Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling

Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 148; pp. 338 - 348
Main Authors Wu, Shuang-Ying, Xu, Li, Xiao, Lan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in literature. The coupling relations and sequence among the low Reynolds number k-ε model, Langmuri-Hinshelwood kinetics, natural convection heat transfer and convection-diffusion equations were established and used to solve multiple physical fields coupling. The numerical results were in good agreement with the experimental data in related literature. The effects of environmental factors, geometric structures and operating conditions on the thermal efficiency and formaldehyde degradation rate of PC-Trombe wall were investigated. The results show that the thermal efficiency increases with increasing solar radiation and ambient temperature, but it is opposite for inlet temperature of air and ambient wind velocity. However, the thermal efficiency increases first and then decreases as the channel width increases, the maximum thermal efficiency is 52.98% when the width is 0.04 m. For the air purification rate, all factors also show the trend of increasing first and decreasing afterward, there is a maximum air purification rate of 2.91 μg/s when the channel width is 0.05 m. •Multiple physical fields coupling in PC-Trombe wall was studied by numerical method.•Parametric analysis on thermal efficiency and air purification rate of PC-Trombe wall.•Different parameters have different effects on PC-Trombe wall performance.•The optimal parameters corresponding maximum thermal efficiency and air purification rate.
AbstractList Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in literature. The coupling relations and sequence among the low Reynolds number k-ε model, Langmuri-Hinshelwood kinetics, natural convection heat transfer and convection-diffusion equations were established and used to solve multiple physical fields coupling. The numerical results were in good agreement with the experimental data in related literature. The effects of environmental factors, geometric structures and operating conditions on the thermal efficiency and formaldehyde degradation rate of PC-Trombe wall were investigated. The results show that the thermal efficiency increases with increasing solar radiation and ambient temperature, but it is opposite for inlet temperature of air and ambient wind velocity. However, the thermal efficiency increases first and then decreases as the channel width increases, the maximum thermal efficiency is 52.98% when the width is 0.04 m. For the air purification rate, all factors also show the trend of increasing first and decreasing afterward, there is a maximum air purification rate of 2.91 μg/s when the channel width is 0.05 m.
Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper, a two-dimensional numerical model on air purification and thermal performance of PC-Trombe was established based on relevant experiments in literature. The coupling relations and sequence among the low Reynolds number k-ε model, Langmuri-Hinshelwood kinetics, natural convection heat transfer and convection-diffusion equations were established and used to solve multiple physical fields coupling. The numerical results were in good agreement with the experimental data in related literature. The effects of environmental factors, geometric structures and operating conditions on the thermal efficiency and formaldehyde degradation rate of PC-Trombe wall were investigated. The results show that the thermal efficiency increases with increasing solar radiation and ambient temperature, but it is opposite for inlet temperature of air and ambient wind velocity. However, the thermal efficiency increases first and then decreases as the channel width increases, the maximum thermal efficiency is 52.98% when the width is 0.04 m. For the air purification rate, all factors also show the trend of increasing first and decreasing afterward, there is a maximum air purification rate of 2.91 μg/s when the channel width is 0.05 m. •Multiple physical fields coupling in PC-Trombe wall was studied by numerical method.•Parametric analysis on thermal efficiency and air purification rate of PC-Trombe wall.•Different parameters have different effects on PC-Trombe wall performance.•The optimal parameters corresponding maximum thermal efficiency and air purification rate.
Author Xu, Li
Xiao, Lan
Wu, Shuang-Ying
Author_xml – sequence: 1
  givenname: Shuang-Ying
  surname: Wu
  fullname: Wu, Shuang-Ying
  email: shuangyingwu@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
– sequence: 2
  givenname: Li
  surname: Xu
  fullname: Xu, Li
  organization: School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 3
  givenname: Lan
  surname: Xiao
  fullname: Xiao, Lan
  email: xiaolannancy@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
BookMark eNqFkLtOxDAQRS0EEsvjDyhc0mTxI4ljCiSEeElINFBbxp6AV04cbAe0f4-XpaIATTGj0T23OAdodwwjIHRCyZIS2p6tlhHGMktGqCyvJeFyBy1oJ2RF2o7togWRLalo3dF9dJDSihDadKJeoPdLF_E0R9c7o7MLI9ajxfkN4qA9niD2oVyjARx6PL2FHEpM-3V2pnqKYXgB_Km9xy86gcUFH2af3eShhNepdHrcO_A2YRPmybvx9Qjt9donOP7Zh-j55vrp6q56eLy9v7p8qAznMleWmLZhWsta9LKBjnQ1Z0ZY2jIrWAs9rxsGUjBWWy5oS4Cxrtyy5VZYJvghOt32TjG8z5CyGlwy4L0eIcxJMd6wmjVcbqL1NmpiSClCr6boBh3XihK1MaxWamtYbQxvvsVwwc5_Ycblb4k5auf_gy-2MBQHHw6iSsZBEW1dBJOVDe7vgi-F250n
CitedBy_id crossref_primary_10_3390_app12010156
crossref_primary_10_3390_buildings14051297
crossref_primary_10_1016_j_renene_2025_122942
crossref_primary_10_3390_en15238956
crossref_primary_10_1016_j_enconman_2024_118512
crossref_primary_10_1016_j_jobe_2024_109021
crossref_primary_10_1016_j_renene_2021_11_029
crossref_primary_10_1016_j_solmat_2023_112228
crossref_primary_10_1016_j_solener_2023_05_006
crossref_primary_10_1002_ese3_1348
crossref_primary_10_1007_s11164_023_04961_4
crossref_primary_10_1016_j_ces_2024_120602
crossref_primary_10_1016_j_solener_2023_112235
crossref_primary_10_1016_j_apenergy_2024_124388
crossref_primary_10_1016_j_buildenv_2022_109301
crossref_primary_10_1016_j_buildenv_2024_112334
crossref_primary_10_1016_j_enbuild_2024_114942
crossref_primary_10_1007_s44242_024_00039_5
crossref_primary_10_1016_j_est_2022_106419
crossref_primary_10_1016_j_jobe_2023_106402
crossref_primary_10_1016_j_applthermaleng_2023_122131
crossref_primary_10_1016_j_enbuild_2025_115372
crossref_primary_10_1016_j_jobe_2023_106406
crossref_primary_10_1016_j_jobe_2024_110688
crossref_primary_10_1080_15567036_2021_1939463
crossref_primary_10_1016_j_applthermaleng_2024_123557
crossref_primary_10_1021_acs_energyfuels_3c02828
crossref_primary_10_1016_j_energy_2023_128189
crossref_primary_10_1016_j_seta_2022_102012
crossref_primary_10_1016_j_matpr_2020_11_237
crossref_primary_10_1016_j_jobe_2023_108261
crossref_primary_10_1177_1420326X231164282
crossref_primary_10_1016_j_enconman_2021_115117
crossref_primary_10_1177_1420326X251317744
crossref_primary_10_1016_j_renene_2024_120621
crossref_primary_10_1016_j_seta_2024_103936
crossref_primary_10_1016_j_enbuild_2024_115062
crossref_primary_10_1016_j_renene_2022_06_054
crossref_primary_10_1016_j_jclepro_2022_134065
crossref_primary_10_1016_j_renene_2023_119361
crossref_primary_10_1016_j_clet_2023_100652
crossref_primary_10_1016_j_solener_2023_05_035
crossref_primary_10_1016_j_renene_2023_119167
crossref_primary_10_1155_2021_6630140
Cites_doi 10.1016/j.solener.2004.05.012
10.1016/j.enconman.2012.08.021
10.1016/j.solener.2013.01.016
10.1016/j.enbuild.2011.11.039
10.1016/j.apenergy.2018.05.111
10.1007/s00231-009-0509-6
10.1016/j.rser.2016.12.003
10.1016/j.applthermaleng.2019.03.090
10.1016/j.apenergy.2018.02.017
10.1016/j.rser.2017.06.078
10.1016/j.enbuild.2015.05.010
10.1016/j.energy.2018.10.037
10.1016/j.icheatmasstransfer.2017.09.005
10.1016/j.buildenv.2006.01.005
10.1080/15435075.2013.840833
10.1016/j.buildenv.2014.11.002
10.1016/j.solener.2015.10.005
10.1016/j.apenergy.2017.08.171
10.1016/j.apenergy.2017.06.078
10.1016/j.applthermaleng.2018.04.083
10.1016/j.solener.2011.04.025
10.1016/j.applthermaleng.2006.09.013
10.1016/j.buildenv.2017.01.026
10.1021/ie50294a020
10.1016/j.enconman.2018.02.093
10.1016/j.cej.2018.01.047
10.1016/j.enconman.2014.07.049
10.1016/j.enbuild.2015.06.078
10.1016/0017-9310(73)90125-7
10.1016/j.energy.2016.04.122
10.1016/j.applthermaleng.2016.03.141
10.1016/j.buildenv.2015.01.033
10.1016/j.rser.2012.06.032
10.1016/j.cej.2014.11.017
10.1016/j.enbuild.2016.04.042
10.1016/j.ijheatmasstransfer.2018.09.034
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2019.10.039
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 348
ExternalDocumentID 10_1016_j_renene_2019_10_039
S0960148119315307
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-d0c652aa947f95e808432c7d162d726ef3452e97224d37160e22824d963d7d273
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Fri Jul 11 08:06:32 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 03:21:00 EDT 2025
Fri Feb 23 02:47:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PC-Trombe wall
Multiple physical fields
Air purification
Photocatalytic oxidation
Thermal performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-d0c652aa947f95e808432c7d162d726ef3452e97224d37160e22824d963d7d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2352425397
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2352425397
crossref_primary_10_1016_j_renene_2019_10_039
crossref_citationtrail_10_1016_j_renene_2019_10_039
elsevier_sciencedirect_doi_10_1016_j_renene_2019_10_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Talukdar, Li, Tsubokura (bib35) 2019; 128
Hu, He, Ji, Zhang (bib4) 2017; 70
Monghasemi, Vadiee (bib3) 2018; 81
Corasaniti, Manni, Russo, Gori (bib6) 2017; 88
Pei, Han, Lu (bib23) 2015; 84
International Energy Agency (bib1) 2018
Saadatian, Sopian, Lim, Asim, Sulaiman (bib2) 2012; 16
Yu, Jiang, He, Hu, Chen, Ji, Xu (bib17) 2018; 164
Yu, He, Li, Zhou, Shen, Chen, Xu (bib18) 2017; 115
Ching, Leung, Leung (bib37) 2004; 77
He, Hu, Luo, Hong, Sun, Ji (bib34) 2015; 104
Wang, Yang, Yuan, Du, Yang (bib24) 2014; 87
Dabaieh, Elbably (bib7) 2015; 122
He, Hong, Wu, Pei, Hu, Tang, Shen, Ji (bib30) 2016; 123
Gilliland (bib32) 1934; 26
Hu, He, Hu, Lv, Wang, Ji, Chen, Ma (bib15) 2017; 203
Liu, Wang, Ma, Liu (bib29) 2013; 91
Yu, Jiang, He, Liu, Zhou, Ji, Xu, Chen (bib22) 2018; 215
Zhong, Haghighat (bib31) 2015; 91
Yu, He, Li, Wang, Cai, Chen, Ji, Xu (bib16) 2017; 206
Zhou, Yu, Zhang (bib12) 2018; 144
Stazi, Mastrucci, Perna (bib9) 2012; 47
Ji, Yi, He, Pei, Lu, Jiang (bib13) 2007; 42
Jones, Launder (bib27) 1973; 16
Rabani, Kalantar, Dehghan, Faghih (bib8) 2015; 102
Einaga, Tokura, Teraoka, Ito (bib25) 2015; 263
Wu, Guo, Xiao (bib33) 2015; 12
Shi (bib36) 2018; 165
Abdeen, Serageldin, Ibrahim, El-Zafarany, Ookawara, Murata (bib11) 2019; 154
Ji, Yi, Pei, Lu (bib14) 2007; 27
Kara (bib10) 2016; 102
Zamora, Kaiser (bib21) 2009; 45
Yu, Hou, He, Liu, Hu, Ji, Chen, Xu (bib19) 2018; 226
Wang, Yang, Du, Yang (bib20) 2013; 65
Hernández-López, Xamán, Chávez, Hernández-Pérez, Alvarado-Juárez (bib28) 2016; 109
Jaber, Ajib (bib5) 2011; 85
Roegiers, Walsem, Denys (bib26) 2018; 338
Yu (10.1016/j.renene.2019.10.039_bib16) 2017; 206
Zhong (10.1016/j.renene.2019.10.039_bib31) 2015; 91
Wang (10.1016/j.renene.2019.10.039_bib20) 2013; 65
Pei (10.1016/j.renene.2019.10.039_bib23) 2015; 84
Jaber (10.1016/j.renene.2019.10.039_bib5) 2011; 85
Rabani (10.1016/j.renene.2019.10.039_bib8) 2015; 102
Talukdar (10.1016/j.renene.2019.10.039_bib35) 2019; 128
Shi (10.1016/j.renene.2019.10.039_bib36) 2018; 165
Gilliland (10.1016/j.renene.2019.10.039_bib32) 1934; 26
Roegiers (10.1016/j.renene.2019.10.039_bib26) 2018; 338
Saadatian (10.1016/j.renene.2019.10.039_bib2) 2012; 16
Einaga (10.1016/j.renene.2019.10.039_bib25) 2015; 263
Ji (10.1016/j.renene.2019.10.039_bib14) 2007; 27
Ching (10.1016/j.renene.2019.10.039_bib37) 2004; 77
Yu (10.1016/j.renene.2019.10.039_bib19) 2018; 226
Wu (10.1016/j.renene.2019.10.039_bib33) 2015; 12
Yu (10.1016/j.renene.2019.10.039_bib22) 2018; 215
Yu (10.1016/j.renene.2019.10.039_bib18) 2017; 115
Zhou (10.1016/j.renene.2019.10.039_bib12) 2018; 144
He (10.1016/j.renene.2019.10.039_bib30) 2016; 123
Hu (10.1016/j.renene.2019.10.039_bib15) 2017; 203
Liu (10.1016/j.renene.2019.10.039_bib29) 2013; 91
Hernández-López (10.1016/j.renene.2019.10.039_bib28) 2016; 109
Monghasemi (10.1016/j.renene.2019.10.039_bib3) 2018; 81
Wang (10.1016/j.renene.2019.10.039_bib24) 2014; 87
He (10.1016/j.renene.2019.10.039_bib34) 2015; 104
Corasaniti (10.1016/j.renene.2019.10.039_bib6) 2017; 88
Jones (10.1016/j.renene.2019.10.039_bib27) 1973; 16
Kara (10.1016/j.renene.2019.10.039_bib10) 2016; 102
Ji (10.1016/j.renene.2019.10.039_bib13) 2007; 42
Stazi (10.1016/j.renene.2019.10.039_bib9) 2012; 47
Zamora (10.1016/j.renene.2019.10.039_bib21) 2009; 45
Abdeen (10.1016/j.renene.2019.10.039_bib11) 2019; 154
Hu (10.1016/j.renene.2019.10.039_bib4) 2017; 70
Dabaieh (10.1016/j.renene.2019.10.039_bib7) 2015; 122
International Energy Agency (10.1016/j.renene.2019.10.039_bib1) 2018
Yu (10.1016/j.renene.2019.10.039_bib17) 2018; 164
References_xml – volume: 122
  start-page: 820
  year: 2015
  end-page: 833
  ident: bib7
  article-title: Ventilated Trombe wall as a passive solar heating and cooling retrofitting approach; a low-tech design for off-grid settlements in semi-arid climates
  publication-title: Sol. Energy
– volume: 102
  start-page: 45
  year: 2015
  end-page: 57
  ident: bib8
  article-title: Empirical investigation of the cooling performance of a new designed Trombe wall in combination with solar chimney and water spraying system
  publication-title: Energy Build.
– volume: 26
  start-page: 681
  year: 1934
  end-page: 685
  ident: bib32
  article-title: Diffusion coefficients in gaseous systems
  publication-title: Ind. Eng. Chem.
– volume: 263
  start-page: 325
  year: 2015
  end-page: 335
  ident: bib25
  article-title: Kinetic analysis of TiO
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 1393
  year: 2009
  end-page: 1407
  ident: bib21
  article-title: Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation
  publication-title: Heat Mass Transf.
– volume: 144
  start-page: 1091
  year: 2018
  end-page: 1108
  ident: bib12
  article-title: Study on heat-transfer mechanism of wallboards containing active phase change material and parameter optimization with ventilation
  publication-title: Appl. Therm. Eng.
– volume: 47
  start-page: 217
  year: 2012
  end-page: 229
  ident: bib9
  article-title: The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study
  publication-title: Energy Build.
– volume: 87
  start-page: 606
  year: 2014
  end-page: 617
  ident: bib24
  article-title: Numerical investigation on photocatalytic CO
  publication-title: Energy Convers. Manag.
– volume: 88
  start-page: 269
  year: 2017
  end-page: 276
  ident: bib6
  article-title: Numerical simulation of modified Trombe-Michel Walls with exergy and energy analysis
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 154
  start-page: 751
  year: 2019
  end-page: 768
  ident: bib11
  article-title: Experimental, analytical, and numerical investigation into the feasibility of integrating a passive Trombe wall into a single room
  publication-title: Appl. Therm. Eng.
– volume: 115
  start-page: 130
  year: 2017
  end-page: 146
  ident: bib18
  article-title: Experiments and kinetics of solar PCO for indoor air purification in PCO/TW system
  publication-title: Build. Environ.
– volume: 109
  start-page: 512
  year: 2016
  end-page: 524
  ident: bib28
  article-title: Thermal energy storage and losses in a room-Trombe wall system located in Mexicos
  publication-title: Energy
– volume: 165
  start-page: 925
  year: 2018
  end-page: 938
  ident: bib36
  article-title: Theoretical models for wall solar chimney under cooling and heating modes considering room configuration
  publication-title: Energy
– volume: 12
  start-page: 379
  year: 2015
  end-page: 397
  ident: bib33
  article-title: A Review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system
  publication-title: Int. J. Green Energy
– year: 2018
  ident: bib1
  article-title: Energy Efficiency 2018—Analysis and Outlooks to 2040
– volume: 91
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib29
  article-title: A numerical and experimental analysis of the air vent management and heat storage characteristics of a trombe wall
  publication-title: Sol. Energy
– volume: 203
  start-page: 643
  year: 2017
  end-page: 656
  ident: bib15
  article-title: Design, construction and performance testing of a PV blind-integrated Trombe wall module
  publication-title: Appl. Energy
– volume: 206
  start-page: 70
  year: 2017
  end-page: 82
  ident: bib16
  article-title: Experimental and numerical performance analysis of a TC-Trombe wall
  publication-title: Appl. Energy
– volume: 16
  start-page: 6340
  year: 2012
  end-page: 6351
  ident: bib2
  article-title: Trombe walls: a review of opportunities and challenges in research and development
  publication-title: Renew. Sustain. Energy Rev.
– volume: 81
  start-page: 2714
  year: 2018
  end-page: 2730
  ident: bib3
  article-title: A review of solar chimney integrated systems for space heating and cooling application
  publication-title: Renew. Sustain. Energy Rev.
– volume: 65
  start-page: 299
  year: 2013
  end-page: 307
  ident: bib20
  article-title: Numerical investigation on CO
  publication-title: Energy Convers. Manag.
– volume: 85
  start-page: 1891
  year: 2011
  end-page: 1898
  ident: bib5
  article-title: Optimum design of Trombe wall system in mediterranean region
  publication-title: Sol. Energy
– volume: 84
  start-page: 134
  year: 2015
  end-page: 141
  ident: bib23
  article-title: Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst
  publication-title: Build. Environ.
– volume: 77
  start-page: 129
  year: 2004
  end-page: 135
  ident: bib37
  article-title: Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO
  publication-title: Sol. Energy
– volume: 128
  start-page: 794
  year: 2019
  end-page: 806
  ident: bib35
  article-title: Investigation on optimization of the thermal performance for compressible laminar natural convection flow in open-ended vertical channel
  publication-title: Int. J. Heat Mass Transf.
– volume: 102
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib10
  article-title: Diurnal performance analysis of phase change material walls
  publication-title: Appl. Therm. Eng.
– volume: 16
  start-page: 1119
  year: 1973
  end-page: 1130
  ident: bib27
  article-title: The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence
  publication-title: Int. J. Heat Mass Transf.
– volume: 70
  start-page: 976
  year: 2017
  end-page: 987
  ident: bib4
  article-title: A review on the application of Trombe wall system in buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 104
  start-page: 395
  year: 2015
  end-page: 404
  ident: bib34
  article-title: The thermal behavior of Trombe wall system with Venetian blind: an experimental and numerical study
  publication-title: Energy Build.
– volume: 226
  start-page: 365
  year: 2018
  end-page: 380
  ident: bib19
  article-title: Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification
  publication-title: Appl. Energy
– volume: 91
  start-page: 191
  year: 2015
  end-page: 203
  ident: bib31
  article-title: Photocatalytic air cleaners and materials technologies – abilities and limitations
  publication-title: Build. Environ.
– volume: 27
  start-page: 1507
  year: 2007
  end-page: 1515
  ident: bib14
  article-title: Study of PV-Trombe wall installed in a fenestrated room with heat storage
  publication-title: Appl. Therm. Eng.
– volume: 164
  start-page: 242
  year: 2018
  end-page: 261
  ident: bib17
  article-title: The performance analysis of a novel TC-Trombe wall system in heating seasons
  publication-title: Energy Convers. Manag.
– volume: 215
  start-page: 699
  year: 2018
  end-page: 716
  ident: bib22
  article-title: Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology
  publication-title: Appl. Energy
– volume: 338
  start-page: 287
  year: 2018
  end-page: 299
  ident: bib26
  article-title: CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 1544
  year: 2007
  end-page: 1552
  ident: bib13
  article-title: Modeling of a novel Trombe wall with PV cells
  publication-title: Build. Environ.
– volume: 123
  start-page: 50
  year: 2016
  end-page: 58
  ident: bib30
  article-title: Thermal and hydraulic analysis on a novel Trombe wall with Venetian blind structure
  publication-title: Energy Build.
– volume: 77
  start-page: 129
  issue: 2
  year: 2004
  ident: 10.1016/j.renene.2019.10.039_bib37
  article-title: Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.05.012
– volume: 65
  start-page: 299
  year: 2013
  ident: 10.1016/j.renene.2019.10.039_bib20
  article-title: Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.08.021
– volume: 91
  start-page: 1
  year: 2013
  ident: 10.1016/j.renene.2019.10.039_bib29
  article-title: A numerical and experimental analysis of the air vent management and heat storage characteristics of a trombe wall
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.01.016
– volume: 47
  start-page: 217
  year: 2012
  ident: 10.1016/j.renene.2019.10.039_bib9
  article-title: The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.11.039
– volume: 226
  start-page: 365
  year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib19
  article-title: Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.05.111
– volume: 45
  start-page: 1393
  issue: 11
  year: 2009
  ident: 10.1016/j.renene.2019.10.039_bib21
  article-title: Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-009-0509-6
– volume: 70
  start-page: 976
  year: 2017
  ident: 10.1016/j.renene.2019.10.039_bib4
  article-title: A review on the application of Trombe wall system in buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.12.003
– volume: 154
  start-page: 751
  year: 2019
  ident: 10.1016/j.renene.2019.10.039_bib11
  article-title: Experimental, analytical, and numerical investigation into the feasibility of integrating a passive Trombe wall into a single room
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.03.090
– volume: 215
  start-page: 699
  year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib22
  article-title: Performance study on a novel hybrid solar gradient utilization system for combined photocatalytic oxidation technology and photovoltaic/thermal technology
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.017
– volume: 81
  start-page: 2714
  year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib3
  article-title: A review of solar chimney integrated systems for space heating and cooling application
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.06.078
– volume: 102
  start-page: 45
  year: 2015
  ident: 10.1016/j.renene.2019.10.039_bib8
  article-title: Empirical investigation of the cooling performance of a new designed Trombe wall in combination with solar chimney and water spraying system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.05.010
– volume: 165
  start-page: 925
  year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib36
  article-title: Theoretical models for wall solar chimney under cooling and heating modes considering room configuration
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.037
– volume: 88
  start-page: 269
  year: 2017
  ident: 10.1016/j.renene.2019.10.039_bib6
  article-title: Numerical simulation of modified Trombe-Michel Walls with exergy and energy analysis
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.09.005
– volume: 42
  start-page: 1544
  issue: 3
  year: 2007
  ident: 10.1016/j.renene.2019.10.039_bib13
  article-title: Modeling of a novel Trombe wall with PV cells
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.01.005
– volume: 12
  start-page: 379
  issue: 4
  year: 2015
  ident: 10.1016/j.renene.2019.10.039_bib33
  article-title: A Review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2013.840833
– volume: 84
  start-page: 134
  year: 2015
  ident: 10.1016/j.renene.2019.10.039_bib23
  article-title: Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.11.002
– volume: 122
  start-page: 820
  year: 2015
  ident: 10.1016/j.renene.2019.10.039_bib7
  article-title: Ventilated Trombe wall as a passive solar heating and cooling retrofitting approach; a low-tech design for off-grid settlements in semi-arid climates
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.10.005
– volume: 206
  start-page: 70
  year: 2017
  ident: 10.1016/j.renene.2019.10.039_bib16
  article-title: Experimental and numerical performance analysis of a TC-Trombe wall
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.171
– volume: 203
  start-page: 643
  year: 2017
  ident: 10.1016/j.renene.2019.10.039_bib15
  article-title: Design, construction and performance testing of a PV blind-integrated Trombe wall module
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.06.078
– volume: 144
  start-page: 1091
  year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib12
  article-title: Study on heat-transfer mechanism of wallboards containing active phase change material and parameter optimization with ventilation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.04.083
– volume: 85
  start-page: 1891
  issue: 9
  year: 2011
  ident: 10.1016/j.renene.2019.10.039_bib5
  article-title: Optimum design of Trombe wall system in mediterranean region
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.04.025
– volume: 27
  start-page: 1507
  issue: 8–9
  year: 2007
  ident: 10.1016/j.renene.2019.10.039_bib14
  article-title: Study of PV-Trombe wall installed in a fenestrated room with heat storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.09.013
– volume: 115
  start-page: 130
  year: 2017
  ident: 10.1016/j.renene.2019.10.039_bib18
  article-title: Experiments and kinetics of solar PCO for indoor air purification in PCO/TW system
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.01.026
– volume: 26
  start-page: 681
  issue: 6
  year: 1934
  ident: 10.1016/j.renene.2019.10.039_bib32
  article-title: Diffusion coefficients in gaseous systems
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50294a020
– volume: 164
  start-page: 242
  year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib17
  article-title: The performance analysis of a novel TC-Trombe wall system in heating seasons
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.02.093
– year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib1
– volume: 338
  start-page: 287
  year: 2018
  ident: 10.1016/j.renene.2019.10.039_bib26
  article-title: CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.047
– volume: 87
  start-page: 606
  year: 2014
  ident: 10.1016/j.renene.2019.10.039_bib24
  article-title: Numerical investigation on photocatalytic CO2 reduction by solar energy in double-skin sheet reactor
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.07.049
– volume: 104
  start-page: 395
  year: 2015
  ident: 10.1016/j.renene.2019.10.039_bib34
  article-title: The thermal behavior of Trombe wall system with Venetian blind: an experimental and numerical study
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.06.078
– volume: 16
  start-page: 1119
  issue: 6
  year: 1973
  ident: 10.1016/j.renene.2019.10.039_bib27
  article-title: The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(73)90125-7
– volume: 109
  start-page: 512
  year: 2016
  ident: 10.1016/j.renene.2019.10.039_bib28
  article-title: Thermal energy storage and losses in a room-Trombe wall system located in Mexicos
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.122
– volume: 102
  start-page: 1
  year: 2016
  ident: 10.1016/j.renene.2019.10.039_bib10
  article-title: Diurnal performance analysis of phase change material walls
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.141
– volume: 91
  start-page: 191
  year: 2015
  ident: 10.1016/j.renene.2019.10.039_bib31
  article-title: Photocatalytic air cleaners and materials technologies – abilities and limitations
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.01.033
– volume: 16
  start-page: 6340
  issue: 8
  year: 2012
  ident: 10.1016/j.renene.2019.10.039_bib2
  article-title: Trombe walls: a review of opportunities and challenges in research and development
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.06.032
– volume: 263
  start-page: 325
  year: 2015
  ident: 10.1016/j.renene.2019.10.039_bib25
  article-title: Kinetic analysis of TiO2-catalyzed heterogeneous photocatalytic oxidation of ethylene using computational fluid dynamics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.11.017
– volume: 123
  start-page: 50
  year: 2016
  ident: 10.1016/j.renene.2019.10.039_bib30
  article-title: Thermal and hydraulic analysis on a novel Trombe wall with Venetian blind structure
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.04.042
– volume: 128
  start-page: 794
  year: 2019
  ident: 10.1016/j.renene.2019.10.039_bib35
  article-title: Investigation on optimization of the thermal performance for compressible laminar natural convection flow in open-ended vertical channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.09.034
SSID ssj0015874
Score 2.5120645
Snippet Photocatalytic (PC)-Trombe wall with dual functions of space heating and air purification has a promising way in solar architecture integration. In this paper,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 338
SubjectTerms air
Air purification
air temperature
ambient temperature
convection
equations
formaldehyde
mathematical models
Multiple physical fields
PC-Trombe wall
photocatalysis
Photocatalytic oxidation
renewable energy sources
Reynolds number
solar radiation
Thermal performance
wind speed
Title Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling
URI https://dx.doi.org/10.1016/j.renene.2019.10.039
https://www.proquest.com/docview/2352425397
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvG5RPCa3TZN-jgui8uq6MUVvJU2SXVlbes-EC_-dmfS1hfCgteQCWEmmfmm_WZCyJlOsiCKRMC0C7mJ4EqyVEvOoiwTqe8oR1nK__WNP7wTl_fyvkX6TS0M0ipr31_5dOut65Furc1uOR53bxF8A5h3AYLAtbUV5UIEeMo77580D1eGVSdmmMxwdlM-Zzle2DUyx2aZbtRBjhc-Gf53ePrlqG30GWySjRo20l61sy3SMvk2Wf_WTHCHvPTGU1oupsj9seqmSa4p4rtnkCy_CgRokdHysZgX9tPNG6zIRtPiOTX0NZlMKMY1TUG84RrSsrYltXS3GVXFAut4H3bJ3eB81B-y-kEFpjwvmjPtKF_yJAHbZJE0oRMKj6tAuz7XAfdN5gnJTRRAWNceJFKO4ZCRCQ2XVAcagM4eWcmL3OwTGopESu4r8JWeSEWWpG7opE4mU6UdGeoD4jV6jFXdbRwfvZjEDa3sKa60H6P2cRS0f0DYp1RZddtYMj9oTBT_ODUxBIQlkqeNRWO4UPiXJMlNsZjFHCApODLAaYf_Xv2IrHHMyy3D55iszKcLcwLgZZ627elsk9XexdXw5gPI9O_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QdgAOiKcYzyBxDWvTpI_jNIHGaxeGxC1qkxSGRlvGJsS_x-6Dl5CQuEZxVNmJ_bn57BBybOI0iCIRMONCbiK4liwxkrMoTUXiO9rRJeX_eugPbsXFnbxbIP2mFgZplbXvr3x66a3rkW6tzW4xHndvEHwDmHcBgsCxxYryNnanki3S7p1fDoYflwkyrJoxw3yGAk0FXUnzwsaRGfbLdKMTpHnhq-G_R6gfvroMQGerZKVGjrRXfdwaWbDZOln-0k9wgzz3xlNazKdI_yk1TuPMUIR4TyBZfNYI0DylxUM-y8u_N2-wIhtN86fE0td4MqEY2gwF8YZuSIvanLRkvL1Qnc-xlPd-k9yenY76A1a_qcC050UzZhztSx7HYJ40kjZ0QuFxHRjX5ybgvk09IbmNAojsxoNcyrEckjJh4JyawADW2SKtLM_sNqGhiKXkvgZ36YlEpHHihk7ipDLRxpGh6RCv0aPSdcNxfPdiohpm2aOqtK9Q-zgK2u8Q9iFVVA03_pgfNCZS3zaOgpjwh-RRY1EFZwovSuLM5vMXxQGVgi8DqLbz79UPyeJgdH2lrs6Hl7tkiWOaXhJ-9khrNp3bfcAys-Sg3qvvARjyoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+purification+and+thermal+performance+of+photocatalytic-Trombe+wall+based+on+multiple+physical+fields+coupling&rft.jtitle=Renewable+energy&rft.au=Wu%2C+Shuang-Ying&rft.au=Xu%2C+Li&rft.au=Xiao%2C+Lan&rft.date=2020-04-01&rft.issn=0960-1481&rft.volume=148&rft.spage=338&rft.epage=348&rft_id=info:doi/10.1016%2Fj.renene.2019.10.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2019_10_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon