Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea – maize intercropping system
Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth...
Saved in:
Published in | Rhizosphere Vol. 18; p. 100331 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth-promoting rhizobacteria (PGPR) in an intercropping system, a model legume-cereal intercropping system involving maize (Zea mays) and pigeon pea (Cajanus cajan) was assessed for colonization using three different bacterial strains Enterobacter sp. C1D, Pseudomonas sp. G22, Rhizobium sp. IC3109. Cross colonization experiments suggested bacterial movement from one plant species to another in the presence/absence of a mesh barrier, implicating the role of intercrop root exudates. In vitro assays and plant inoculation studies displayed that Enterobacter sp. C1D had a preference for monocropped plants while Rhizobium sp. IC3109 to intercropped plants and Pseudomonas sp. G22 was evenly colonized in both conditions. Organic acids like fumarate, malate, and succinate, as analyzed by LC/MS/MS (MRM), were found to be prominent in monocropped plant root exudates, while co-cultivation resulted in a decrease of the exudation of these metabolites. The PGPR strains showed differential behavioral responses in terms of chemotaxis and biofilm formation towards root exudates of intercropped and monocropped plants. Overall, our study provides pieces of evidence that co-cultivation of legume and cereal plants leads to the variation in root exudates and the response of plant beneficial bacteria.
•Rhizobacterial strains promoted growth of C. cajan and Z. mays plants through PGP traits like indole –acetic acid production.•Each strain colonized distinctly in C. cajan – Z. mays intercropping and could cross colonize from one plant to another.•Each strain’s chemotaxis preference to monocropped or intercropped root exudates was different.•Of the root exudate organic acids, only fumarate strongly induced chemotaxis and biofilm production in Rhizobium IC3109. |
---|---|
AbstractList | Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth-promoting rhizobacteria (PGPR) in an intercropping system, a model legume-cereal intercropping system involving maize (Zea mays) and pigeon pea (Cajanus cajan) was assessed for colonization using three different bacterial strains Enterobacter sp. C1D, Pseudomonas sp. G22, Rhizobium sp. IC3109. Cross colonization experiments suggested bacterial movement from one plant species to another in the presence/absence of a mesh barrier, implicating the role of intercrop root exudates. In vitro assays and plant inoculation studies displayed that Enterobacter sp. C1D had a preference for monocropped plants while Rhizobium sp. IC3109 to intercropped plants and Pseudomonas sp. G22 was evenly colonized in both conditions. Organic acids like fumarate, malate, and succinate, as analyzed by LC/MS/MS (MRM), were found to be prominent in monocropped plant root exudates, while co-cultivation resulted in a decrease of the exudation of these metabolites. The PGPR strains showed differential behavioral responses in terms of chemotaxis and biofilm formation towards root exudates of intercropped and monocropped plants. Overall, our study provides pieces of evidence that co-cultivation of legume and cereal plants leads to the variation in root exudates and the response of plant beneficial bacteria.
•Rhizobacterial strains promoted growth of C. cajan and Z. mays plants through PGP traits like indole –acetic acid production.•Each strain colonized distinctly in C. cajan – Z. mays intercropping and could cross colonize from one plant to another.•Each strain’s chemotaxis preference to monocropped or intercropped root exudates was different.•Of the root exudate organic acids, only fumarate strongly induced chemotaxis and biofilm production in Rhizobium IC3109. Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth-promoting rhizobacteria (PGPR) in an intercropping system, a model legume-cereal intercropping system involving maize (Zea mays) and pigeon pea (Cajanus cajan) was assessed for colonization using three different bacterial strains Enterobacter sp. C1D, Pseudomonas sp. G22, Rhizobium sp. IC3109. Cross colonization experiments suggested bacterial movement from one plant species to another in the presence/absence of a mesh barrier, implicating the role of intercrop root exudates. In vitro assays and plant inoculation studies displayed that Enterobacter sp. C1D had a preference for monocropped plants while Rhizobium sp. IC3109 to intercropped plants and Pseudomonas sp. G22 was evenly colonized in both conditions. Organic acids like fumarate, malate, and succinate, as analyzed by LC/MS/MS (MRM), were found to be prominent in monocropped plant root exudates, while co-cultivation resulted in a decrease of the exudation of these metabolites. The PGPR strains showed differential behavioral responses in terms of chemotaxis and biofilm formation towards root exudates of intercropped and monocropped plants. Overall, our study provides pieces of evidence that co-cultivation of legume and cereal plants leads to the variation in root exudates and the response of plant beneficial bacteria. |
ArticleNumber | 100331 |
Author | Vora, Siddhi M. Joshi, Purvi Belwalkar, Mugdha Archana, G. |
Author_xml | – sequence: 1 givenname: Siddhi M. surname: Vora fullname: Vora, Siddhi M. – sequence: 2 givenname: Purvi orcidid: 0000-0002-7546-0234 surname: Joshi fullname: Joshi, Purvi – sequence: 3 givenname: Mugdha orcidid: 0000-0003-2296-4807 surname: Belwalkar fullname: Belwalkar, Mugdha – sequence: 4 givenname: G. orcidid: 0000-0003-1134-8224 surname: Archana fullname: Archana, G. email: archanagayatri@yahoo.com, g.archana-microbio@msubaroda.ac.in |
BookMark | eNqFkc2KFDEUhYOM4DjOG7jI0k23-amqTrkQZHBUGBBE1yGd3HTdpiopk_Q40yvfQZ_QJzFtuRAXukpIznc4957H5CzEAIQ85WzNGe-e79dpwDwPa8EEr09MSv6AnIumFSvBe3X2x_0Rucx5zxjjm062nTwn3z_EWCjcHZwpkCkGPx4gWKB2gCkWc4eZmuCojWMMeDQFY6DRU4e3kDLQeTSh0F2KX8pA5xQrg2FHa6Rj3BpbIKGprrQMVYs7qPQMhv74-o1OBo9Q_6rGpjjPJy7f5wLTE_LQmzHD5e_zgny6fv3x6u3q5v2bd1evblZWyr6srG0tCAYtOMW93KqmV6wD1TnTKd8KyxsvRe86ZXu58Vu5UcLY1olOGm69lBfk2eJbg38-QC56wmxhrDNBPGQtWtGItm8aVaUvFmmNmnMCry2WX9soyeCoOdOnNvReL23oUxt6aaPCzV_wnHAy6f5_2MsFg7qDW4Sks8VTOQ4T2KJdxH8b_ARWzq1e |
CitedBy_id | crossref_primary_10_1016_j_envexpbot_2023_105318 crossref_primary_10_1134_S1021443723603506 crossref_primary_10_1080_00103624_2024_2404649 crossref_primary_10_3390_microorganisms11061486 crossref_primary_10_1007_s00248_021_01818_4 crossref_primary_10_1007_s00216_022_04475_9 crossref_primary_10_1021_acs_jafc_2c08647 crossref_primary_10_1016_j_rhisph_2024_101001 crossref_primary_10_3390_agronomy12081900 crossref_primary_10_1088_1755_1315_1259_1_012014 crossref_primary_10_1038_s41467_024_45207_0 crossref_primary_10_1016_j_funeco_2023_101240 crossref_primary_10_1128_spectrum_01002_22 crossref_primary_10_1007_s00203_024_03943_3 crossref_primary_10_1016_j_rhisph_2022_100477 crossref_primary_10_1016_j_rhisph_2025_101051 crossref_primary_10_1016_j_stress_2023_100341 crossref_primary_10_1007_s11104_023_05963_2 crossref_primary_10_1093_hr_uhad112 crossref_primary_10_1016_j_soilbio_2025_109792 crossref_primary_10_3390_microorganisms11071847 crossref_primary_10_1111_ppl_14058 crossref_primary_10_3390_microorganisms11122984 crossref_primary_10_1016_j_ijbiomac_2022_04_015 crossref_primary_10_1016_j_indcrop_2022_114958 crossref_primary_10_1016_j_rhisph_2021_100443 crossref_primary_10_1038_s42003_023_05399_5 crossref_primary_10_1016_j_rhisph_2022_100563 crossref_primary_10_1128_aem_01505_24 crossref_primary_10_1016_j_micres_2025_128141 crossref_primary_10_3389_fmicb_2024_1473099 crossref_primary_10_3390_agronomy13020413 crossref_primary_10_1016_j_rhisph_2023_100774 crossref_primary_10_1007_s10725_024_01154_w crossref_primary_10_1007_s42729_021_00605_x crossref_primary_10_1016_j_envpol_2025_125677 crossref_primary_10_3390_jof8010063 crossref_primary_10_17221_419_2021_PSE crossref_primary_10_3390_agronomy14102181 crossref_primary_10_1016_j_hpj_2022_09_007 crossref_primary_10_1111_plb_13582 crossref_primary_10_1515_opag_2022_0238 crossref_primary_10_1007_s42729_022_00900_1 crossref_primary_10_1007_s13205_022_03115_4 crossref_primary_10_1515_biol_2022_0057 crossref_primary_10_1016_j_envexpbot_2023_105274 crossref_primary_10_1016_j_crmicr_2023_100205 crossref_primary_10_1007_s42729_023_01248_w crossref_primary_10_3390_ijms25021288 |
Cites_doi | 10.1080/00380768.1996.10416324 10.1016/j.cpb.2019.100110 10.1016/j.soilbio.2006.07.013 10.3389/fenvs.2018.00046 10.1016/j.scienta.2019.108951 10.1016/j.rhisph.2020.100211 10.1111/j.1574-6941.2007.00293.x 10.1371/journal.pone.0225810 10.1023/A:1004356007312 10.1371/journal.pone.0046640 10.1016/j.apsoil.2017.10.008 10.1016/S1002-0160(17)60448-X 10.1104/pp.102.019661 10.1016/j.tplants.2016.01.009 10.1094/MPMI-01-18-0003-R 10.1093/femsre/fux052 10.1002/jpln.201000085 10.3389/fmicb.2018.00853 10.1007/s11104-004-1305-1 10.1128/AEM.07336-11 10.1016/j.micres.2016.07.006 10.1023/A:1022304332313 10.1023/A:1004380832118 10.1007/s11738-012-1148-y 10.1007/s11104-016-3145-1 10.1016/j.envexpbot.2012.11.007 10.3389/fpls.2018.01473 10.1016/j.agee.2017.02.019 10.1007/BF00155523 10.1083/jcb.102.4.1173 10.1016/j.rhisph.2020.100242 10.1186/s12866-020-1708-z 10.1038/nrmicro3109 10.1021/jf804003v 10.1038/s41598-019-41146-9 10.1002/jsfa.10161 10.1071/CP19067 10.1039/C7CS00343A 10.1016/j.rhisph.2020.100240 10.1007/s11104-013-1915-6 10.1094/MPMI-19-0250 10.1099/mic.0.2006/005538-0 10.1080/15226514.2011.604691 10.1016/j.micres.2019.126354 10.1007/s00203-004-0661-9 10.1007/s40502-014-0101-z 10.1016/j.ejsobi.2011.08.009 10.1186/s13568-017-0437-7 10.3389/fpls.2015.00339 10.1016/j.rhisph.2018.06.004 10.1007/s00203-006-0191-8 10.1073/pnas.1523580113 10.1007/s11356-020-07885-3 10.1094/MPMI.2001.14.6.775 10.1007/s00374-013-0854-y |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.rhisph.2021.100331 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2198 |
ExternalDocumentID | 10_1016_j_rhisph_2021_100331 S2452219821000276 |
GroupedDBID | --M 0R~ AACTN AAEDT AAEDW AAHBH AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABGRD ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV AEBSH AEIPS AFJKZ AFTJW AFXIZ AGUBO AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPCBC SSA SSH SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-cc5ce20e5ed81f3b849806e86da68f52c14f329d68c937fb3782ac5d263a1cf33 |
IEDL.DBID | AIKHN |
ISSN | 2452-2198 |
IngestDate | Fri Jul 11 05:47:14 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Tue Jul 01 03:12:55 EDT 2025 Sun Apr 06 06:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biofilm Rhizosphere Cajanus cajan Zea mays Organic acids |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-cc5ce20e5ed81f3b849806e86da68f52c14f329d68c937fb3782ac5d263a1cf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1134-8224 0000-0002-7546-0234 0000-0003-2296-4807 |
PQID | 2524259448 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2524259448 crossref_citationtrail_10_1016_j_rhisph_2021_100331 crossref_primary_10_1016_j_rhisph_2021_100331 elsevier_sciencedirect_doi_10_1016_j_rhisph_2021_100331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Rhizosphere |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lithourgidis, Dordas, Damalas, Vlachostergios (bib33) 2011; 5 Gosai, Anandhan, Bhattacharjee, Archana (bib17) 2019; 231 Erro, Zamarreñ O, Yvin, Garcia-Mina (bib13) 2009; 57 Iyer, Rajput, Jog, Joshi, Bharwad, Rajkumar (bib21) 2016; 192 Subrahmanyam, Sharma, Kumar, Archana (bib57) 2018; 28 Carvalhais, Dennis, Fedoseyenko, Hajirezaei, Borriss, Von Wirén (bib7) 2011; 174 Broughton, Wong, Lewin, Samrey, Myint, Meyer, Dowling, Simon (bib4) 1986; 102 Chagas, Pessotti, Caraballo-Rodríguez, Pupo (bib8) 2018; 47 Sun, Liu, Song, Tian, Xu (bib58) 2020; 16 Hunter, Teakle, Bending (bib20) 2014; 5 Rajendran, Mistry, Desai, Archana (bib48) 2007; 187 Liu, Hu, Lohrke, Baker, Buyer, Souza, Roberts (bib34) 2007; 153 Duchene, Vian, Celette (bib12) 2017; 240 Sharma, Barot, Archana (bib59) 2019; 100 Kamilova, Kravchenko, Shaposhnikov, Azarova, Makarova, Lugtenberg (bib25) 2006; 19 Li, Li, Wu, Zhang, Li, Li, Lambers, Li (bib31) 2016; 113 Romero-Perdomo, Abril, Camelo, Moreno-galván, Pastrana, Rojas-tapias, Bonilla (bib50) 2017; 49 Saharan, Schütz, Kahmen, Wiemken, Boller, Mathimaran (bib53) 2018; 6 Huang, Li, Shi, Wang, Id, Huang (bib19) 2019; 14 Jones, Dennis, Owen, Van Hees (bib24) 2003; 248 Garland, Bünemann, Oberson (bib15) 2017; 415 Chong, Chen, Seng, Too, Yu, Ang, Lim, Yin, Grandclément, Faure, Dessaux, Chan (bib9) 2017; 7 Patel, Archana (bib66) 2018; 124 Walker, Bais, Grotewold, Vivanco (bib61) 2003; 132 Liu, Yin, Xiao, Tang, Zheng (bib35) 2019; 9 Neumann, Römheld (bib42) 1999; 211 Sambrook and Russel (bib52) 2001; vol. 2 Mathimaran, Jegan, Thimmegowda, Prabavathy, Yuvaraj, Kathiravan, Sivakumar, Manjunatha, Bhavitha, Sathish, Shashidhar, Bagyaraj, Ashok, Singh, Kahmen, Boller, Mäder (bib37) 2020; 4 Mommer, Kirkegaard, van Ruijven (bib40) 2016; 21 Rosenblueth, Martínez-Romero (bib51) 2004; 181 Philippot, Raaijmakers, Lemanceau, Van Der Putten (bib47) 2013; 11 Wu, Chung, Tam, Wong (bib64) 2012; 14 Wang, Li, Zhang, Wei, Li (bib63) 2020; 20 Matilla, Krell (bib38) 2018; 42 Zhang, Wang, Liu, Li, Shen, Zhang (bib65) 2014; 374 Gordillo, Chávez, Jerez (bib16) 2007; 60 Krishnappa, Hussain (bib28) 2014; 19 Jones (bib22) 1998; 205 Macias-benitez, Garcia-Martinez, Jimenez, Gonzalez, Moral, Rubio, Ryan (bib36) 2020; 11 Hauggaard-Nielsen, Jensen (bib18) 2005; 274 Backer, Rokem, Ilangumaran, Lamont, Praslickova, Ricci, Subramanian, Smith (bib1) 2018; 9 Ling, Raza, Ma, Huang, Shen (bib32) 2011; 47 Bechtaoui, El Alaoui, Raklami, Benidire, Tahiri, Oufdou (bib3) 2019; 70 Oburger, Jones (bib44) 2018; 6 Li, Mu, Cheng, Liu, Nian (bib30) 2013; 35 Badri, de-la-Peña, Lei, Manter, Chaparro, Guimarães, Sumner, Vivanco (bib2) 2012; 7 Lee, Lee, Park, Sangurdekar, Chang (bib29) 2012; 78 Naveed, Mitter, Yousaf, Pastar, Afzal, Sessitsch (bib41) 2013; 50 Silva, Winck, Borges, Santos, Bataiolli, Backes, Bassani, Borin, Frazzon, Sá (bib56) 2020; 16 Rezaei-Chiyaneh, Amirnia, Amani, Machiani, Javanmard, Maggi, Morshedloo (bib49) 2019; 261 Noirot-Gros, Shinde, Larsen, Zerbs, Korajczyk, Kemner, Noirot (bib67) 2018; 9 Schoebitz, Castillo, Jorquera, Roldan (bib54) 2020; 10 Wang, Marschner, Solaiman, Rengel (bib62) 2007; 39 Canarini, Kaiser, Merchant, Richter, Wanek (bib6) 2019; 10 Knee, Gong, Gao, Teplitski, Jones, Foxworthy, Mort, Bauer (bib26) 2001; 14 Contreras, Díaz, Domenico, De, Mora (bib10) 2019; 19 Jones, Darrah (bib23) 1995; 173 Konkolewska, Piechalak, Ciszewska, Antos-Krzemińska, Skrzypczak, Hanć, Sitko, Małkowski, Barałkiewicz, Małecka (bib27) 2020; 27 Meng, Zhang, Wang, Han, Wang, Li (bib39) 2015; 6 Feng, Zhang, Du, Zhang, Liu, Fu, Shao, Zhang, Shen, Zhang (bib14) 2018; 31 Cavalcanti, Carvalho, Ribeiro, Elena, Escobar, Carla, Fraiz, Pereira, Souza, Dolores, Freitas, Simão, Nóbrega, Fernandes-júnior (bib5) 2020 Oburger, Dellmour, Hann, Wieshammer, Puschenreiter, Wenzel (bib43) 2013; 87 Darias, García-Fontana, Lugo, Rico-Jiménez, Krell (bib11) 2014; vol. 1149 Taylor, Otani, Ae, Tanaka (bib60) 1996; 42 Darias (10.1016/j.rhisph.2021.100331_bib11) 2014; vol. 1149 Mommer (10.1016/j.rhisph.2021.100331_bib40) 2016; 21 Sharma (10.1016/j.rhisph.2021.100331_bib59) 2019; 100 Naveed (10.1016/j.rhisph.2021.100331_bib41) 2013; 50 Meng (10.1016/j.rhisph.2021.100331_bib39) 2015; 6 Ling (10.1016/j.rhisph.2021.100331_bib32) 2011; 47 Rezaei-Chiyaneh (10.1016/j.rhisph.2021.100331_bib49) 2019; 261 Wu (10.1016/j.rhisph.2021.100331_bib64) 2012; 14 Huang (10.1016/j.rhisph.2021.100331_bib19) 2019; 14 Rajendran (10.1016/j.rhisph.2021.100331_bib48) 2007; 187 Wang (10.1016/j.rhisph.2021.100331_bib62) 2007; 39 Matilla (10.1016/j.rhisph.2021.100331_bib38) 2018; 42 Li (10.1016/j.rhisph.2021.100331_bib30) 2013; 35 Krishnappa (10.1016/j.rhisph.2021.100331_bib28) 2014; 19 Lee (10.1016/j.rhisph.2021.100331_bib29) 2012; 78 Patel (10.1016/j.rhisph.2021.100331_bib66) 2018; 124 Sun (10.1016/j.rhisph.2021.100331_bib58) 2020; 16 Liu (10.1016/j.rhisph.2021.100331_bib34) 2007; 153 Gordillo (10.1016/j.rhisph.2021.100331_bib16) 2007; 60 Wang (10.1016/j.rhisph.2021.100331_bib63) 2020; 20 Noirot-Gros (10.1016/j.rhisph.2021.100331_bib67) 2018; 9 Taylor (10.1016/j.rhisph.2021.100331_bib60) 1996; 42 Contreras (10.1016/j.rhisph.2021.100331_bib10) 2019; 19 Duchene (10.1016/j.rhisph.2021.100331_bib12) 2017; 240 Gosai (10.1016/j.rhisph.2021.100331_bib17) 2019; 231 Jones (10.1016/j.rhisph.2021.100331_bib24) 2003; 248 Jones (10.1016/j.rhisph.2021.100331_bib23) 1995; 173 Oburger (10.1016/j.rhisph.2021.100331_bib43) 2013; 87 Garland (10.1016/j.rhisph.2021.100331_bib15) 2017; 415 Chagas (10.1016/j.rhisph.2021.100331_bib8) 2018; 47 Liu (10.1016/j.rhisph.2021.100331_bib35) 2019; 9 Canarini (10.1016/j.rhisph.2021.100331_bib6) 2019; 10 Silva (10.1016/j.rhisph.2021.100331_bib56) 2020; 16 Macias-benitez (10.1016/j.rhisph.2021.100331_bib36) 2020; 11 Romero-Perdomo (10.1016/j.rhisph.2021.100331_bib50) 2017; 49 Feng (10.1016/j.rhisph.2021.100331_bib14) 2018; 31 Mathimaran (10.1016/j.rhisph.2021.100331_bib37) 2020; 4 Badri (10.1016/j.rhisph.2021.100331_bib2) 2012; 7 Sambrook and Russel (10.1016/j.rhisph.2021.100331_bib52) 2001; vol. 2 Broughton (10.1016/j.rhisph.2021.100331_bib4) 1986; 102 Cavalcanti (10.1016/j.rhisph.2021.100331_bib5) 2020 Walker (10.1016/j.rhisph.2021.100331_bib61) 2003; 132 Hunter (10.1016/j.rhisph.2021.100331_bib20) 2014; 5 Kamilova (10.1016/j.rhisph.2021.100331_bib25) 2006; 19 Backer (10.1016/j.rhisph.2021.100331_bib1) 2018; 9 Carvalhais (10.1016/j.rhisph.2021.100331_bib7) 2011; 174 Lithourgidis (10.1016/j.rhisph.2021.100331_bib33) 2011; 5 Erro (10.1016/j.rhisph.2021.100331_bib13) 2009; 57 Chong (10.1016/j.rhisph.2021.100331_bib9) 2017; 7 Schoebitz (10.1016/j.rhisph.2021.100331_bib54) 2020; 10 Li (10.1016/j.rhisph.2021.100331_bib31) 2016; 113 Iyer (10.1016/j.rhisph.2021.100331_bib21) 2016; 192 Oburger (10.1016/j.rhisph.2021.100331_bib44) 2018; 6 Jones (10.1016/j.rhisph.2021.100331_bib22) 1998; 205 Subrahmanyam (10.1016/j.rhisph.2021.100331_bib57) 2018; 28 Hauggaard-Nielsen (10.1016/j.rhisph.2021.100331_bib18) 2005; 274 Konkolewska (10.1016/j.rhisph.2021.100331_bib27) 2020; 27 Zhang (10.1016/j.rhisph.2021.100331_bib65) 2014; 374 Bechtaoui (10.1016/j.rhisph.2021.100331_bib3) 2019; 70 Saharan (10.1016/j.rhisph.2021.100331_bib53) 2018; 6 Knee (10.1016/j.rhisph.2021.100331_bib26) 2001; 14 Neumann (10.1016/j.rhisph.2021.100331_bib42) 1999; 211 Philippot (10.1016/j.rhisph.2021.100331_bib47) 2013; 11 Rosenblueth (10.1016/j.rhisph.2021.100331_bib51) 2004; 181 |
References_xml | – volume: 42 start-page: fux052 year: 2018 ident: bib38 article-title: The effect of bacterial chemotaxis on host infection and pathogenicity publication-title: FEMS Microbiol. Rev. – volume: 20 start-page: 1 year: 2020 end-page: 12 ident: bib63 article-title: Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application publication-title: BMC Microbiol. – volume: 181 start-page: 337 year: 2004 end-page: 344 ident: bib51 article-title: maize populations and their competitiveness for root colonization publication-title: Arch. Microbiol. – volume: 274 start-page: 237 year: 2005 end-page: 250 ident: bib18 article-title: Facilitative root interactions in intercrops publication-title: Plant Soil – volume: 47 start-page: 1652 year: 2018 end-page: 1704 ident: bib8 article-title: Chemical signaling involved in plant-microbe interactions publication-title: Chem. Soc. Rev. – volume: 261 start-page: 108951 year: 2019 ident: bib49 article-title: Intercropping fennel ( publication-title: Sci. Hortic. (Amsterdam) – volume: 27 start-page: 13809 year: 2020 end-page: 13825 ident: bib27 article-title: Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd) publication-title: Environ. Sci. Pollut. Res. – volume: 124 start-page: 34 year: 2018 end-page: 44 ident: bib66 article-title: Engineered production of 2, 4-diacetylphloroglucinol in the diazotrophic endophytic bacterium publication-title: Appl. Soil Ecol. – volume: 78 start-page: 2896 year: 2012 end-page: 2903 ident: bib29 article-title: Effect of soybean coumestrol on publication-title: Appl. Environ. Microbiol. – volume: 187 start-page: 257 year: 2007 end-page: 264 ident: bib48 article-title: Functional expression of publication-title: Arch. Microbiol. – volume: 374 start-page: 689 year: 2014 end-page: 700 ident: bib65 article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation, and colonization by beneficial rhizosphere-associated bacterial strains publication-title: Plant Soil – volume: 70 start-page: 649 year: 2019 end-page: 658 ident: bib3 article-title: Impact of intercropping and co-inoculation with strains of plant growth-promoting rhizobacteria on phosphorus and nitrogen concentrations and yield of durum wheat ( publication-title: Crop Pasture Sci. – volume: 153 start-page: 3196 year: 2007 end-page: 3209 ident: bib34 article-title: Role of publication-title: Microbiology – volume: 42 start-page: 553 year: 1996 end-page: 560 ident: bib60 article-title: Phosphorus (P) uptake mechanisms of crops grown in soils with low P status (ii . significance of organic acids in root exudates of pigeon pea) publication-title: J. Soil Sci. Plant Nutr. – volume: 9 start-page: 853 year: 2018 ident: bib67 article-title: Dynamics of aspen roots colonization by pseudomonads reveals strain-specific and mycorrhizal-specific patterns of biofilm formation publication-title: Front. Microbiol. – volume: 10 year: 2019 ident: bib6 article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli publication-title: Front. Plant Sci. – volume: 87 start-page: 235 year: 2013 end-page: 247 ident: bib43 article-title: Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques publication-title: Environ. Exp. Bot. – volume: 132 start-page: 44 year: 2003 end-page: 51 ident: bib61 article-title: Root exudation and rhizosphere biology publication-title: Plant Physiol. – volume: 60 start-page: 322 year: 2007 end-page: 328 ident: bib16 article-title: Motility and chemotaxis of publication-title: FEMS Microbiol. Ecol. – volume: 100 year: 2019 ident: bib59 article-title: Root colonization by heavy metal resistant publication-title: J. Sci. Food Agric. – volume: 9 start-page: 1 year: 2018 end-page: 17 ident: bib1 article-title: Plant growth-promoting Rhizobacteria : context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front. Plant Sci. – volume: 31 start-page: 995 year: 2018 end-page: 1005 ident: bib14 article-title: Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant growth-promoting rhizobacteria publication-title: Mol. Plant Microbe Interact. – volume: 9 start-page: 4818 year: 2019 ident: bib35 article-title: Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean publication-title: Sci. Rep. – volume: 240 start-page: 148 year: 2017 end-page: 161 ident: bib12 article-title: Intercropping with legume for agroecological cropping systems : complementarity and facilitation processes and the importance of soil microorganisms publication-title: Agric. Ecosyst. Environ. – volume: 39 start-page: 249 year: 2007 end-page: 256 ident: bib62 article-title: Growth, P uptake, and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate publication-title: Soil Biol. Biochem. – volume: 7 year: 2012 ident: bib2 article-title: Root secreted metabolites and proteins are involved in the early events of Plant-Plant recognition prior to competition publication-title: PloS One – volume: 16 start-page: 100242 year: 2020 ident: bib58 article-title: Interactions between neighboring native and alien species are modulated by nitrogen availability publication-title: Rhizosphere – volume: 16 year: 2020 ident: bib56 article-title: Native rhizobia from southern Brazilian grassland promote the growth of grasses publication-title: Rhizosphere – volume: 14 year: 2019 ident: bib19 article-title: Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations publication-title: PloS One – volume: 5 year: 2014 ident: bib20 article-title: Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica publication-title: Front. Plant Sci. – volume: 6 start-page: 116 year: 2018 end-page: 133 ident: bib44 article-title: Sampling root exudates–mission impossible? publication-title: Rhizosphere – volume: 19 start-page: 100110 year: 2019 ident: bib10 article-title: Prospecting intercropping between subterranean clover and grapevine as potential strategy for improving grapevine performance publication-title: Curr. Plant Biol. – volume: 102 start-page: 1173 year: 1986 end-page: 1182 ident: bib4 article-title: Identification of publication-title: J. Cell Biol. – volume: 205 start-page: 25 year: 1998 end-page: 44 ident: bib22 article-title: Organic acids in the rhizosphere - a critical review publication-title: Plant Soil – volume: 248 start-page: 31 year: 2003 end-page: 41 ident: bib24 article-title: Organic acid behavior in soils – misconceptions and knowledge gaps publication-title: Plant Soil – volume: 415 start-page: 5537 year: 2017 end-page: 5555 ident: bib15 article-title: Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage publication-title: Plant Soil – volume: 35 start-page: 1113 year: 2013 end-page: 1119 ident: bib30 article-title: Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen, and phosphorus availability publication-title: Acta Physiol. Plant. – volume: 192 start-page: 211 year: 2016 end-page: 220 ident: bib21 article-title: Organic acid mediated repression of sugar utilization in rhizobia publication-title: Microbiol. Res. – volume: 4 start-page: 1 year: 2020 end-page: 12 ident: bib37 article-title: Intercropping transplanted pigeon pea with finger Millet : arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input publication-title: Front. Sustain. Food Syst. – volume: 7 start-page: 138 year: 2017 ident: bib9 article-title: Phenotypic and genomic survey on organic acid utilization profile of publication-title: Amb. Express – volume: 113 start-page: 6496 year: 2016 end-page: 6501 ident: bib31 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 14 start-page: 543 year: 2012 end-page: 553 ident: bib64 article-title: Root exudates of wetland plants influenced by nutrient status and types of plant cultivation publication-title: Int. J. Phytoremediation – volume: 6 start-page: 1 year: 2015 end-page: 10 ident: bib39 article-title: Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system publication-title: Front. Plant Sci. – volume: 10 year: 2020 ident: bib54 article-title: Responses of microbiological soil properties to intercropping at different planting densities in an acidic Andisol publication-title: Agronomy – volume: 28 start-page: 144 year: 2018 end-page: 156 ident: bib57 article-title: var. Gm4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium publication-title: Pedosphere – volume: 19 start-page: 250 year: 2006 end-page: 256 ident: bib25 article-title: Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria publication-title: Mol. Plant Microbe Interact. – volume: vol. 2 year: 2001 ident: bib52 publication-title: Molecular Cloning: a Laboratory Manual – volume: 57 start-page: 4004 year: 2009 end-page: 4010 ident: bib13 article-title: Determination of organic acids in tissues and exudates of maize, lupin, and chickpea by high-performance liquid chromatography-tandem mass spectrometry publication-title: J. Agric. Food Chem. – volume: 231 start-page: 126354 year: 2019 ident: bib17 article-title: Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in publication-title: Microbiol. Res. – volume: vol. 1149 year: 2014 ident: bib11 article-title: Qualitative and Quantitative assays for flagellum-mediated chemotaxis publication-title: Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols) – volume: 19 start-page: 197 year: 2014 end-page: 204 ident: bib28 article-title: Phosphorus acquisition from deficient soil: involvement of organic acids and acid phosphatase in pigeon pea ( publication-title: Indian J. Plant Physiol. – start-page: 100211 year: 2020 ident: bib5 article-title: Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach publication-title: Rhizosphere – volume: 47 start-page: 374 year: 2011 end-page: 379 ident: bib32 article-title: Identification and role of organic acids in watermelon root exudates for recruiting publication-title: Eur. J. Soil Biol. – volume: 11 start-page: 1 year: 2020 end-page: 16 ident: bib36 article-title: Rhizospheric organic acids as Biostimulants : monitoring feedbacks on soil microorganisms and biochemical properties publication-title: Front. Plant Sci. – volume: 174 start-page: 3 year: 2011 end-page: 11 ident: bib7 article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency publication-title: J. Plant Nutr. Soil Sci. – volume: 173 start-page: 103 year: 1995 end-page: 109 ident: bib23 article-title: Influx and efflux of organic acids across the soil-root interface of publication-title: Plant Soil – volume: 21 start-page: 209 year: 2016 end-page: 217 ident: bib40 article-title: Root-Root interactions: towards a rhizosphere framework publication-title: Trends Plant Sci. – volume: 50 start-page: 249 year: 2013 end-page: 262 ident: bib41 article-title: The endophyte publication-title: Biol. Fertil. Soils – volume: 11 start-page: 789 year: 2013 end-page: 799 ident: bib47 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nat. Rev. Microbiol. – volume: 49 start-page: 377 year: 2017 end-page: 383 ident: bib50 article-title: as a potentially useful bacterial biofertilizer for cotton ( publication-title: Rev. Argent. Microbiol. – volume: 14 start-page: 775 year: 2001 end-page: 784 ident: bib26 article-title: Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source publication-title: Mol. Plant Microbe Interact. – volume: 6 start-page: 1 year: 2018 end-page: 11 ident: bib53 article-title: Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “bio fertilization” and “big irrigation” mediated by arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria publication-title: Front. Environ. Sci. – volume: 5 start-page: 396 year: 2011 end-page: 410 ident: bib33 article-title: Annual intercrops: an alternative pathway for sustainable agriculture publication-title: Aust. J. Crop. Sci. – volume: 211 start-page: 121 year: 1999 end-page: 130 ident: bib42 article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants publication-title: Plant Soil – volume: 42 start-page: 553 issue: 3 year: 1996 ident: 10.1016/j.rhisph.2021.100331_bib60 article-title: Phosphorus (P) uptake mechanisms of crops grown in soils with low P status (ii . significance of organic acids in root exudates of pigeon pea) publication-title: J. Soil Sci. Plant Nutr. doi: 10.1080/00380768.1996.10416324 – volume: 19 start-page: 100110 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib10 article-title: Prospecting intercropping between subterranean clover and grapevine as potential strategy for improving grapevine performance publication-title: Curr. Plant Biol. doi: 10.1016/j.cpb.2019.100110 – volume: 39 start-page: 249 year: 2007 ident: 10.1016/j.rhisph.2021.100331_bib62 article-title: Growth, P uptake, and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.07.013 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib53 article-title: Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “bio fertilization” and “big irrigation” mediated by arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2018.00046 – volume: 261 start-page: 108951 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib49 article-title: Intercropping fennel ( Foeniculum vulgare L .) with common bean ( Phaseolus vulgaris L .) as affected by PGPR inoculation : a strategy for improving yield, essential oil, and fatty acid composition publication-title: Sci. Hortic. (Amsterdam) doi: 10.1016/j.scienta.2019.108951 – start-page: 100211 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib5 article-title: Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach publication-title: Rhizosphere doi: 10.1016/j.rhisph.2020.100211 – volume: 60 start-page: 322 year: 2007 ident: 10.1016/j.rhisph.2021.100331_bib16 article-title: Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00293.x – volume: 14 issue: 12 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib19 article-title: Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations publication-title: PloS One doi: 10.1371/journal.pone.0225810 – volume: 205 start-page: 25 year: 1998 ident: 10.1016/j.rhisph.2021.100331_bib22 article-title: Organic acids in the rhizosphere - a critical review publication-title: Plant Soil doi: 10.1023/A:1004356007312 – volume: 7 year: 2012 ident: 10.1016/j.rhisph.2021.100331_bib2 article-title: Root secreted metabolites and proteins are involved in the early events of Plant-Plant recognition prior to competition publication-title: PloS One doi: 10.1371/journal.pone.0046640 – volume: 124 start-page: 34 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib66 article-title: Engineered production of 2, 4-diacetylphloroglucinol in the diazotrophic endophytic bacterium Pseudomonas sp. WS5 and its beneficial effect in multiple plant-pathogen systems publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.10.008 – volume: 10 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib6 article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli publication-title: Front. Plant Sci. – volume: 5 issue: 27 year: 2014 ident: 10.1016/j.rhisph.2021.100331_bib20 article-title: Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica publication-title: Front. Plant Sci. – volume: 28 start-page: 144 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib57 article-title: Vigna radiata var. Gm4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium Enterobacter sp. C1D in Cr(VI)-amended soils publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60448-X – volume: 49 start-page: 377 year: 2017 ident: 10.1016/j.rhisph.2021.100331_bib50 article-title: Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton ( Gossypium hirsutum ): effect in reducing N fertilization publication-title: Rev. Argent. Microbiol. – volume: 132 start-page: 44 year: 2003 ident: 10.1016/j.rhisph.2021.100331_bib61 article-title: Root exudation and rhizosphere biology publication-title: Plant Physiol. doi: 10.1104/pp.102.019661 – volume: 21 start-page: 209 year: 2016 ident: 10.1016/j.rhisph.2021.100331_bib40 article-title: Root-Root interactions: towards a rhizosphere framework publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.01.009 – volume: 31 start-page: 995 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib14 article-title: Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-01-18-0003-R – volume: 42 start-page: fux052 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib38 article-title: The effect of bacterial chemotaxis on host infection and pathogenicity publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fux052 – volume: 174 start-page: 3 year: 2011 ident: 10.1016/j.rhisph.2021.100331_bib7 article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201000085 – volume: 9 start-page: 853 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib67 article-title: Dynamics of aspen roots colonization by pseudomonads reveals strain-specific and mycorrhizal-specific patterns of biofilm formation publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00853 – volume: 274 start-page: 237 year: 2005 ident: 10.1016/j.rhisph.2021.100331_bib18 article-title: Facilitative root interactions in intercrops publication-title: Plant Soil doi: 10.1007/s11104-004-1305-1 – volume: 78 start-page: 2896 year: 2012 ident: 10.1016/j.rhisph.2021.100331_bib29 article-title: Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.07336-11 – volume: 192 start-page: 211 year: 2016 ident: 10.1016/j.rhisph.2021.100331_bib21 article-title: Organic acid mediated repression of sugar utilization in rhizobia publication-title: Microbiol. Res. doi: 10.1016/j.micres.2016.07.006 – volume: 248 start-page: 31 year: 2003 ident: 10.1016/j.rhisph.2021.100331_bib24 article-title: Organic acid behavior in soils – misconceptions and knowledge gaps publication-title: Plant Soil doi: 10.1023/A:1022304332313 – volume: 211 start-page: 121 year: 1999 ident: 10.1016/j.rhisph.2021.100331_bib42 article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants publication-title: Plant Soil doi: 10.1023/A:1004380832118 – volume: 35 start-page: 1113 year: 2013 ident: 10.1016/j.rhisph.2021.100331_bib30 article-title: Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen, and phosphorus availability publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-012-1148-y – volume: 415 start-page: 5537 year: 2017 ident: 10.1016/j.rhisph.2021.100331_bib15 article-title: Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage publication-title: Plant Soil doi: 10.1007/s11104-016-3145-1 – volume: 87 start-page: 235 year: 2013 ident: 10.1016/j.rhisph.2021.100331_bib43 article-title: Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2012.11.007 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib1 article-title: Plant growth-promoting Rhizobacteria : context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01473 – volume: 240 start-page: 148 year: 2017 ident: 10.1016/j.rhisph.2021.100331_bib12 article-title: Intercropping with legume for agroecological cropping systems : complementarity and facilitation processes and the importance of soil microorganisms publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.02.019 – volume: 173 start-page: 103 year: 1995 ident: 10.1016/j.rhisph.2021.100331_bib23 article-title: Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow publication-title: Plant Soil doi: 10.1007/BF00155523 – volume: 4 start-page: 1 issue: 88 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib37 article-title: Intercropping transplanted pigeon pea with finger Millet : arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input publication-title: Front. Sustain. Food Syst. – volume: 102 start-page: 1173 year: 1986 ident: 10.1016/j.rhisph.2021.100331_bib4 article-title: Identification of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes publication-title: J. Cell Biol. doi: 10.1083/jcb.102.4.1173 – volume: 16 start-page: 100242 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib58 article-title: Interactions between neighboring native and alien species are modulated by nitrogen availability publication-title: Rhizosphere doi: 10.1016/j.rhisph.2020.100242 – volume: 20 start-page: 1 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib63 article-title: Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application publication-title: BMC Microbiol. doi: 10.1186/s12866-020-1708-z – volume: 11 start-page: 789 year: 2013 ident: 10.1016/j.rhisph.2021.100331_bib47 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3109 – volume: 57 start-page: 4004 year: 2009 ident: 10.1016/j.rhisph.2021.100331_bib13 article-title: Determination of organic acids in tissues and exudates of maize, lupin, and chickpea by high-performance liquid chromatography-tandem mass spectrometry publication-title: J. Agric. Food Chem. doi: 10.1021/jf804003v – volume: vol. 2 year: 2001 ident: 10.1016/j.rhisph.2021.100331_bib52 – volume: 9 start-page: 4818 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib35 article-title: Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean publication-title: Sci. Rep. doi: 10.1038/s41598-019-41146-9 – volume: 100 issue: 4 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib59 article-title: Root colonization by heavy metal resistant Enterobacter sp. C1D and its influence on metal-induced oxidative stress on Cajanus cajan publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10161 – volume: 70 start-page: 649 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib3 article-title: Impact of intercropping and co-inoculation with strains of plant growth-promoting rhizobacteria on phosphorus and nitrogen concentrations and yield of durum wheat (Triticum durum) and faba bean (Vicia faba) publication-title: Crop Pasture Sci. doi: 10.1071/CP19067 – volume: 47 start-page: 1652 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib8 article-title: Chemical signaling involved in plant-microbe interactions publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00343A – volume: 16 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib56 article-title: Native rhizobia from southern Brazilian grassland promote the growth of grasses publication-title: Rhizosphere doi: 10.1016/j.rhisph.2020.100240 – volume: 374 start-page: 689 year: 2014 ident: 10.1016/j.rhisph.2021.100331_bib65 article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation, and colonization by beneficial rhizosphere-associated bacterial strains publication-title: Plant Soil doi: 10.1007/s11104-013-1915-6 – volume: 19 start-page: 250 year: 2006 ident: 10.1016/j.rhisph.2021.100331_bib25 article-title: Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-19-0250 – volume: 153 start-page: 3196 year: 2007 ident: 10.1016/j.rhisph.2021.100331_bib34 article-title: Role of sdhA and pfkA and catabolism of reduced carbon during colonization of cucumber roots by Enterobacter cloacae publication-title: Microbiology doi: 10.1099/mic.0.2006/005538-0 – volume: vol. 1149 year: 2014 ident: 10.1016/j.rhisph.2021.100331_bib11 article-title: Qualitative and Quantitative assays for flagellum-mediated chemotaxis – volume: 14 start-page: 543 year: 2012 ident: 10.1016/j.rhisph.2021.100331_bib64 article-title: Root exudates of wetland plants influenced by nutrient status and types of plant cultivation publication-title: Int. J. Phytoremediation doi: 10.1080/15226514.2011.604691 – volume: 231 start-page: 126354 year: 2019 ident: 10.1016/j.rhisph.2021.100331_bib17 article-title: Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in Ensifer nodulating pigeon pea publication-title: Microbiol. Res. doi: 10.1016/j.micres.2019.126354 – volume: 181 start-page: 337 year: 2004 ident: 10.1016/j.rhisph.2021.100331_bib51 article-title: Rhizobium etli maize populations and their competitiveness for root colonization publication-title: Arch. Microbiol. doi: 10.1007/s00203-004-0661-9 – volume: 19 start-page: 197 issue: 3 year: 2014 ident: 10.1016/j.rhisph.2021.100331_bib28 article-title: Phosphorus acquisition from deficient soil: involvement of organic acids and acid phosphatase in pigeon pea (Cajanus cajan L. mills sp) publication-title: Indian J. Plant Physiol. doi: 10.1007/s40502-014-0101-z – volume: 47 start-page: 374 year: 2011 ident: 10.1016/j.rhisph.2021.100331_bib32 article-title: Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2011.08.009 – volume: 7 start-page: 138 year: 2017 ident: 10.1016/j.rhisph.2021.100331_bib9 article-title: Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5 . 2, a vineyard soil isolate publication-title: Amb. Express doi: 10.1186/s13568-017-0437-7 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.rhisph.2021.100331_bib39 article-title: Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00339 – volume: 6 start-page: 116 year: 2018 ident: 10.1016/j.rhisph.2021.100331_bib44 article-title: Sampling root exudates–mission impossible? publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.06.004 – volume: 187 start-page: 257 year: 2007 ident: 10.1016/j.rhisph.2021.100331_bib48 article-title: Functional expression of Escherichia coli fhuA gene in Rhizobium spp . of Cajanus cajan provides growth advantage in the presence of Fe 3 + : ferrichrome as iron source publication-title: Arch. Microbiol. doi: 10.1007/s00203-006-0191-8 – volume: 113 start-page: 6496 year: 2016 ident: 10.1016/j.rhisph.2021.100331_bib31 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1523580113 – volume: 27 start-page: 13809 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib27 article-title: Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd) publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-07885-3 – volume: 11 start-page: 1 issue: 633 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib36 article-title: Rhizospheric organic acids as Biostimulants : monitoring feedbacks on soil microorganisms and biochemical properties publication-title: Front. Plant Sci. – volume: 14 start-page: 775 year: 2001 ident: 10.1016/j.rhisph.2021.100331_bib26 article-title: Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI.2001.14.6.775 – volume: 10 issue: 781 year: 2020 ident: 10.1016/j.rhisph.2021.100331_bib54 article-title: Responses of microbiological soil properties to intercropping at different planting densities in an acidic Andisol publication-title: Agronomy – volume: 50 start-page: 249 year: 2013 ident: 10.1016/j.rhisph.2021.100331_bib41 article-title: The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0854-y – volume: 5 start-page: 396 year: 2011 ident: 10.1016/j.rhisph.2021.100331_bib33 article-title: Annual intercrops: an alternative pathway for sustainable agriculture publication-title: Aust. J. Crop. Sci. |
SSID | ssj0001763563 |
Score | 2.3923652 |
Snippet | Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100331 |
SubjectTerms | Biofilm Cajanus cajan chemotaxis coculture continuous cropping corn Enterobacter exudation fumarates intercropping malates metabolites Organic acids pigeon peas plant growth plant growth-promoting rhizobacteria Pseudomonas Rhizobium Rhizosphere rhizosphere bacteria roots succinic acid Zea mays |
Title | Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea – maize intercropping system |
URI | https://dx.doi.org/10.1016/j.rhisph.2021.100331 https://www.proquest.com/docview/2524259448 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe-GCQIAofxokrtE2duyNj1VFtYDoAajUm-XfbVBJot2sVHHiHeAJeRJm4gQEQqrEMVHGsvzZ45nMNzOMvdS1WlZJx8KnsYWZLwsnRUJlqHDezqM3Rv873p2p1Xn15kJe7LGTOReGaJWT7s86fdTW05vFtJqLvmkWHyhmiOet5uUYP1O32AEXWuHWPjh-_XZ19vtXy1iEjWLNJFKQzJxENzK9NpfNtqfABC-JNJAbzv3zkvpLXY930OlddmcyHuE4z-8e24vtffb9fdcNEK935LtvoZm7jgDCgTjY62YLtg1A5annrEvoEoSRkRGhv8LFhTW648Ml9Jmd165hQ2Q8l2s5WxwV0FKEvllHlO6jhR9fv8Fn23yJQBUnNtQJjFKvIJeGfsDOT199PFkVU6-Fwguhh8J76SM_ijKGukzC1ZUmuGoVrKqT5L6skuA6qNqjQZOcQMvCehm4Erb0SYiHbL_t2viIQYqeB7fUXIVQyaWrU6qOhEe313GZrD5kYl5c46dC5NQP48rMjLNPJkNiCBKTITlkxS-pPhfiuOH75Yyb-WNDGbwrbpB8McNs8KxRAMW2sdttDZfkoGn0aB__9-hP2G16ymyzp2x_2OziM7RrBvd82rc_AVXA-8k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbK9gAXVASIAi2DxDXaxo69ybGqqLZ_e4BW6s2yHXsbVJJoNytVnHgHeEKehJk4AYGQKnFNMpblscczmW--YexdkatZFgqfuNC3MHNpYqUIaAwVzts6jMbof8fFQs2vstNreb3FjsZaGIJVDrY_2vTeWg9PpsNqTtuqmn6knCGet5ynff5MPWDbxE4lJ2z78ORsvvj9q6UnYaNcM4kkJDMW0fVIr9VNtW4pMcFTAg3EhnP_vKT-Mtf9HXS8wx4PziMcxvk9YVu-fsq-f2iaDvzdhmL3NVRj1xFAdaAezF21BlOXQPTUY9UlNAHKHpHhob3FxYUlhuPdDbQRnVcvYUVgPBu5nA2OCugpQlstPUq33sCPr9_gs6m-eCDGiRV1AqPSK4jU0M_Y1fH7y6N5MvRaSJwQRZc4J53nB176Mk-DsHlWkLpyVRqVB8ldmgXBi1LlDh2aYAV6FsbJkithUheEeM4mdVP7FwyCd7y0s4KrsszkzOYhZAfCYdhruQym2GViXFztBiJy6odxq0fE2ScdVaJJJTqqZJclv6TaSMRxz_ezUW_6jw2l8a64R_LtqGaNZ40SKKb2zWatuaQArcCI9uV_j_6GPZxfXpzr85PF2Sv2iN5E5NlrNulWG7-HPk5n94c9_BM4u_6v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+exudates+influence+chemotaxis+and+colonization+of+diverse+plant+growth+promoting+rhizobacteria+in+the+pigeon+pea+%E2%80%93+maize+intercropping+system&rft.jtitle=Rhizosphere&rft.au=Vora%2C+Siddhi+M&rft.au=Joshi%2C+Purvi&rft.au=Belwalkar%2C+Mugdha&rft.au=Archana%2C+G.&rft.date=2021-06-01&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=18+p.100331-&rft_id=info:doi/10.1016%2Fj.rhisph.2021.100331&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon |