Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling
Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in...
Saved in:
Published in | Renewable energy Vol. 148; pp. 338 - 348 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in literature. The coupling relations and sequence among the low Reynolds number k-ε model, Langmuri-Hinshelwood kinetics, natural convection heat transfer and convection-diffusion equations were established and used to solve multiple physical fields coupling. The numerical results were in good agreement with the experimental data in related literature. The effects of environmental factors, geometric structures and operating conditions on the thermal efficiency and formaldehyde degradation rate of PC-Trombe wall were investigated. The results show that the thermal efficiency increases with increasing solar radiation and ambient temperature, but it is opposite for inlet temperature of air and ambient wind velocity. However, the thermal efficiency increases first and then decreases as the channel width increases, the maximum thermal efficiency is 52.98% when the width is 0.04 m. For the air purification rate, all factors also show the trend of increasing first and decreasing afterward, there is a maximum air purification rate of 2.91 μg/s when the channel width is 0.05 m.
•Multiple physical fields coupling in PC-Trombe wall was studied by numerical method.•Parametric analysis on thermal efficiency and air purification rate of PC-Trombe wall.•Different parameters have different effects on PC-Trombe wall performance.•The optimal parameters corresponding maximum thermal efficiency and air purification rate. |
---|---|
AbstractList | Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in literature. The coupling relations and sequence among the low Reynolds number k-ε model, Langmuri-Hinshelwood kinetics, natural convection heat transfer and convection-diffusion equations were established and used to solve multiple physical fields coupling. The numerical results were in good agreement with the experimental data in related literature. The effects of environmental factors, geometric structures and operating conditions on the thermal efficiency and formaldehyde degradation rate of PC-Trombe wall were investigated. The results show that the thermal efficiency increases with increasing solar radiation and ambient temperature, but it is opposite for inlet temperature of air and ambient wind velocity. However, the thermal efficiency increases first and then decreases as the channel width increases, the maximum thermal efficiency is 52.98% when the width is 0.04 m. For the air purification rate, all factors also show the trend of increasing first and decreasing afterward, there is a maximum air purification rate of 2.91 μg/s when the channel width is 0.05 m. Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in literature. The coupling relations and sequence among the low Reynolds number k-ε model, Langmuri-Hinshelwood kinetics, natural convection heat transfer and convection-diffusion equations were established and used to solve multiple physical fields coupling. The numerical results were in good agreement with the experimental data in related literature. The effects of environmental factors, geometric structures and operating conditions on the thermal efficiency and formaldehyde degradation rate of PC-Trombe wall were investigated. The results show that the thermal efficiency increases with increasing solar radiation and ambient temperature, but it is opposite for inlet temperature of air and ambient wind velocity. However, the thermal efficiency increases first and then decreases as the channel width increases, the maximum thermal efficiency is 52.98% when the width is 0.04 m. For the air purification rate, all factors also show the trend of increasing first and decreasing afterward, there is a maximum air purification rate of 2.91 μg/s when the channel width is 0.05 m. •Multiple physical fields coupling in PC-Trombe wall was studied by numerical method.•Parametric analysis on thermal efficiency and air purification rate of PC-Trombe wall.•Different parameters have different effects on PC-Trombe wall performance.•The optimal parameters corresponding maximum thermal efficiency and air purification rate. |
Author | Xu, Li Xiao, Lan Wu, Shuang-Ying |
Author_xml | – sequence: 1 givenname: Shuang-Ying surname: Wu fullname: Wu, Shuang-Ying email: shuangyingwu@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China – sequence: 2 givenname: Li surname: Xu fullname: Xu, Li organization: School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China – sequence: 3 givenname: Lan surname: Xiao fullname: Xiao, Lan email: xiaolannancy@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China |
BookMark | eNqFkLtOxDAQRS0EEsvjDyhc0mTxI4ljCiSEeElINFBbxp6AV04cbAe0f4-XpaIATTGj0T23OAdodwwjIHRCyZIS2p6tlhHGMktGqCyvJeFyBy1oJ2RF2o7togWRLalo3dF9dJDSihDadKJeoPdLF_E0R9c7o7MLI9ajxfkN4qA9niD2oVyjARx6PL2FHEpM-3V2pnqKYXgB_Km9xy86gcUFH2af3eShhNepdHrcO_A2YRPmybvx9Qjt9donOP7Zh-j55vrp6q56eLy9v7p8qAznMleWmLZhWsta9LKBjnQ1Z0ZY2jIrWAs9rxsGUjBWWy5oS4Cxrtyy5VZYJvghOt32TjG8z5CyGlwy4L0eIcxJMd6wmjVcbqL1NmpiSClCr6boBh3XihK1MaxWamtYbQxvvsVwwc5_Ycblb4k5auf_gy-2MBQHHw6iSsZBEW1dBJOVDe7vgi-F250n |
CitedBy_id | crossref_primary_10_3390_app12010156 crossref_primary_10_3390_buildings14051297 crossref_primary_10_1016_j_renene_2025_122942 crossref_primary_10_3390_en15238956 crossref_primary_10_1016_j_enconman_2024_118512 crossref_primary_10_1016_j_jobe_2024_109021 crossref_primary_10_1016_j_renene_2021_11_029 crossref_primary_10_1016_j_solmat_2023_112228 crossref_primary_10_1016_j_solener_2023_05_006 crossref_primary_10_1002_ese3_1348 crossref_primary_10_1007_s11164_023_04961_4 crossref_primary_10_1016_j_ces_2024_120602 crossref_primary_10_1016_j_solener_2023_112235 crossref_primary_10_1016_j_apenergy_2024_124388 crossref_primary_10_1016_j_buildenv_2022_109301 crossref_primary_10_1016_j_buildenv_2024_112334 crossref_primary_10_1016_j_enbuild_2024_114942 crossref_primary_10_1007_s44242_024_00039_5 crossref_primary_10_1016_j_est_2022_106419 crossref_primary_10_1016_j_jobe_2023_106402 crossref_primary_10_1016_j_applthermaleng_2023_122131 crossref_primary_10_1016_j_enbuild_2025_115372 crossref_primary_10_1016_j_jobe_2023_106406 crossref_primary_10_1016_j_jobe_2024_110688 crossref_primary_10_1080_15567036_2021_1939463 crossref_primary_10_1016_j_applthermaleng_2024_123557 crossref_primary_10_1021_acs_energyfuels_3c02828 crossref_primary_10_1016_j_energy_2023_128189 crossref_primary_10_1016_j_seta_2022_102012 crossref_primary_10_1016_j_matpr_2020_11_237 crossref_primary_10_1016_j_jobe_2023_108261 crossref_primary_10_1177_1420326X231164282 crossref_primary_10_1016_j_enconman_2021_115117 crossref_primary_10_1177_1420326X251317744 crossref_primary_10_1016_j_renene_2024_120621 crossref_primary_10_1016_j_seta_2024_103936 crossref_primary_10_1016_j_enbuild_2024_115062 crossref_primary_10_1016_j_renene_2022_06_054 crossref_primary_10_1016_j_jclepro_2022_134065 crossref_primary_10_1016_j_renene_2023_119361 crossref_primary_10_1016_j_clet_2023_100652 crossref_primary_10_1016_j_solener_2023_05_035 crossref_primary_10_1016_j_renene_2023_119167 crossref_primary_10_1155_2021_6630140 |
Cites_doi | 10.1016/j.solener.2004.05.012 10.1016/j.enconman.2012.08.021 10.1016/j.solener.2013.01.016 10.1016/j.enbuild.2011.11.039 10.1016/j.apenergy.2018.05.111 10.1007/s00231-009-0509-6 10.1016/j.rser.2016.12.003 10.1016/j.applthermaleng.2019.03.090 10.1016/j.apenergy.2018.02.017 10.1016/j.rser.2017.06.078 10.1016/j.enbuild.2015.05.010 10.1016/j.energy.2018.10.037 10.1016/j.icheatmasstransfer.2017.09.005 10.1016/j.buildenv.2006.01.005 10.1080/15435075.2013.840833 10.1016/j.buildenv.2014.11.002 10.1016/j.solener.2015.10.005 10.1016/j.apenergy.2017.08.171 10.1016/j.apenergy.2017.06.078 10.1016/j.applthermaleng.2018.04.083 10.1016/j.solener.2011.04.025 10.1016/j.applthermaleng.2006.09.013 10.1016/j.buildenv.2017.01.026 10.1021/ie50294a020 10.1016/j.enconman.2018.02.093 10.1016/j.cej.2018.01.047 10.1016/j.enconman.2014.07.049 10.1016/j.enbuild.2015.06.078 10.1016/0017-9310(73)90125-7 10.1016/j.energy.2016.04.122 10.1016/j.applthermaleng.2016.03.141 10.1016/j.buildenv.2015.01.033 10.1016/j.rser.2012.06.032 10.1016/j.cej.2014.11.017 10.1016/j.enbuild.2016.04.042 10.1016/j.ijheatmasstransfer.2018.09.034 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2019.10.039 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 348 |
ExternalDocumentID | 10_1016_j_renene_2019_10_039 S0960148119315307 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-d0c652aa947f95e808432c7d162d726ef3452e97224d37160e22824d963d7d273 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 08:06:32 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 03:21:00 EDT 2025 Fri Feb 23 02:47:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PC-Trombe wall Multiple physical fields Air purification Photocatalytic oxidation Thermal performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-d0c652aa947f95e808432c7d162d726ef3452e97224d37160e22824d963d7d273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2352425397 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2352425397 crossref_primary_10_1016_j_renene_2019_10_039 crossref_citationtrail_10_1016_j_renene_2019_10_039 elsevier_sciencedirect_doi_10_1016_j_renene_2019_10_039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Talukdar, Li, Tsubokura (bib35) 2019; 128 Hu, He, Ji, Zhang (bib4) 2017; 70 Monghasemi, Vadiee (bib3) 2018; 81 Corasaniti, Manni, Russo, Gori (bib6) 2017; 88 Pei, Han, Lu (bib23) 2015; 84 International Energy Agency (bib1) 2018 Saadatian, Sopian, Lim, Asim, Sulaiman (bib2) 2012; 16 Yu, Jiang, He, Hu, Chen, Ji, Xu (bib17) 2018; 164 Yu, He, Li, Zhou, Shen, Chen, Xu (bib18) 2017; 115 Ching, Leung, Leung (bib37) 2004; 77 He, Hu, Luo, Hong, Sun, Ji (bib34) 2015; 104 Wang, Yang, Yuan, Du, Yang (bib24) 2014; 87 Dabaieh, Elbably (bib7) 2015; 122 He, Hong, Wu, Pei, Hu, Tang, Shen, Ji (bib30) 2016; 123 Gilliland (bib32) 1934; 26 Hu, He, Hu, Lv, Wang, Ji, Chen, Ma (bib15) 2017; 203 Liu, Wang, Ma, Liu (bib29) 2013; 91 Yu, Jiang, He, Liu, Zhou, Ji, Xu, Chen (bib22) 2018; 215 Zhong, Haghighat (bib31) 2015; 91 Yu, He, Li, Wang, Cai, Chen, Ji, Xu (bib16) 2017; 206 Zhou, Yu, Zhang (bib12) 2018; 144 Stazi, Mastrucci, Perna (bib9) 2012; 47 Ji, Yi, He, Pei, Lu, Jiang (bib13) 2007; 42 Jones, Launder (bib27) 1973; 16 Rabani, Kalantar, Dehghan, Faghih (bib8) 2015; 102 Einaga, Tokura, Teraoka, Ito (bib25) 2015; 263 Wu, Guo, Xiao (bib33) 2015; 12 Shi (bib36) 2018; 165 Abdeen, Serageldin, Ibrahim, El-Zafarany, Ookawara, Murata (bib11) 2019; 154 Ji, Yi, Pei, Lu (bib14) 2007; 27 Kara (bib10) 2016; 102 Zamora, Kaiser (bib21) 2009; 45 Yu, Hou, He, Liu, Hu, Ji, Chen, Xu (bib19) 2018; 226 Wang, Yang, Du, Yang (bib20) 2013; 65 Hernández-López, Xamán, Chávez, Hernández-Pérez, Alvarado-Juárez (bib28) 2016; 109 Jaber, Ajib (bib5) 2011; 85 Roegiers, Walsem, Denys (bib26) 2018; 338 Yu (10.1016/j.renene.2019.10.039_bib16) 2017; 206 Zhong (10.1016/j.renene.2019.10.039_bib31) 2015; 91 Wang (10.1016/j.renene.2019.10.039_bib20) 2013; 65 Pei (10.1016/j.renene.2019.10.039_bib23) 2015; 84 Jaber (10.1016/j.renene.2019.10.039_bib5) 2011; 85 Rabani (10.1016/j.renene.2019.10.039_bib8) 2015; 102 Talukdar (10.1016/j.renene.2019.10.039_bib35) 2019; 128 Shi (10.1016/j.renene.2019.10.039_bib36) 2018; 165 Gilliland (10.1016/j.renene.2019.10.039_bib32) 1934; 26 Roegiers (10.1016/j.renene.2019.10.039_bib26) 2018; 338 Saadatian (10.1016/j.renene.2019.10.039_bib2) 2012; 16 Einaga (10.1016/j.renene.2019.10.039_bib25) 2015; 263 Ji (10.1016/j.renene.2019.10.039_bib14) 2007; 27 Ching (10.1016/j.renene.2019.10.039_bib37) 2004; 77 Yu (10.1016/j.renene.2019.10.039_bib19) 2018; 226 Wu (10.1016/j.renene.2019.10.039_bib33) 2015; 12 Yu (10.1016/j.renene.2019.10.039_bib22) 2018; 215 Yu (10.1016/j.renene.2019.10.039_bib18) 2017; 115 Zhou (10.1016/j.renene.2019.10.039_bib12) 2018; 144 He (10.1016/j.renene.2019.10.039_bib30) 2016; 123 Hu (10.1016/j.renene.2019.10.039_bib15) 2017; 203 Liu (10.1016/j.renene.2019.10.039_bib29) 2013; 91 Hernández-López (10.1016/j.renene.2019.10.039_bib28) 2016; 109 Monghasemi (10.1016/j.renene.2019.10.039_bib3) 2018; 81 Wang (10.1016/j.renene.2019.10.039_bib24) 2014; 87 He (10.1016/j.renene.2019.10.039_bib34) 2015; 104 Corasaniti (10.1016/j.renene.2019.10.039_bib6) 2017; 88 Jones (10.1016/j.renene.2019.10.039_bib27) 1973; 16 Kara (10.1016/j.renene.2019.10.039_bib10) 2016; 102 Ji (10.1016/j.renene.2019.10.039_bib13) 2007; 42 Stazi (10.1016/j.renene.2019.10.039_bib9) 2012; 47 Zamora (10.1016/j.renene.2019.10.039_bib21) 2009; 45 Abdeen (10.1016/j.renene.2019.10.039_bib11) 2019; 154 Hu (10.1016/j.renene.2019.10.039_bib4) 2017; 70 Dabaieh (10.1016/j.renene.2019.10.039_bib7) 2015; 122 International Energy Agency (10.1016/j.renene.2019.10.039_bib1) 2018 Yu (10.1016/j.renene.2019.10.039_bib17) 2018; 164 |
References_xml | – volume: 122 start-page: 820 year: 2015 end-page: 833 ident: bib7 article-title: Ventilated Trombe wall as a passive solar heating and cooling retrofitting approach; a low-tech design for off-grid settlements in semi-arid climates publication-title: Sol. Energy – volume: 102 start-page: 45 year: 2015 end-page: 57 ident: bib8 article-title: Empirical investigation of the cooling performance of a new designed Trombe wall in combination with solar chimney and water spraying system publication-title: Energy Build. – volume: 26 start-page: 681 year: 1934 end-page: 685 ident: bib32 article-title: Diffusion coefficients in gaseous systems publication-title: Ind. Eng. Chem. – volume: 263 start-page: 325 year: 2015 end-page: 335 ident: bib25 article-title: Kinetic analysis of TiO publication-title: Chem. Eng. J. – volume: 45 start-page: 1393 year: 2009 end-page: 1407 ident: bib21 article-title: Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation publication-title: Heat Mass Transf. – volume: 144 start-page: 1091 year: 2018 end-page: 1108 ident: bib12 article-title: Study on heat-transfer mechanism of wallboards containing active phase change material and parameter optimization with ventilation publication-title: Appl. Therm. Eng. – volume: 47 start-page: 217 year: 2012 end-page: 229 ident: bib9 article-title: The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study publication-title: Energy Build. – volume: 87 start-page: 606 year: 2014 end-page: 617 ident: bib24 article-title: Numerical investigation on photocatalytic CO publication-title: Energy Convers. Manag. – volume: 88 start-page: 269 year: 2017 end-page: 276 ident: bib6 article-title: Numerical simulation of modified Trombe-Michel Walls with exergy and energy analysis publication-title: Int. Commun. Heat Mass Transf. – volume: 154 start-page: 751 year: 2019 end-page: 768 ident: bib11 article-title: Experimental, analytical, and numerical investigation into the feasibility of integrating a passive Trombe wall into a single room publication-title: Appl. Therm. Eng. – volume: 115 start-page: 130 year: 2017 end-page: 146 ident: bib18 article-title: Experiments and kinetics of solar PCO for indoor air purification in PCO/TW system publication-title: Build. Environ. – volume: 109 start-page: 512 year: 2016 end-page: 524 ident: bib28 article-title: Thermal energy storage and losses in a room-Trombe wall system located in Mexicos publication-title: Energy – volume: 165 start-page: 925 year: 2018 end-page: 938 ident: bib36 article-title: Theoretical models for wall solar chimney under cooling and heating modes considering room configuration publication-title: Energy – volume: 12 start-page: 379 year: 2015 end-page: 397 ident: bib33 article-title: A Review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system publication-title: Int. J. Green Energy – year: 2018 ident: bib1 article-title: Energy Efficiency 2018—Analysis and Outlooks to 2040 – volume: 91 start-page: 1 year: 2013 end-page: 10 ident: bib29 article-title: A numerical and experimental analysis of the air vent management and heat storage characteristics of a trombe wall publication-title: Sol. Energy – volume: 203 start-page: 643 year: 2017 end-page: 656 ident: bib15 article-title: Design, construction and performance testing of a PV blind-integrated Trombe wall module publication-title: Appl. Energy – volume: 206 start-page: 70 year: 2017 end-page: 82 ident: bib16 article-title: Experimental and numerical performance analysis of a TC-Trombe wall publication-title: Appl. Energy – volume: 16 start-page: 6340 year: 2012 end-page: 6351 ident: bib2 article-title: Trombe walls: a review of opportunities and challenges in research and development publication-title: Renew. Sustain. Energy Rev. – volume: 81 start-page: 2714 year: 2018 end-page: 2730 ident: bib3 article-title: A review of solar chimney integrated systems for space heating and cooling application publication-title: Renew. Sustain. Energy Rev. – volume: 65 start-page: 299 year: 2013 end-page: 307 ident: bib20 article-title: Numerical investigation on CO publication-title: Energy Convers. Manag. – volume: 85 start-page: 1891 year: 2011 end-page: 1898 ident: bib5 article-title: Optimum design of Trombe wall system in mediterranean region publication-title: Sol. Energy – volume: 84 start-page: 134 year: 2015 end-page: 141 ident: bib23 article-title: Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst publication-title: Build. Environ. – volume: 77 start-page: 129 year: 2004 end-page: 135 ident: bib37 article-title: Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO publication-title: Sol. Energy – volume: 128 start-page: 794 year: 2019 end-page: 806 ident: bib35 article-title: Investigation on optimization of the thermal performance for compressible laminar natural convection flow in open-ended vertical channel publication-title: Int. J. Heat Mass Transf. – volume: 102 start-page: 1 year: 2016 end-page: 8 ident: bib10 article-title: Diurnal performance analysis of phase change material walls publication-title: Appl. Therm. Eng. – volume: 16 start-page: 1119 year: 1973 end-page: 1130 ident: bib27 article-title: The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence publication-title: Int. J. Heat Mass Transf. – volume: 70 start-page: 976 year: 2017 end-page: 987 ident: bib4 article-title: A review on the application of Trombe wall system in buildings publication-title: Renew. Sustain. Energy Rev. – volume: 104 start-page: 395 year: 2015 end-page: 404 ident: bib34 article-title: The thermal behavior of Trombe wall system with Venetian blind: an experimental and numerical study publication-title: Energy Build. – volume: 226 start-page: 365 year: 2018 end-page: 380 ident: bib19 article-title: Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification publication-title: Appl. Energy – volume: 91 start-page: 191 year: 2015 end-page: 203 ident: bib31 article-title: Photocatalytic air cleaners and materials technologies – abilities and limitations publication-title: Build. Environ. – volume: 27 start-page: 1507 year: 2007 end-page: 1515 ident: bib14 article-title: Study of PV-Trombe wall installed in a fenestrated room with heat storage publication-title: Appl. Therm. Eng. – volume: 164 start-page: 242 year: 2018 end-page: 261 ident: bib17 article-title: The performance analysis of a novel TC-Trombe wall system in heating seasons publication-title: Energy Convers. Manag. – volume: 215 start-page: 699 year: 2018 end-page: 716 ident: bib22 article-title: Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology publication-title: Appl. Energy – volume: 338 start-page: 287 year: 2018 end-page: 299 ident: bib26 article-title: CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor publication-title: Chem. Eng. J. – volume: 42 start-page: 1544 year: 2007 end-page: 1552 ident: bib13 article-title: Modeling of a novel Trombe wall with PV cells publication-title: Build. Environ. – volume: 123 start-page: 50 year: 2016 end-page: 58 ident: bib30 article-title: Thermal and hydraulic analysis on a novel Trombe wall with Venetian blind structure publication-title: Energy Build. – volume: 77 start-page: 129 issue: 2 year: 2004 ident: 10.1016/j.renene.2019.10.039_bib37 article-title: Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality publication-title: Sol. Energy doi: 10.1016/j.solener.2004.05.012 – volume: 65 start-page: 299 year: 2013 ident: 10.1016/j.renene.2019.10.039_bib20 article-title: Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.08.021 – volume: 91 start-page: 1 year: 2013 ident: 10.1016/j.renene.2019.10.039_bib29 article-title: A numerical and experimental analysis of the air vent management and heat storage characteristics of a trombe wall publication-title: Sol. Energy doi: 10.1016/j.solener.2013.01.016 – volume: 47 start-page: 217 year: 2012 ident: 10.1016/j.renene.2019.10.039_bib9 article-title: The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.11.039 – volume: 226 start-page: 365 year: 2018 ident: 10.1016/j.renene.2019.10.039_bib19 article-title: Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.111 – volume: 45 start-page: 1393 issue: 11 year: 2009 ident: 10.1016/j.renene.2019.10.039_bib21 article-title: Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation publication-title: Heat Mass Transf. doi: 10.1007/s00231-009-0509-6 – volume: 70 start-page: 976 year: 2017 ident: 10.1016/j.renene.2019.10.039_bib4 article-title: A review on the application of Trombe wall system in buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.12.003 – volume: 154 start-page: 751 year: 2019 ident: 10.1016/j.renene.2019.10.039_bib11 article-title: Experimental, analytical, and numerical investigation into the feasibility of integrating a passive Trombe wall into a single room publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.03.090 – volume: 215 start-page: 699 year: 2018 ident: 10.1016/j.renene.2019.10.039_bib22 article-title: Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.017 – volume: 81 start-page: 2714 year: 2018 ident: 10.1016/j.renene.2019.10.039_bib3 article-title: A review of solar chimney integrated systems for space heating and cooling application publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.06.078 – volume: 102 start-page: 45 year: 2015 ident: 10.1016/j.renene.2019.10.039_bib8 article-title: Empirical investigation of the cooling performance of a new designed Trombe wall in combination with solar chimney and water spraying system publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.05.010 – volume: 165 start-page: 925 year: 2018 ident: 10.1016/j.renene.2019.10.039_bib36 article-title: Theoretical models for wall solar chimney under cooling and heating modes considering room configuration publication-title: Energy doi: 10.1016/j.energy.2018.10.037 – volume: 88 start-page: 269 year: 2017 ident: 10.1016/j.renene.2019.10.039_bib6 article-title: Numerical simulation of modified Trombe-Michel Walls with exergy and energy analysis publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2017.09.005 – volume: 42 start-page: 1544 issue: 3 year: 2007 ident: 10.1016/j.renene.2019.10.039_bib13 article-title: Modeling of a novel Trombe wall with PV cells publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.01.005 – volume: 12 start-page: 379 issue: 4 year: 2015 ident: 10.1016/j.renene.2019.10.039_bib33 article-title: A Review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system publication-title: Int. J. Green Energy doi: 10.1080/15435075.2013.840833 – volume: 84 start-page: 134 year: 2015 ident: 10.1016/j.renene.2019.10.039_bib23 article-title: Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.11.002 – volume: 122 start-page: 820 year: 2015 ident: 10.1016/j.renene.2019.10.039_bib7 article-title: Ventilated Trombe wall as a passive solar heating and cooling retrofitting approach; a low-tech design for off-grid settlements in semi-arid climates publication-title: Sol. Energy doi: 10.1016/j.solener.2015.10.005 – volume: 206 start-page: 70 year: 2017 ident: 10.1016/j.renene.2019.10.039_bib16 article-title: Experimental and numerical performance analysis of a TC-Trombe wall publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.171 – volume: 203 start-page: 643 year: 2017 ident: 10.1016/j.renene.2019.10.039_bib15 article-title: Design, construction and performance testing of a PV blind-integrated Trombe wall module publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.06.078 – volume: 144 start-page: 1091 year: 2018 ident: 10.1016/j.renene.2019.10.039_bib12 article-title: Study on heat-transfer mechanism of wallboards containing active phase change material and parameter optimization with ventilation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.04.083 – volume: 85 start-page: 1891 issue: 9 year: 2011 ident: 10.1016/j.renene.2019.10.039_bib5 article-title: Optimum design of Trombe wall system in mediterranean region publication-title: Sol. Energy doi: 10.1016/j.solener.2011.04.025 – volume: 27 start-page: 1507 issue: 8–9 year: 2007 ident: 10.1016/j.renene.2019.10.039_bib14 article-title: Study of PV-Trombe wall installed in a fenestrated room with heat storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.09.013 – volume: 115 start-page: 130 year: 2017 ident: 10.1016/j.renene.2019.10.039_bib18 article-title: Experiments and kinetics of solar PCO for indoor air purification in PCO/TW system publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.01.026 – volume: 26 start-page: 681 issue: 6 year: 1934 ident: 10.1016/j.renene.2019.10.039_bib32 article-title: Diffusion coefficients in gaseous systems publication-title: Ind. Eng. Chem. doi: 10.1021/ie50294a020 – volume: 164 start-page: 242 year: 2018 ident: 10.1016/j.renene.2019.10.039_bib17 article-title: The performance analysis of a novel TC-Trombe wall system in heating seasons publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.093 – year: 2018 ident: 10.1016/j.renene.2019.10.039_bib1 – volume: 338 start-page: 287 year: 2018 ident: 10.1016/j.renene.2019.10.039_bib26 article-title: CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.047 – volume: 87 start-page: 606 year: 2014 ident: 10.1016/j.renene.2019.10.039_bib24 article-title: Numerical investigation on photocatalytic CO2 reduction by solar energy in double-skin sheet reactor publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.07.049 – volume: 104 start-page: 395 year: 2015 ident: 10.1016/j.renene.2019.10.039_bib34 article-title: The thermal behavior of Trombe wall system with Venetian blind: an experimental and numerical study publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.06.078 – volume: 16 start-page: 1119 issue: 6 year: 1973 ident: 10.1016/j.renene.2019.10.039_bib27 article-title: The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(73)90125-7 – volume: 109 start-page: 512 year: 2016 ident: 10.1016/j.renene.2019.10.039_bib28 article-title: Thermal energy storage and losses in a room-Trombe wall system located in Mexicos publication-title: Energy doi: 10.1016/j.energy.2016.04.122 – volume: 102 start-page: 1 year: 2016 ident: 10.1016/j.renene.2019.10.039_bib10 article-title: Diurnal performance analysis of phase change material walls publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.141 – volume: 91 start-page: 191 year: 2015 ident: 10.1016/j.renene.2019.10.039_bib31 article-title: Photocatalytic air cleaners and materials technologies – abilities and limitations publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.01.033 – volume: 16 start-page: 6340 issue: 8 year: 2012 ident: 10.1016/j.renene.2019.10.039_bib2 article-title: Trombe walls: a review of opportunities and challenges in research and development publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.06.032 – volume: 263 start-page: 325 year: 2015 ident: 10.1016/j.renene.2019.10.039_bib25 article-title: Kinetic analysis of TiO2-catalyzed heterogeneous photocatalytic oxidation of ethylene using computational fluid dynamics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.017 – volume: 123 start-page: 50 year: 2016 ident: 10.1016/j.renene.2019.10.039_bib30 article-title: Thermal and hydraulic analysis on a novel Trombe wall with Venetian blind structure publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.04.042 – volume: 128 start-page: 794 year: 2019 ident: 10.1016/j.renene.2019.10.039_bib35 article-title: Investigation on optimization of the thermal performance for compressible laminar natural convection flow in open-ended vertical channel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.09.034 |
SSID | ssj0015874 |
Score | 2.5120645 |
Snippet | Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 338 |
SubjectTerms | air Air purification air temperature ambient temperature convection equations formaldehyde mathematical models Multiple physical fields PC-Trombe wall photocatalysis Photocatalytic oxidation renewable energy sources Reynolds number solar radiation Thermal performance wind speed |
Title | Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling |
URI | https://dx.doi.org/10.1016/j.renene.2019.10.039 https://www.proquest.com/docview/2352425397 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvG5RPCa3TZN-jgui8uq6MUVvJU2SXVlbes-EC_-dmfS1hfCgteQCWEmmfmm_WZCyJlOsiCKRMC0C7mJ4EqyVEvOoiwTqe8oR1nK__WNP7wTl_fyvkX6TS0M0ipr31_5dOut65Furc1uOR53bxF8A5h3AYLAtbUV5UIEeMo77580D1eGVSdmmMxwdlM-Zzle2DUyx2aZbtRBjhc-Gf53ePrlqG30GWySjRo20l61sy3SMvk2Wf_WTHCHvPTGU1oupsj9seqmSa4p4rtnkCy_CgRokdHysZgX9tPNG6zIRtPiOTX0NZlMKMY1TUG84RrSsrYltXS3GVXFAut4H3bJ3eB81B-y-kEFpjwvmjPtKF_yJAHbZJE0oRMKj6tAuz7XAfdN5gnJTRRAWNceJFKO4ZCRCQ2XVAcagM4eWcmL3OwTGopESu4r8JWeSEWWpG7opE4mU6UdGeoD4jV6jFXdbRwfvZjEDa3sKa60H6P2cRS0f0DYp1RZddtYMj9oTBT_ODUxBIQlkqeNRWO4UPiXJMlNsZjFHCApODLAaYf_Xv2IrHHMyy3D55iszKcLcwLgZZ627elsk9XexdXw5gPI9O_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QdgAOiKcYzyBxDWvTpI_jNIHGaxeGxC1qkxSGRlvGJsS_x-6Dl5CQuEZxVNmJ_bn57BBybOI0iCIRMONCbiK4liwxkrMoTUXiO9rRJeX_eugPbsXFnbxbIP2mFgZplbXvr3x66a3rkW6tzW4xHndvEHwDmHcBgsCxxYryNnanki3S7p1fDoYflwkyrJoxw3yGAk0FXUnzwsaRGfbLdKMTpHnhq-G_R6gfvroMQGerZKVGjrRXfdwaWbDZOln-0k9wgzz3xlNazKdI_yk1TuPMUIR4TyBZfNYI0DylxUM-y8u_N2-wIhtN86fE0td4MqEY2gwF8YZuSIvanLRkvL1Qnc-xlPd-k9yenY76A1a_qcC050UzZhztSx7HYJ40kjZ0QuFxHRjX5ybgvk09IbmNAojsxoNcyrEckjJh4JyawADW2SKtLM_sNqGhiKXkvgZ36YlEpHHihk7ipDLRxpGh6RCv0aPSdcNxfPdiohpm2aOqtK9Q-zgK2u8Q9iFVVA03_pgfNCZS3zaOgpjwh-RRY1EFZwovSuLM5vMXxQGVgi8DqLbz79UPyeJgdH2lrs6Hl7tkiWOaXhJ-9khrNp3bfcAys-Sg3qvvARjyoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+purification+and+thermal+performance+of+photocatalytic-Trombe+wall+based+on+multiple+physical+fields+coupling&rft.jtitle=Renewable+energy&rft.au=Wu%2C+Shuang-Ying&rft.au=Xu%2C+Li&rft.au=Xiao%2C+Lan&rft.date=2020-04-01&rft.issn=0960-1481&rft.volume=148&rft.spage=338&rft.epage=348&rft_id=info:doi/10.1016%2Fj.renene.2019.10.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2019_10_039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |