Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si
It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors. Nevertheless, in this study, we demonstrate that using high-numerical-aperture 800 nm femtosecond laser...
Saved in:
Published in | Chinese physics B Vol. 33; no. 8; pp. 87901 - 114 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad4cd6 |
Cover
Abstract | It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors. Nevertheless, in this study, we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime, polarization-dependent deep-subwavelength single grooves with linewidths of ∼ 180 nm can be controllably prepared on Si. Generally, the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed, whereas the single-groove depth significantly increases from ∼ 300 nm to ∼ 600 nm with decrease in the scanning speed, or even to over 1 μm with multi-processing, indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves. Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast, non-thermal ablation process, and the oxidized deposits near the grooves are easy to clean up. Furthermore, the results, showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves, indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation. |
---|---|
AbstractList | It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors.Nevertheless,in this study,we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime,polarization-dependent deep-subwavelength single grooves with linewidths of~180 nm can be controllably prepared on Si.Generally,the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed,whereas the single-groove depth significantly increases from~300 nm to~600 nm with decrease in the scanning speed,or even to over 1 μm with multi-processing,indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves.Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast,non-thermal ablation process,and the oxidized deposits near the grooves are easy to clean up.Furthermore,the results,showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves,indicate that the extraordinary field enhancement of strong polariza-tion sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation. It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but not on non-transparent semiconductors. Nevertheless, in this study, we demonstrate that using high-numerical-aperture 800 nm femtosecond laser direct writing with controlled pulse energy and scanning speed in the near-damage-threshold regime, polarization-dependent deep-subwavelength single grooves with linewidths of ∼ 180 nm can be controllably prepared on Si. Generally, the single-groove linewidth increases slightly with increase in the pulse energy and decrease in the scanning speed, whereas the single-groove depth significantly increases from ∼ 300 nm to ∼ 600 nm with decrease in the scanning speed, or even to over 1 μm with multi-processing, indicating the characteristics of transverse clamping and longitudinal growth of such deep-subwavelength single grooves. Energy dispersive spectroscopy composition analysis of the near-groove region confirms that single-groove formation tends to be an ultrafast, non-thermal ablation process, and the oxidized deposits near the grooves are easy to clean up. Furthermore, the results, showing both the strong dependence of groove orientation on laser polarization and the occurrence of double-groove structures due to the interference of pre-formed orthogonal grooves, indicate that the extraordinary field enhancement of strong polarization sensitivity in the deep-subwavelength groove plays an important role in single-groove growth with high stability and collimation. |
Author | Ye, Rui-Xi Huang, Min |
Author_xml | – sequence: 1 givenname: Rui-Xi surname: Ye fullname: Ye, Rui-Xi organization: Sun Yat-sen University State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Guangzhou 510275, China – sequence: 2 givenname: Min surname: Huang fullname: Huang, Min organization: Sun Yat-sen University State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Guangzhou 510275, China |
BookMark | eNp1kD1PwzAQhi0EEm1hZ_TGQuAc58MZEd9SJQZgthz7HFKldmSnreDXk6gIFphuuPee0_vMyaHzDgk5Y3DJQIgrVpRZwiAvrpTJtCkOyCyFXCRc8OyQzH7Wx2Qe4wqgYJDyGXm9ReyTuKl3aosdumZ4p7F1TYe0Cd5vMdI-YK8CGlp_UIvrwUfU3hnaqYiBmjagHugutMN4Rr2jL-0JObKqi3j6PRfk7f7u9eYxWT4_PN1cLxPNeTUkJq0ynlesEKlVzFptxiJW6JyPFaCoAZg2ZVbVOi-Y5dzaCsqMaw4pVAw5X5DzPXennFWukSu_CW78KD-bXScxhTQDAWxKwj6pg48xoJV9aNcqfEgGcvInJ0FyEiT3_n7hre9_wbqvJedSSBBlBUz2xo7Jiz-S_4K_AIW6gNQ |
Cites_doi | 10.1021/acs.nanolett.0c01013 10.1002/lpor.202200093 10.1016/j.apsusc.2022.152440 10.1103/PhysRevLett.91.247405 10.1002/adom.202101676 10.1016/0169-4332(95)00481-5 10.1016/0030-4018(96)00250-7 10.1103/PhysRevB.85.075320 10.1103/PhysRevLett.102.234301 10.1007/s00339-022-06213-5 10.1021/nn900654v 10.1016/j.optlastec.2022.108261 10.1016/j.matdes.2022.111443 10.1364/OE.18.002913 10.1039/c3lc41171k 10.1103/PhysRevB.79.125436 10.1007/BF01567637 10.1063/1.1703071 10.1002/andp.201200136 10.1007/s12043-020-02051-3 10.1002/lpor.202000215 10.1021/acs.nanolett.2c01794 10.1103/PhysRevB.101.245430 10.1109/CLEOE-EQEC.2009.5191685 10.1002/adom.202001086 10.1038/s41377-022-00883-9 10.1038/s41377-020-0275-2 10.1364/OE.17.013116 10.1002/lpor.200710031 10.1364/OE.463575 10.1002/lpor.201300212 10.1103/PhysRevB.86.115316 10.1063/5.0053037 10.1016/j.optlastec.2012.06.037 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad4cd6 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 114 |
ExternalDocumentID | zgwl_e202408013 10_1088_1674_1056_ad4cd6 cpb_33_8_087901 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION Q-- 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c339t-d2943591682fa1ffcd088f8c53ad406b001cd749bc561f33ff90743c302091e33 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:14 EDT 2025 Tue Aug 20 22:16:33 EDT 2024 Sun Aug 18 17:50:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | polarization depen-dence ultrafast non-thermal ablation deep-subwavelength single grooves femtosecond-laser direct writing of Si high numerical aperture |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-d2943591682fa1ffcd088f8c53ad406b001cd749bc561f33ff90743c302091e33 |
OpenAccessLink | https://doi.org/10.1088/1674-1056/ad4cd6 |
PageCount | 8 |
ParticipantIDs | iop_journals_10_1088_1674_1056_ad4cd6 crossref_primary_10_1088_1674_1056_ad4cd6 wanfang_journals_zgwl_e202408013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Skolski (cpb_33_8_087901bib9) 2012; 85 Li (cpb_33_8_087901bib28) 2020; 9 Momma (cpb_33_8_087901bib3) 1996; 129 Barberoglou (cpb_33_8_087901bib18) 2009 Geng (cpb_33_8_087901bib23) 2022; 11 Kelly (cpb_33_8_087901bib31) 1996; 96 Chichkov (cpb_33_8_087901bib2) 1996; 63 Dusser (cpb_33_8_087901bib15) 2010; 18 Taylor (cpb_33_8_087901bib16) 2008; 2 Shimotsuma (cpb_33_8_087901bib13) 2003; 91 Vorobyev (cpb_33_8_087901bib17) 2009; 102 Sarracino (cpb_33_8_087901bib26) 2021; 118 Huang (cpb_33_8_087901bib25) 2022; 16 Sun (cpb_33_8_087901bib14) 2022; 30 Zhang (cpb_33_8_087901bib8) 2020; 101 Huang (cpb_33_8_087901bib12) 2013; 525 Yan (cpb_33_8_087901bib29) 2022; 10 Lopez-Santos (cpb_33_8_087901bib19) 2021; 9 Li (cpb_33_8_087901bib21) 2022; 128 Zhou (cpb_33_8_087901bib22) 2022; 153 Hashida (cpb_33_8_087901bib4) 2009; 17 Birnbaum (cpb_33_8_087901bib6) 1965; 36 Cheng (cpb_33_8_087901bib1) 2013; 46 Bonse (cpb_33_8_087901bib10) 2020; 14 Tsibidis (cpb_33_8_087901bib30) 2012; 86 Singh (cpb_33_8_087901bib24) 2021; 95 Liu (cpb_33_8_087901bib5) 2023; 225 Huang (cpb_33_8_087901bib11) 2009; 3 Lin (cpb_33_8_087901bib33) 2020; 20 Huang (cpb_33_8_087901bib32) 2009; 79 Huang (cpb_33_8_087901bib7) 2014; 8 Lin (cpb_33_8_087901bib34) 2022; 22 Killaire (cpb_33_8_087901bib20) 2022; 583 Liao (cpb_33_8_087901bib27) 2013; 13 |
References_xml | – volume: 20 start-page: 4947 year: 2020 ident: cpb_33_8_087901bib33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01013 – volume: 16 year: 2022 ident: cpb_33_8_087901bib25 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202200093 – volume: 583 year: 2022 ident: cpb_33_8_087901bib20 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.152440 – volume: 91 year: 2003 ident: cpb_33_8_087901bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.247405 – volume: 10 year: 2022 ident: cpb_33_8_087901bib29 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202101676 – volume: 96 start-page: 205 year: 1996 ident: cpb_33_8_087901bib31 publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(95)00481-5 – volume: 129 start-page: 134 year: 1996 ident: cpb_33_8_087901bib3 publication-title: Opt. Commun. doi: 10.1016/0030-4018(96)00250-7 – volume: 85 year: 2012 ident: cpb_33_8_087901bib9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.075320 – volume: 102 year: 2009 ident: cpb_33_8_087901bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.234301 – volume: 128 start-page: 1060 year: 2022 ident: cpb_33_8_087901bib21 publication-title: Appl. Phys. A doi: 10.1007/s00339-022-06213-5 – volume: 3 start-page: 4062 year: 2009 ident: cpb_33_8_087901bib11 publication-title: ACS Nano doi: 10.1021/nn900654v – volume: 153 year: 2022 ident: cpb_33_8_087901bib22 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.108261 – volume: 225 year: 2023 ident: cpb_33_8_087901bib5 publication-title: Mater. Design doi: 10.1016/j.matdes.2022.111443 – volume: 18 start-page: 2913 year: 2010 ident: cpb_33_8_087901bib15 publication-title: Opt. Express doi: 10.1364/OE.18.002913 – volume: 13 start-page: 1626 year: 2013 ident: cpb_33_8_087901bib27 publication-title: Lab Chip doi: 10.1039/c3lc41171k – volume: 79 year: 2009 ident: cpb_33_8_087901bib32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.125436 – volume: 63 start-page: 109 year: 1996 ident: cpb_33_8_087901bib2 publication-title: Appl. Phys. A doi: 10.1007/BF01567637 – volume: 36 start-page: 3688 year: 1965 ident: cpb_33_8_087901bib6 publication-title: J. Appl. Phys. doi: 10.1063/1.1703071 – volume: 525 start-page: 74 year: 2013 ident: cpb_33_8_087901bib12 publication-title: Ann. Phys. (Berl.) doi: 10.1002/andp.201200136 – volume: 95 start-page: 11 year: 2021 ident: cpb_33_8_087901bib24 publication-title: Pramana doi: 10.1007/s12043-020-02051-3 – volume: 14 year: 2020 ident: cpb_33_8_087901bib10 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202000215 – volume: 22 start-page: 7005 year: 2022 ident: cpb_33_8_087901bib34 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01794 – volume: 101 year: 2020 ident: cpb_33_8_087901bib8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.245430 – start-page: 1 year: 2009 ident: cpb_33_8_087901bib18 doi: 10.1109/CLEOE-EQEC.2009.5191685 – volume: 9 year: 2021 ident: cpb_33_8_087901bib19 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202001086 – volume: 11 start-page: 189 year: 2022 ident: cpb_33_8_087901bib23 publication-title: Light Sci. Appl. doi: 10.1038/s41377-022-00883-9 – volume: 9 start-page: 41 year: 2020 ident: cpb_33_8_087901bib28 publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0275-2 – volume: 17 year: 2009 ident: cpb_33_8_087901bib4 publication-title: Opt. Express doi: 10.1364/OE.17.013116 – volume: 2 start-page: 26 year: 2008 ident: cpb_33_8_087901bib16 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200710031 – volume: 30 year: 2022 ident: cpb_33_8_087901bib14 publication-title: Opt. Express doi: 10.1364/OE.463575 – volume: 8 start-page: 633 year: 2014 ident: cpb_33_8_087901bib7 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201300212 – volume: 86 year: 2012 ident: cpb_33_8_087901bib30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115316 – volume: 118 year: 2021 ident: cpb_33_8_087901bib26 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0053037 – volume: 46 start-page: 88 year: 2013 ident: cpb_33_8_087901bib1 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2012.06.037 |
SSID | ssj0061023 |
Score | 2.3365 |
Snippet | It is well known that femtosecond laser pulses can easily spontaneously induce deep-subwavelength periodic surface structures on transparent dielectrics but... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87901 |
SubjectTerms | deep-subwavelength single grooves femtosecond-laser direct writing of Si high numerical aperture polarization dependence ultrafast non-thermal ablation |
Title | Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad4cd6 https://d.wanfangdata.com.cn/periodical/zgwl-e202408013 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66InjxLa4vctCDh6ztpo8UT6IuKvgAFTwIoUmTKq5t2XZd3F_vpA9fiIi3HqaZ6TTNfNNMvkFo29ZUstB2ieP6FnGUtEkow4g4wvcc3408WfIWnF94J7fO2Z17N4H238_CpFm99HfgsiIKrlxYF8SxPVM3T0zDeEOAKyNvEk2ZxpVmep9eXjXLsGc4CUy21UjXe5Q_jfAlJk2C3vIET6LDJP4UbHpz6L4xs6oxeeoMC9GR428Mjv98jnk0W4NQfFCJLqAJlSyi6bIYVOZL6OZIqYzkQzEKTVuKJC4esPml0Fc4BqD9onKcDVRZuo7FK9bquUhzk1hHGLC4GuAqTuKRIUxKYpwm-PpxGd32jm8OT0jdfYFISoOCRN0AoBSgR9bVoa21jMBozaRLwVzLM2hLRr4TCAkQTFOqtcmzqaQAQANbUbqCWkmaqFWEBWAGpW3ma6kdWwsWdJkKAsgMYSTL0m202_ifZxXJBi83xxnjxkvceIlXXmqjHXAor7-0_Bc5_EVOZoJTyhm3mA8YiGcRqMX1W_4QG8ejPlfdkvkN0PHaH7WtoxlzT1XHu4FaxWCoNgGtFGKrnJVvhOzh_A |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgCMSFHbHjAxw4uCR1FueIKBVrQYJKvZnYsQMC0qhJqejXM05SsQghJG45jJeME_uN_fwGoT1bU8lC2yWO61vEUdImoQwj4gjfc3w38mShW3DV9k47znnX7VZ5Tou7ML20mvrr8FgKBZcurAhx7NDw5olJGG8EcGXkHaaRnkRTLkzFhtN1dn0znoo9o0tgIq5xieqc8qdavqxLk9B2cYsn0WESf1pwWvPoftzVkmfyVB_koi5H31Qc__EuC2iuAqP4qDRfRBMqWULTBSlUZsvorqlUSrKBGIYmPUUS5w_YbC08KxwD4H5VGU77qqCwY_GGtXrJe5kJsCMMmFz1cble4qERTkpi3Evw7eMK6rRO7o5PSZWFgUhKg5xEjQAgFaBI1tChrbWMoOOaSZdCly3PoC4Z-U4gJEAxTanWJt6mkgIQDWxF6SqqJb1ErSEsADsobTNfS-3YWrCgwVQQQIQINVmWXkcH4zHgaSm2wYtDcsa48RQ3nuKlp9bRPjiVV39c9osd_mInU8Ep5YxbzAcsxMHhYFKN9IfZKB4-c9UoFOAAJW_8sbVdNHPTbPHLs_bFJpo1xUtq7xaq5f2B2gYAk4ud4iN9B6wb52A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-subwavelength+single+grooves+prepared+by+femtosecond+laser+direct+writing+on+Si&rft.jtitle=Chinese+physics+B&rft.au=Ye+%E5%8F%B6%2C+Rui-Xi+%E7%91%9E%E7%86%99&rft.au=Huang+%E9%BB%84%2C+Min+%E6%95%8F&rft.date=2024-07-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=8&rft.spage=87901&rft_id=info:doi/10.1088%2F1674-1056%2Fad4cd6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad4cd6 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |