The observed cooling potential of rooftop strategies during heatwaves in a subtropical city
Rooftop Mitigation Strategies (RMSs) have garnered global recognition as effective measures for mitigating urban thermal environments. However, the cooling effectiveness of Green Roof (GR) and Cool Roof (CR) remains a subject of ongoing debate, especially when considered within diverse climatic cont...
Saved in:
Published in | Energy (Oxford) Vol. 313; p. 133830 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rooftop Mitigation Strategies (RMSs) have garnered global recognition as effective measures for mitigating urban thermal environments. However, the cooling effectiveness of Green Roof (GR) and Cool Roof (CR) remains a subject of ongoing debate, especially when considered within diverse climatic contexts. This study conducted RMSs observation experiments within the subtropical urban landscape of Guangzhou, China, to assess the cooling potential of these strategies during both normal weather conditions and heatwaves. Our experiments identified a critical temperature threshold that influences the cooling potential of GR, a phenomenon rooted in vegetation transpiration. Below 33 °C, transpiration gradually intensifies, resulting in a noticeable cooling effect. However, as temperatures exceed this threshold, transpiration diminishes. Coupled with the aerodynamic drag imposed by vegetation leaves on wind flow, this complex dynamic leads to a temperature increase at heights ranging from 0.3 m to 0.6 m above the roof. Given the subtropical climate's characteristics of high temperatures and humidity, prudent consideration is warranted when selecting appropriate mitigation strategies. In this context, our observations suggest that CR may be a more cost-effective and potentially more efficacious choice due to their lower costs and substantial cooling potential. Our research provides a significant contribution to the reevaluation of RMSs' cooling potential and its role in reducing urban energy consumption and lowering building carbon emissions.
•Green roofs with mixed plants have a more significant cooling effect.•Heatwave weather leads to the failure of green roof cooling.•Plant transpiration and wind resistance cause near-surface warming during heatwaves.•Cool roof is an effective cooling strategy in subtropical climates. |
---|---|
AbstractList | Rooftop Mitigation Strategies (RMSs) have garnered global recognition as effective measures for mitigating urban thermal environments. However, the cooling effectiveness of Green Roof (GR) and Cool Roof (CR) remains a subject of ongoing debate, especially when considered within diverse climatic contexts. This study conducted RMSs observation experiments within the subtropical urban landscape of Guangzhou, China, to assess the cooling potential of these strategies during both normal weather conditions and heatwaves. Our experiments identified a critical temperature threshold that influences the cooling potential of GR, a phenomenon rooted in vegetation transpiration. Below 33 °C, transpiration gradually intensifies, resulting in a noticeable cooling effect. However, as temperatures exceed this threshold, transpiration diminishes. Coupled with the aerodynamic drag imposed by vegetation leaves on wind flow, this complex dynamic leads to a temperature increase at heights ranging from 0.3 m to 0.6 m above the roof. Given the subtropical climate's characteristics of high temperatures and humidity, prudent consideration is warranted when selecting appropriate mitigation strategies. In this context, our observations suggest that CR may be a more cost-effective and potentially more efficacious choice due to their lower costs and substantial cooling potential. Our research provides a significant contribution to the reevaluation of RMSs' cooling potential and its role in reducing urban energy consumption and lowering building carbon emissions. Rooftop Mitigation Strategies (RMSs) have garnered global recognition as effective measures for mitigating urban thermal environments. However, the cooling effectiveness of Green Roof (GR) and Cool Roof (CR) remains a subject of ongoing debate, especially when considered within diverse climatic contexts. This study conducted RMSs observation experiments within the subtropical urban landscape of Guangzhou, China, to assess the cooling potential of these strategies during both normal weather conditions and heatwaves. Our experiments identified a critical temperature threshold that influences the cooling potential of GR, a phenomenon rooted in vegetation transpiration. Below 33 °C, transpiration gradually intensifies, resulting in a noticeable cooling effect. However, as temperatures exceed this threshold, transpiration diminishes. Coupled with the aerodynamic drag imposed by vegetation leaves on wind flow, this complex dynamic leads to a temperature increase at heights ranging from 0.3 m to 0.6 m above the roof. Given the subtropical climate's characteristics of high temperatures and humidity, prudent consideration is warranted when selecting appropriate mitigation strategies. In this context, our observations suggest that CR may be a more cost-effective and potentially more efficacious choice due to their lower costs and substantial cooling potential. Our research provides a significant contribution to the reevaluation of RMSs' cooling potential and its role in reducing urban energy consumption and lowering building carbon emissions. •Green roofs with mixed plants have a more significant cooling effect.•Heatwave weather leads to the failure of green roof cooling.•Plant transpiration and wind resistance cause near-surface warming during heatwaves.•Cool roof is an effective cooling strategy in subtropical climates. |
ArticleNumber | 133830 |
Author | Chang, Ming Chen, Bingyin Wang, Weiwen Pan, Lan Wang, Xuemei Zhu, Zhiquan Jin, Xueli |
Author_xml | – sequence: 1 givenname: Bingyin surname: Chen fullname: Chen, Bingyin organization: College of Environment and Climate, Jinan University, Guangzhou, 511443, China – sequence: 2 givenname: Zhiquan surname: Zhu fullname: Zhu, Zhiquan organization: College of Environment and Climate, Jinan University, Guangzhou, 511443, China – sequence: 3 givenname: Weiwen orcidid: 0000-0002-1714-1008 surname: Wang fullname: Wang, Weiwen email: wwangeci@jnu.edu.cn organization: College of Environment and Climate, Jinan University, Guangzhou, 511443, China – sequence: 4 givenname: Lan surname: Pan fullname: Pan, Lan organization: College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China – sequence: 5 givenname: Ming orcidid: 0000-0001-9915-9676 surname: Chang fullname: Chang, Ming organization: College of Environment and Climate, Jinan University, Guangzhou, 511443, China – sequence: 6 givenname: Xueli surname: Jin fullname: Jin, Xueli organization: Architectural Engineering Institute, Guangzhou Panyu Polytechnic, Guangzhou, 511483, China – sequence: 7 givenname: Xuemei surname: Wang fullname: Wang, Xuemei organization: College of Environment and Climate, Jinan University, Guangzhou, 511443, China |
BookMark | eNqFkDtPwzAUhT0UiRb4BwweWVL8iN2EAQlVvKRKLGVisBznpnWV2sF2ivrvSRUmBpiudHS-I91vhibOO0DompI5JVTe7ubgIGyOc0ZYPqecF5xM0JRwSTKR5-wczWLcEUJEUZZT9LHeAvZVhHCAGhvvW-s2uPMJXLK6xb7Bwfsm-Q7HFHSCjYWI6z6calvQ6UsfhsA6rHHsqxR8Z83AGZuOl-is0W2Eq597gd6fHtfLl2z19vy6fFhlhvMyZUYwVtaNEIQsTANlXheGmwqgrAjUNIeFNFxARbRkDWVQVZoXlEvZSFLmtOYX6Gbc7YL_7CEmtbfRQNtqB76PilORM8kFp0M1H6sm-BgDNKoLdq_DUVGiTv7UTo3-1MmfGv0N2N0vbPhPJ-vd4MS2_8H3IwyDg4OFoKKx4AzUNoBJqvb274FvLn6UWw |
CitedBy_id | crossref_primary_10_1016_j_scs_2025_106273 |
Cites_doi | 10.1088/1748-9326/11/6/064004 10.1016/j.ecoleng.2011.06.025 10.1016/j.energy.2017.08.064 10.1175/JHM-D-16-0157.1 10.1016/j.buildenv.2011.07.014 10.1016/j.enbuild.2018.12.040 10.1016/j.scitotenv.2020.141300 10.1016/j.rser.2018.04.006 10.1016/j.solener.2012.07.003 10.1016/j.scitotenv.2019.133976 10.1016/j.jclepro.2020.122205 10.1016/j.uclim.2015.12.002 10.1016/j.ecoleng.2012.08.036 10.1007/s00484-009-0256-x 10.1126/sciadv.adl1598 10.1016/j.enbuild.2017.02.011 10.1016/S0140-6736(06)68933-2 10.1016/j.landurbplan.2015.02.014 10.1016/j.enbuild.2019.109692 10.1175/JAMC-D-17-0101.1 10.1371/journal.pone.0009677 10.1016/j.atmosenv.2016.02.033 10.1038/s41893-018-0101-5 10.1016/j.cosust.2015.08.002 10.1016/j.scitotenv.2021.148407 10.1016/j.ecoleng.2013.10.022 10.1029/2021JD035002 10.1088/1748-9326/9/5/055002 10.1016/j.enbuild.2019.109572 10.1016/j.buildenv.2018.10.024 10.1016/j.enbuild.2018.10.038 10.1016/j.buildenv.2023.110965 10.1016/j.enbuild.2013.11.058 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.energy.2024.133830 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
ExternalDocumentID | 10_1016_j_energy_2024_133830 S0360544224036089 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SSH WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-c5229df55007cfe94d8c3cbee9b0ed14e76c35eb0a62f12ebba381366f60941d3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Mon Jul 21 10:32:04 EDT 2025 Thu Apr 24 22:54:05 EDT 2025 Tue Jul 01 04:20:43 EDT 2025 Sat Feb 08 15:52:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Green roof Rooftop experiment Cool roof Transpiration Weather condition Stomatal conductance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-c5229df55007cfe94d8c3cbee9b0ed14e76c35eb0a62f12ebba381366f60941d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9915-9676 0000-0002-1714-1008 |
PQID | 3154263531 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3154263531 crossref_primary_10_1016_j_energy_2024_133830 crossref_citationtrail_10_1016_j_energy_2024_133830 elsevier_sciencedirect_doi_10_1016_j_energy_2024_133830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-30 |
PublicationDateYYYYMMDD | 2024-12-30 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Haines, Kovats, Campbell-Lendrum, Corvalán (bib7) 2006; 367 Touchaei, Akbari, Tessum (bib25) 2016; 132 Berardi, Jandaghian, Graham (bib14) 2020; 747 Xing, Hao, Lin, Tan, Yang (bib32) 2019; 183 Lundholm, MacIvor, MacDougall, Ranalli (bib13) 2010; 5 Shafique, Kim, Rafiq (bib10) 2018; 90 Li, Norford (bib17) 2016; 16 Santamouris (bib12) 2014; 103 Butler, Orians (bib30) 2011; 37 Jamei, Thirunavukkarasu, Chau, Seyedmahmoudian, Stojcevski, Mekhilef (bib37) 2023; 246 Wallemacq, Below, McClean (bib5) 2018 He, Yu, Ozaki, Dong (bib27) 2020; 267 Ng, Chen, Wang, Yuan (bib18) 2012; 47 Jim (bib34) 2014; 62 Kim, Um (bib40) 2012; 21 Sproul, Wan, Mandel, Rosenfeld (bib39) 2014; 71 (bib1) 2023 Milan, Creutzig (bib8) 2015; 14 Lee, Jim (bib23) 2020; 209 Monteiro, Blanuša, Verhoef, Richardson, Hadley, Cameron (bib38) 2017; 141 Li, Bou-Zeid, Oppenheimer (bib16) 2014; 9 Tan, Zheng, Tang, Guo, Li, Song (bib33) 2010; 54 Kim, Song, Park (bib24) 2020; 206 Chen, Zhang (bib26) 2018; 57 He, Yu, Ozaki, Dong, Zheng (bib36) 2017; 141 Johnson, Kovats, McGregor, Stedman, Gibbs, Walton (bib6) 2005; 25 Zhang, Wu, Chen, Huang (bib28) 2017; 18 (bib9) 2023 Nagendra, Bai, Brondizio, Lwasa (bib4) 2018; 1 Durhman, Rowe, Rugh (bib31) 2006 Jamei, Chau, Seyedmahmoudian, Stojcevski (bib20) 2021; 791 Cascone, Coma, Gagliano, Pérez (bib35) 2019; 147 (bib2) 2023 Jim (bib19) 2015; 138 Sharma, Conry, Fernando, Hamlet, Hellmann, Chen (bib15) 2016; 11 Yin, Kong, Dronova, Middel, James (bib22) 2019; 696 Farrell, Mitchell, Szota, Rayner, Williams (bib29) 2012; 49 Zonato, Martilli, Gutierrez, Chen, He, Barlage (bib11) 2021; 126 Peng, Yang, He, Hu, Xu, Jiang (bib21) 2019; 185 Luo, Wu, Lau, Pei, Liu, Wang (bib3) 2024; 10 Butler (10.1016/j.energy.2024.133830_bib30) 2011; 37 Yin (10.1016/j.energy.2024.133830_bib22) 2019; 696 Xing (10.1016/j.energy.2024.133830_bib32) 2019; 183 He (10.1016/j.energy.2024.133830_bib27) 2020; 267 Farrell (10.1016/j.energy.2024.133830_bib29) 2012; 49 Sproul (10.1016/j.energy.2024.133830_bib39) 2014; 71 Nagendra (10.1016/j.energy.2024.133830_bib4) 2018; 1 Zonato (10.1016/j.energy.2024.133830_bib11) 2021; 126 Berardi (10.1016/j.energy.2024.133830_bib14) 2020; 747 Shafique (10.1016/j.energy.2024.133830_bib10) 2018; 90 Jim (10.1016/j.energy.2024.133830_bib34) 2014; 62 Peng (10.1016/j.energy.2024.133830_bib21) 2019; 185 (10.1016/j.energy.2024.133830_bib9) 2023 Milan (10.1016/j.energy.2024.133830_bib8) 2015; 14 Wallemacq (10.1016/j.energy.2024.133830_bib5) Durhman (10.1016/j.energy.2024.133830_bib31) Santamouris (10.1016/j.energy.2024.133830_bib12) 2014; 103 He (10.1016/j.energy.2024.133830_bib36) 2017; 141 Kim (10.1016/j.energy.2024.133830_bib40) 2012; 21 Chen (10.1016/j.energy.2024.133830_bib26) 2018; 57 Monteiro (10.1016/j.energy.2024.133830_bib38) 2017; 141 Lundholm (10.1016/j.energy.2024.133830_bib13) 2010; 5 Haines (10.1016/j.energy.2024.133830_bib7) 2006; 367 Lee (10.1016/j.energy.2024.133830_bib23) 2020; 209 Kim (10.1016/j.energy.2024.133830_bib24) 2020; 206 Touchaei (10.1016/j.energy.2024.133830_bib25) 2016; 132 Zhang (10.1016/j.energy.2024.133830_bib28) 2017; 18 Sharma (10.1016/j.energy.2024.133830_bib15) 2016; 11 Ng (10.1016/j.energy.2024.133830_bib18) 2012; 47 Li (10.1016/j.energy.2024.133830_bib17) 2016; 16 Cascone (10.1016/j.energy.2024.133830_bib35) 2019; 147 Li (10.1016/j.energy.2024.133830_bib16) 2014; 9 Tan (10.1016/j.energy.2024.133830_bib33) 2010; 54 Jamei (10.1016/j.energy.2024.133830_bib37) 2023; 246 Jim (10.1016/j.energy.2024.133830_bib19) 2015; 138 Jamei (10.1016/j.energy.2024.133830_bib20) 2021; 791 Johnson (10.1016/j.energy.2024.133830_bib6) 2005; 25 Luo (10.1016/j.energy.2024.133830_bib3) 2024; 10 |
References_xml | – volume: 54 start-page: 75 year: 2010 end-page: 84 ident: bib33 article-title: The urban heat island and its impact on heat waves and human health in Shanghai publication-title: Int J Biometeorol – volume: 246 year: 2023 ident: bib37 article-title: Investigating the cooling effect of a green roof in Melbourne publication-title: Build Environ – volume: 14 start-page: 221 year: 2015 end-page: 231 ident: bib8 article-title: Reducing urban heat wave risk in the 21st century publication-title: Curr Opin Environ Sustain – volume: 10 year: 2024 ident: bib3 article-title: Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves publication-title: Sci Adv – volume: 791 year: 2021 ident: bib20 article-title: Review on the cooling potential of green roofs in different climates publication-title: Sci Total Environ – volume: 18 start-page: 1549 year: 2017 end-page: 1562 ident: bib28 article-title: Assessing the impact of climate change on the waterlogging risk in coastal cities: a case study of Guangzhou, South China publication-title: J Hydrometeorol – volume: 209 year: 2020 ident: bib23 article-title: Thermal-irradiance behaviours of subtropical intensive green roof in winter and landscape-soil design implications publication-title: Energy Build – volume: 1 start-page: 341 year: 2018 end-page: 349 ident: bib4 article-title: The urban south and the predicament of global sustainability publication-title: Nat Sustain – volume: 367 start-page: 2101 year: 2006 end-page: 2109 ident: bib7 article-title: Climate change and human health: impacts, vulnerability, and mitigation publication-title: Lancet – volume: 103 start-page: 682 year: 2014 end-page: 703 ident: bib12 article-title: Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments publication-title: Sol Energy – volume: 696 year: 2019 ident: bib22 article-title: Investigation of extensive green roof outdoor spatio-temporal thermal performance during summer in a subtropical monsoon climate publication-title: Sci Total Environ – volume: 5 year: 2010 ident: bib13 article-title: Plant species and functional group combinations affect green roof ecosystem functions publication-title: PLoS One – volume: 183 start-page: 105 year: 2019 end-page: 117 ident: bib32 article-title: Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter publication-title: Energy Build – volume: 126 year: 2021 ident: bib11 article-title: Exploring the effects of rooftop mitigation strategies on urban temperatures and energy consumption publication-title: J Geophys Res Atmos – volume: 71 start-page: 20 year: 2014 end-page: 27 ident: bib39 article-title: Economic comparison of white, green, and black flat roofs in the United States publication-title: Energy Build – volume: 25 start-page: 6 year: 2005 ident: bib6 article-title: The impact of the 2003 heat wave on mortality and hospital admissions in England publication-title: Health Stat Q – volume: 185 start-page: 247 year: 2019 end-page: 258 ident: bib21 article-title: Thermal and energy performance of two distinct green roofs: temporal pattern and underlying factors in a subtropical climate publication-title: Energy Build – volume: 49 start-page: 270 year: 2012 end-page: 276 ident: bib29 article-title: Green roofs for hot and dry climates: interacting effects of plant water use, succulence and substrate publication-title: Ecol Eng – volume: 62 start-page: 1 year: 2014 end-page: 12 ident: bib34 article-title: Heat-sink effect and indoor warming imposed by tropical extensive green roof publication-title: Ecol Eng – volume: 141 start-page: 56 year: 2017 end-page: 68 ident: bib38 article-title: Functional green roofs: importance of plant choice in maximising summertime environmental cooling and substrate insulation potential publication-title: Energy Build – year: 2018 ident: bib5 article-title: Economic losses, poverty & disasters: 1998-2017: united nations office for disaster risk reduction – volume: 90 start-page: 757 year: 2018 end-page: 773 ident: bib10 article-title: Green roof benefits, opportunities and challenges–A review publication-title: Renew Sustain Energy Rev – volume: 747 year: 2020 ident: bib14 article-title: Effects of greenery enhancements for the resilience to heat waves: a comparison of analysis performed through mesoscale (WRF) and microscale (Envi-met) modeling publication-title: Sci Total Environ – volume: 206 year: 2020 ident: bib24 article-title: Long-term monitoring for comparison of seasonal effects on cool roofs in humid subtropical climates publication-title: Energy Build – volume: 267 year: 2020 ident: bib27 article-title: Thermal and energy performance of green roof and cool roof: a comparison study in Shanghai area publication-title: J Clean Prod – year: 2006 ident: bib31 article-title: Effect of watering regimen on chlorophyll fluorescence and growth of selected green roof plant taxa – volume: 21 start-page: 927 year: 2012 end-page: 939 ident: bib40 article-title: Comparative evaluation between cool roof and green roof in terms of installation cost: a case study of KNU campus publication-title: J. Environ. Imp.Assess. – volume: 47 start-page: 256 year: 2012 end-page: 271 ident: bib18 article-title: A study on the cooling effects of greening in a high-density city: an experience from Hong Kong publication-title: Build Environ – volume: 147 start-page: 337 year: 2019 end-page: 355 ident: bib35 article-title: The evapotranspiration process in green roofs: a review publication-title: Build Environ – volume: 9 year: 2014 ident: bib16 article-title: The effectiveness of cool and green roofs as urban heat island mitigation strategies publication-title: Environ Res Lett – year: 2023 ident: bib9 article-title: Climate change 2022 – impacts, adaptation and vulnerability: working Group II contribution to the sixth assessment report of the intergovernmental Panel on climate change – volume: 16 start-page: 59 year: 2016 end-page: 74 ident: bib17 article-title: Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore publication-title: Urban Clim – volume: 132 start-page: 188 year: 2016 end-page: 206 ident: bib25 article-title: Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada)–Episodic simulation of heat wave in 2005 publication-title: Atmos Environ – volume: 138 start-page: 54 year: 2015 end-page: 70 ident: bib19 article-title: Assessing climate-adaptation effect of extensive tropical green roofs in cities publication-title: Landsc Urban Plann – year: 2023 ident: bib1 article-title: Eight warmest years on record witness upsurge in climate change impacts2022 – volume: 11 year: 2016 ident: bib15 article-title: Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model publication-title: Environ Res Lett – volume: 57 start-page: 235 year: 2018 end-page: 253 ident: bib26 article-title: Urban Heat Island mitigation effectiveness under extreme heat conditions in the Suzhou–Wuxi–Changzhou metropolitan area, China publication-title: J Appl Meteorol Climatol – volume: 37 start-page: 1796 year: 2011 end-page: 1803 ident: bib30 article-title: Sedum cools soil and can improve neighboring plant performance during water deficit on a green roof publication-title: Ecol Eng – volume: 141 start-page: 1285 year: 2017 end-page: 1299 ident: bib36 article-title: Influence of plant and soil layer on energy balance and thermal performance of green roof system publication-title: Energy – year: 2023 ident: bib2 article-title: Provisional state of the global Climate2022 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.energy.2024.133830_bib15 article-title: Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/6/064004 – volume: 37 start-page: 1796 issue: 11 year: 2011 ident: 10.1016/j.energy.2024.133830_bib30 article-title: Sedum cools soil and can improve neighboring plant performance during water deficit on a green roof publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2011.06.025 – volume: 141 start-page: 1285 year: 2017 ident: 10.1016/j.energy.2024.133830_bib36 article-title: Influence of plant and soil layer on energy balance and thermal performance of green roof system publication-title: Energy doi: 10.1016/j.energy.2017.08.064 – volume: 18 start-page: 1549 issue: 6 year: 2017 ident: 10.1016/j.energy.2024.133830_bib28 article-title: Assessing the impact of climate change on the waterlogging risk in coastal cities: a case study of Guangzhou, South China publication-title: J Hydrometeorol doi: 10.1175/JHM-D-16-0157.1 – volume: 47 start-page: 256 year: 2012 ident: 10.1016/j.energy.2024.133830_bib18 article-title: A study on the cooling effects of greening in a high-density city: an experience from Hong Kong publication-title: Build Environ doi: 10.1016/j.buildenv.2011.07.014 – volume: 185 start-page: 247 year: 2019 ident: 10.1016/j.energy.2024.133830_bib21 article-title: Thermal and energy performance of two distinct green roofs: temporal pattern and underlying factors in a subtropical climate publication-title: Energy Build doi: 10.1016/j.enbuild.2018.12.040 – ident: 10.1016/j.energy.2024.133830_bib31 – volume: 747 year: 2020 ident: 10.1016/j.energy.2024.133830_bib14 article-title: Effects of greenery enhancements for the resilience to heat waves: a comparison of analysis performed through mesoscale (WRF) and microscale (Envi-met) modeling publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141300 – volume: 90 start-page: 757 year: 2018 ident: 10.1016/j.energy.2024.133830_bib10 article-title: Green roof benefits, opportunities and challenges–A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.04.006 – volume: 103 start-page: 682 year: 2014 ident: 10.1016/j.energy.2024.133830_bib12 article-title: Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments publication-title: Sol Energy doi: 10.1016/j.solener.2012.07.003 – volume: 696 year: 2019 ident: 10.1016/j.energy.2024.133830_bib22 article-title: Investigation of extensive green roof outdoor spatio-temporal thermal performance during summer in a subtropical monsoon climate publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.133976 – volume: 267 year: 2020 ident: 10.1016/j.energy.2024.133830_bib27 article-title: Thermal and energy performance of green roof and cool roof: a comparison study in Shanghai area publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122205 – volume: 16 start-page: 59 year: 2016 ident: 10.1016/j.energy.2024.133830_bib17 article-title: Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city, Singapore publication-title: Urban Clim doi: 10.1016/j.uclim.2015.12.002 – volume: 49 start-page: 270 year: 2012 ident: 10.1016/j.energy.2024.133830_bib29 article-title: Green roofs for hot and dry climates: interacting effects of plant water use, succulence and substrate publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2012.08.036 – year: 2023 ident: 10.1016/j.energy.2024.133830_bib9 – volume: 54 start-page: 75 year: 2010 ident: 10.1016/j.energy.2024.133830_bib33 article-title: The urban heat island and its impact on heat waves and human health in Shanghai publication-title: Int J Biometeorol doi: 10.1007/s00484-009-0256-x – volume: 10 issue: 13 year: 2024 ident: 10.1016/j.energy.2024.133830_bib3 article-title: Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves publication-title: Sci Adv doi: 10.1126/sciadv.adl1598 – volume: 141 start-page: 56 year: 2017 ident: 10.1016/j.energy.2024.133830_bib38 article-title: Functional green roofs: importance of plant choice in maximising summertime environmental cooling and substrate insulation potential publication-title: Energy Build doi: 10.1016/j.enbuild.2017.02.011 – volume: 367 start-page: 2101 issue: 9528 year: 2006 ident: 10.1016/j.energy.2024.133830_bib7 article-title: Climate change and human health: impacts, vulnerability, and mitigation publication-title: Lancet doi: 10.1016/S0140-6736(06)68933-2 – volume: 138 start-page: 54 year: 2015 ident: 10.1016/j.energy.2024.133830_bib19 article-title: Assessing climate-adaptation effect of extensive tropical green roofs in cities publication-title: Landsc Urban Plann doi: 10.1016/j.landurbplan.2015.02.014 – volume: 209 year: 2020 ident: 10.1016/j.energy.2024.133830_bib23 article-title: Thermal-irradiance behaviours of subtropical intensive green roof in winter and landscape-soil design implications publication-title: Energy Build doi: 10.1016/j.enbuild.2019.109692 – volume: 57 start-page: 235 issue: 2 year: 2018 ident: 10.1016/j.energy.2024.133830_bib26 article-title: Urban Heat Island mitigation effectiveness under extreme heat conditions in the Suzhou–Wuxi–Changzhou metropolitan area, China publication-title: J Appl Meteorol Climatol doi: 10.1175/JAMC-D-17-0101.1 – volume: 5 issue: 3 year: 2010 ident: 10.1016/j.energy.2024.133830_bib13 article-title: Plant species and functional group combinations affect green roof ecosystem functions publication-title: PLoS One doi: 10.1371/journal.pone.0009677 – volume: 132 start-page: 188 year: 2016 ident: 10.1016/j.energy.2024.133830_bib25 article-title: Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada)–Episodic simulation of heat wave in 2005 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2016.02.033 – volume: 21 start-page: 927 issue: 6 year: 2012 ident: 10.1016/j.energy.2024.133830_bib40 article-title: Comparative evaluation between cool roof and green roof in terms of installation cost: a case study of KNU campus publication-title: J. Environ. Imp.Assess. – volume: 1 start-page: 341 issue: 7 year: 2018 ident: 10.1016/j.energy.2024.133830_bib4 article-title: The urban south and the predicament of global sustainability publication-title: Nat Sustain doi: 10.1038/s41893-018-0101-5 – volume: 14 start-page: 221 year: 2015 ident: 10.1016/j.energy.2024.133830_bib8 article-title: Reducing urban heat wave risk in the 21st century publication-title: Curr Opin Environ Sustain doi: 10.1016/j.cosust.2015.08.002 – volume: 791 year: 2021 ident: 10.1016/j.energy.2024.133830_bib20 article-title: Review on the cooling potential of green roofs in different climates publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.148407 – ident: 10.1016/j.energy.2024.133830_bib5 – volume: 62 start-page: 1 year: 2014 ident: 10.1016/j.energy.2024.133830_bib34 article-title: Heat-sink effect and indoor warming imposed by tropical extensive green roof publication-title: Ecol Eng doi: 10.1016/j.ecoleng.2013.10.022 – volume: 126 issue: 21 year: 2021 ident: 10.1016/j.energy.2024.133830_bib11 article-title: Exploring the effects of rooftop mitigation strategies on urban temperatures and energy consumption publication-title: J Geophys Res Atmos doi: 10.1029/2021JD035002 – volume: 9 issue: 5 year: 2014 ident: 10.1016/j.energy.2024.133830_bib16 article-title: The effectiveness of cool and green roofs as urban heat island mitigation strategies publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/5/055002 – volume: 206 year: 2020 ident: 10.1016/j.energy.2024.133830_bib24 article-title: Long-term monitoring for comparison of seasonal effects on cool roofs in humid subtropical climates publication-title: Energy Build doi: 10.1016/j.enbuild.2019.109572 – volume: 147 start-page: 337 year: 2019 ident: 10.1016/j.energy.2024.133830_bib35 article-title: The evapotranspiration process in green roofs: a review publication-title: Build Environ doi: 10.1016/j.buildenv.2018.10.024 – volume: 25 start-page: 6 year: 2005 ident: 10.1016/j.energy.2024.133830_bib6 article-title: The impact of the 2003 heat wave on mortality and hospital admissions in England publication-title: Health Stat Q – volume: 183 start-page: 105 year: 2019 ident: 10.1016/j.energy.2024.133830_bib32 article-title: Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter publication-title: Energy Build doi: 10.1016/j.enbuild.2018.10.038 – volume: 246 year: 2023 ident: 10.1016/j.energy.2024.133830_bib37 article-title: Investigating the cooling effect of a green roof in Melbourne publication-title: Build Environ doi: 10.1016/j.buildenv.2023.110965 – volume: 71 start-page: 20 year: 2014 ident: 10.1016/j.energy.2024.133830_bib39 article-title: Economic comparison of white, green, and black flat roofs in the United States publication-title: Energy Build doi: 10.1016/j.enbuild.2013.11.058 |
SSID | ssj0005899 |
Score | 2.467741 |
Snippet | Rooftop Mitigation Strategies (RMSs) have garnered global recognition as effective measures for mitigating urban thermal environments. However, the cooling... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 133830 |
SubjectTerms | aerodynamics carbon China Cool roof cost effectiveness energy Green roof green roofs humidity landscapes Rooftop experiment Stomatal conductance subtropics temperature Transpiration vegetation Weather condition wind |
Title | The observed cooling potential of rooftop strategies during heatwaves in a subtropical city |
URI | https://dx.doi.org/10.1016/j.energy.2024.133830 https://www.proquest.com/docview/3154263531 |
Volume | 313 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF9ED-1F1Fa0frBCr-tLsptNchRRXhW9tILQw5LdnS1PJAkmr978253JR9VCEXrLx2wIs7Mzv0nmN8vYV5-rtHCZF6lyIBD_O1HK4AXksdOFdT4tiCh8da3nN-riNr1dYacTF4bKKkffP_j03luPV2ajNmfNYjH7jr4X8YaimIRHOZH4lMrIyo-fXpV55P0ekiQiSHqiz_U1XtDz6zBLTNRxn6xF_wpPfznqPvqcb7D1ETbyk-HNNtkKVFvsw8QqbrfY9tkLYw0FxyXbfmI_0RB4benjK3juatqk5xdv6o7KhFCyDhzBc-jqhrfd1DeCD-xFTp76sfyNFxYVL3m7tN1D3dC8cofw_TO7OT_7cToX444KwklZdMIh2ip8wKwkylyAQvncSWcBChuBjxVk2skUbFTqJMQJWFtiRJdaB41pYOzlNlut6gp2GE9cliSQ-6zAOxrXfQ6xClbH3nkZVNhlclKkcWO7cdr14t5MdWV3ZlC_IfWbQf27TPwZ1QztNt6Rz6Y5Mm_MxmBEeGfk0TSlBlcU_SYpK6iXrZGIKqlFj4y__PfT99hHOus7Qkb7bLV7WMIBopfOHvbmecjWTr5dzq-fAcHr8Yo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzSG9lDZtaPpUoVd1bUuWrWMICZsm2UsTCPQgLGlUNhTbxN7273fkR0MLJdCbkUfGjKSZb-z5ZgA--lLm2hWe59IhJ_zveCWC51imTmnrfK4jUfhyrVbX8vNNfrMDxzMXJqZVTrZ_tOmDtZ5GlpM2l-1ms_xCtpfwhow-ia5K_Qh2Y3WqfAG7R2fnq_V9pkc5tJGMUjxOmBl0Q5oXDhQ7ChQz-WmI15J_eai_bPXggE6fwpMJObKj8eWewQ7W-7A3E4u7fTg4uSetkeB0arvn8JX2Amts_P6Knrkm9un5xtqmj5lCJNkERvg59E3Lun4uHcFGAiOLxvpn9YMGNjWrWLe1_V3TxqVljhD8C7g-Pbk6XvGpqQJ3QuieOwJc2gcKTJLCBdTSl044i6htgj6VWCgncrRJpbKQZmhtRU5dKBUURYKpFwewqJsaXwLLXJFlWPpC0x1FR7_EVAarUu-8CDIcgpgVadxUcTw2vvhu5tSyWzOq30T1m1H9h8B_z2rHihsPyBfzGpk_do4hp_DAzA_zkho6VPFPSVVjs-2MIGAZq_SI9NV_P_097K2uLi_Mxdn6_DU8jneGApHJG1j0d1t8S2Cmt--mzfoLBhr0Ow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+observed+cooling+potential+of+rooftop+strategies+during+heatwaves+in+a+subtropical+city&rft.jtitle=Energy+%28Oxford%29&rft.au=Chen%2C+Bingyin&rft.au=Zhu%2C+Zhiquan&rft.au=Wang%2C+Weiwen&rft.au=Pan%2C+Lan&rft.date=2024-12-30&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=313&rft_id=info:doi/10.1016%2Fj.energy.2024.133830&rft.externalDocID=S0360544224036089 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |