Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea – maize intercropping system

Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth...

Full description

Saved in:
Bibliographic Details
Published inRhizosphere Vol. 18; p. 100331
Main Authors Vora, Siddhi M., Joshi, Purvi, Belwalkar, Mugdha, Archana, G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth-promoting rhizobacteria (PGPR) in an intercropping system, a model legume-cereal intercropping system involving maize (Zea mays) and pigeon pea (Cajanus cajan) was assessed for colonization using three different bacterial strains Enterobacter sp. C1D, Pseudomonas sp. G22, Rhizobium sp. IC3109. Cross colonization experiments suggested bacterial movement from one plant species to another in the presence/absence of a mesh barrier, implicating the role of intercrop root exudates. In vitro assays and plant inoculation studies displayed that Enterobacter sp. C1D had a preference for monocropped plants while Rhizobium sp. IC3109 to intercropped plants and Pseudomonas sp. G22 was evenly colonized in both conditions. Organic acids like fumarate, malate, and succinate, as analyzed by LC/MS/MS (MRM), were found to be prominent in monocropped plant root exudates, while co-cultivation resulted in a decrease of the exudation of these metabolites. The PGPR strains showed differential behavioral responses in terms of chemotaxis and biofilm formation towards root exudates of intercropped and monocropped plants. Overall, our study provides pieces of evidence that co-cultivation of legume and cereal plants leads to the variation in root exudates and the response of plant beneficial bacteria. •Rhizobacterial strains promoted growth of C. cajan and Z. mays plants through PGP traits like indole –acetic acid production.•Each strain colonized distinctly in C. cajan – Z. mays intercropping and could cross colonize from one plant to another.•Each strain’s chemotaxis preference to monocropped or intercropped root exudates was different.•Of the root exudate organic acids, only fumarate strongly induced chemotaxis and biofilm production in Rhizobium IC3109.
AbstractList Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth-promoting rhizobacteria (PGPR) in an intercropping system, a model legume-cereal intercropping system involving maize (Zea mays) and pigeon pea (Cajanus cajan) was assessed for colonization using three different bacterial strains Enterobacter sp. C1D, Pseudomonas sp. G22, Rhizobium sp. IC3109. Cross colonization experiments suggested bacterial movement from one plant species to another in the presence/absence of a mesh barrier, implicating the role of intercrop root exudates. In vitro assays and plant inoculation studies displayed that Enterobacter sp. C1D had a preference for monocropped plants while Rhizobium sp. IC3109 to intercropped plants and Pseudomonas sp. G22 was evenly colonized in both conditions. Organic acids like fumarate, malate, and succinate, as analyzed by LC/MS/MS (MRM), were found to be prominent in monocropped plant root exudates, while co-cultivation resulted in a decrease of the exudation of these metabolites. The PGPR strains showed differential behavioral responses in terms of chemotaxis and biofilm formation towards root exudates of intercropped and monocropped plants. Overall, our study provides pieces of evidence that co-cultivation of legume and cereal plants leads to the variation in root exudates and the response of plant beneficial bacteria. •Rhizobacterial strains promoted growth of C. cajan and Z. mays plants through PGP traits like indole –acetic acid production.•Each strain colonized distinctly in C. cajan – Z. mays intercropping and could cross colonize from one plant to another.•Each strain’s chemotaxis preference to monocropped or intercropped root exudates was different.•Of the root exudate organic acids, only fumarate strongly induced chemotaxis and biofilm production in Rhizobium IC3109.
Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role of plant-microbe interactions in such a setup is poorly understood. To investigate the influence of rhizosphere colonization by plant growth-promoting rhizobacteria (PGPR) in an intercropping system, a model legume-cereal intercropping system involving maize (Zea mays) and pigeon pea (Cajanus cajan) was assessed for colonization using three different bacterial strains Enterobacter sp. C1D, Pseudomonas sp. G22, Rhizobium sp. IC3109. Cross colonization experiments suggested bacterial movement from one plant species to another in the presence/absence of a mesh barrier, implicating the role of intercrop root exudates. In vitro assays and plant inoculation studies displayed that Enterobacter sp. C1D had a preference for monocropped plants while Rhizobium sp. IC3109 to intercropped plants and Pseudomonas sp. G22 was evenly colonized in both conditions. Organic acids like fumarate, malate, and succinate, as analyzed by LC/MS/MS (MRM), were found to be prominent in monocropped plant root exudates, while co-cultivation resulted in a decrease of the exudation of these metabolites. The PGPR strains showed differential behavioral responses in terms of chemotaxis and biofilm formation towards root exudates of intercropped and monocropped plants. Overall, our study provides pieces of evidence that co-cultivation of legume and cereal plants leads to the variation in root exudates and the response of plant beneficial bacteria.
ArticleNumber 100331
Author Vora, Siddhi M.
Joshi, Purvi
Belwalkar, Mugdha
Archana, G.
Author_xml – sequence: 1
  givenname: Siddhi M.
  surname: Vora
  fullname: Vora, Siddhi M.
– sequence: 2
  givenname: Purvi
  orcidid: 0000-0002-7546-0234
  surname: Joshi
  fullname: Joshi, Purvi
– sequence: 3
  givenname: Mugdha
  orcidid: 0000-0003-2296-4807
  surname: Belwalkar
  fullname: Belwalkar, Mugdha
– sequence: 4
  givenname: G.
  orcidid: 0000-0003-1134-8224
  surname: Archana
  fullname: Archana, G.
  email: archanagayatri@yahoo.com, g.archana-microbio@msubaroda.ac.in
BookMark eNqFkc2KFDEUhYOM4DjOG7jI0k23-amqTrkQZHBUGBBE1yGd3HTdpiopk_Q40yvfQZ_QJzFtuRAXukpIznc4957H5CzEAIQ85WzNGe-e79dpwDwPa8EEr09MSv6AnIumFSvBe3X2x_0Rucx5zxjjm062nTwn3z_EWCjcHZwpkCkGPx4gWKB2gCkWc4eZmuCojWMMeDQFY6DRU4e3kDLQeTSh0F2KX8pA5xQrg2FHa6Rj3BpbIKGprrQMVYs7qPQMhv74-o1OBo9Q_6rGpjjPJy7f5wLTE_LQmzHD5e_zgny6fv3x6u3q5v2bd1evblZWyr6srG0tCAYtOMW93KqmV6wD1TnTKd8KyxsvRe86ZXu58Vu5UcLY1olOGm69lBfk2eJbg38-QC56wmxhrDNBPGQtWtGItm8aVaUvFmmNmnMCry2WX9soyeCoOdOnNvReL23oUxt6aaPCzV_wnHAy6f5_2MsFg7qDW4Sks8VTOQ4T2KJdxH8b_ARWzq1e
CitedBy_id crossref_primary_10_1016_j_envexpbot_2023_105318
crossref_primary_10_1134_S1021443723603506
crossref_primary_10_1080_00103624_2024_2404649
crossref_primary_10_3390_microorganisms11061486
crossref_primary_10_1007_s00248_021_01818_4
crossref_primary_10_1007_s00216_022_04475_9
crossref_primary_10_1021_acs_jafc_2c08647
crossref_primary_10_1016_j_rhisph_2024_101001
crossref_primary_10_3390_agronomy12081900
crossref_primary_10_1088_1755_1315_1259_1_012014
crossref_primary_10_1038_s41467_024_45207_0
crossref_primary_10_1016_j_funeco_2023_101240
crossref_primary_10_1128_spectrum_01002_22
crossref_primary_10_1007_s00203_024_03943_3
crossref_primary_10_1016_j_rhisph_2022_100477
crossref_primary_10_1016_j_rhisph_2025_101051
crossref_primary_10_1016_j_stress_2023_100341
crossref_primary_10_1007_s11104_023_05963_2
crossref_primary_10_1093_hr_uhad112
crossref_primary_10_1016_j_soilbio_2025_109792
crossref_primary_10_3390_microorganisms11071847
crossref_primary_10_1111_ppl_14058
crossref_primary_10_3390_microorganisms11122984
crossref_primary_10_1016_j_ijbiomac_2022_04_015
crossref_primary_10_1016_j_indcrop_2022_114958
crossref_primary_10_1016_j_rhisph_2021_100443
crossref_primary_10_1038_s42003_023_05399_5
crossref_primary_10_1016_j_rhisph_2022_100563
crossref_primary_10_1128_aem_01505_24
crossref_primary_10_1016_j_micres_2025_128141
crossref_primary_10_3389_fmicb_2024_1473099
crossref_primary_10_3390_agronomy13020413
crossref_primary_10_1016_j_rhisph_2023_100774
crossref_primary_10_1007_s10725_024_01154_w
crossref_primary_10_1007_s42729_021_00605_x
crossref_primary_10_1016_j_envpol_2025_125677
crossref_primary_10_3390_jof8010063
crossref_primary_10_17221_419_2021_PSE
crossref_primary_10_3390_agronomy14102181
crossref_primary_10_1016_j_hpj_2022_09_007
crossref_primary_10_1111_plb_13582
crossref_primary_10_1515_opag_2022_0238
crossref_primary_10_1007_s42729_022_00900_1
crossref_primary_10_1007_s13205_022_03115_4
crossref_primary_10_1515_biol_2022_0057
crossref_primary_10_1016_j_envexpbot_2023_105274
crossref_primary_10_1016_j_crmicr_2023_100205
crossref_primary_10_1007_s42729_023_01248_w
crossref_primary_10_3390_ijms25021288
Cites_doi 10.1080/00380768.1996.10416324
10.1016/j.cpb.2019.100110
10.1016/j.soilbio.2006.07.013
10.3389/fenvs.2018.00046
10.1016/j.scienta.2019.108951
10.1016/j.rhisph.2020.100211
10.1111/j.1574-6941.2007.00293.x
10.1371/journal.pone.0225810
10.1023/A:1004356007312
10.1371/journal.pone.0046640
10.1016/j.apsoil.2017.10.008
10.1016/S1002-0160(17)60448-X
10.1104/pp.102.019661
10.1016/j.tplants.2016.01.009
10.1094/MPMI-01-18-0003-R
10.1093/femsre/fux052
10.1002/jpln.201000085
10.3389/fmicb.2018.00853
10.1007/s11104-004-1305-1
10.1128/AEM.07336-11
10.1016/j.micres.2016.07.006
10.1023/A:1022304332313
10.1023/A:1004380832118
10.1007/s11738-012-1148-y
10.1007/s11104-016-3145-1
10.1016/j.envexpbot.2012.11.007
10.3389/fpls.2018.01473
10.1016/j.agee.2017.02.019
10.1007/BF00155523
10.1083/jcb.102.4.1173
10.1016/j.rhisph.2020.100242
10.1186/s12866-020-1708-z
10.1038/nrmicro3109
10.1021/jf804003v
10.1038/s41598-019-41146-9
10.1002/jsfa.10161
10.1071/CP19067
10.1039/C7CS00343A
10.1016/j.rhisph.2020.100240
10.1007/s11104-013-1915-6
10.1094/MPMI-19-0250
10.1099/mic.0.2006/005538-0
10.1080/15226514.2011.604691
10.1016/j.micres.2019.126354
10.1007/s00203-004-0661-9
10.1007/s40502-014-0101-z
10.1016/j.ejsobi.2011.08.009
10.1186/s13568-017-0437-7
10.3389/fpls.2015.00339
10.1016/j.rhisph.2018.06.004
10.1007/s00203-006-0191-8
10.1073/pnas.1523580113
10.1007/s11356-020-07885-3
10.1094/MPMI.2001.14.6.775
10.1007/s00374-013-0854-y
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rhisph.2021.100331
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2452-2198
ExternalDocumentID 10_1016_j_rhisph_2021_100331
S2452219821000276
GroupedDBID --M
0R~
AACTN
AAEDT
AAEDW
AAHBH
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABGRD
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEIPS
AFJKZ
AFTJW
AFXIZ
AGUBO
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPCBC
SSA
SSH
SSZ
T5K
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c339t-cc5ce20e5ed81f3b849806e86da68f52c14f329d68c937fb3782ac5d263a1cf33
IEDL.DBID AIKHN
ISSN 2452-2198
IngestDate Fri Jul 11 05:47:14 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Tue Jul 01 03:12:55 EDT 2025
Sun Apr 06 06:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Biofilm
Rhizosphere
Cajanus cajan
Zea mays
Organic acids
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-cc5ce20e5ed81f3b849806e86da68f52c14f329d68c937fb3782ac5d263a1cf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1134-8224
0000-0002-7546-0234
0000-0003-2296-4807
PQID 2524259448
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524259448
crossref_citationtrail_10_1016_j_rhisph_2021_100331
crossref_primary_10_1016_j_rhisph_2021_100331
elsevier_sciencedirect_doi_10_1016_j_rhisph_2021_100331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Rhizosphere
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lithourgidis, Dordas, Damalas, Vlachostergios (bib33) 2011; 5
Gosai, Anandhan, Bhattacharjee, Archana (bib17) 2019; 231
Erro, Zamarreñ O, Yvin, Garcia-Mina (bib13) 2009; 57
Iyer, Rajput, Jog, Joshi, Bharwad, Rajkumar (bib21) 2016; 192
Subrahmanyam, Sharma, Kumar, Archana (bib57) 2018; 28
Carvalhais, Dennis, Fedoseyenko, Hajirezaei, Borriss, Von Wirén (bib7) 2011; 174
Broughton, Wong, Lewin, Samrey, Myint, Meyer, Dowling, Simon (bib4) 1986; 102
Chagas, Pessotti, Caraballo-Rodríguez, Pupo (bib8) 2018; 47
Sun, Liu, Song, Tian, Xu (bib58) 2020; 16
Hunter, Teakle, Bending (bib20) 2014; 5
Rajendran, Mistry, Desai, Archana (bib48) 2007; 187
Liu, Hu, Lohrke, Baker, Buyer, Souza, Roberts (bib34) 2007; 153
Duchene, Vian, Celette (bib12) 2017; 240
Sharma, Barot, Archana (bib59) 2019; 100
Kamilova, Kravchenko, Shaposhnikov, Azarova, Makarova, Lugtenberg (bib25) 2006; 19
Li, Li, Wu, Zhang, Li, Li, Lambers, Li (bib31) 2016; 113
Romero-Perdomo, Abril, Camelo, Moreno-galván, Pastrana, Rojas-tapias, Bonilla (bib50) 2017; 49
Saharan, Schütz, Kahmen, Wiemken, Boller, Mathimaran (bib53) 2018; 6
Huang, Li, Shi, Wang, Id, Huang (bib19) 2019; 14
Jones, Dennis, Owen, Van Hees (bib24) 2003; 248
Garland, Bünemann, Oberson (bib15) 2017; 415
Chong, Chen, Seng, Too, Yu, Ang, Lim, Yin, Grandclément, Faure, Dessaux, Chan (bib9) 2017; 7
Patel, Archana (bib66) 2018; 124
Walker, Bais, Grotewold, Vivanco (bib61) 2003; 132
Liu, Yin, Xiao, Tang, Zheng (bib35) 2019; 9
Neumann, Römheld (bib42) 1999; 211
Sambrook and Russel (bib52) 2001; vol. 2
Mathimaran, Jegan, Thimmegowda, Prabavathy, Yuvaraj, Kathiravan, Sivakumar, Manjunatha, Bhavitha, Sathish, Shashidhar, Bagyaraj, Ashok, Singh, Kahmen, Boller, Mäder (bib37) 2020; 4
Mommer, Kirkegaard, van Ruijven (bib40) 2016; 21
Rosenblueth, Martínez-Romero (bib51) 2004; 181
Philippot, Raaijmakers, Lemanceau, Van Der Putten (bib47) 2013; 11
Wu, Chung, Tam, Wong (bib64) 2012; 14
Wang, Li, Zhang, Wei, Li (bib63) 2020; 20
Matilla, Krell (bib38) 2018; 42
Zhang, Wang, Liu, Li, Shen, Zhang (bib65) 2014; 374
Gordillo, Chávez, Jerez (bib16) 2007; 60
Krishnappa, Hussain (bib28) 2014; 19
Jones (bib22) 1998; 205
Macias-benitez, Garcia-Martinez, Jimenez, Gonzalez, Moral, Rubio, Ryan (bib36) 2020; 11
Hauggaard-Nielsen, Jensen (bib18) 2005; 274
Backer, Rokem, Ilangumaran, Lamont, Praslickova, Ricci, Subramanian, Smith (bib1) 2018; 9
Ling, Raza, Ma, Huang, Shen (bib32) 2011; 47
Bechtaoui, El Alaoui, Raklami, Benidire, Tahiri, Oufdou (bib3) 2019; 70
Oburger, Jones (bib44) 2018; 6
Li, Mu, Cheng, Liu, Nian (bib30) 2013; 35
Badri, de-la-Peña, Lei, Manter, Chaparro, Guimarães, Sumner, Vivanco (bib2) 2012; 7
Lee, Lee, Park, Sangurdekar, Chang (bib29) 2012; 78
Naveed, Mitter, Yousaf, Pastar, Afzal, Sessitsch (bib41) 2013; 50
Silva, Winck, Borges, Santos, Bataiolli, Backes, Bassani, Borin, Frazzon, Sá (bib56) 2020; 16
Rezaei-Chiyaneh, Amirnia, Amani, Machiani, Javanmard, Maggi, Morshedloo (bib49) 2019; 261
Noirot-Gros, Shinde, Larsen, Zerbs, Korajczyk, Kemner, Noirot (bib67) 2018; 9
Schoebitz, Castillo, Jorquera, Roldan (bib54) 2020; 10
Wang, Marschner, Solaiman, Rengel (bib62) 2007; 39
Canarini, Kaiser, Merchant, Richter, Wanek (bib6) 2019; 10
Knee, Gong, Gao, Teplitski, Jones, Foxworthy, Mort, Bauer (bib26) 2001; 14
Contreras, Díaz, Domenico, De, Mora (bib10) 2019; 19
Jones, Darrah (bib23) 1995; 173
Konkolewska, Piechalak, Ciszewska, Antos-Krzemińska, Skrzypczak, Hanć, Sitko, Małkowski, Barałkiewicz, Małecka (bib27) 2020; 27
Meng, Zhang, Wang, Han, Wang, Li (bib39) 2015; 6
Feng, Zhang, Du, Zhang, Liu, Fu, Shao, Zhang, Shen, Zhang (bib14) 2018; 31
Cavalcanti, Carvalho, Ribeiro, Elena, Escobar, Carla, Fraiz, Pereira, Souza, Dolores, Freitas, Simão, Nóbrega, Fernandes-júnior (bib5) 2020
Oburger, Dellmour, Hann, Wieshammer, Puschenreiter, Wenzel (bib43) 2013; 87
Darias, García-Fontana, Lugo, Rico-Jiménez, Krell (bib11) 2014; vol. 1149
Taylor, Otani, Ae, Tanaka (bib60) 1996; 42
Darias (10.1016/j.rhisph.2021.100331_bib11) 2014; vol. 1149
Mommer (10.1016/j.rhisph.2021.100331_bib40) 2016; 21
Sharma (10.1016/j.rhisph.2021.100331_bib59) 2019; 100
Naveed (10.1016/j.rhisph.2021.100331_bib41) 2013; 50
Meng (10.1016/j.rhisph.2021.100331_bib39) 2015; 6
Ling (10.1016/j.rhisph.2021.100331_bib32) 2011; 47
Rezaei-Chiyaneh (10.1016/j.rhisph.2021.100331_bib49) 2019; 261
Wu (10.1016/j.rhisph.2021.100331_bib64) 2012; 14
Huang (10.1016/j.rhisph.2021.100331_bib19) 2019; 14
Rajendran (10.1016/j.rhisph.2021.100331_bib48) 2007; 187
Wang (10.1016/j.rhisph.2021.100331_bib62) 2007; 39
Matilla (10.1016/j.rhisph.2021.100331_bib38) 2018; 42
Li (10.1016/j.rhisph.2021.100331_bib30) 2013; 35
Krishnappa (10.1016/j.rhisph.2021.100331_bib28) 2014; 19
Lee (10.1016/j.rhisph.2021.100331_bib29) 2012; 78
Patel (10.1016/j.rhisph.2021.100331_bib66) 2018; 124
Sun (10.1016/j.rhisph.2021.100331_bib58) 2020; 16
Liu (10.1016/j.rhisph.2021.100331_bib34) 2007; 153
Gordillo (10.1016/j.rhisph.2021.100331_bib16) 2007; 60
Wang (10.1016/j.rhisph.2021.100331_bib63) 2020; 20
Noirot-Gros (10.1016/j.rhisph.2021.100331_bib67) 2018; 9
Taylor (10.1016/j.rhisph.2021.100331_bib60) 1996; 42
Contreras (10.1016/j.rhisph.2021.100331_bib10) 2019; 19
Duchene (10.1016/j.rhisph.2021.100331_bib12) 2017; 240
Gosai (10.1016/j.rhisph.2021.100331_bib17) 2019; 231
Jones (10.1016/j.rhisph.2021.100331_bib24) 2003; 248
Jones (10.1016/j.rhisph.2021.100331_bib23) 1995; 173
Oburger (10.1016/j.rhisph.2021.100331_bib43) 2013; 87
Garland (10.1016/j.rhisph.2021.100331_bib15) 2017; 415
Chagas (10.1016/j.rhisph.2021.100331_bib8) 2018; 47
Liu (10.1016/j.rhisph.2021.100331_bib35) 2019; 9
Canarini (10.1016/j.rhisph.2021.100331_bib6) 2019; 10
Silva (10.1016/j.rhisph.2021.100331_bib56) 2020; 16
Macias-benitez (10.1016/j.rhisph.2021.100331_bib36) 2020; 11
Romero-Perdomo (10.1016/j.rhisph.2021.100331_bib50) 2017; 49
Feng (10.1016/j.rhisph.2021.100331_bib14) 2018; 31
Mathimaran (10.1016/j.rhisph.2021.100331_bib37) 2020; 4
Badri (10.1016/j.rhisph.2021.100331_bib2) 2012; 7
Sambrook and Russel (10.1016/j.rhisph.2021.100331_bib52) 2001; vol. 2
Broughton (10.1016/j.rhisph.2021.100331_bib4) 1986; 102
Cavalcanti (10.1016/j.rhisph.2021.100331_bib5) 2020
Walker (10.1016/j.rhisph.2021.100331_bib61) 2003; 132
Hunter (10.1016/j.rhisph.2021.100331_bib20) 2014; 5
Kamilova (10.1016/j.rhisph.2021.100331_bib25) 2006; 19
Backer (10.1016/j.rhisph.2021.100331_bib1) 2018; 9
Carvalhais (10.1016/j.rhisph.2021.100331_bib7) 2011; 174
Lithourgidis (10.1016/j.rhisph.2021.100331_bib33) 2011; 5
Erro (10.1016/j.rhisph.2021.100331_bib13) 2009; 57
Chong (10.1016/j.rhisph.2021.100331_bib9) 2017; 7
Schoebitz (10.1016/j.rhisph.2021.100331_bib54) 2020; 10
Li (10.1016/j.rhisph.2021.100331_bib31) 2016; 113
Iyer (10.1016/j.rhisph.2021.100331_bib21) 2016; 192
Oburger (10.1016/j.rhisph.2021.100331_bib44) 2018; 6
Jones (10.1016/j.rhisph.2021.100331_bib22) 1998; 205
Subrahmanyam (10.1016/j.rhisph.2021.100331_bib57) 2018; 28
Hauggaard-Nielsen (10.1016/j.rhisph.2021.100331_bib18) 2005; 274
Konkolewska (10.1016/j.rhisph.2021.100331_bib27) 2020; 27
Zhang (10.1016/j.rhisph.2021.100331_bib65) 2014; 374
Bechtaoui (10.1016/j.rhisph.2021.100331_bib3) 2019; 70
Saharan (10.1016/j.rhisph.2021.100331_bib53) 2018; 6
Knee (10.1016/j.rhisph.2021.100331_bib26) 2001; 14
Neumann (10.1016/j.rhisph.2021.100331_bib42) 1999; 211
Philippot (10.1016/j.rhisph.2021.100331_bib47) 2013; 11
Rosenblueth (10.1016/j.rhisph.2021.100331_bib51) 2004; 181
References_xml – volume: 42
  start-page: fux052
  year: 2018
  ident: bib38
  article-title: The effect of bacterial chemotaxis on host infection and pathogenicity
  publication-title: FEMS Microbiol. Rev.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib63
  article-title: Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application
  publication-title: BMC Microbiol.
– volume: 181
  start-page: 337
  year: 2004
  end-page: 344
  ident: bib51
  article-title: maize populations and their competitiveness for root colonization
  publication-title: Arch. Microbiol.
– volume: 274
  start-page: 237
  year: 2005
  end-page: 250
  ident: bib18
  article-title: Facilitative root interactions in intercrops
  publication-title: Plant Soil
– volume: 47
  start-page: 1652
  year: 2018
  end-page: 1704
  ident: bib8
  article-title: Chemical signaling involved in plant-microbe interactions
  publication-title: Chem. Soc. Rev.
– volume: 261
  start-page: 108951
  year: 2019
  ident: bib49
  article-title: Intercropping fennel (
  publication-title: Sci. Hortic. (Amsterdam)
– volume: 27
  start-page: 13809
  year: 2020
  end-page: 13825
  ident: bib27
  article-title: Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd)
  publication-title: Environ. Sci. Pollut. Res.
– volume: 124
  start-page: 34
  year: 2018
  end-page: 44
  ident: bib66
  article-title: Engineered production of 2, 4-diacetylphloroglucinol in the diazotrophic endophytic bacterium
  publication-title: Appl. Soil Ecol.
– volume: 78
  start-page: 2896
  year: 2012
  end-page: 2903
  ident: bib29
  article-title: Effect of soybean coumestrol on
  publication-title: Appl. Environ. Microbiol.
– volume: 187
  start-page: 257
  year: 2007
  end-page: 264
  ident: bib48
  article-title: Functional expression of
  publication-title: Arch. Microbiol.
– volume: 374
  start-page: 689
  year: 2014
  end-page: 700
  ident: bib65
  article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation, and colonization by beneficial rhizosphere-associated bacterial strains
  publication-title: Plant Soil
– volume: 70
  start-page: 649
  year: 2019
  end-page: 658
  ident: bib3
  article-title: Impact of intercropping and co-inoculation with strains of plant growth-promoting rhizobacteria on phosphorus and nitrogen concentrations and yield of durum wheat (
  publication-title: Crop Pasture Sci.
– volume: 153
  start-page: 3196
  year: 2007
  end-page: 3209
  ident: bib34
  article-title: Role of
  publication-title: Microbiology
– volume: 42
  start-page: 553
  year: 1996
  end-page: 560
  ident: bib60
  article-title: Phosphorus (P) uptake mechanisms of crops grown in soils with low P status (ii . significance of organic acids in root exudates of pigeon pea)
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 9
  start-page: 853
  year: 2018
  ident: bib67
  article-title: Dynamics of aspen roots colonization by pseudomonads reveals strain-specific and mycorrhizal-specific patterns of biofilm formation
  publication-title: Front. Microbiol.
– volume: 10
  year: 2019
  ident: bib6
  article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli
  publication-title: Front. Plant Sci.
– volume: 87
  start-page: 235
  year: 2013
  end-page: 247
  ident: bib43
  article-title: Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques
  publication-title: Environ. Exp. Bot.
– volume: 132
  start-page: 44
  year: 2003
  end-page: 51
  ident: bib61
  article-title: Root exudation and rhizosphere biology
  publication-title: Plant Physiol.
– volume: 60
  start-page: 322
  year: 2007
  end-page: 328
  ident: bib16
  article-title: Motility and chemotaxis of
  publication-title: FEMS Microbiol. Ecol.
– volume: 100
  year: 2019
  ident: bib59
  article-title: Root colonization by heavy metal resistant
  publication-title: J. Sci. Food Agric.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib1
  article-title: Plant growth-promoting Rhizobacteria : context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front. Plant Sci.
– volume: 31
  start-page: 995
  year: 2018
  end-page: 1005
  ident: bib14
  article-title: Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant growth-promoting rhizobacteria
  publication-title: Mol. Plant Microbe Interact.
– volume: 9
  start-page: 4818
  year: 2019
  ident: bib35
  article-title: Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean
  publication-title: Sci. Rep.
– volume: 240
  start-page: 148
  year: 2017
  end-page: 161
  ident: bib12
  article-title: Intercropping with legume for agroecological cropping systems : complementarity and facilitation processes and the importance of soil microorganisms
  publication-title: Agric. Ecosyst. Environ.
– volume: 39
  start-page: 249
  year: 2007
  end-page: 256
  ident: bib62
  article-title: Growth, P uptake, and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate
  publication-title: Soil Biol. Biochem.
– volume: 7
  year: 2012
  ident: bib2
  article-title: Root secreted metabolites and proteins are involved in the early events of Plant-Plant recognition prior to competition
  publication-title: PloS One
– volume: 16
  start-page: 100242
  year: 2020
  ident: bib58
  article-title: Interactions between neighboring native and alien species are modulated by nitrogen availability
  publication-title: Rhizosphere
– volume: 16
  year: 2020
  ident: bib56
  article-title: Native rhizobia from southern Brazilian grassland promote the growth of grasses
  publication-title: Rhizosphere
– volume: 14
  year: 2019
  ident: bib19
  article-title: Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations
  publication-title: PloS One
– volume: 5
  year: 2014
  ident: bib20
  article-title: Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica
  publication-title: Front. Plant Sci.
– volume: 6
  start-page: 116
  year: 2018
  end-page: 133
  ident: bib44
  article-title: Sampling root exudates–mission impossible?
  publication-title: Rhizosphere
– volume: 19
  start-page: 100110
  year: 2019
  ident: bib10
  article-title: Prospecting intercropping between subterranean clover and grapevine as potential strategy for improving grapevine performance
  publication-title: Curr. Plant Biol.
– volume: 102
  start-page: 1173
  year: 1986
  end-page: 1182
  ident: bib4
  article-title: Identification of
  publication-title: J. Cell Biol.
– volume: 205
  start-page: 25
  year: 1998
  end-page: 44
  ident: bib22
  article-title: Organic acids in the rhizosphere - a critical review
  publication-title: Plant Soil
– volume: 248
  start-page: 31
  year: 2003
  end-page: 41
  ident: bib24
  article-title: Organic acid behavior in soils – misconceptions and knowledge gaps
  publication-title: Plant Soil
– volume: 415
  start-page: 5537
  year: 2017
  end-page: 5555
  ident: bib15
  article-title: Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage
  publication-title: Plant Soil
– volume: 35
  start-page: 1113
  year: 2013
  end-page: 1119
  ident: bib30
  article-title: Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen, and phosphorus availability
  publication-title: Acta Physiol. Plant.
– volume: 192
  start-page: 211
  year: 2016
  end-page: 220
  ident: bib21
  article-title: Organic acid mediated repression of sugar utilization in rhizobia
  publication-title: Microbiol. Res.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib37
  article-title: Intercropping transplanted pigeon pea with finger Millet : arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input
  publication-title: Front. Sustain. Food Syst.
– volume: 7
  start-page: 138
  year: 2017
  ident: bib9
  article-title: Phenotypic and genomic survey on organic acid utilization profile of
  publication-title: Amb. Express
– volume: 113
  start-page: 6496
  year: 2016
  end-page: 6501
  ident: bib31
  article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 14
  start-page: 543
  year: 2012
  end-page: 553
  ident: bib64
  article-title: Root exudates of wetland plants influenced by nutrient status and types of plant cultivation
  publication-title: Int. J. Phytoremediation
– volume: 6
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib39
  article-title: Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system
  publication-title: Front. Plant Sci.
– volume: 10
  year: 2020
  ident: bib54
  article-title: Responses of microbiological soil properties to intercropping at different planting densities in an acidic Andisol
  publication-title: Agronomy
– volume: 28
  start-page: 144
  year: 2018
  end-page: 156
  ident: bib57
  article-title: var. Gm4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium
  publication-title: Pedosphere
– volume: 19
  start-page: 250
  year: 2006
  end-page: 256
  ident: bib25
  article-title: Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria
  publication-title: Mol. Plant Microbe Interact.
– volume: vol. 2
  year: 2001
  ident: bib52
  publication-title: Molecular Cloning: a Laboratory Manual
– volume: 57
  start-page: 4004
  year: 2009
  end-page: 4010
  ident: bib13
  article-title: Determination of organic acids in tissues and exudates of maize, lupin, and chickpea by high-performance liquid chromatography-tandem mass spectrometry
  publication-title: J. Agric. Food Chem.
– volume: 231
  start-page: 126354
  year: 2019
  ident: bib17
  article-title: Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in
  publication-title: Microbiol. Res.
– volume: vol. 1149
  year: 2014
  ident: bib11
  article-title: Qualitative and Quantitative assays for flagellum-mediated chemotaxis
  publication-title: Pseudomonas Methods and Protocols. Methods in Molecular Biology (Methods and Protocols)
– volume: 19
  start-page: 197
  year: 2014
  end-page: 204
  ident: bib28
  article-title: Phosphorus acquisition from deficient soil: involvement of organic acids and acid phosphatase in pigeon pea (
  publication-title: Indian J. Plant Physiol.
– start-page: 100211
  year: 2020
  ident: bib5
  article-title: Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach
  publication-title: Rhizosphere
– volume: 47
  start-page: 374
  year: 2011
  end-page: 379
  ident: bib32
  article-title: Identification and role of organic acids in watermelon root exudates for recruiting
  publication-title: Eur. J. Soil Biol.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib36
  article-title: Rhizospheric organic acids as Biostimulants : monitoring feedbacks on soil microorganisms and biochemical properties
  publication-title: Front. Plant Sci.
– volume: 174
  start-page: 3
  year: 2011
  end-page: 11
  ident: bib7
  article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 173
  start-page: 103
  year: 1995
  end-page: 109
  ident: bib23
  article-title: Influx and efflux of organic acids across the soil-root interface of
  publication-title: Plant Soil
– volume: 21
  start-page: 209
  year: 2016
  end-page: 217
  ident: bib40
  article-title: Root-Root interactions: towards a rhizosphere framework
  publication-title: Trends Plant Sci.
– volume: 50
  start-page: 249
  year: 2013
  end-page: 262
  ident: bib41
  article-title: The endophyte
  publication-title: Biol. Fertil. Soils
– volume: 11
  start-page: 789
  year: 2013
  end-page: 799
  ident: bib47
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nat. Rev. Microbiol.
– volume: 49
  start-page: 377
  year: 2017
  end-page: 383
  ident: bib50
  article-title: as a potentially useful bacterial biofertilizer for cotton (
  publication-title: Rev. Argent. Microbiol.
– volume: 14
  start-page: 775
  year: 2001
  end-page: 784
  ident: bib26
  article-title: Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source
  publication-title: Mol. Plant Microbe Interact.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib53
  article-title: Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “bio fertilization” and “big irrigation” mediated by arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria
  publication-title: Front. Environ. Sci.
– volume: 5
  start-page: 396
  year: 2011
  end-page: 410
  ident: bib33
  article-title: Annual intercrops: an alternative pathway for sustainable agriculture
  publication-title: Aust. J. Crop. Sci.
– volume: 211
  start-page: 121
  year: 1999
  end-page: 130
  ident: bib42
  article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants
  publication-title: Plant Soil
– volume: 42
  start-page: 553
  issue: 3
  year: 1996
  ident: 10.1016/j.rhisph.2021.100331_bib60
  article-title: Phosphorus (P) uptake mechanisms of crops grown in soils with low P status (ii . significance of organic acids in root exudates of pigeon pea)
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1996.10416324
– volume: 19
  start-page: 100110
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib10
  article-title: Prospecting intercropping between subterranean clover and grapevine as potential strategy for improving grapevine performance
  publication-title: Curr. Plant Biol.
  doi: 10.1016/j.cpb.2019.100110
– volume: 39
  start-page: 249
  year: 2007
  ident: 10.1016/j.rhisph.2021.100331_bib62
  article-title: Growth, P uptake, and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.07.013
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib53
  article-title: Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “bio fertilization” and “big irrigation” mediated by arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2018.00046
– volume: 261
  start-page: 108951
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib49
  article-title: Intercropping fennel ( Foeniculum vulgare L .) with common bean ( Phaseolus vulgaris L .) as affected by PGPR inoculation : a strategy for improving yield, essential oil, and fatty acid composition
  publication-title: Sci. Hortic. (Amsterdam)
  doi: 10.1016/j.scienta.2019.108951
– start-page: 100211
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib5
  article-title: Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2020.100211
– volume: 60
  start-page: 322
  year: 2007
  ident: 10.1016/j.rhisph.2021.100331_bib16
  article-title: Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2007.00293.x
– volume: 14
  issue: 12
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib19
  article-title: Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations
  publication-title: PloS One
  doi: 10.1371/journal.pone.0225810
– volume: 205
  start-page: 25
  year: 1998
  ident: 10.1016/j.rhisph.2021.100331_bib22
  article-title: Organic acids in the rhizosphere - a critical review
  publication-title: Plant Soil
  doi: 10.1023/A:1004356007312
– volume: 7
  year: 2012
  ident: 10.1016/j.rhisph.2021.100331_bib2
  article-title: Root secreted metabolites and proteins are involved in the early events of Plant-Plant recognition prior to competition
  publication-title: PloS One
  doi: 10.1371/journal.pone.0046640
– volume: 124
  start-page: 34
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib66
  article-title: Engineered production of 2, 4-diacetylphloroglucinol in the diazotrophic endophytic bacterium Pseudomonas sp. WS5 and its beneficial effect in multiple plant-pathogen systems
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.10.008
– volume: 10
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib6
  article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli
  publication-title: Front. Plant Sci.
– volume: 5
  issue: 27
  year: 2014
  ident: 10.1016/j.rhisph.2021.100331_bib20
  article-title: Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica
  publication-title: Front. Plant Sci.
– volume: 28
  start-page: 144
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib57
  article-title: Vigna radiata var. Gm4 plant growth enhancement and root colonization by a multi-metal-resistant plant growth-promoting bacterium Enterobacter sp. C1D in Cr(VI)-amended soils
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60448-X
– volume: 49
  start-page: 377
  year: 2017
  ident: 10.1016/j.rhisph.2021.100331_bib50
  article-title: Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton ( Gossypium hirsutum ): effect in reducing N fertilization
  publication-title: Rev. Argent. Microbiol.
– volume: 132
  start-page: 44
  year: 2003
  ident: 10.1016/j.rhisph.2021.100331_bib61
  article-title: Root exudation and rhizosphere biology
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.019661
– volume: 21
  start-page: 209
  year: 2016
  ident: 10.1016/j.rhisph.2021.100331_bib40
  article-title: Root-Root interactions: towards a rhizosphere framework
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.01.009
– volume: 31
  start-page: 995
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib14
  article-title: Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-01-18-0003-R
– volume: 42
  start-page: fux052
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib38
  article-title: The effect of bacterial chemotaxis on host infection and pathogenicity
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fux052
– volume: 174
  start-page: 3
  year: 2011
  ident: 10.1016/j.rhisph.2021.100331_bib7
  article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201000085
– volume: 9
  start-page: 853
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib67
  article-title: Dynamics of aspen roots colonization by pseudomonads reveals strain-specific and mycorrhizal-specific patterns of biofilm formation
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00853
– volume: 274
  start-page: 237
  year: 2005
  ident: 10.1016/j.rhisph.2021.100331_bib18
  article-title: Facilitative root interactions in intercrops
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1305-1
– volume: 78
  start-page: 2896
  year: 2012
  ident: 10.1016/j.rhisph.2021.100331_bib29
  article-title: Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.07336-11
– volume: 192
  start-page: 211
  year: 2016
  ident: 10.1016/j.rhisph.2021.100331_bib21
  article-title: Organic acid mediated repression of sugar utilization in rhizobia
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2016.07.006
– volume: 248
  start-page: 31
  year: 2003
  ident: 10.1016/j.rhisph.2021.100331_bib24
  article-title: Organic acid behavior in soils – misconceptions and knowledge gaps
  publication-title: Plant Soil
  doi: 10.1023/A:1022304332313
– volume: 211
  start-page: 121
  year: 1999
  ident: 10.1016/j.rhisph.2021.100331_bib42
  article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants
  publication-title: Plant Soil
  doi: 10.1023/A:1004380832118
– volume: 35
  start-page: 1113
  year: 2013
  ident: 10.1016/j.rhisph.2021.100331_bib30
  article-title: Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen, and phosphorus availability
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-1148-y
– volume: 415
  start-page: 5537
  year: 2017
  ident: 10.1016/j.rhisph.2021.100331_bib15
  article-title: Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3145-1
– volume: 87
  start-page: 235
  year: 2013
  ident: 10.1016/j.rhisph.2021.100331_bib43
  article-title: Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2012.11.007
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib1
  article-title: Plant growth-promoting Rhizobacteria : context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01473
– volume: 240
  start-page: 148
  year: 2017
  ident: 10.1016/j.rhisph.2021.100331_bib12
  article-title: Intercropping with legume for agroecological cropping systems : complementarity and facilitation processes and the importance of soil microorganisms
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.02.019
– volume: 173
  start-page: 103
  year: 1995
  ident: 10.1016/j.rhisph.2021.100331_bib23
  article-title: Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow
  publication-title: Plant Soil
  doi: 10.1007/BF00155523
– volume: 4
  start-page: 1
  issue: 88
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib37
  article-title: Intercropping transplanted pigeon pea with finger Millet : arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input
  publication-title: Front. Sustain. Food Syst.
– volume: 102
  start-page: 1173
  year: 1986
  ident: 10.1016/j.rhisph.2021.100331_bib4
  article-title: Identification of Rhizobium plasmid sequences involved in recognition of Psophocarpus, Vigna, and other legumes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.102.4.1173
– volume: 16
  start-page: 100242
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib58
  article-title: Interactions between neighboring native and alien species are modulated by nitrogen availability
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2020.100242
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib63
  article-title: Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-020-1708-z
– volume: 11
  start-page: 789
  year: 2013
  ident: 10.1016/j.rhisph.2021.100331_bib47
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3109
– volume: 57
  start-page: 4004
  year: 2009
  ident: 10.1016/j.rhisph.2021.100331_bib13
  article-title: Determination of organic acids in tissues and exudates of maize, lupin, and chickpea by high-performance liquid chromatography-tandem mass spectrometry
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf804003v
– volume: vol. 2
  year: 2001
  ident: 10.1016/j.rhisph.2021.100331_bib52
– volume: 9
  start-page: 4818
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib35
  article-title: Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41146-9
– volume: 100
  issue: 4
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib59
  article-title: Root colonization by heavy metal resistant Enterobacter sp. C1D and its influence on metal-induced oxidative stress on Cajanus cajan
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.10161
– volume: 70
  start-page: 649
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib3
  article-title: Impact of intercropping and co-inoculation with strains of plant growth-promoting rhizobacteria on phosphorus and nitrogen concentrations and yield of durum wheat (Triticum durum) and faba bean (Vicia faba)
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP19067
– volume: 47
  start-page: 1652
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib8
  article-title: Chemical signaling involved in plant-microbe interactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00343A
– volume: 16
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib56
  article-title: Native rhizobia from southern Brazilian grassland promote the growth of grasses
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2020.100240
– volume: 374
  start-page: 689
  year: 2014
  ident: 10.1016/j.rhisph.2021.100331_bib65
  article-title: Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation, and colonization by beneficial rhizosphere-associated bacterial strains
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1915-6
– volume: 19
  start-page: 250
  year: 2006
  ident: 10.1016/j.rhisph.2021.100331_bib25
  article-title: Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-19-0250
– volume: 153
  start-page: 3196
  year: 2007
  ident: 10.1016/j.rhisph.2021.100331_bib34
  article-title: Role of sdhA and pfkA and catabolism of reduced carbon during colonization of cucumber roots by Enterobacter cloacae
  publication-title: Microbiology
  doi: 10.1099/mic.0.2006/005538-0
– volume: vol. 1149
  year: 2014
  ident: 10.1016/j.rhisph.2021.100331_bib11
  article-title: Qualitative and Quantitative assays for flagellum-mediated chemotaxis
– volume: 14
  start-page: 543
  year: 2012
  ident: 10.1016/j.rhisph.2021.100331_bib64
  article-title: Root exudates of wetland plants influenced by nutrient status and types of plant cultivation
  publication-title: Int. J. Phytoremediation
  doi: 10.1080/15226514.2011.604691
– volume: 231
  start-page: 126354
  year: 2019
  ident: 10.1016/j.rhisph.2021.100331_bib17
  article-title: Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in Ensifer nodulating pigeon pea
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2019.126354
– volume: 181
  start-page: 337
  year: 2004
  ident: 10.1016/j.rhisph.2021.100331_bib51
  article-title: Rhizobium etli maize populations and their competitiveness for root colonization
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-004-0661-9
– volume: 19
  start-page: 197
  issue: 3
  year: 2014
  ident: 10.1016/j.rhisph.2021.100331_bib28
  article-title: Phosphorus acquisition from deficient soil: involvement of organic acids and acid phosphatase in pigeon pea (Cajanus cajan L. mills sp)
  publication-title: Indian J. Plant Physiol.
  doi: 10.1007/s40502-014-0101-z
– volume: 47
  start-page: 374
  year: 2011
  ident: 10.1016/j.rhisph.2021.100331_bib32
  article-title: Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2011.08.009
– volume: 7
  start-page: 138
  year: 2017
  ident: 10.1016/j.rhisph.2021.100331_bib9
  article-title: Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5 . 2, a vineyard soil isolate
  publication-title: Amb. Express
  doi: 10.1186/s13568-017-0437-7
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.rhisph.2021.100331_bib39
  article-title: Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00339
– volume: 6
  start-page: 116
  year: 2018
  ident: 10.1016/j.rhisph.2021.100331_bib44
  article-title: Sampling root exudates–mission impossible?
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.06.004
– volume: 187
  start-page: 257
  year: 2007
  ident: 10.1016/j.rhisph.2021.100331_bib48
  article-title: Functional expression of Escherichia coli fhuA gene in Rhizobium spp . of Cajanus cajan provides growth advantage in the presence of Fe 3 + : ferrichrome as iron source
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-006-0191-8
– volume: 113
  start-page: 6496
  year: 2016
  ident: 10.1016/j.rhisph.2021.100331_bib31
  article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1523580113
– volume: 27
  start-page: 13809
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib27
  article-title: Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd)
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-07885-3
– volume: 11
  start-page: 1
  issue: 633
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib36
  article-title: Rhizospheric organic acids as Biostimulants : monitoring feedbacks on soil microorganisms and biochemical properties
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 775
  year: 2001
  ident: 10.1016/j.rhisph.2021.100331_bib26
  article-title: Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI.2001.14.6.775
– volume: 10
  issue: 781
  year: 2020
  ident: 10.1016/j.rhisph.2021.100331_bib54
  article-title: Responses of microbiological soil properties to intercropping at different planting densities in an acidic Andisol
  publication-title: Agronomy
– volume: 50
  start-page: 249
  year: 2013
  ident: 10.1016/j.rhisph.2021.100331_bib41
  article-title: The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0854-y
– volume: 5
  start-page: 396
  year: 2011
  ident: 10.1016/j.rhisph.2021.100331_bib33
  article-title: Annual intercrops: an alternative pathway for sustainable agriculture
  publication-title: Aust. J. Crop. Sci.
SSID ssj0001763563
Score 2.3923652
Snippet Intercropping, the co-cultivation of two or more plant species in the same field, has several advantages over growing only one plant species, however, the role...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100331
SubjectTerms Biofilm
Cajanus cajan
chemotaxis
coculture
continuous cropping
corn
Enterobacter
exudation
fumarates
intercropping
malates
metabolites
Organic acids
pigeon peas
plant growth
plant growth-promoting rhizobacteria
Pseudomonas
Rhizobium
Rhizosphere
rhizosphere bacteria
roots
succinic acid
Zea mays
Title Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea – maize intercropping system
URI https://dx.doi.org/10.1016/j.rhisph.2021.100331
https://www.proquest.com/docview/2524259448
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKe-GCQIAofxokrtE2duyNj1VFtYDoAajUm-XfbVBJot2sVHHiHeAJeRJm4gQEQqrEMVHGsvzZ45nMNzOMvdS1WlZJx8KnsYWZLwsnRUJlqHDezqM3Rv873p2p1Xn15kJe7LGTOReGaJWT7s86fdTW05vFtJqLvmkWHyhmiOet5uUYP1O32AEXWuHWPjh-_XZ19vtXy1iEjWLNJFKQzJxENzK9NpfNtqfABC-JNJAbzv3zkvpLXY930OlddmcyHuE4z-8e24vtffb9fdcNEK935LtvoZm7jgDCgTjY62YLtg1A5annrEvoEoSRkRGhv8LFhTW648Ml9Jmd165hQ2Q8l2s5WxwV0FKEvllHlO6jhR9fv8Fn23yJQBUnNtQJjFKvIJeGfsDOT199PFkVU6-Fwguhh8J76SM_ijKGukzC1ZUmuGoVrKqT5L6skuA6qNqjQZOcQMvCehm4Erb0SYiHbL_t2viIQYqeB7fUXIVQyaWrU6qOhEe313GZrD5kYl5c46dC5NQP48rMjLNPJkNiCBKTITlkxS-pPhfiuOH75Yyb-WNDGbwrbpB8McNs8KxRAMW2sdttDZfkoGn0aB__9-hP2G16ymyzp2x_2OziM7RrBvd82rc_AVXA-8k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbK9gAXVASIAi2DxDXaxo69ybGqqLZ_e4BW6s2yHXsbVJJoNytVnHgHeEKehJk4AYGQKnFNMpblscczmW--YexdkatZFgqfuNC3MHNpYqUIaAwVzts6jMbof8fFQs2vstNreb3FjsZaGIJVDrY_2vTeWg9PpsNqTtuqmn6knCGet5ynff5MPWDbxE4lJ2z78ORsvvj9q6UnYaNcM4kkJDMW0fVIr9VNtW4pMcFTAg3EhnP_vKT-Mtf9HXS8wx4PziMcxvk9YVu-fsq-f2iaDvzdhmL3NVRj1xFAdaAezF21BlOXQPTUY9UlNAHKHpHhob3FxYUlhuPdDbQRnVcvYUVgPBu5nA2OCugpQlstPUq33sCPr9_gs6m-eCDGiRV1AqPSK4jU0M_Y1fH7y6N5MvRaSJwQRZc4J53nB176Mk-DsHlWkLpyVRqVB8ldmgXBi1LlDh2aYAV6FsbJkithUheEeM4mdVP7FwyCd7y0s4KrsszkzOYhZAfCYdhruQym2GViXFztBiJy6odxq0fE2ScdVaJJJTqqZJclv6TaSMRxz_ezUW_6jw2l8a64R_LtqGaNZ40SKKb2zWatuaQArcCI9uV_j_6GPZxfXpzr85PF2Sv2iN5E5NlrNulWG7-HPk5n94c9_BM4u_6v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+exudates+influence+chemotaxis+and+colonization+of+diverse+plant+growth+promoting+rhizobacteria+in+the+pigeon+pea+%E2%80%93+maize+intercropping+system&rft.jtitle=Rhizosphere&rft.au=Vora%2C+Siddhi+M&rft.au=Joshi%2C+Purvi&rft.au=Belwalkar%2C+Mugdha&rft.au=Archana%2C+G.&rft.date=2021-06-01&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=18+p.100331-&rft_id=info:doi/10.1016%2Fj.rhisph.2021.100331&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon