Dynamic damage mechanism of coal with high true triaxial stress level subject to water jets
Deep mineral resources are abundant, and water jet technology has been proven to be an efficient means of developing this resource. In-situ stress is one of the prominent features in deep mines. However, the dynamic damage process of rock under the in-situ stress environment subject to water jets ha...
Saved in:
Published in | Powder technology Vol. 437; p. 119583 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0032-5910 1873-328X |
DOI | 10.1016/j.powtec.2024.119583 |
Cover
Loading…
Abstract | Deep mineral resources are abundant, and water jet technology has been proven to be an efficient means of developing this resource. In-situ stress is one of the prominent features in deep mines. However, the dynamic damage process of rock under the in-situ stress environment subject to water jets has not been revealed. Therefore, this study aims to fill this gap. For this study, coal breaking tests were performed to reveal the macro fracture patterns of coal under different true triaxial stress conditions. The results show that the bedding angle can significantly affect the coal-breaking characteristics, and when the bedding angle is 45° combines the advantages of length and aperture for jet drilling. When there is no geostress, the width of the cracks on the wall of the fracture pit is 3 μm, with a crack width of 7.5 μm at the bottom of the hole, and no through cracks generated under triaxial stress. Subsequently, further theoretical analysis and numerical simulation showed that the in-situ stress has a hysteresis and inhibitory effect on the dynamic damage evolution of jet coal breaking, hereby affecting the final fracture mode during the period. The results of this study will provide basic theoretical support for the jet drilling of rock in deep layered rock.
[Display omitted]
•Water jet rock-breaking test was performed under high true triaxial stress level.•The effect of in-situ stress on the dynamic damage mechanism of rock-breaking was revealed.•The macroscopic and mesoscopic damage mechanisms of coal were elucidated.•The influence of bedding on the dynamic damage mechanism of coal has been determined using a new device. |
---|---|
AbstractList | Deep mineral resources are abundant, and water jet technology has been proven to be an efficient means of developing this resource. In-situ stress is one of the prominent features in deep mines. However, the dynamic damage process of rock under the in-situ stress environment subject to water jets has not been revealed. Therefore, this study aims to fill this gap. For this study, coal breaking tests were performed to reveal the macro fracture patterns of coal under different true triaxial stress conditions. The results show that the bedding angle can significantly affect the coal-breaking characteristics, and when the bedding angle is 45° combines the advantages of length and aperture for jet drilling. When there is no geostress, the width of the cracks on the wall of the fracture pit is 3 μm, with a crack width of 7.5 μm at the bottom of the hole, and no through cracks generated under triaxial stress. Subsequently, further theoretical analysis and numerical simulation showed that the in-situ stress has a hysteresis and inhibitory effect on the dynamic damage evolution of jet coal breaking, hereby affecting the final fracture mode during the period. The results of this study will provide basic theoretical support for the jet drilling of rock in deep layered rock. Deep mineral resources are abundant, and water jet technology has been proven to be an efficient means of developing this resource. In-situ stress is one of the prominent features in deep mines. However, the dynamic damage process of rock under the in-situ stress environment subject to water jets has not been revealed. Therefore, this study aims to fill this gap. For this study, coal breaking tests were performed to reveal the macro fracture patterns of coal under different true triaxial stress conditions. The results show that the bedding angle can significantly affect the coal-breaking characteristics, and when the bedding angle is 45° combines the advantages of length and aperture for jet drilling. When there is no geostress, the width of the cracks on the wall of the fracture pit is 3 μm, with a crack width of 7.5 μm at the bottom of the hole, and no through cracks generated under triaxial stress. Subsequently, further theoretical analysis and numerical simulation showed that the in-situ stress has a hysteresis and inhibitory effect on the dynamic damage evolution of jet coal breaking, hereby affecting the final fracture mode during the period. The results of this study will provide basic theoretical support for the jet drilling of rock in deep layered rock. [Display omitted] •Water jet rock-breaking test was performed under high true triaxial stress level.•The effect of in-situ stress on the dynamic damage mechanism of rock-breaking was revealed.•The macroscopic and mesoscopic damage mechanisms of coal were elucidated.•The influence of bedding on the dynamic damage mechanism of coal has been determined using a new device. |
ArticleNumber | 119583 |
Author | Wang, Xiaojun Ge, Zhaolong Zhang, Liang Cao, Shirong Yang, Yang Hu, Huarui |
Author_xml | – sequence: 1 givenname: Shirong surname: Cao fullname: Cao, Shirong email: srcao@jxust.edu.cn organization: School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China – sequence: 2 givenname: Xiaojun surname: Wang fullname: Wang, Xiaojun organization: School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China – sequence: 3 givenname: Zhaolong surname: Ge fullname: Ge, Zhaolong organization: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China – sequence: 4 givenname: Liang surname: Zhang fullname: Zhang, Liang organization: School of Emergency Management, Xihua University, Chengdu 610000, China – sequence: 5 givenname: Yang surname: Yang fullname: Yang, Yang organization: School of Emergency Management and Safety Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China – sequence: 6 givenname: Huarui surname: Hu fullname: Hu, Huarui organization: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China |
BookMark | eNqFkE1LAzEQhoNUsH78Aw85etk6SbrbrAdB_AbBi4LgIaTT2TbL7qYmqdV_78p68qCXGWZ4n4F59tmo8x0xdixgIkAUp_Vk7beJcCJBTidClLlWO2ws9ExlSuqXERsDKJnlpYA9th9jDQCFEjBmr1efnW0d8oVt7ZJ4S7iynYst9xVHbxu-dWnFV2654ilsqC_Ofrh-H1OgGHlD79QPm3lNmHjyfGsTBV5Tiodst7JNpKOffsCeb66fLu-yh8fb-8uLhwyVKlOGBSymUKEsqlmhkWiqbaVQUKW1ApoJnJdYzayYSwAxL7AoCIREqbQkm4M6YCfD3XXwbxuKybQuIjWN7chvolEiV3n_bqn76HSIYvAxBqrMOrjWhk8jwHy7NLUZXJpvl2Zw2WNnvzB0ySbnuxSsa_6DzweYegfvjoKJ6KhDWrjQOzML7_4-8AXFIJWJ |
CitedBy_id | crossref_primary_10_1016_j_psep_2025_01_015 crossref_primary_10_1016_j_engfracmech_2025_111050 |
Cites_doi | 10.1016/j.jngse.2020.103260 10.1016/j.powtec.2021.08.079 10.1021/acs.energyfuels.7b02358 10.1016/S1365-1609(03)00075-3 10.1016/j.ijrmms.2015.08.014 10.1177/00368504231188618 10.1016/j.powtec.2021.11.065 10.1016/j.powtec.2019.01.078 10.1016/j.fuel.2019.116912 10.1115/1.4004326 10.1016/j.conbuildmat.2020.120085 10.1615/AtomizSpr.2015011050 10.4028/www.scientific.net/AMR.625.104 10.1016/j.powtec.2023.118699 10.1016/j.ijrmms.2018.06.007 10.1016/j.petrol.2017.10.044 10.1016/j.powtec.2016.11.029 10.1016/j.petrol.2016.10.043 10.3390/su141912704 10.1063/5.0160043 10.1016/j.ijimpeng.2016.12.019 10.1016/j.powtec.2020.04.054 10.1016/j.powtec.2019.11.018 10.1007/s00603-020-02335-5 10.1016/j.powtec.2020.08.028 10.1016/j.engfracmech.2020.107171 10.1021/acs.energyfuels.2c00278 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.powtec.2024.119583 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-328X |
ExternalDocumentID | 10_1016_j_powtec_2024_119583 S0032591024002250 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSM SSZ T5K ~02 ~G- 29O 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCB SCE SSH T9H WUQ XPP ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-c60d40fc26f768cee48af3c1ef8830e71cb9cf7a1b2001b6c66e012c2382ea503 |
IEDL.DBID | .~1 |
ISSN | 0032-5910 |
IngestDate | Fri Aug 22 20:22:43 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Tue Jul 01 01:22:21 EDT 2025 Sat Mar 30 16:21:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep mine Damage Water jet Rock-breaking Coalbed methane |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-c60d40fc26f768cee48af3c1ef8830e71cb9cf7a1b2001b6c66e012c2382ea503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153563198 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153563198 crossref_primary_10_1016_j_powtec_2024_119583 crossref_citationtrail_10_1016_j_powtec_2024_119583 elsevier_sciencedirect_doi_10_1016_j_powtec_2024_119583 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-15 |
PublicationDateYYYYMMDD | 2024-03-15 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Powder technology |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lu, Xiao, Ge, Zhou, Ling, Wang (bb0060) 2019; 346 Zou, Lin (bb0020) 2018; 32 Holmquist, Gordon (bb0160) 2011; 78 Huang, Mi, Li, Wang, Zhao (bb0005) 2021; 394 Ni, Du, Wang, Chen, Song (bb0040) 2012; 17 Ma, Zhu, Wu, Chen, Sun, Liu (bb0180) 2020; 368 Jiang, Zhao, Gao, Wang, Wang, Meng (bb0165) 2020; 376 Sun, Ni, Wang, Shen, Zhao (bb0045) 2018; 162 Wang, Wang, Zhou, Chen (bb0050) 2017; 102 Wang (bb0135) 2017 Mousavi, Zanyar, Hossein, Parviz, Mohammad (bb0185) 2019; 123 Thomas, Antony, Dimitra (bb0145) 2018; 108 Huang, Zhao, Li, Mi, Wang (bb0015) 2022; 397 Karakurt, Aydin, Aydiner (bb0100) 2011; 24 Hood (bb0030) 2014; 66 Huang, Shi, Niu, Song, Shao (bb0130) 2015; 25 Arora, Mishra (bb0195) 2015; 79 Jiang, Du, Dong (bb0115) 2017; 307 Liao, Li, Niu, Chi, Huang, Ma (bb0140) 2013; 21 Liao, Li, Niu, Chi, Huang, Ma (bb0070) 2013; 21 Li, Li, Huang, Song, He, Zhang (bb0125) 2017; 149 Bai, Zhang, Zeng, Zhang, Wang, Wang (bb0080) 2020; 265 Chang, Xi, Zhao, Zhao (bb0055) 2008; 33 Zuo, Ge, Deng, Zheng, Wang (bb0025) 2020; 77 Lu, Zhang, Huang, Li, Gao, Yin (bb0190) 2020; 134 Ge, Deng, Zhou, Yang, Chai (bb0065) 2020; 235 Aydin, Karakurt, Amiri, Kaya (bb0095) 2022; 14 Liu, Wu, Wei, Hao, Liu (bb0170) 2021; 54 Momber (bb0035) 2024; 41 Serkan, Gokhan, Izzet (bb0105) 2023; 125 Qu, Wu, Guo, Qin (bb0155) 2012; 625 He, Li, Shi, Wang, Shen, Wang (bb0120) 2017; 36 Luo, Li, Huang (bb0010) 2023; 35 Liu, Du, Xue (bb0090) 2020; 262 Ge, Liu, Zhou, Li, Shangguan, Shao (bb0110) 2023; 427 Xue, Si, Chen (bb0075) 2020; 361 Cao, Ge, Zhang, Zhou, Lu, Zhao (bb0085) 2022; 150 Ge, Gao, Zhou, Cao, Zhang (bb0150) 2022; 36 Liu, Wang, Song (bb0175) 2023; 106 Hood (10.1016/j.powtec.2024.119583_bb0030) 2014; 66 Liu (10.1016/j.powtec.2024.119583_bb0170) 2021; 54 Zuo (10.1016/j.powtec.2024.119583_bb0025) 2020; 77 Serkan (10.1016/j.powtec.2024.119583_bb0105) 2023; 125 Mousavi (10.1016/j.powtec.2024.119583_bb0185) 2019; 123 Ge (10.1016/j.powtec.2024.119583_bb0110) 2023; 427 Liao (10.1016/j.powtec.2024.119583_bb0070) 2013; 21 Arora (10.1016/j.powtec.2024.119583_bb0195) 2015; 79 Lu (10.1016/j.powtec.2024.119583_bb0060) 2019; 346 Karakurt (10.1016/j.powtec.2024.119583_bb0100) 2011; 24 Ma (10.1016/j.powtec.2024.119583_bb0180) 2020; 368 Cao (10.1016/j.powtec.2024.119583_bb0085) 2022; 150 Sun (10.1016/j.powtec.2024.119583_bb0045) 2018; 162 Huang (10.1016/j.powtec.2024.119583_bb0005) 2021; 394 Huang (10.1016/j.powtec.2024.119583_bb0130) 2015; 25 Ge (10.1016/j.powtec.2024.119583_bb0150) 2022; 36 Wang (10.1016/j.powtec.2024.119583_bb0050) 2017; 102 Wang (10.1016/j.powtec.2024.119583_bb0135) 2017 Qu (10.1016/j.powtec.2024.119583_bb0155) 2012; 625 Momber (10.1016/j.powtec.2024.119583_bb0035) 2024; 41 Ni (10.1016/j.powtec.2024.119583_bb0040) 2012; 17 Aydin (10.1016/j.powtec.2024.119583_bb0095) 2022; 14 Xue (10.1016/j.powtec.2024.119583_bb0075) 2020; 361 He (10.1016/j.powtec.2024.119583_bb0120) 2017; 36 Zou (10.1016/j.powtec.2024.119583_bb0020) 2018; 32 Ge (10.1016/j.powtec.2024.119583_bb0065) 2020; 235 Li (10.1016/j.powtec.2024.119583_bb0125) 2017; 149 Chang (10.1016/j.powtec.2024.119583_bb0055) 2008; 33 Liu (10.1016/j.powtec.2024.119583_bb0090) 2020; 262 Bai (10.1016/j.powtec.2024.119583_bb0080) 2020; 265 Thomas (10.1016/j.powtec.2024.119583_bb0145) 2018; 108 Holmquist (10.1016/j.powtec.2024.119583_bb0160) 2011; 78 Huang (10.1016/j.powtec.2024.119583_bb0015) 2022; 397 Luo (10.1016/j.powtec.2024.119583_bb0010) 2023; 35 Jiang (10.1016/j.powtec.2024.119583_bb0115) 2017; 307 Jiang (10.1016/j.powtec.2024.119583_bb0165) 2020; 376 Lu (10.1016/j.powtec.2024.119583_bb0190) 2020; 134 Liu (10.1016/j.powtec.2024.119583_bb0175) 2023; 106 Liao (10.1016/j.powtec.2024.119583_bb0140) 2013; 21 |
References_xml | – volume: 265 year: 2020 ident: bb0080 article-title: An enhanced coalbed methane recovery technique based on CO publication-title: Fuel – volume: 262 year: 2020 ident: bb0090 article-title: Study on the breaking process and damage characteristics of abrasive water jet impacting concrete based on acoustic emission publication-title: Constr. Build. Mater. – volume: 368 start-page: 112 year: 2020 end-page: 124 ident: bb0180 article-title: Study on compressive strength and durability of alkali-activated coal gangue-slag concrete and its mechanism publication-title: Powder Technol. – volume: 66 year: 2014 ident: bb0030 article-title: The internal failure of rock samples subjected to pulsed water jet impacts publication-title: Int. J. Rock. Mech. Min. – volume: 307 start-page: 99 year: 2017 end-page: 108 ident: bb0115 article-title: Investigation of rock cutting dust formation and suppression using water jets during mining publication-title: Powder Technol. – volume: 123 year: 2019 ident: bb0185 article-title: Assessing the effect of freezing-thawing cycles on the results of the triaxial compressive strength test for calc-schist rock publication-title: Int. J. Rock. Mech. Min. – volume: 17 year: 2012 ident: bb0040 article-title: Experiment study on modulation principle of pulsed particle jet directly modulated at bottom-hole publication-title: Electron. J. Geotech. Eng. – volume: 235 year: 2020 ident: bb0065 article-title: Fracture characteristics of coal jointly impacted by multiple jets publication-title: Eng. Fract. Mech. – volume: 106 year: 2023 ident: bb0175 article-title: Damage evolution law and failure mechanism of rock impacted by high-pressure water jet under in-situ stress condition publication-title: Sci. Prog. – volume: 162 start-page: 532 year: 2018 end-page: 538 ident: bb0045 article-title: Characteristic study on supercritical carbon dioxide impinging jet: calculation and stagnation properties analysis publication-title: J. Pet. Sci. Eng. – volume: 102 start-page: 169 year: 2017 end-page: 179 ident: bb0050 article-title: Numerical simulation and experimental verification of the rock damage field under particle water jet impacting publication-title: Int. J. Impact Eng. – volume: 427 year: 2023 ident: bb0110 article-title: Experimental study of high-speed particle jets impacting deep hard rock under true triaxial stress publication-title: Powder Technol. – volume: 376 start-page: 176 year: 2020 end-page: 186 ident: bb0165 article-title: Numerical investigation of hard rock breakage by high-pressure water jet assisted indenter impact using the coupled SPH/FEM method publication-title: Powder Technol. – volume: 41 start-page: 51 year: 2024 end-page: 68 ident: bb0035 article-title: Wear of rocks by water flow publication-title: Int. J. Rock. Mech. Min. – volume: 397 start-page: 1 year: 2022 end-page: 15 ident: bb0015 article-title: Investigation of the breaking manifestations of bedded shale impacted by a high-pressure abrasive water jet publication-title: Powder Technol. – volume: 35 year: 2023 ident: bb0010 article-title: Permeability model of fracture network based on branch length distribution and topological connectivity publication-title: Phys. Fluids – volume: 150 year: 2022 ident: bb0085 article-title: An experimental study of ultra-high pressure water jet-induced fracture mechanisms and pore size evolution in reservoir rocks publication-title: Int. J. Rock. Mech. Min. – volume: 54 start-page: 1565 year: 2021 end-page: 1582 ident: bb0170 article-title: Erosion wear characteristics of rock eroded using abrasive air jet at 90° impingement angle publication-title: Rock Mech. Rock. Eng. – volume: 36 start-page: 4770 year: 2022 end-page: 4781 ident: bb0150 article-title: Fracture characteristics and failure modes of coal, sandstone, and shale impacted by water jet under true triaxial conditions publication-title: Energy Fuel – volume: 108 start-page: 179 year: 2018 end-page: 188 ident: bb0145 article-title: Hard rock cutting with high pressure jets in various ambient pressure regimes publication-title: Int. J. Rock. Mech. Min. – volume: 625 start-page: 104 year: 2012 end-page: 108 ident: bb0155 article-title: Numerical simulation of sphere impacting water by sph with hydrodynamics publication-title: Adv. Mater. Res. – volume: 77 year: 2020 ident: bb0025 article-title: Fracture initiation pressure and failure modes of tree-type hydraulic fracturing in gas-bearing coal seams publication-title: J. Nat. Gas Sci. Eng. – year: 2017 ident: bb0135 article-title: Research on Particle Water Jet Modulation and Rock Breaking Mechanism – volume: 33 start-page: 983 year: 2008 end-page: 987 ident: bb0055 article-title: Mechanical of breaking coal by water jet publication-title: J. China Coal Soc. – volume: 125 start-page: 1 year: 2023 end-page: 13 ident: bb0105 article-title: An experimental study on the cutting depth produced by abrasive waterjet: how do abrasive and rock properties affect the cutting process? publication-title: Int. J. Adv. Manuf. Technol. – volume: 25 start-page: 617 year: 2015 end-page: 627 ident: bb0130 article-title: Abrasive water jet perforation experiments under ambient pressures publication-title: Atomiz. Sprays – volume: 78 year: 2011 ident: bb0160 article-title: A computational constitutive model for glass subjected to large strains, high strain rates and high pressures publication-title: J. Appl. Mech. – volume: 32 start-page: 1047 year: 2018 end-page: 1060 ident: bb0020 article-title: Fluid-solid coupling characteristics of gas-bearing coal subjected to hydraulic slotting: an experimental investigation publication-title: Energy Fuel – volume: 21 start-page: 471 year: 2013 end-page: 478 ident: bb0140 article-title: Rock breakage characteristics of integrating straight and swirling jet bit for radial horizontal drilling publication-title: J. Basic Sci. Eng. – volume: 134 year: 2020 ident: bb0190 article-title: Effects of loading rate on the compound dynamic disaster in deep underground coal mine under true triaxial stress publication-title: Int. J. Rock. Mech. Min. – volume: 79 start-page: 109 year: 2015 end-page: 123 ident: bb0195 article-title: Investigation of the failure mode of shale rocks in biaxial and triaxial compression tests publication-title: Int. J. Rock. Mech. Min. – volume: 14 start-page: 12704 year: 2022 ident: bb0095 article-title: Improvement of rock cutting performance through two-pass abrasive waterjet cutting publication-title: Sustainability – volume: 36 start-page: 65 year: 2017 end-page: 71 ident: bb0120 article-title: Effects of ambient pressure on the impinging pressure and rock erosion performance of supercritical CO publication-title: J. Vibrat. Shock – volume: 394 start-page: 909 year: 2021 end-page: 925 ident: bb0005 article-title: Comparative investigation of the damage of coal subjected to pure water jets, ice abrasive water jets and conventional abrasive water jets publication-title: Powder Technol. – volume: 346 start-page: 203 year: 2019 end-page: 216 ident: bb0060 article-title: Experimental study on rock-breaking performance of water jets generated by self-rotatory bit and rock failure mechanism publication-title: Powder Technol. – volume: 361 start-page: 849 year: 2020 end-page: 859 ident: bb0075 article-title: The fragmentation mechanism of coal impacted by water jets and abrasive jets[J] publication-title: Powder Technol. – volume: 149 start-page: 203 year: 2017 end-page: 207 ident: bb0125 article-title: A discussion about the method to study the effect of ambient pressure on hydraulic jetting publication-title: J. Pet. Sci. Eng. – volume: 21 start-page: 471 year: 2013 end-page: 478 ident: bb0070 article-title: Rock breakage characteristics of integrating straight and swirling jet bit for radial horizontal drilling publication-title: J. Basic Sci. Eng. – volume: 24 start-page: 142 year: 2011 end-page: 151 ident: bb0100 article-title: A machinability study of granite using abrasive waterjet cutting technology publication-title: Gazi. U. J. Sci. – volume: 77 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0025 article-title: Fracture initiation pressure and failure modes of tree-type hydraulic fracturing in gas-bearing coal seams publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103260 – volume: 150 year: 2022 ident: 10.1016/j.powtec.2024.119583_bb0085 article-title: An experimental study of ultra-high pressure water jet-induced fracture mechanisms and pore size evolution in reservoir rocks publication-title: Int. J. Rock. Mech. Min. – volume: 394 start-page: 909 year: 2021 ident: 10.1016/j.powtec.2024.119583_bb0005 article-title: Comparative investigation of the damage of coal subjected to pure water jets, ice abrasive water jets and conventional abrasive water jets publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.08.079 – volume: 32 start-page: 1047 issue: 2 year: 2018 ident: 10.1016/j.powtec.2024.119583_bb0020 article-title: Fluid-solid coupling characteristics of gas-bearing coal subjected to hydraulic slotting: an experimental investigation publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b02358 – volume: 123 year: 2019 ident: 10.1016/j.powtec.2024.119583_bb0185 article-title: Assessing the effect of freezing-thawing cycles on the results of the triaxial compressive strength test for calc-schist rock publication-title: Int. J. Rock. Mech. Min. – volume: 41 start-page: 51 issue: 1 year: 2024 ident: 10.1016/j.powtec.2024.119583_bb0035 article-title: Wear of rocks by water flow publication-title: Int. J. Rock. Mech. Min. doi: 10.1016/S1365-1609(03)00075-3 – volume: 79 start-page: 109 year: 2015 ident: 10.1016/j.powtec.2024.119583_bb0195 article-title: Investigation of the failure mode of shale rocks in biaxial and triaxial compression tests publication-title: Int. J. Rock. Mech. Min. doi: 10.1016/j.ijrmms.2015.08.014 – volume: 106 issue: 3 year: 2023 ident: 10.1016/j.powtec.2024.119583_bb0175 article-title: Damage evolution law and failure mechanism of rock impacted by high-pressure water jet under in-situ stress condition publication-title: Sci. Prog. doi: 10.1177/00368504231188618 – volume: 397 start-page: 1 year: 2022 ident: 10.1016/j.powtec.2024.119583_bb0015 article-title: Investigation of the breaking manifestations of bedded shale impacted by a high-pressure abrasive water jet publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.11.065 – volume: 24 start-page: 142 issue: 1 year: 2011 ident: 10.1016/j.powtec.2024.119583_bb0100 article-title: A machinability study of granite using abrasive waterjet cutting technology publication-title: Gazi. U. J. Sci. – volume: 346 start-page: 203 year: 2019 ident: 10.1016/j.powtec.2024.119583_bb0060 article-title: Experimental study on rock-breaking performance of water jets generated by self-rotatory bit and rock failure mechanism publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.01.078 – volume: 265 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0080 article-title: An enhanced coalbed methane recovery technique based on CO2 phase transition jet coal-breaking behavior publication-title: Fuel doi: 10.1016/j.fuel.2019.116912 – volume: 78 issue: 5 year: 2011 ident: 10.1016/j.powtec.2024.119583_bb0160 article-title: A computational constitutive model for glass subjected to large strains, high strain rates and high pressures publication-title: J. Appl. Mech. doi: 10.1115/1.4004326 – volume: 262 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0090 article-title: Study on the breaking process and damage characteristics of abrasive water jet impacting concrete based on acoustic emission publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120085 – volume: 25 start-page: 617 issue: 7 year: 2015 ident: 10.1016/j.powtec.2024.119583_bb0130 article-title: Abrasive water jet perforation experiments under ambient pressures publication-title: Atomiz. Sprays doi: 10.1615/AtomizSpr.2015011050 – volume: 625 start-page: 104 year: 2012 ident: 10.1016/j.powtec.2024.119583_bb0155 article-title: Numerical simulation of sphere impacting water by sph with hydrodynamics publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.625.104 – volume: 427 year: 2023 ident: 10.1016/j.powtec.2024.119583_bb0110 article-title: Experimental study of high-speed particle jets impacting deep hard rock under true triaxial stress publication-title: Powder Technol. doi: 10.1016/j.powtec.2023.118699 – volume: 108 start-page: 179 year: 2018 ident: 10.1016/j.powtec.2024.119583_bb0145 article-title: Hard rock cutting with high pressure jets in various ambient pressure regimes publication-title: Int. J. Rock. Mech. Min. doi: 10.1016/j.ijrmms.2018.06.007 – volume: 162 start-page: 532 year: 2018 ident: 10.1016/j.powtec.2024.119583_bb0045 article-title: Characteristic study on supercritical carbon dioxide impinging jet: calculation and stagnation properties analysis publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.10.044 – volume: 21 start-page: 471 issue: 3 year: 2013 ident: 10.1016/j.powtec.2024.119583_bb0140 article-title: Rock breakage characteristics of integrating straight and swirling jet bit for radial horizontal drilling publication-title: J. Basic Sci. Eng. – volume: 307 start-page: 99 year: 2017 ident: 10.1016/j.powtec.2024.119583_bb0115 article-title: Investigation of rock cutting dust formation and suppression using water jets during mining publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.11.029 – volume: 33 start-page: 983 issue: 9 year: 2008 ident: 10.1016/j.powtec.2024.119583_bb0055 article-title: Mechanical of breaking coal by water jet publication-title: J. China Coal Soc. – volume: 149 start-page: 203 year: 2017 ident: 10.1016/j.powtec.2024.119583_bb0125 article-title: A discussion about the method to study the effect of ambient pressure on hydraulic jetting publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.10.043 – volume: 14 start-page: 12704 issue: 12704 year: 2022 ident: 10.1016/j.powtec.2024.119583_bb0095 article-title: Improvement of rock cutting performance through two-pass abrasive waterjet cutting publication-title: Sustainability doi: 10.3390/su141912704 – volume: 35 issue: 8 year: 2023 ident: 10.1016/j.powtec.2024.119583_bb0010 article-title: Permeability model of fracture network based on branch length distribution and topological connectivity publication-title: Phys. Fluids doi: 10.1063/5.0160043 – volume: 125 start-page: 1 issue: 9 year: 2023 ident: 10.1016/j.powtec.2024.119583_bb0105 article-title: An experimental study on the cutting depth produced by abrasive waterjet: how do abrasive and rock properties affect the cutting process? publication-title: Int. J. Adv. Manuf. Technol. – volume: 102 start-page: 169 year: 2017 ident: 10.1016/j.powtec.2024.119583_bb0050 article-title: Numerical simulation and experimental verification of the rock damage field under particle water jet impacting publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2016.12.019 – volume: 21 start-page: 471 issue: 3 year: 2013 ident: 10.1016/j.powtec.2024.119583_bb0070 article-title: Rock breakage characteristics of integrating straight and swirling jet bit for radial horizontal drilling publication-title: J. Basic Sci. Eng. – volume: 36 start-page: 65 issue: 2 year: 2017 ident: 10.1016/j.powtec.2024.119583_bb0120 article-title: Effects of ambient pressure on the impinging pressure and rock erosion performance of supercritical CO2 jet publication-title: J. Vibrat. Shock – volume: 368 start-page: 112 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0180 article-title: Study on compressive strength and durability of alkali-activated coal gangue-slag concrete and its mechanism publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.04.054 – volume: 361 start-page: 849 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0075 article-title: The fragmentation mechanism of coal impacted by water jets and abrasive jets[J] publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.11.018 – volume: 54 start-page: 1565 issue: 3 year: 2021 ident: 10.1016/j.powtec.2024.119583_bb0170 article-title: Erosion wear characteristics of rock eroded using abrasive air jet at 90° impingement angle publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-020-02335-5 – volume: 66 year: 2014 ident: 10.1016/j.powtec.2024.119583_bb0030 article-title: The internal failure of rock samples subjected to pulsed water jet impacts publication-title: Int. J. Rock. Mech. Min. – volume: 376 start-page: 176 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0165 article-title: Numerical investigation of hard rock breakage by high-pressure water jet assisted indenter impact using the coupled SPH/FEM method publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.08.028 – year: 2017 ident: 10.1016/j.powtec.2024.119583_bb0135 – volume: 17 year: 2012 ident: 10.1016/j.powtec.2024.119583_bb0040 article-title: Experiment study on modulation principle of pulsed particle jet directly modulated at bottom-hole publication-title: Electron. J. Geotech. Eng. – volume: 235 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0065 article-title: Fracture characteristics of coal jointly impacted by multiple jets publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107171 – volume: 134 year: 2020 ident: 10.1016/j.powtec.2024.119583_bb0190 article-title: Effects of loading rate on the compound dynamic disaster in deep underground coal mine under true triaxial stress publication-title: Int. J. Rock. Mech. Min. – volume: 36 start-page: 4770 issue: 9 year: 2022 ident: 10.1016/j.powtec.2024.119583_bb0150 article-title: Fracture characteristics and failure modes of coal, sandstone, and shale impacted by water jet under true triaxial conditions publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.2c00278 |
SSID | ssj0006310 |
Score | 2.4358568 |
Snippet | Deep mineral resources are abundant, and water jet technology has been proven to be an efficient means of developing this resource. In-situ stress is one of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119583 |
SubjectTerms | coal Coalbed methane Damage Deep mine hysteresis mathematical models Rock-breaking technology Water jet |
Title | Dynamic damage mechanism of coal with high true triaxial stress level subject to water jets |
URI | https://dx.doi.org/10.1016/j.powtec.2024.119583 https://www.proquest.com/docview/3153563198 |
Volume | 437 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKbFbxGs9nNJjlKtVQFTxYED8tmH9Bim9Km6Mnf7kwevkAEjwm7IcxM5rH55htCzoxlTupIBJGPTSBkZIIs13GAlTO3kcUhVIi2uJeDobh9jB87pNf2wiCssvH9tU-vvHVz56KR5sVsNMIeXw65O0OSLghEVd0uRIJWfv72CfOQnDXUjFB0weq2fa7CeM2Kl9IhkWEkzpH7LOW_hacfjrqKPv0Nst6kjfSyfrNN0nHTLbL2hUxwmzxd1cPlqdUTcBJ04rCpd7SY0MJTU8BuPHOlyE9My_nSURzY8QrmR-t-EfqM-CG6WOZ4NEPLgr5AHjqnY1cudsiwf_3QGwTN6ITAcJ6VgZGhFaE3kfRQT0AgFKn23DDn05SHLmEmz4xPNMsRU5VLI6WDUGUggEdOxyHfJd1pMXV7hFrLuPE-sjaWIrNC61Q7ZmyiY1BomO4T3kpMmYZXHMdbPKsWQDZWtZwVylnVct4nwceuWc2r8cf6pFWG-mYfClz_HztPW90p-HTwf4ieumK5UBy8fQz2kaUH_376IVnFK0SlsfiIdFF_x5CmlPlJZYcnZOXy5m5w_w7_R-jE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcwWv0Ww2u02OUpWqtScFwcOy2QdU2qa0KfrznWkSUUEEr0kmhJnJNzPJzDeEnBnLnNRRHERemCCWkQnSTIsAK2duI4tLqLDbYiB7T_Hds3hukG49C4NtlRX2l5i-ROvqyEWlzYvpcIgzvhxyd4YkXRCIsG5vITuVaJLW5e19b_AJyJKzip0R6i4QqCfolm1e0_ytcMhlGMXnSH-W8N8i1A-sXgagmw2yXmWO9LJ8uE3ScJMtsvaFT3CbvFyV--Wp1WPACTp2ONc7nI9p7qnJQRo_u1KkKKbFbOEo7ux4Bw-k5cgIHWELEZ0vMvw6Q4ucvkEqOqOvrpjvkKeb68duL6i2JwSG87QIjAxtHHoTSQ8lBcTCONGeG-Z8kvDQdZjJUuM7mmXYVpVJI6WDaGUghkdOi5DvkuYkn7g9Qq1l3HgfWStknNpY60Q7ZmxHC7BpmLQJrzWmTEUtjhsuRqruIXtVpZ4V6lmVem6T4FNqWlJr_HF9pzaG-uYiCtD_D8nT2nYK3h78JaInLl_MFQfAF-AfabL_77ufkJXe40Nf9W8H9wdkFc9gkxoTh6SJtjyCrKXIjiuv_AD7D-t1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+damage+mechanism+of+coal+with+high+true+triaxial+stress+level+subject+to+water+jets&rft.jtitle=Powder+technology&rft.au=Cao%2C+Shirong&rft.au=Wang%2C+Xiaojun&rft.au=Ge%2C+Zhaolong&rft.au=Zhang%2C+Liang&rft.date=2024-03-15&rft.pub=Elsevier+B.V&rft.issn=0032-5910&rft.eissn=1873-328X&rft.volume=437&rft_id=info:doi/10.1016%2Fj.powtec.2024.119583&rft.externalDocID=S0032591024002250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon |