2009 end-page: 162 ident: bb0115 article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties publication-title: Geoderma – volume: 110 start-page: 59 year: 2007 end-page: 78 ident: bb0050 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote Sens. Environ. – volume: 172 start-page: 469 year: 2007 end-page: 485 ident: bb0035 article-title: Reflectance spectroscopy for routine agronomic soil analyses publication-title: Soil Sci. – volume: 132 start-page: 139 year: 2015 end-page: 159 ident: bb0140 article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. – year: 1992 ident: bb0160 article-title: Australian Laboratory Handbook of Soil and Water Chemical Methods – volume: 338 start-page: 422 year: 2019 end-page: 429 ident: bb0010 article-title: Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen publication-title: Geoderma – volume: 159 start-page: 259 year: 1995 end-page: 270 ident: bb0015 article-title: Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils publication-title: Soil Sci. – volume: 152 start-page: 103 year: 2017 end-page: 114 ident: bb0045 article-title: Measuring functional pedodiversity using spectroscopic information publication-title: Catena – volume: 973 start-page: 286 year: 1983 end-page: 293 ident: bb0230 article-title: The multivariate calibration method in chemistry solved by the PLS method publication-title: Lect. Notes Math. – start-page: 961 year: 1996 end-page: 1010 ident: bb0130 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods of Soil Analysis Part 3—Chemical Methods – volume: 95 start-page: 12653 year: 1990 end-page: 12680 ident: bb0030 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. – start-page: 363 year: 1986 end-page: 375 ident: bb0055 publication-title: Particle-Size Analysis in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods – year: 2011 ident: bb0165 article-title: Soil Chemical Methods–Australasia – volume: 352 start-page: 251 year: 2019 end-page: 267 ident: bb0135 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma – volume: 8 start-page: 42 year: 2016 ident: bb0235 article-title: Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data publication-title: Remote Sens. – year: 1995 ident: bb0060 article-title: The Physical, Chemical and Morphological Properties of Soils in the Wheat-Belt of Southern NSW and Northern Victoria – volume: 16 year: 2019 ident: bb0145 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Reg. – volume: 124 start-page: 383 year: 2005 end-page: 398 ident: bb0075 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma – volume: Vol. 221 start-page: 31 year: 1998 end-page: 33 ident: bb0225 article-title: Recommended Chemical Soil Test Procedures for the North Central Region Columbia University of Missouri Agricultural Experiment Station – volume: 21 start-page: 67 year: 2013 end-page: 80 ident: bb0085 article-title: Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination publication-title: J. Near Infrared Spectrosc. – volume: 18 issue: 2 year: 2007 ident: 10.1016/j.geodrs.2019.e00240_bb0105 article-title: The pls package: principal component and partial least squares regression in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v018.i02 – volume: 47 start-page: 4628 issue: 25 year: 2008 ident: 10.1016/j.geodrs.2019.e00240_bb0190 article-title: Practical guide to interpretive near-infrared spectroscopy. By Jerry Workman, Jr. and Lois Weyer publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200885575 – volume: 8 start-page: 42 issue: 1 year: 2016 ident: 10.1016/j.geodrs.2019.e00240_bb0235 article-title: Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data publication-title: Remote Sens. doi: 10.3390/rs8010042 – volume: 110 start-page: 59 issue: 1 year: 2007 ident: 10.1016/j.geodrs.2019.e00240_bb0050 article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.005 – volume: 67 start-page: 1215 issue: 11 year: 2013 ident: 10.1016/j.geodrs.2019.e00240_bb0040 article-title: Review of a review on the applications of portable near-infrared spectrometers in the agro-food industry publication-title: Appl. Spectrosc. doi: 10.1366/13-07228 – start-page: 961 year: 1996 ident: 10.1016/j.geodrs.2019.e00240_bb0130 article-title: Total carbon, organic carbon, and organic matter – volume: 152 start-page: 103 year: 2017 ident: 10.1016/j.geodrs.2019.e00240_bb0045 article-title: Measuring functional pedodiversity using spectroscopic information publication-title: Catena doi: 10.1016/j.catena.2017.01.012 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 10.1016/j.geodrs.2019.e00240_bb0195 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: Vol. 221 start-page: 31 year: 1998 ident: 10.1016/j.geodrs.2019.e00240_bb0225 – volume: 94 start-page: 72 year: 2008 ident: 10.1016/j.geodrs.2019.e00240_bb0110 article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2008.06.003 – volume: 107 start-page: 163 year: 2010 ident: 10.1016/j.geodrs.2019.e00240_bb0210 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)07005-7 – start-page: 173 year: 2013 ident: 10.1016/j.geodrs.2019.e00240_bb0090 article-title: Regression trees and rule-based models – volume: 43 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.geodrs.2019.e00240_bb0020 article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas publication-title: Clay Miner. doi: 10.1180/claymin.2008.043.1.03 – volume: 16 year: 2019 ident: 10.1016/j.geodrs.2019.e00240_bb0145 article-title: Using deep learning to predict soil properties from regional spectral data publication-title: Geoderma Reg. – volume: 161 start-page: 24 year: 2017 ident: 10.1016/j.geodrs.2019.e00240_bb0205 article-title: Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2017.06.017 – volume: 337 start-page: 1309 year: 2019 ident: 10.1016/j.geodrs.2019.e00240_bb0150 article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.006 – volume: 166 start-page: 198 issue: 1 year: 2011 ident: 10.1016/j.geodrs.2019.e00240_bb0220 article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2011.08.001 – volume: 338 start-page: 422 year: 2019 ident: 10.1016/j.geodrs.2019.e00240_bb0010 article-title: Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.031 – volume: 163 start-page: 89 year: 2016 ident: 10.1016/j.geodrs.2019.e00240_bb0175 article-title: Proximal field Vis-NIR spectroscopy of soil organic carbon: a solution to clear obstacles related to vegetation and straw cover publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.05.008 – year: 2007 ident: 10.1016/j.geodrs.2019.e00240_bb0185 – volume: 124 start-page: 383 issue: 3–4 year: 2005 ident: 10.1016/j.geodrs.2019.e00240_bb0075 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2004.06.007 – volume: 95 start-page: 12653 year: 1990 ident: 10.1016/j.geodrs.2019.e00240_bb0030 article-title: High spectral resolution reflectance spectroscopy of minerals publication-title: J. Geophys. Res. doi: 10.1029/JB095iB08p12653 – year: 1995 ident: 10.1016/j.geodrs.2019.e00240_bb0060 – volume: 158 start-page: 3 issue: 1–2 year: 2010 ident: 10.1016/j.geodrs.2019.e00240_bb0170 article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done? publication-title: Geoderma doi: 10.1016/j.geoderma.2009.04.005 – volume: 21 start-page: 67 issue: 1 year: 2013 ident: 10.1016/j.geodrs.2019.e00240_bb0085 article-title: Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.1035 – volume: 49 start-page: 139 issue: 2 year: 2014 ident: 10.1016/j.geodrs.2019.e00240_bb0200 article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2013.811081 – volume: 155 start-page: 198 year: 2016 ident: 10.1016/j.geodrs.2019.e00240_bb0215 article-title: A global spectral library to characterize the world's soil publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.01.012 – volume: 17 start-page: 99 issue: 1 year: 2017 ident: 10.1016/j.geodrs.2019.e00240_bb0005 article-title: PHYLIS: a low-cost portable visible range spectrometer for soil and plants publication-title: Sensors (Basel) doi: 10.3390/s17010099 – volume: 146 start-page: 403 issue: 3–4 year: 2008 ident: 10.1016/j.geodrs.2019.e00240_bb0065 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.011 – volume: 132 start-page: 139 year: 2015 ident: 10.1016/j.geodrs.2019.e00240_bb0140 article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring publication-title: Adv. Agron. doi: 10.1016/bs.agron.2015.02.002 – volume: 159 start-page: 259 issue: 4 year: 1995 ident: 10.1016/j.geodrs.2019.e00240_bb0015 article-title: Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils publication-title: Soil Sci. doi: 10.1097/00010694-199504000-00005 – volume: 1 start-page: 31 year: 2014 ident: 10.1016/j.geodrs.2019.e00240_bb0100 article-title: A model for the identification of terrons in the Lower Hunter Valley, Australia publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.08.001 – volume: 41 start-page: 1101 issue: 6 year: 2003 ident: 10.1016/j.geodrs.2019.e00240_bb0080 article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy publication-title: Aust. J. Soil Res. doi: 10.1071/SR02137 – volume: 83 start-page: 66 issue: C year: 2015 ident: 10.1016/j.geodrs.2019.e00240_bb0155 article-title: Soil carbon responses to past and future CO2 in three Texas prairie soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.01.012 – start-page: 363 year: 1986 ident: 10.1016/j.geodrs.2019.e00240_bb0055 – volume: 158 start-page: 23 issue: 1–2 year: 2010 ident: 10.1016/j.geodrs.2019.e00240_bb0125 article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.001 – volume: 153 start-page: 155 issue: 1 year: 2009 ident: 10.1016/j.geodrs.2019.e00240_bb0115 article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2009.07.021 – year: 1992 ident: 10.1016/j.geodrs.2019.e00240_bb0160 – year: 2018 ident: 10.1016/j.geodrs.2019.e00240_bb0095 – volume: 93 start-page: 13 issue: 1 year: 2007 ident: 10.1016/j.geodrs.2019.e00240_bb0120 article-title: On-line measurement of some selected soil properties using a VIS–NIR sensor publication-title: Soil Tillage Res. doi: 10.1016/j.still.2006.03.009 – year: 2011 ident: 10.1016/j.geodrs.2019.e00240_bb0165 – volume: 172 start-page: 469 issue: 6 year: 2007 ident: 10.1016/j.geodrs.2019.e00240_bb0035 article-title: Reflectance spectroscopy for routine agronomic soil analyses publication-title: Soil Sci. doi: 10.1097/ss.0b013e31804fa202 – volume: 352 start-page: 251 year: 2019 ident: 10.1016/j.geodrs.2019.e00240_bb0135 article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2019.06.016 – year: 2008 ident: 10.1016/j.geodrs.2019.e00240_bb0180 – volume: 56 start-page: 865 year: 1992 ident: 10.1016/j.geodrs.2019.e00240_bb0070 article-title: High dimensional reflectance analysis of soil organic matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600030031x – volume: 973 start-page: 286 year: 1983 ident: 10.1016/j.geodrs.2019.e00240_bb0230 article-title: The multivariate calibration method in chemistry solved by the PLS method publication-title: Lect. Notes Math. doi: 10.1007/BFb0062108 – volume: 26 start-page: 26 issue: 1 year: 1997 ident: 10.1016/j.geodrs.2019.e00240_bb0025 article-title: Soil environmental quality: a European perspective publication-title: J. Environ. Qual. doi: 10.2134/jeq1997.00472425002600010005x |
SSID | ssj0002953762 |
Score | 2.3669508 |
Snippet | Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00240 |
SubjectTerms | Accuracy calcium carbon clay cost effectiveness Cubist data collection exchangeable calcium exchangeable magnesium least squares Lixisols Low-cost sensors Luvisols magnesium Near infrared spectroscopy New South Wales Partial Least Squares Regression Portable sensors prediction Proximal sensing rapid methods reflectance sand soil pH soil sampling soil texture Solonetz spectrometers wavelengths |
Title | Evaluating low-cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia |
URI | https://dx.doi.org/10.1016/j.geodrs.2019.e00240 https://www.proquest.com/docview/2315261424 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBYleelL2VhL221Fhb5qSSVZth5DSMga2odtpX0z-uWQLrOCk7J_vydZDrRQAn0S2JIxp9PpO-nuO4Su6LCieQULUF5bQ7jWnGjpBOFcFZRV1gx5SHC-vROze37zmD0eoHGXCxPCKpPtb216tNbpySBJc7BeLge_KYuUQRwgSMjQBBeoD00-7KH-6Od8drc7aqEycJbQWGYuoySM6ZLoYqTXwnnbBOrua_nDRdKv9zapN-Y67kHTT-gogUc8av_vMzpw9Rf0d5IIu-sFXvn_xPjNFkdUrVcO16DJGLSoCYHmeANOq282GJAqbtR6abFKpCTYV3jjlyt41_h_OFbWwxMVaRTw7kDkGN1PJ3_GM5JKKBDDmNwSKw1VMAPCMa4kL5jhilKVC57ZQgFayJlwOasM4JhKSsNFpaQ1isnMKWY0O0G92tfuFGFVCC1Ubpk24NIVRgUaHamdy5gVmR2eIdbJrDSJXzyUuViVXSDZU9lKugySLltJnyGyG7Vu-TX29M-76Shf6UkJW8CekZfd7JWwhMK9iKqdf4ZODECMCCl_5x_--ld0SIMnHqPTvqHetnl23wGubPVFUsfQzn89zF8AZwjtGA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKe4ALAgGiPI0ER5PE9nrXBw4VpEpImwut1Jvxa6tAWEe7qSp-F3-QsdcbCSRUCanXXduyvvF4xvbMNwi9peOaljUooJw4S7gxnBjpBeFcV5TVzo55THA-XYrZOf98UVzsoV9DLkwMq8x7f7-np906fxllNEeb1Wr0hbJEGcTBBYkZmpMcWbnwP6_h3NZ9mH8CIb-j9Hh69nFGcmkBYhmTW-KkpRpmJjzjWvKKWa4p1aXghas0WNGSCV-y2oJ9r6W0XNRaOquZLLxm1jAY9w46iGxYoFYHR_PFbLm72qEycqTQVNauoCTOcUjaS5Fllz64NlKFT-R7n0jG_mUU_zIPyeYdP0D3s7OKj3o8HqI93zxC36eZILy5xOtwTWzotjh58WbtcQPoYFi1bQxsxx0ckkPbYfCMcas3K4d1JkHBocZdWK3hXxt-4FTJD091om3AuwuYx-j8VnB9gvab0PinCOtKGKFLx4yFI2RldaTtkcb7gjlRuPEhYgNmymY-81hWY62GwLVvqkdaRaRVj_QhIrtem57P44b25SAO9ce6VGBybuj5ZpCeApWN7zC68eEKGjFwmkRMMXz236O_RndnZ6cn6mS-XDxH92i8BUiRcS_Q_ra98i_BVdqaV3lpYvT1trXhN754KSc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+low-cost+portable+near+infrared+sensors+for+rapid+analysis+of+soils+from+South+Eastern+Australia&rft.jtitle=Geoderma+Regional&rft.au=Tang%2C+Yijia&rft.au=Jones%2C+Edward&rft.au=Minasny%2C+Budiman&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=20&rft_id=info:doi/10.1016%2Fj.geodrs.2019.e00240&rft.externalDocID=S2352009419302391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |