Evaluating low-cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia

Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 20; p. e00240
Main Authors Tang, Yijia, Jones, Edward, Minasny, Budiman
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have become available. This study aims to compare the accuracy of near infrared reflectance (NIR) instruments with different sizes and wavelength ranges on the prediction of soil properties. Soil samples were taken from southern New South Wales and northern Victoria, comprised of Chromosols, Dermosols, Kandosols, and Sodosols. In total, the dataset consists of 392 soil samples from the top 1 m. The study compared two research-grade Vis-NIR spectrometers (350–2500 nm) and two miniaturized NIR spectrometers with limited wavelengths (NeoSpectra operating at 1250–2500 nm and NIRVascan operating at 900–1700 nm). Cubist regression tree and Partial Least Squares Regression (PLSR) were used to build calibration models. The results showed that both modelling procedures are reliable for estimating soil properties. Cubist models gave greater validation r2 values for ten soil properties investigated for all four instruments. Based on the Cubist model, promising results were found in predictions of clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca (r2: 0.43–0.81). The results are also comparable to published studies for all instruments. As expected, the research-grade spectrometers provided the best prediction accuracies (r2: 0.56–0.81). Results from NeoSpectra provided a comparable accuracy with the Vis-NIR spectrometers in prediction of soil pH, CEC and exchangeable Ca and Mg (r2 > 0.63–0.78). NeoSpectra produced a slightly less accurate prediction of total carbon, sand, and clay. While NIRVascan showed the lowest accuracy, it still can be used in prediction of soil texture and total carbon with reasonable accuracy (r2 clay: 0.73; sand: 0.63; total carbon: 0.73). This study demonstrates the potential of miniaturized spectrometers with reduced wavelength ranges as cheaper instruments in soil analysis. •Miniaturized NIR spectrometers with limited spectral range were evaluated for soil analysis.•Good prediction accuracy was obtained for clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca.•Spectrometer 1250–2500 nm provided comparable accuracy compared to Vis-NIR spectrometers.•Low cost spectrometers are potentially useful for soil analysis.
AbstractList Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have become available. This study aims to compare the accuracy of near infrared reflectance (NIR) instruments with different sizes and wavelength ranges on the prediction of soil properties. Soil samples were taken from southern New South Wales and northern Victoria, comprised of Chromosols, Dermosols, Kandosols, and Sodosols. In total, the dataset consists of 392 soil samples from the top 1 m. The study compared two research-grade Vis-NIR spectrometers (350–2500 nm) and two miniaturized NIR spectrometers with limited wavelengths (NeoSpectra operating at 1250–2500 nm and NIRVascan operating at 900–1700 nm). Cubist regression tree and Partial Least Squares Regression (PLSR) were used to build calibration models. The results showed that both modelling procedures are reliable for estimating soil properties. Cubist models gave greater validation r2 values for ten soil properties investigated for all four instruments. Based on the Cubist model, promising results were found in predictions of clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca (r2: 0.43–0.81). The results are also comparable to published studies for all instruments. As expected, the research-grade spectrometers provided the best prediction accuracies (r2: 0.56–0.81). Results from NeoSpectra provided a comparable accuracy with the Vis-NIR spectrometers in prediction of soil pH, CEC and exchangeable Ca and Mg (r2 > 0.63–0.78). NeoSpectra produced a slightly less accurate prediction of total carbon, sand, and clay. While NIRVascan showed the lowest accuracy, it still can be used in prediction of soil texture and total carbon with reasonable accuracy (r2 clay: 0.73; sand: 0.63; total carbon: 0.73). This study demonstrates the potential of miniaturized spectrometers with reduced wavelength ranges as cheaper instruments in soil analysis. •Miniaturized NIR spectrometers with limited spectral range were evaluated for soil analysis.•Good prediction accuracy was obtained for clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca.•Spectrometer 1250–2500 nm provided comparable accuracy compared to Vis-NIR spectrometers.•Low cost spectrometers are potentially useful for soil analysis.
Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers working in the 350–2500 nm wavelength are commonly used for research purposes, but now miniaturized spectrometers with limited NIR ranges have become available. This study aims to compare the accuracy of near infrared reflectance (NIR) instruments with different sizes and wavelength ranges on the prediction of soil properties. Soil samples were taken from southern New South Wales and northern Victoria, comprised of Chromosols, Dermosols, Kandosols, and Sodosols. In total, the dataset consists of 392 soil samples from the top 1 m. The study compared two research-grade Vis-NIR spectrometers (350–2500 nm) and two miniaturized NIR spectrometers with limited wavelengths (NeoSpectra operating at 1250–2500 nm and NIRVascan operating at 900–1700 nm). Cubist regression tree and Partial Least Squares Regression (PLSR) were used to build calibration models. The results showed that both modelling procedures are reliable for estimating soil properties. Cubist models gave greater validation r² values for ten soil properties investigated for all four instruments. Based on the Cubist model, promising results were found in predictions of clay, sand, total carbon, CEC, pH, exchangeable Mg and Ca (r²: 0.43–0.81). The results are also comparable to published studies for all instruments. As expected, the research-grade spectrometers provided the best prediction accuracies (r²: 0.56–0.81). Results from NeoSpectra provided a comparable accuracy with the Vis-NIR spectrometers in prediction of soil pH, CEC and exchangeable Ca and Mg (r² > 0.63–0.78). NeoSpectra produced a slightly less accurate prediction of total carbon, sand, and clay. While NIRVascan showed the lowest accuracy, it still can be used in prediction of soil texture and total carbon with reasonable accuracy (r² clay: 0.73; sand: 0.63; total carbon: 0.73). This study demonstrates the potential of miniaturized spectrometers with reduced wavelength ranges as cheaper instruments in soil analysis.
ArticleNumber e00240
Author Tang, Yijia
Minasny, Budiman
Jones, Edward
Author_xml – sequence: 1
  givenname: Yijia
  surname: Tang
  fullname: Tang, Yijia
  email: ytan6449@uni.sydney.edu.au
– sequence: 2
  givenname: Edward
  surname: Jones
  fullname: Jones, Edward
– sequence: 3
  givenname: Budiman
  surname: Minasny
  fullname: Minasny, Budiman
BookMark eNqFkE1v1DAQhi3USpS2_4CDj1yyOLaT1ByQqmr5kCpxaDlbs86kePHay4xT1H9PqnBAHOA0I837vNI8r8RJLhmFeN2qTava_u1-84BlJN5o1boNKqWteiHOtOl0o5SzJ3_sL8Ul814tGdeZoddn4vv2EdIMNeYHmcrPJhSu8liowi6hzAgkY54ICEfJmLkQy6mQJDjGUUKG9MSRZZkkl5iWG5WDvCtz_Sa3wBUpy-uZK0GKcCFOJ0iMl7_nufj6YXt_86m5_fLx8831bROMcbUZXdBgd7sejQVnr0ywoDUMve3GKxg6NZgeBzOFdtCTc8H2E7gxgHEdggk7cy7erL1HKj9m5OoPkQOmBBnLzF6bttN9a7VdonaNBirMhJM_UjwAPflW-We9fu9Xvf5Zr1_1Lti7v7AQ6yKx5OXTmP4Hv19hXBw8RiTPIWIOOEbCUP1Y4r8LfgHP9Zzt
CitedBy_id crossref_primary_10_1021_acs_est_0c04130
crossref_primary_10_1002_saj2_70028
crossref_primary_10_1016_j_geoderma_2023_116651
crossref_primary_10_1016_j_compag_2020_105630
crossref_primary_10_1016_j_biosystemseng_2024_07_001
crossref_primary_10_3390_s21113927
crossref_primary_10_1139_cjss_2023_0084
crossref_primary_10_1002_saj2_20607
crossref_primary_10_3390_rs17050771
crossref_primary_10_1016_j_geoderma_2020_114794
crossref_primary_10_1002_chem_202002838
crossref_primary_10_1016_j_tifs_2024_104850
crossref_primary_10_1016_j_compag_2024_109233
crossref_primary_10_1080_10408347_2022_2047607
crossref_primary_10_1080_10408347_2024_2351820
crossref_primary_10_1080_26895293_2024_2422109
crossref_primary_10_1177_09670335211049506
crossref_primary_10_1016_j_wasman_2021_03_045
crossref_primary_10_1016_j_soisec_2021_100023
crossref_primary_10_1071_AN21069
crossref_primary_10_1007_s10661_020_08642_2
crossref_primary_10_1016_j_geoderma_2022_116182
crossref_primary_10_7717_peerj_11042
crossref_primary_10_1002_saj2_20678
crossref_primary_10_1111_ejss_13481
crossref_primary_10_1111_ejss_13145
crossref_primary_10_5194_soil_8_467_2022
crossref_primary_10_1016_j_soisec_2022_100061
crossref_primary_10_1016_j_biosystemseng_2022_10_011
crossref_primary_10_3390_soilsystems6030066
crossref_primary_10_3390_su13126588
crossref_primary_10_46604_aiti_2023_12683
crossref_primary_10_1111_gcb_14815
crossref_primary_10_1016_j_dib_2024_111229
crossref_primary_10_1111_ejss_70053
crossref_primary_10_59717_j_xinn_geo_2023_100015
crossref_primary_10_3390_rs15061624
crossref_primary_10_5194_bg_19_1435_2022
crossref_primary_10_3390_rs13214439
crossref_primary_10_1016_j_geoderma_2020_114728
crossref_primary_10_1111_sum_12952
crossref_primary_10_3390_land10010063
Cites_doi 10.18637/jss.v018.i02
10.1002/anie.200885575
10.3390/rs8010042
10.1016/j.rse.2007.02.005
10.1366/13-07228
10.1016/j.catena.2017.01.012
10.1021/ac60214a047
10.1016/j.chemolab.2008.06.003
10.1016/S0065-2113(10)07005-7
10.1180/claymin.2008.043.1.03
10.1016/j.biosystemseng.2017.06.017
10.1016/j.geoderma.2018.08.006
10.1016/j.geoderma.2011.08.001
10.1016/j.geoderma.2018.12.031
10.1016/j.still.2016.05.008
10.1016/j.geoderma.2004.06.007
10.1029/JB095iB08p12653
10.1016/j.geoderma.2009.04.005
10.1255/jnirs.1035
10.1080/05704928.2013.811081
10.1016/j.earscirev.2016.01.012
10.3390/s17010099
10.1016/j.geoderma.2008.06.011
10.1016/bs.agron.2015.02.002
10.1097/00010694-199504000-00005
10.1016/j.geodrs.2014.08.001
10.1071/SR02137
10.1016/j.soilbio.2015.01.012
10.1016/j.geoderma.2010.03.001
10.1016/j.geoderma.2009.07.021
10.1016/j.still.2006.03.009
10.1097/ss.0b013e31804fa202
10.1016/j.geoderma.2019.06.016
10.2136/sssaj1992.03615995005600030031x
10.1007/BFb0062108
10.2134/jeq1997.00472425002600010005x
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2019.e00240
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2019_e00240
S2352009419302391
GeographicLocations New South Wales
GeographicLocations_xml – name: New South Wales
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-d9c2a4bb6e34a9483c4a22a7645d8a750736e73fc172f99c46fa9dca395ea3cb3
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Mon Jul 21 09:28:31 EDT 2025
Tue Jul 01 02:07:18 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Fri Feb 23 02:47:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Near infrared spectroscopy
Low-cost sensors
Accuracy
Luvisols
Portable sensors
Cubist
Proximal sensing
Lixisols
Solonetz
Partial Least Squares Regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-d9c2a4bb6e34a9483c4a22a7645d8a750736e73fc172f99c46fa9dca395ea3cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2315261424
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2315261424
crossref_primary_10_1016_j_geodrs_2019_e00240
crossref_citationtrail_10_1016_j_geodrs_2019_e00240
elsevier_sciencedirect_doi_10_1016_j_geodrs_2019_e00240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Procter, Gill, Fay, Polley, Jackson (bb0155) 2015; 83
Ng, Minasny, Montazerolghaem, Padarian, Ferguson, Bailey, McBratney (bb0135) 2019; 352
Gomez, Viscarra Rossel, Mcbratney (bb0065) 2008; 146
Ross, Robert (bb0180) 2008
Wold, Martens, Wold (bb0230) 1983; 973
Barthès, Kouakoua, Clairotte, Lallemand, Chapuis-Lardy, Rabenarivo, Roussel (bb0010) 2019; 338
Dos Santos, Lopo, Páscoa, Lopes (bb0040) 2013; 67
Aitkenhead, Gaskin, Lafouge, Hawes, Aitkenhead (bb0005) 2017; 17
Ben-Dor, Banin (bb0015) 1995; 159
Clark, King, Klejwa, Swayze, Vergo, CLARK (bb0030) 1990; 95
Xu, Zeng, Huang, Wu, Vanleeuwen (bb0235) 2016; 8
Soriano-Disla, Janik, Allen, Mclaughlin (bb0205) 2017; 161
Mouazen, Kuang, De Baerdemaeker, Ramon (bb0125) 2010; 158
Minasny, McBratney (bb0110) 2008; 94
Peng, Biswas, Jiang, Zhao, Hu, Hu, Shi (bb0150) 2019; 337
Padarian, Minasny, McBratney (bb0145) 2019; 16
Rayment, Lyons (bb0165) 2011
Nelson, Sommers (bb0130) 1996
Islam, Singh, McBratney (bb0080) 2003; 41
Henderson, Bui, Moran, Simon (bb0075) 2005; 124
Vohland, Besold, Hill, Fründ (bb0220) 2011; 166
Minasny, Tranter, Mcbratney, Brough, Murphy (bb0115) 2009; 153
Stenberg, Viscarra Rossel, Mouazen, Wetterlind (bb0210) 2010; 107
Cohen, Mylavarapu, Bogrekci, Lee, Clark (bb0035) 2007; 172
Reeves (bb0170) 2010; 158
Knadel, Stenberg, Deng, Thomsen, Greve (bb0085) 2013; 21
Malone, Hughes, Mcbratney, Minasny (bb0100) 2014; 1
Bouma (bb0025) 1997; 26
Savitzky, Golay (bb0195) 1964; 36
Gee, Bauder (bb0055) 1986
Kuhn, Weston, Keefer, Coulter, Quinlan (bb0095) 2018
Nocita, Stevens, Van Wesemael, Aitkenhead, Bachmaann, Wetterlind (bb0140) 2015; 132
Viscarra Rossel, Behrens, Ben-Dor, Brown, Demattê, Shepherd, Ji (bb0215) 2016; 155
Farifteh, Van Der Meer, Atzberger, Carranza (bb0050) 2007; 110
Kuhn, Johnson (bb0090) 2013
Rayment, Higginson (bb0160) 1992
Rodionov, Pätzold, Welp, Pude, Amelung (bb0175) 2016; 163
Mevik, Wehrens (bb0105) 2007; 18
Fajardo, Mcbratney, Minasny (bb0045) 2017; 152
Warncke, Brown (bb0225) 1998; Vol. 221
Bishop, Lane, Dyar, Brown (bb0020) 2008; 43
Salzer (bb0190) 2008; 47
Soriano-Disla, Janik, Rossel, Macdonald, Mclaughlin (bb0200) 2014; 49
Mouazen, Maleki, De Baerdemaeker, Ramon (bb0120) 2007; 93
Henderson, Baumgardner, Franzmeier, Stott, Coster (bb0070) 1992; 56
Rulequest Research (bb0185) 2007
Geeves, Cresswell, Murphy (bb0060) 1995
Knadel (10.1016/j.geodrs.2019.e00240_bb0085) 2013; 21
Dos Santos (10.1016/j.geodrs.2019.e00240_bb0040) 2013; 67
Rayment (10.1016/j.geodrs.2019.e00240_bb0165) 2011
Warncke (10.1016/j.geodrs.2019.e00240_bb0225) 1998; Vol. 221
Mouazen (10.1016/j.geodrs.2019.e00240_bb0120) 2007; 93
Salzer (10.1016/j.geodrs.2019.e00240_bb0190) 2008; 47
Henderson (10.1016/j.geodrs.2019.e00240_bb0070) 1992; 56
Bishop (10.1016/j.geodrs.2019.e00240_bb0020) 2008; 43
Cohen (10.1016/j.geodrs.2019.e00240_bb0035) 2007; 172
Gee (10.1016/j.geodrs.2019.e00240_bb0055) 1986
Minasny (10.1016/j.geodrs.2019.e00240_bb0110) 2008; 94
Minasny (10.1016/j.geodrs.2019.e00240_bb0115) 2009; 153
Islam (10.1016/j.geodrs.2019.e00240_bb0080) 2003; 41
Ben-Dor (10.1016/j.geodrs.2019.e00240_bb0015) 1995; 159
Barthès (10.1016/j.geodrs.2019.e00240_bb0010) 2019; 338
Savitzky (10.1016/j.geodrs.2019.e00240_bb0195) 1964; 36
Stenberg (10.1016/j.geodrs.2019.e00240_bb0210) 2010; 107
Aitkenhead (10.1016/j.geodrs.2019.e00240_bb0005) 2017; 17
Vohland (10.1016/j.geodrs.2019.e00240_bb0220) 2011; 166
Peng (10.1016/j.geodrs.2019.e00240_bb0150) 2019; 337
Kuhn (10.1016/j.geodrs.2019.e00240_bb0095) 2018
Soriano-Disla (10.1016/j.geodrs.2019.e00240_bb0200) 2014; 49
Ng (10.1016/j.geodrs.2019.e00240_bb0135) 2019; 352
Rodionov (10.1016/j.geodrs.2019.e00240_bb0175) 2016; 163
Rayment (10.1016/j.geodrs.2019.e00240_bb0160) 1992
Kuhn (10.1016/j.geodrs.2019.e00240_bb0090) 2013
Rulequest Research (10.1016/j.geodrs.2019.e00240_bb0185) 2007
Clark (10.1016/j.geodrs.2019.e00240_bb0030) 1990; 95
Henderson (10.1016/j.geodrs.2019.e00240_bb0075) 2005; 124
Procter (10.1016/j.geodrs.2019.e00240_bb0155) 2015; 83
Reeves (10.1016/j.geodrs.2019.e00240_bb0170) 2010; 158
Xu (10.1016/j.geodrs.2019.e00240_bb0235) 2016; 8
Malone (10.1016/j.geodrs.2019.e00240_bb0100) 2014; 1
Mouazen (10.1016/j.geodrs.2019.e00240_bb0125) 2010; 158
Padarian (10.1016/j.geodrs.2019.e00240_bb0145) 2019; 16
Bouma (10.1016/j.geodrs.2019.e00240_bb0025) 1997; 26
Viscarra Rossel (10.1016/j.geodrs.2019.e00240_bb0215) 2016; 155
Mevik (10.1016/j.geodrs.2019.e00240_bb0105) 2007; 18
Ross (10.1016/j.geodrs.2019.e00240_bb0180) 2008
Geeves (10.1016/j.geodrs.2019.e00240_bb0060) 1995
Farifteh (10.1016/j.geodrs.2019.e00240_bb0050) 2007; 110
Nelson (10.1016/j.geodrs.2019.e00240_bb0130) 1996
Fajardo (10.1016/j.geodrs.2019.e00240_bb0045) 2017; 152
Wold (10.1016/j.geodrs.2019.e00240_bb0230) 1983; 973
Gomez (10.1016/j.geodrs.2019.e00240_bb0065) 2008; 146
Nocita (10.1016/j.geodrs.2019.e00240_bb0140) 2015; 132
Soriano-Disla (10.1016/j.geodrs.2019.e00240_bb0205) 2017; 161
References_xml – start-page: 173
  year: 2013
  end-page: 220
  ident: bb0090
  article-title: Regression trees and rule-based models
  publication-title: Applied Predictive Modeling. New York
– volume: 83
  start-page: 66
  year: 2015
  end-page: 75
  ident: bb0155
  article-title: Soil carbon responses to past and future CO2 in three Texas prairie soils
  publication-title: Soil Biol. Biochem.
– volume: 163
  start-page: 89
  year: 2016
  end-page: 98
  ident: bb0175
  article-title: Proximal field Vis-NIR spectroscopy of soil organic carbon: a solution to clear obstacles related to vegetation and straw cover
  publication-title: Soil Tillage Res.
– volume: 67
  start-page: 1215
  year: 2013
  end-page: 1233
  ident: bb0040
  article-title: Review of a review on the applications of portable near-infrared spectrometers in the agro-food industry
  publication-title: Appl. Spectrosc.
– volume: 1
  start-page: 31
  year: 2014
  end-page: 47
  ident: bb0100
  article-title: A model for the identification of terrons in the Lower Hunter Valley, Australia
  publication-title: Geoderma Reg.
– volume: 158
  start-page: 3
  year: 2010
  end-page: 14
  ident: bb0170
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
– volume: 146
  start-page: 403
  year: 2008
  end-page: 411
  ident: bb0065
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  ident: bb0210
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
– year: 2018
  ident: bb0095
  article-title: Cubist: Rule-and Instance-Based Regression Modeling
– volume: 161
  start-page: 24
  year: 2017
  end-page: 36
  ident: bb0205
  article-title: Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties
  publication-title: Biosyst. Eng.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bb0195
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– year: 2008
  ident: bb0180
  article-title: R: A Language and Environment for Statistical Computing
– volume: 94
  start-page: 72
  year: 2008
  end-page: 79
  ident: bb0110
  article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2007
  ident: bb0185
  article-title: Cubist Version 2.04. Rulequest Research
– volume: 93
  start-page: 13
  year: 2007
  end-page: 27
  ident: bb0120
  article-title: On-line measurement of some selected soil properties using a VIS–NIR sensor
  publication-title: Soil Tillage Res.
– volume: 49
  start-page: 139
  year: 2014
  end-page: 186
  ident: bb0200
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
– volume: 17
  start-page: 99
  year: 2017
  ident: bb0005
  article-title: PHYLIS: a low-cost portable visible range spectrometer for soil and plants
  publication-title: Sensors (Basel)
– volume: 18
  year: 2007
  ident: bb0105
  article-title: The pls package: principal component and partial least squares regression in R
  publication-title: J. Stat. Softw.
– volume: 155
  start-page: 198
  year: 2016
  end-page: 230
  ident: bb0215
  article-title: A global spectral library to characterize the world's soil
  publication-title: Earth Sci. Rev.
– volume: 158
  start-page: 23
  year: 2010
  end-page: 31
  ident: bb0125
  article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy
  publication-title: Geoderma
– volume: 43
  start-page: 35
  year: 2008
  end-page: 54
  ident: bb0020
  article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas
  publication-title: Clay Miner.
– volume: 337
  start-page: 1309
  year: 2019
  end-page: 1319
  ident: bb0150
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
– volume: 166
  start-page: 198
  year: 2011
  end-page: 205
  ident: bb0220
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
– volume: 41
  start-page: 1101
  year: 2003
  end-page: 1114
  ident: bb0080
  article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy
  publication-title: Aust. J. Soil Res.
– volume: 26
  start-page: 26
  year: 1997
  ident: bb0025
  article-title: Soil environmental quality: a European perspective
  publication-title: J. Environ. Qual.
– volume: 56
  start-page: 865
  year: 1992
  end-page: 872
  ident: bb0070
  article-title: High dimensional reflectance analysis of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
– volume: 47
  start-page: 4628
  year: 2008
  end-page: 4629
  ident: bb0190
  article-title: Practical guide to interpretive near-infrared spectroscopy. By Jerry Workman, Jr. and Lois Weyer
  publication-title: Angew. Chem. Int. Ed.
– volume: 153
  start-page: 155
  year: 2009
  end-page: 162
  ident: bb0115
  article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties
  publication-title: Geoderma
– volume: 110
  start-page: 59
  year: 2007
  end-page: 78
  ident: bb0050
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
– volume: 172
  start-page: 469
  year: 2007
  end-page: 485
  ident: bb0035
  article-title: Reflectance spectroscopy for routine agronomic soil analyses
  publication-title: Soil Sci.
– volume: 132
  start-page: 139
  year: 2015
  end-page: 159
  ident: bb0140
  article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron.
– year: 1992
  ident: bb0160
  article-title: Australian Laboratory Handbook of Soil and Water Chemical Methods
– volume: 338
  start-page: 422
  year: 2019
  end-page: 429
  ident: bb0010
  article-title: Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen
  publication-title: Geoderma
– volume: 159
  start-page: 259
  year: 1995
  end-page: 270
  ident: bb0015
  article-title: Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils
  publication-title: Soil Sci.
– volume: 152
  start-page: 103
  year: 2017
  end-page: 114
  ident: bb0045
  article-title: Measuring functional pedodiversity using spectroscopic information
  publication-title: Catena
– volume: 973
  start-page: 286
  year: 1983
  end-page: 293
  ident: bb0230
  article-title: The multivariate calibration method in chemistry solved by the PLS method
  publication-title: Lect. Notes Math.
– start-page: 961
  year: 1996
  end-page: 1010
  ident: bb0130
  article-title: Total carbon, organic carbon, and organic matter
  publication-title: Methods of Soil Analysis Part 3—Chemical Methods
– volume: 95
  start-page: 12653
  year: 1990
  end-page: 12680
  ident: bb0030
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res.
– start-page: 363
  year: 1986
  end-page: 375
  ident: bb0055
  publication-title: Particle-Size Analysis in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods
– year: 2011
  ident: bb0165
  article-title: Soil Chemical Methods–Australasia
– volume: 352
  start-page: 251
  year: 2019
  end-page: 267
  ident: bb0135
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
– volume: 8
  start-page: 42
  year: 2016
  ident: bb0235
  article-title: Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data
  publication-title: Remote Sens.
– year: 1995
  ident: bb0060
  article-title: The Physical, Chemical and Morphological Properties of Soils in the Wheat-Belt of Southern NSW and Northern Victoria
– volume: 16
  year: 2019
  ident: bb0145
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Reg.
– volume: 124
  start-page: 383
  year: 2005
  end-page: 398
  ident: bb0075
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
– volume: Vol. 221
  start-page: 31
  year: 1998
  end-page: 33
  ident: bb0225
  article-title: Recommended Chemical Soil Test Procedures for the North Central Region Columbia University of Missouri Agricultural Experiment Station
– volume: 21
  start-page: 67
  year: 2013
  end-page: 80
  ident: bb0085
  article-title: Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination
  publication-title: J. Near Infrared Spectrosc.
– volume: 18
  issue: 2
  year: 2007
  ident: 10.1016/j.geodrs.2019.e00240_bb0105
  article-title: The pls package: principal component and partial least squares regression in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v018.i02
– volume: 47
  start-page: 4628
  issue: 25
  year: 2008
  ident: 10.1016/j.geodrs.2019.e00240_bb0190
  article-title: Practical guide to interpretive near-infrared spectroscopy. By Jerry Workman, Jr. and Lois Weyer
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200885575
– volume: 8
  start-page: 42
  issue: 1
  year: 2016
  ident: 10.1016/j.geodrs.2019.e00240_bb0235
  article-title: Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data
  publication-title: Remote Sens.
  doi: 10.3390/rs8010042
– volume: 110
  start-page: 59
  issue: 1
  year: 2007
  ident: 10.1016/j.geodrs.2019.e00240_bb0050
  article-title: Quantitative analysis of salt-affected soil reflectance spectra: a comparison of two adaptive methods (PLSR and ANN)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.005
– volume: 67
  start-page: 1215
  issue: 11
  year: 2013
  ident: 10.1016/j.geodrs.2019.e00240_bb0040
  article-title: Review of a review on the applications of portable near-infrared spectrometers in the agro-food industry
  publication-title: Appl. Spectrosc.
  doi: 10.1366/13-07228
– start-page: 961
  year: 1996
  ident: 10.1016/j.geodrs.2019.e00240_bb0130
  article-title: Total carbon, organic carbon, and organic matter
– volume: 152
  start-page: 103
  year: 2017
  ident: 10.1016/j.geodrs.2019.e00240_bb0045
  article-title: Measuring functional pedodiversity using spectroscopic information
  publication-title: Catena
  doi: 10.1016/j.catena.2017.01.012
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.geodrs.2019.e00240_bb0195
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: Vol. 221
  start-page: 31
  year: 1998
  ident: 10.1016/j.geodrs.2019.e00240_bb0225
– volume: 94
  start-page: 72
  year: 2008
  ident: 10.1016/j.geodrs.2019.e00240_bb0110
  article-title: Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2008.06.003
– volume: 107
  start-page: 163
  year: 2010
  ident: 10.1016/j.geodrs.2019.e00240_bb0210
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)07005-7
– start-page: 173
  year: 2013
  ident: 10.1016/j.geodrs.2019.e00240_bb0090
  article-title: Regression trees and rule-based models
– volume: 43
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.geodrs.2019.e00240_bb0020
  article-title: Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas
  publication-title: Clay Miner.
  doi: 10.1180/claymin.2008.043.1.03
– volume: 16
  year: 2019
  ident: 10.1016/j.geodrs.2019.e00240_bb0145
  article-title: Using deep learning to predict soil properties from regional spectral data
  publication-title: Geoderma Reg.
– volume: 161
  start-page: 24
  year: 2017
  ident: 10.1016/j.geodrs.2019.e00240_bb0205
  article-title: Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.06.017
– volume: 337
  start-page: 1309
  year: 2019
  ident: 10.1016/j.geodrs.2019.e00240_bb0150
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.006
– volume: 166
  start-page: 198
  issue: 1
  year: 2011
  ident: 10.1016/j.geodrs.2019.e00240_bb0220
  article-title: Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.08.001
– volume: 338
  start-page: 422
  year: 2019
  ident: 10.1016/j.geodrs.2019.e00240_bb0010
  article-title: Performance comparison between a miniaturized and a conventional near infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.031
– volume: 163
  start-page: 89
  year: 2016
  ident: 10.1016/j.geodrs.2019.e00240_bb0175
  article-title: Proximal field Vis-NIR spectroscopy of soil organic carbon: a solution to clear obstacles related to vegetation and straw cover
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2016.05.008
– year: 2007
  ident: 10.1016/j.geodrs.2019.e00240_bb0185
– volume: 124
  start-page: 383
  issue: 3–4
  year: 2005
  ident: 10.1016/j.geodrs.2019.e00240_bb0075
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– volume: 95
  start-page: 12653
  year: 1990
  ident: 10.1016/j.geodrs.2019.e00240_bb0030
  article-title: High spectral resolution reflectance spectroscopy of minerals
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB095iB08p12653
– year: 1995
  ident: 10.1016/j.geodrs.2019.e00240_bb0060
– volume: 158
  start-page: 3
  issue: 1–2
  year: 2010
  ident: 10.1016/j.geodrs.2019.e00240_bb0170
  article-title: Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: where are we and what needs to be done?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.04.005
– volume: 21
  start-page: 67
  issue: 1
  year: 2013
  ident: 10.1016/j.geodrs.2019.e00240_bb0085
  article-title: Comparing predictive abilities of three visible-near infrared spectrophotometers for soil organic carbon and clay determination
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.1035
– volume: 49
  start-page: 139
  issue: 2
  year: 2014
  ident: 10.1016/j.geodrs.2019.e00240_bb0200
  article-title: The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2013.811081
– volume: 155
  start-page: 198
  year: 2016
  ident: 10.1016/j.geodrs.2019.e00240_bb0215
  article-title: A global spectral library to characterize the world's soil
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.01.012
– volume: 17
  start-page: 99
  issue: 1
  year: 2017
  ident: 10.1016/j.geodrs.2019.e00240_bb0005
  article-title: PHYLIS: a low-cost portable visible range spectrometer for soil and plants
  publication-title: Sensors (Basel)
  doi: 10.3390/s17010099
– volume: 146
  start-page: 403
  issue: 3–4
  year: 2008
  ident: 10.1016/j.geodrs.2019.e00240_bb0065
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.011
– volume: 132
  start-page: 139
  year: 2015
  ident: 10.1016/j.geodrs.2019.e00240_bb0140
  article-title: Soil spectroscopy: an alternative to wet chemistry for soil monitoring
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2015.02.002
– volume: 159
  start-page: 259
  issue: 4
  year: 1995
  ident: 10.1016/j.geodrs.2019.e00240_bb0015
  article-title: Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils
  publication-title: Soil Sci.
  doi: 10.1097/00010694-199504000-00005
– volume: 1
  start-page: 31
  year: 2014
  ident: 10.1016/j.geodrs.2019.e00240_bb0100
  article-title: A model for the identification of terrons in the Lower Hunter Valley, Australia
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2014.08.001
– volume: 41
  start-page: 1101
  issue: 6
  year: 2003
  ident: 10.1016/j.geodrs.2019.e00240_bb0080
  article-title: Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR02137
– volume: 83
  start-page: 66
  issue: C
  year: 2015
  ident: 10.1016/j.geodrs.2019.e00240_bb0155
  article-title: Soil carbon responses to past and future CO2 in three Texas prairie soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.01.012
– start-page: 363
  year: 1986
  ident: 10.1016/j.geodrs.2019.e00240_bb0055
– volume: 158
  start-page: 23
  issue: 1–2
  year: 2010
  ident: 10.1016/j.geodrs.2019.e00240_bb0125
  article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.001
– volume: 153
  start-page: 155
  issue: 1
  year: 2009
  ident: 10.1016/j.geodrs.2019.e00240_bb0115
  article-title: Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.07.021
– year: 1992
  ident: 10.1016/j.geodrs.2019.e00240_bb0160
– year: 2018
  ident: 10.1016/j.geodrs.2019.e00240_bb0095
– volume: 93
  start-page: 13
  issue: 1
  year: 2007
  ident: 10.1016/j.geodrs.2019.e00240_bb0120
  article-title: On-line measurement of some selected soil properties using a VIS–NIR sensor
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2006.03.009
– year: 2011
  ident: 10.1016/j.geodrs.2019.e00240_bb0165
– volume: 172
  start-page: 469
  issue: 6
  year: 2007
  ident: 10.1016/j.geodrs.2019.e00240_bb0035
  article-title: Reflectance spectroscopy for routine agronomic soil analyses
  publication-title: Soil Sci.
  doi: 10.1097/ss.0b013e31804fa202
– volume: 352
  start-page: 251
  year: 2019
  ident: 10.1016/j.geodrs.2019.e00240_bb0135
  article-title: Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.016
– year: 2008
  ident: 10.1016/j.geodrs.2019.e00240_bb0180
– volume: 56
  start-page: 865
  year: 1992
  ident: 10.1016/j.geodrs.2019.e00240_bb0070
  article-title: High dimensional reflectance analysis of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600030031x
– volume: 973
  start-page: 286
  year: 1983
  ident: 10.1016/j.geodrs.2019.e00240_bb0230
  article-title: The multivariate calibration method in chemistry solved by the PLS method
  publication-title: Lect. Notes Math.
  doi: 10.1007/BFb0062108
– volume: 26
  start-page: 26
  issue: 1
  year: 1997
  ident: 10.1016/j.geodrs.2019.e00240_bb0025
  article-title: Soil environmental quality: a European perspective
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1997.00472425002600010005x
SSID ssj0002953762
Score 2.3669508
Snippet Near infrared spectroscopy has been proposed as a rapid and cost-effective method for soil analysis. Full-range visible near infrared (Vis-NIR) spectrometers...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00240
SubjectTerms Accuracy
calcium
carbon
clay
cost effectiveness
Cubist
data collection
exchangeable calcium
exchangeable magnesium
least squares
Lixisols
Low-cost sensors
Luvisols
magnesium
Near infrared spectroscopy
New South Wales
Partial Least Squares Regression
Portable sensors
prediction
Proximal sensing
rapid methods
reflectance
sand
soil pH
soil sampling
soil texture
Solonetz
spectrometers
wavelengths
Title Evaluating low-cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia
URI https://dx.doi.org/10.1016/j.geodrs.2019.e00240
https://www.proquest.com/docview/2315261424
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBYleelL2VhL221Fhb5qSSVZth5DSMga2odtpX0z-uWQLrOCk7J_vydZDrRQAn0S2JIxp9PpO-nuO4Su6LCieQULUF5bQ7jWnGjpBOFcFZRV1gx5SHC-vROze37zmD0eoHGXCxPCKpPtb216tNbpySBJc7BeLge_KYuUQRwgSMjQBBeoD00-7KH-6Od8drc7aqEycJbQWGYuoySM6ZLoYqTXwnnbBOrua_nDRdKv9zapN-Y67kHTT-gogUc8av_vMzpw9Rf0d5IIu-sFXvn_xPjNFkdUrVcO16DJGLSoCYHmeANOq282GJAqbtR6abFKpCTYV3jjlyt41_h_OFbWwxMVaRTw7kDkGN1PJ3_GM5JKKBDDmNwSKw1VMAPCMa4kL5jhilKVC57ZQgFayJlwOasM4JhKSsNFpaQ1isnMKWY0O0G92tfuFGFVCC1Ubpk24NIVRgUaHamdy5gVmR2eIdbJrDSJXzyUuViVXSDZU9lKugySLltJnyGyG7Vu-TX29M-76Shf6UkJW8CekZfd7JWwhMK9iKqdf4ZODECMCCl_5x_--ld0SIMnHqPTvqHetnl23wGubPVFUsfQzn89zF8AZwjtGA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKe4ALAgGiPI0ER5PE9nrXBw4VpEpImwut1Jvxa6tAWEe7qSp-F3-QsdcbCSRUCanXXduyvvF4xvbMNwi9peOaljUooJw4S7gxnBjpBeFcV5TVzo55THA-XYrZOf98UVzsoV9DLkwMq8x7f7-np906fxllNEeb1Wr0hbJEGcTBBYkZmpMcWbnwP6_h3NZ9mH8CIb-j9Hh69nFGcmkBYhmTW-KkpRpmJjzjWvKKWa4p1aXghas0WNGSCV-y2oJ9r6W0XNRaOquZLLxm1jAY9w46iGxYoFYHR_PFbLm72qEycqTQVNauoCTOcUjaS5Fllz64NlKFT-R7n0jG_mUU_zIPyeYdP0D3s7OKj3o8HqI93zxC36eZILy5xOtwTWzotjh58WbtcQPoYFi1bQxsxx0ckkPbYfCMcas3K4d1JkHBocZdWK3hXxt-4FTJD091om3AuwuYx-j8VnB9gvab0PinCOtKGKFLx4yFI2RldaTtkcb7gjlRuPEhYgNmymY-81hWY62GwLVvqkdaRaRVj_QhIrtem57P44b25SAO9ce6VGBybuj5ZpCeApWN7zC68eEKGjFwmkRMMXz236O_RndnZ6cn6mS-XDxH92i8BUiRcS_Q_ra98i_BVdqaV3lpYvT1trXhN754KSc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+low-cost+portable+near+infrared+sensors+for+rapid+analysis+of+soils+from+South+Eastern+Australia&rft.jtitle=Geoderma+Regional&rft.au=Tang%2C+Yijia&rft.au=Jones%2C+Edward&rft.au=Minasny%2C+Budiman&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.volume=20&rft_id=info:doi/10.1016%2Fj.geodrs.2019.e00240&rft.externalDocID=S2352009419302391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon