Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches

To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visibl...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 30; p. e00566
Main Authors Zhao, Xueyu, Zhao, Dongxue, Wang, Jie, Triantafilis, John
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visible–near infrared (Vis–NIR) spectroscopy library. Herein, a Vis–NIR library is developed to predict topsoil (0–0.3 m) SOC using partial least squares regression (PLSR) and machine learning (i.e., Cubist, random forest [RF] and support vector machine [SVM]) in four sugarcane districts (i.e., Mossman, Lannercost, Herbert, and Proserpine). Different approaches were compared (i.e., site-specific, site-independent, hold-out and spiking) with spike size also considered. In all comparisons, a consistent set of calibration and validation data were used. The calibration coefficient of determination (R2) was always strong (> 0.7), and generally better than the validation R2, regardless of the modelling approach, district, or spike size. For the validation, the Lin's concordance correlation coefficient (LCCC) showed PLSR (0.92, and 0.9) and Cubist (0.91 and 0.9) were close to perfect (> 0.9) for site-specific and site-independent, respectively. This was not the case for hold-out, with only strong R2 (0.71) and substantial agreement (0.80) in Herbert using Cubist and moderate overall using PLSR. Similar results were achieved in terms of the accuracy considering the ratio of performance to interquartile (RPIQ), whereby overall site-specific and site-independent approaches had excellent accuracy (> 2.5) with Cubist slightly more accurate than PLSR. Hold-out accuracy was generally very poor (< 1.4). Spiking the hold-out data sets produced mixed results with prediction R2, agreement and accuracy respectively best in Lannercost with 70 or more samples using PLSR (strong, substantial and excellent) and Hebert with 10 or more using Cubist (strong, near perfect and excellent), while in Mossman with 50 or more samples using SVM (very weak, poor and fair) and Proserpine with 30 or more samples using Cubist (weak, moderate and fair) the results were not as good. It can be concluded that either site-specific or site-independent approach to calibration and prediction using either PLSR or Cubist was best, with the use of the latter approach being more efficient and allowing for the potential to add to this spectral library when new samples from each area or new areas can be added. •Hold-out method was not adequate to modelling SOC in Australian sugarcane fields.•Vis-NIR combined with PLSR or Cubist was useful to predicted SOC in Australian sugarcane fields.•Spiking size was recommended in different fields.
AbstractList To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visible–near infrared (Vis–NIR) spectroscopy library. Herein, a Vis–NIR library is developed to predict topsoil (0–0.3 m) SOC using partial least squares regression (PLSR) and machine learning (i.e., Cubist, random forest [RF] and support vector machine [SVM]) in four sugarcane districts (i.e., Mossman, Lannercost, Herbert, and Proserpine). Different approaches were compared (i.e., site-specific, site-independent, hold-out and spiking) with spike size also considered. In all comparisons, a consistent set of calibration and validation data were used. The calibration coefficient of determination (R2) was always strong (> 0.7), and generally better than the validation R2, regardless of the modelling approach, district, or spike size. For the validation, the Lin's concordance correlation coefficient (LCCC) showed PLSR (0.92, and 0.9) and Cubist (0.91 and 0.9) were close to perfect (> 0.9) for site-specific and site-independent, respectively. This was not the case for hold-out, with only strong R2 (0.71) and substantial agreement (0.80) in Herbert using Cubist and moderate overall using PLSR. Similar results were achieved in terms of the accuracy considering the ratio of performance to interquartile (RPIQ), whereby overall site-specific and site-independent approaches had excellent accuracy (> 2.5) with Cubist slightly more accurate than PLSR. Hold-out accuracy was generally very poor (< 1.4). Spiking the hold-out data sets produced mixed results with prediction R2, agreement and accuracy respectively best in Lannercost with 70 or more samples using PLSR (strong, substantial and excellent) and Hebert with 10 or more using Cubist (strong, near perfect and excellent), while in Mossman with 50 or more samples using SVM (very weak, poor and fair) and Proserpine with 30 or more samples using Cubist (weak, moderate and fair) the results were not as good. It can be concluded that either site-specific or site-independent approach to calibration and prediction using either PLSR or Cubist was best, with the use of the latter approach being more efficient and allowing for the potential to add to this spectral library when new samples from each area or new areas can be added. •Hold-out method was not adequate to modelling SOC in Australian sugarcane fields.•Vis-NIR combined with PLSR or Cubist was useful to predicted SOC in Australian sugarcane fields.•Spiking size was recommended in different fields.
To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visible–near infrared (Vis–NIR) spectroscopy library. Herein, a Vis–NIR library is developed to predict topsoil (0–0.3 m) SOC using partial least squares regression (PLSR) and machine learning (i.e., Cubist, random forest [RF] and support vector machine [SVM]) in four sugarcane districts (i.e., Mossman, Lannercost, Herbert, and Proserpine). Different approaches were compared (i.e., site-specific, site-independent, hold-out and spiking) with spike size also considered. In all comparisons, a consistent set of calibration and validation data were used. The calibration coefficient of determination (R²) was always strong (> 0.7), and generally better than the validation R², regardless of the modelling approach, district, or spike size. For the validation, the Lin's concordance correlation coefficient (LCCC) showed PLSR (0.92, and 0.9) and Cubist (0.91 and 0.9) were close to perfect (> 0.9) for site-specific and site-independent, respectively. This was not the case for hold-out, with only strong R² (0.71) and substantial agreement (0.80) in Herbert using Cubist and moderate overall using PLSR. Similar results were achieved in terms of the accuracy considering the ratio of performance to interquartile (RPIQ), whereby overall site-specific and site-independent approaches had excellent accuracy (> 2.5) with Cubist slightly more accurate than PLSR. Hold-out accuracy was generally very poor (< 1.4). Spiking the hold-out data sets produced mixed results with prediction R², agreement and accuracy respectively best in Lannercost with 70 or more samples using PLSR (strong, substantial and excellent) and Hebert with 10 or more using Cubist (strong, near perfect and excellent), while in Mossman with 50 or more samples using SVM (very weak, poor and fair) and Proserpine with 30 or more samples using Cubist (weak, moderate and fair) the results were not as good. It can be concluded that either site-specific or site-independent approach to calibration and prediction using either PLSR or Cubist was best, with the use of the latter approach being more efficient and allowing for the potential to add to this spectral library when new samples from each area or new areas can be added.
ArticleNumber e00566
Author Zhao, Dongxue
Triantafilis, John
Zhao, Xueyu
Wang, Jie
Author_xml – sequence: 1
  givenname: Xueyu
  surname: Zhao
  fullname: Zhao, Xueyu
  organization: School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW 2052, Australia
– sequence: 2
  givenname: Dongxue
  surname: Zhao
  fullname: Zhao, Dongxue
  organization: School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW 2052, Australia
– sequence: 3
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW 2052, Australia
– sequence: 4
  givenname: John
  surname: Triantafilis
  fullname: Triantafilis, John
  email: triantafilisj@landcareresearch.co.nz
  organization: Manaaki Whenua Landcare Research, PO Box 69040, Lincoln 7640, New Zealand
BookMark eNqFkb1uFDEQgC2USISQN6BwGYo7_LO7t0uBFJ34iRQRKQm0ls-evcxpz148XlA6SnrekCfBp6VAFKSa0Wi-Gc03z9hRiAEYeyHFUgrZvNottxB9oqUSSi1BiLppnrATpWu1EKKrjv7Kn7Izop0QQnW1XjXqhP24jTjwmLY2oOPOpk0M_Pz2ev2Sjwk8uoylgIFfTJSTHdAGTtPWJmcD8B5h8MQnwrDln5F-ff_58fKG0wgup0gujg_8G-Z77rHvIUHIfB89DJwg5wNjxzFF6-6BnrPj3g4EZ3_iKfv07u3d-sPi6vr95friauG07vLCyXajnPWqaSttrXKd3UhbV7VS4IWUXnSqAi1lK_pmU3eqVhKqVnoNxZb2-pSdz3PL4i8TUDZ7JAfDUO6JExm1kq2uVm29Kq3V3OrKLZSgN2PCvU0PRgpzcG92ZnZvDu7N7L5gr__BHGZ78FgE4vAY_GaGoTj4ipAMOYTgyitSkWp8xP8P-A0lXacs
CitedBy_id crossref_primary_10_3390_su15054489
crossref_primary_10_1038_s41598_024_74469_3
crossref_primary_10_3390_land12111984
crossref_primary_10_3390_rs16101655
crossref_primary_10_1016_j_geoderma_2023_116589
crossref_primary_10_3390_su16104312
crossref_primary_10_1007_s40808_024_02189_8
crossref_primary_10_1139_cjss_2023_0084
crossref_primary_10_1016_j_stress_2023_100200
crossref_primary_10_3390_agriculture15050567
crossref_primary_10_1021_acs_analchem_3c05311
crossref_primary_10_1016_j_geoderma_2024_117012
crossref_primary_10_1007_s10705_022_10233_1
crossref_primary_10_3390_s24216855
crossref_primary_10_1002_saj2_20593
crossref_primary_10_3390_app142411687
crossref_primary_10_1007_s12665_023_11073_0
crossref_primary_10_1016_j_ecolind_2023_110037
crossref_primary_10_1016_j_jafr_2024_101519
Cites_doi 10.1016/j.geoderma.2019.01.033
10.1016/j.still.2015.07.008
10.1016/j.geoderma.2017.01.030
10.1016/j.geoderma.2009.12.025
10.1080/01621459.2013.823775
10.2136/sssaj1974.03615995003800010046x
10.1016/j.compag.2021.106640
10.2134/jeq2009.0314
10.2136/sssaj2018.03.0099
10.1016/j.geoderma.2021.115501
10.1097/SS.0000000000000132
10.1016/j.compag.2021.105990
10.1016/S0065-2113(10)07005-7
10.1002/saj2.20008
10.1016/j.geoderma.2018.12.033
10.1016/j.geoderma.2019.01.009
10.1016/j.trac.2009.07.007
10.1016/j.ecolmodel.2007.05.011
10.1051/ps/2018008
10.1007/s11430-013-4808-x
10.1016/j.cageo.2005.12.009
10.1016/j.catena.2020.104934
10.1016/j.compag.2018.06.042
10.2136/sssaj2018.03.0100
10.3390/rs10010028
10.1111/sum.12410
10.1016/j.ecolind.2014.12.028
10.7717/peerj.5722
10.1016/j.talanta.2013.11.056
10.7717/peerj.5714
10.1016/j.geoderma.2013.07.016
10.1016/j.geoderma.2012.12.014
10.1016/B978-0-12-800137-0.00003-0
10.1016/j.geoderma.2008.06.011
10.1016/j.geoderma.2019.07.014
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2022.e00566
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2022_e00566
S2352009422000864
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-c18b2cad26843aa2c9ab1a54522ed011d0924e31180f6b592521e481d3e1013d3
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri Jul 11 12:15:52 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Tue Jul 01 02:07:19 EDT 2025
Fri Feb 23 02:40:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Leptosols
Vertisols
Soil organic carbon (SOC)
Modelling
Vis–NIR
Library
Solonetz
Sugarcane fields
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-c18b2cad26843aa2c9ab1a54522ed011d0924e31180f6b592521e481d3e1013d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718347857
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718347857
crossref_primary_10_1016_j_geodrs_2022_e00566
crossref_citationtrail_10_1016_j_geodrs_2022_e00566
elsevier_sciencedirect_doi_10_1016_j_geodrs_2022_e00566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hubert, Branden (bb0120) 2003; 17
de Oliveira, Macêdo, Martins, da Silva, de Oliveira (bb0050) 2018; 1
Shi, Wang, Peng, Ji, Liu, Li, Rossel (bb0240) 2014; 57
Rayment, Lyons (bb0215) 2011
Duroux, Scornet (bb0070) 2018; 22
Minasny, McBratney (bb0170) 2006; 32
Carmon, Ben-Dor (bb0040) 2017; 7
Ng, Minasny, Jones, McBratney (bib291) 2022; 406
Rossel, Behrens (bb0230) 2010; 158
Lawrence, Lin (bb0140) 1989
Ding, Yang, Wang, Sagan, Yu (bb0065) 2018; 6
Malone, Minasny, McBratney (bb0150) 2017
Were, Bui, Dick, Singh (bb0265) 2015; 52
Zhao, Arshad, Wang, Triantafilis (bb0290) 2021; 182
Ng, Minasny, Malone, Filippi (bb0185) 2018; 6
Calcino, Schroeder, Panitz, Hurney, Skocaj, Wood, Salter (bb0035) 2018
Robertson, Groffman (bb0225) 2007
Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie (bb0005) 2014; 125
Zhao, Wang, Zhao, Li, Zare, Triantafilis (bb0280) 2019; 346
Filgueiras, Alves, Poppi (bb0085) 2014; 119
ASD FieldSpec (bb0020) 2021
Mevik, Wehrens, Liland (bb0160) 2011
Stevens, Ramirez-Lopez (bb0250) 2014
Padarian, Minasny, McBratney (bb0195) 2019; 340
Peters, De Baets, Verhoest, Samson, Degroeve, De Becker, Huybrechts (bb0200) 2007; 207
Hong, Chen, Zhang, Liu, Liu, Yu, Liu, Cheng (bb0110) 2018; 82
de Santana, Otani, de Souza, Poppi (bb0055) 2021; 27
Wang, Zhao, Zare, Sefton, Triantafilis (bb0260) 2022; 193
Arshad, Zhao, Zare, Sefton, Triantafilis (bb0015) 2021; 196
Arshad, Li, Bella, Triantafilis (bb0010) 2019; 84
Quinlan (bb0205) 1992
Brás, Lopes, Ferreira, Menezes (bb0025) 2008; 22
Ng, Anggria, Siregar, Hartatik, Sulaeman, Jones, Minasny (bb0190) 2020; 22
Schroeder, Hurney, Wood, Moody, Allsopp (bib292) 2010; 27
Ramirez-Lopez, Behrens, Schmidt, Stevens, Demattê, Scholten (bb0210) 2013; 195
Seidel, Hutengs, Ludwig, Thiele-Bruhn, Vohland (bb0235) 2019; 354
FAO (bb0080) 1998
Hong, Yu, Chen, Liu, Liu, Liu, Cheng (bb0115) 2018; 10
Guerrero, Wetterlind, Stenberg, Mouazen, Gabarrón-Galeote, Ruiz-Sinoga, Zornoza, Rossel (bb0100) 2016; 155
Meyer, Dimitriadou, Hornik, Weingessel, Leisch, Chang, Lin (bb0165) 2015
Vasques, Grunwald, Harris (bb0255) 2010; 39
Stenberg, Rossel, Mouazen, Wetterlind (bb0245) 2010; 107
Gogé, Gomez, Jolivet, Joffre (bb0090) 2014; 213
Gunn (bb0105) 1998
Davies (bb0045) 1974; 38
Breiman (bb0030) 2001; 45
Rinnan, Van Den Berg, Engelsen (bb0220) 2009; 28
Kuhn (bb0135) 2015
McBride (bb0155) 2005
Moore, Kirkland (bb0175) 2007
Nawar, Mouazen (bb0180) 2018; 151
Isbell (bb0125) 2016
Jiang, Li, Wang, Wu, Yang, Liu (bb0130) 2017; 293
Zhao, Zhao, Khongnawang, Arshad, Triantafilis (bb0275) 2018; 82
Zeng, Zhao, Li, Wu, Wei, Zhang (bb0270) 2016; 181
Dennerley, Huang, Nielson, Sefton, Triantafilis (bb0060) 2018; 34
Efron (bb0075) 2014; 109
Li, Zhao, Wang, Sefton, Triantafilis (bb0145) 2019; 340
Zhao, Arshad, Li, Zare, Triantafilis (bb0285) 2020
Gomez, Rossel, McBratney (bb0095) 2008; 146
Guerrero (10.1016/j.geodrs.2022.e00566_bb0100) 2016; 155
Stevens (10.1016/j.geodrs.2022.e00566_bb0250) 2014
Gunn (10.1016/j.geodrs.2022.e00566_bb0105) 1998
Li (10.1016/j.geodrs.2022.e00566_bb0145) 2019; 340
Nawar (10.1016/j.geodrs.2022.e00566_bb0180) 2018; 151
Minasny (10.1016/j.geodrs.2022.e00566_bb0170) 2006; 32
Meyer (10.1016/j.geodrs.2022.e00566_bb0165) 2015
Zhao (10.1016/j.geodrs.2022.e00566_bb0280) 2019; 346
Ramirez-Lopez (10.1016/j.geodrs.2022.e00566_bb0210) 2013; 195
Gomez (10.1016/j.geodrs.2022.e00566_bb0095) 2008; 146
Zhao (10.1016/j.geodrs.2022.e00566_bb0290) 2021; 182
Were (10.1016/j.geodrs.2022.e00566_bb0265) 2015; 52
Efron (10.1016/j.geodrs.2022.e00566_bb0075) 2014; 109
Duroux (10.1016/j.geodrs.2022.e00566_bb0070) 2018; 22
Dennerley (10.1016/j.geodrs.2022.e00566_bb0060) 2018; 34
McBride (10.1016/j.geodrs.2022.e00566_bb0155) 2005
Hong (10.1016/j.geodrs.2022.e00566_bb0115) 2018; 10
Arshad (10.1016/j.geodrs.2022.e00566_bb0010) 2019; 84
Lawrence (10.1016/j.geodrs.2022.e00566_bb0140) 1989
Zhao (10.1016/j.geodrs.2022.e00566_bb0275) 2018; 82
Kuhn (10.1016/j.geodrs.2022.e00566_bb0135) 2015
Shi (10.1016/j.geodrs.2022.e00566_bb0240) 2014; 57
Breiman (10.1016/j.geodrs.2022.e00566_bb0030) 2001; 45
Robertson (10.1016/j.geodrs.2022.e00566_bb0225) 2007
Schroeder (10.1016/j.geodrs.2022.e00566_bib292) 2010; 27
Carmon (10.1016/j.geodrs.2022.e00566_bb0040) 2017; 7
Ng (10.1016/j.geodrs.2022.e00566_bib291) 2022; 406
FAO (10.1016/j.geodrs.2022.e00566_bb0080) 1998
Zeng (10.1016/j.geodrs.2022.e00566_bb0270) 2016; 181
Malone (10.1016/j.geodrs.2022.e00566_bb0150) 2017
Ng (10.1016/j.geodrs.2022.e00566_bb0190) 2020; 22
Ding (10.1016/j.geodrs.2022.e00566_bb0065) 2018; 6
Stenberg (10.1016/j.geodrs.2022.e00566_bb0245) 2010; 107
Calcino (10.1016/j.geodrs.2022.e00566_bb0035) 2018
Brás (10.1016/j.geodrs.2022.e00566_bb0025) 2008; 22
Hong (10.1016/j.geodrs.2022.e00566_bb0110) 2018; 82
ASD FieldSpec (10.1016/j.geodrs.2022.e00566_bb0020)
Zhao (10.1016/j.geodrs.2022.e00566_bb0285) 2020
Moore (10.1016/j.geodrs.2022.e00566_bb0175) 2007
Vasques (10.1016/j.geodrs.2022.e00566_bb0255) 2010; 39
Filgueiras (10.1016/j.geodrs.2022.e00566_bb0085) 2014; 119
Isbell (10.1016/j.geodrs.2022.e00566_bb0125) 2016
Padarian (10.1016/j.geodrs.2022.e00566_bb0195) 2019; 340
Mevik (10.1016/j.geodrs.2022.e00566_bb0160) 2011
Wang (10.1016/j.geodrs.2022.e00566_bb0260) 2022; 193
Arshad (10.1016/j.geodrs.2022.e00566_bb0015) 2021; 196
Gogé (10.1016/j.geodrs.2022.e00566_bb0090) 2014; 213
de Oliveira (10.1016/j.geodrs.2022.e00566_bb0050) 2018; 1
Arrouays (10.1016/j.geodrs.2022.e00566_bb0005) 2014; 125
Davies (10.1016/j.geodrs.2022.e00566_bb0045) 1974; 38
Hubert (10.1016/j.geodrs.2022.e00566_bb0120) 2003; 17
Rinnan (10.1016/j.geodrs.2022.e00566_bb0220) 2009; 28
Ng (10.1016/j.geodrs.2022.e00566_bb0185) 2018; 6
Jiang (10.1016/j.geodrs.2022.e00566_bb0130) 2017; 293
Seidel (10.1016/j.geodrs.2022.e00566_bb0235) 2019; 354
Quinlan (10.1016/j.geodrs.2022.e00566_bb0205) 1992
Peters (10.1016/j.geodrs.2022.e00566_bb0200) 2007; 207
Rayment (10.1016/j.geodrs.2022.e00566_bb0215) 2011
Rossel (10.1016/j.geodrs.2022.e00566_bb0230) 2010; 158
de Santana (10.1016/j.geodrs.2022.e00566_bb0055) 2021; 27
References_xml – volume: 195
  start-page: 268
  year: 2013
  end-page: 279
  ident: bb0210
  article-title: The spectrum-based learner: a new local approach for modeling soil Vis–NIR spectra of complex datasets
  publication-title: Geoderma
– volume: 107
  start-page: 163
  year: 2010
  end-page: 215
  ident: bb0245
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
– volume: 17
  start-page: 537
  year: 2003
  end-page: 549
  ident: bb0120
  article-title: Robust methods for partial least squares regression
  publication-title: J. Chemometr. A J. Chemometrics Soc.
– year: 2018
  ident: bb0035
  article-title: Australian Sugarcane Nutrition Manual
– volume: 196
  year: 2021
  ident: bb0015
  article-title: Proximally sensed digital data library to predict topsoil clay across multiple sugarcane fields of Australia: applicability of local and universal support vector machine
  publication-title: CATENA
– year: 2011
  ident: bb0160
  article-title: pls: Partial least squares and principal component regression
  publication-title: R Package Version 2
– volume: 151
  start-page: 469
  year: 2018
  end-page: 477
  ident: bb0180
  article-title: Optimal sample selection for measurement of soil organic carbon using on-line Vis-NIR spectroscopy
  publication-title: Comput. Electron. Agric.
– volume: 22
  year: 2020
  ident: bb0190
  article-title: Developing a soil spectral library using a low-cost NIR spectrometer for precision fertilization in Indonesia
  publication-title: Geoderma Reg.
– volume: 146
  start-page: 403
  year: 2008
  end-page: 411
  ident: bb0095
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
– volume: 155
  start-page: 501
  year: 2016
  end-page: 509
  ident: bb0100
  article-title: Do we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy?
  publication-title: Soil Tillage Res.
– volume: 57
  start-page: 1671
  year: 2014
  end-page: 1680
  ident: bb0240
  article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations
  publication-title: Sci. China Earth Sci.
– volume: 346
  start-page: 18
  year: 2019
  end-page: 29
  ident: bb0280
  article-title: Digital regolith mapping of clay across the Ashley irrigation area using electromagnetic induction data and inversion modelling
  publication-title: Geoderma
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0030
  article-title: Random Forests Machine Learning
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bb0170
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– volume: 6
  year: 2018
  ident: bb0065
  article-title: Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy
  publication-title: PeerJ
– volume: 82
  start-page: 1347
  year: 2018
  end-page: 1357
  ident: bb0275
  article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 39
  start-page: 923
  year: 2010
  end-page: 934
  ident: bb0255
  article-title: Spectroscopic models of soil organic carbon in Florida, USA
  publication-title: J. Environ. Qual.
– volume: 84
  start-page: 314
  year: 2019
  end-page: 330
  ident: bb0010
  article-title: Field-scale digital soil mapping of clay: combining different proximal sensed data and comparing various statistical models
  publication-title: Soil Sci. Soc. Am. J.
– volume: 109
  start-page: 991
  year: 2014
  end-page: 1007
  ident: bb0075
  article-title: Estimation and accuracy after model selection
  publication-title: J. Am. Stat. Assoc.
– year: 2016
  ident: bb0125
  article-title: The Australian Soil Classification
– volume: 193
  year: 2022
  ident: bb0260
  article-title: Unravelling drivers of field-scale digital mapping of topsoil organic carbon and its implications for nitrogen practices
  publication-title: Comput. Electron. Agric.
– volume: 7
  start-page: 90
  year: 2017
  end-page: 97
  ident: bb0040
  article-title: An advanced analytical approach for spectral-based modelling of soil properties
  publication-title: Int J Emerg Technol Adv Eng
– year: 2005
  ident: bb0155
  article-title: A Proposal for Strength-of-Agreement Criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Report: HAM2005-062 62
– volume: 125
  start-page: 93
  year: 2014
  end-page: 134
  ident: bb0005
  article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
– volume: 340
  start-page: 279
  year: 2019
  end-page: 288
  ident: bb0195
  article-title: Transfer learning to localise a continental soil Vis-NIR calibration model
  publication-title: Geoderma
– volume: 38
  start-page: 150
  year: 1974
  end-page: 151
  ident: bb0045
  article-title: Loss-on-ignition as an estimate of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
– volume: 182
  year: 2021
  ident: bb0290
  article-title: Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: effects of multiple calibration models and spiking
  publication-title: Comput. Electron. Agric.
– year: 2011
  ident: bb0215
  article-title: Soil Chemical Methods: Australasia
– start-page: 343
  year: 1992
  end-page: 348
  ident: bb0205
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Scientific
– start-page: 255
  year: 1989
  end-page: 268
  ident: bb0140
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 52
  start-page: 394
  year: 2015
  end-page: 403
  ident: bb0265
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
– volume: 27
  year: 2021
  ident: bb0055
  article-title: Comparison of PLS and SVM models for soil organic matter and particle size using Vis-NIR spectral libraries
  publication-title: Geoderma Reg.
– start-page: 3
  year: 2014
  ident: bb0250
  article-title: An introduction to the prospectr package
  publication-title: R Package Vignette, Report No: R Package Version 0.1
– year: 2021
  ident: bb0020
  article-title: Hi-Res: ASD FieldSpec 4 Hi-Res: High Resolution Spectroradiometer
– year: 1998
  ident: bb0105
  article-title: SVM for Classification and Regression
– volume: 10
  start-page: 28
  year: 2018
  ident: bb0115
  article-title: Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture
  publication-title: Remote Sens.
– volume: 27
  year: 2010
  ident: bib292
  article-title: Concepts and value of the nitrogen guidelines contained in the Australian sugar industry’s ‘six easy steps’ nutrient management program
  publication-title: Proc. Int. Soc Sugar Cane Technol.
– volume: 22
  start-page: 96
  year: 2018
  end-page: 128
  ident: bb0070
  article-title: Impact of subsampling and tree depth on random forests
  publication-title: ESAIM: Probabil. Stat.
– year: 2007
  ident: bb0175
  article-title: The Basic Practice of Statistics
– volume: 354
  year: 2019
  ident: bb0235
  article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with Vis-NIR spectroscopy: spectral libraries and spiking vs. local calibrations
  publication-title: Geoderma
– volume: 207
  start-page: 304
  year: 2007
  end-page: 318
  ident: bb0200
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecol. Model.
– volume: 6
  year: 2018
  ident: bb0185
  article-title: In search of an optimum sampling lgorithm for prediction of soil properties from infrared spectra
  publication-title: PeerJ
– start-page: 341
  year: 2007
  end-page: 364
  ident: bb0225
  article-title: Nitrogen Transformations, Soil Microbiology, Ecology and Biochemistry
– volume: 34
  start-page: 219
  year: 2018
  end-page: 235
  ident: bb0060
  article-title: Identifying soil management zones in a sugarcane field using proximal sensed electromagnetic induction and gamma-ray spectrometry data
  publication-title: Soil Use Manag.
– volume: 119
  start-page: 582
  year: 2014
  end-page: 589
  ident: bb0085
  article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression
  publication-title: Talanta
– volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  ident: bb0220
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
– volume: 158
  start-page: 46
  year: 2010
  end-page: 54
  ident: bb0230
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
– start-page: 173
  year: 2020
  ident: bb0285
  article-title: Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field
  publication-title: Comput. Electron. Agric.
– volume: 1
  start-page: 169
  year: 2018
  end-page: 191
  ident: bb0050
  article-title: Mineral nutrition and fertilization of sugarcane
  publication-title: Sugarcane Technol. Res.
– volume: 213
  start-page: 1
  year: 2014
  end-page: 9
  ident: bb0090
  article-title: Which strategy is best to predict soil properties of a local site from a national Vis–NIR database?
  publication-title: Geoderma
– volume: 406
  year: 2022
  ident: bib291
  article-title: To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library
  publication-title: Geoderma
– volume: 293
  start-page: 54
  year: 2017
  end-page: 63
  ident: bb0130
  article-title: Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: effects of spiking on model applicability
  publication-title: Geoderma
– year: 2017
  ident: bb0150
  article-title: Using R for Digital Soil Mapping, Progress in Soil Science
– volume: 22
  start-page: 695
  year: 2008
  end-page: 700
  ident: bb0025
  article-title: A bootstrap-based strategy for spectral interval selection in PLS regression
  publication-title: J. Chemometr. A J. Chemometrics Soc.
– year: 2015
  ident: bb0165
  article-title: Misc functions of the department of statistics, probability theory group (formerly: E1071)
  publication-title: Package e1071. TU Wien
– volume: 181
  start-page: 13
  year: 2016
  end-page: 19
  ident: bb0270
  article-title: Selection of “local” models for prediction of soil organic matter using a regional soil Vis-nir spectral library
  publication-title: Soil Sci.
– year: 1998
  ident: bb0080
  article-title: World Reference Base for Soil Resources
– volume: 82
  start-page: 1231
  year: 2018
  end-page: 1242
  ident: bb0110
  article-title: Transferability of Vis-NIR models for soil organic carbon estimation between two study areas by using spiking
  publication-title: Soil Sci. Soc. Am. J.
– volume: 340
  start-page: 38
  year: 2019
  end-page: 48
  ident: bb0145
  article-title: Digital soil mapping based site-specific nutrient management in a sugarcane field in Burdekin
  publication-title: Geoderma
– year: 2015
  ident: bb0135
  article-title: Caret: classification and regression training
  publication-title: Astrophysics Source Code Library
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2022.e00566_bb0030
– ident: 10.1016/j.geodrs.2022.e00566_bb0020
– volume: 1
  start-page: 169
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0050
  article-title: Mineral nutrition and fertilization of sugarcane
  publication-title: Sugarcane Technol. Res.
– volume: 22
  year: 2020
  ident: 10.1016/j.geodrs.2022.e00566_bb0190
  article-title: Developing a soil spectral library using a low-cost NIR spectrometer for precision fertilization in Indonesia
  publication-title: Geoderma Reg.
– volume: 346
  start-page: 18
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00566_bb0280
  article-title: Digital regolith mapping of clay across the Ashley irrigation area using electromagnetic induction data and inversion modelling
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.033
– volume: 155
  start-page: 501
  year: 2016
  ident: 10.1016/j.geodrs.2022.e00566_bb0100
  article-title: Do we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy?
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.07.008
– year: 2017
  ident: 10.1016/j.geodrs.2022.e00566_bb0150
– volume: 293
  start-page: 54
  year: 2017
  ident: 10.1016/j.geodrs.2022.e00566_bb0130
  article-title: Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: effects of spiking on model applicability
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.01.030
– year: 2016
  ident: 10.1016/j.geodrs.2022.e00566_bb0125
– volume: 158
  start-page: 46
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00566_bb0230
  article-title: Using data mining to model and interpret soil diffuse reflectance spectra
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.025
– volume: 109
  start-page: 991
  issue: 507
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00566_bb0075
  article-title: Estimation and accuracy after model selection
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2013.823775
– volume: 22
  start-page: 695
  year: 2008
  ident: 10.1016/j.geodrs.2022.e00566_bb0025
  article-title: A bootstrap-based strategy for spectral interval selection in PLS regression
  publication-title: J. Chemometr. A J. Chemometrics Soc.
– volume: 38
  start-page: 150
  year: 1974
  ident: 10.1016/j.geodrs.2022.e00566_bb0045
  article-title: Loss-on-ignition as an estimate of soil organic matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1974.03615995003800010046x
– year: 1998
  ident: 10.1016/j.geodrs.2022.e00566_bb0080
– volume: 193
  year: 2022
  ident: 10.1016/j.geodrs.2022.e00566_bb0260
  article-title: Unravelling drivers of field-scale digital mapping of topsoil organic carbon and its implications for nitrogen practices
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106640
– volume: 27
  issue: 11
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00566_bib292
  article-title: Concepts and value of the nitrogen guidelines contained in the Australian sugar industry’s ‘six easy steps’ nutrient management program
  publication-title: Proc. Int. Soc Sugar Cane Technol.
– volume: 39
  start-page: 923
  issue: 3
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00566_bb0255
  article-title: Spectroscopic models of soil organic carbon in Florida, USA
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2009.0314
– start-page: 173
  year: 2020
  ident: 10.1016/j.geodrs.2022.e00566_bb0285
  article-title: Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field
  publication-title: Comput. Electron. Agric.
– volume: 82
  start-page: 1231
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0110
  article-title: Transferability of Vis-NIR models for soil organic carbon estimation between two study areas by using spiking
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2018.03.0099
– volume: 406
  year: 2022
  ident: 10.1016/j.geodrs.2022.e00566_bib291
  article-title: To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115501
– volume: 7
  start-page: 90
  year: 2017
  ident: 10.1016/j.geodrs.2022.e00566_bb0040
  article-title: An advanced analytical approach for spectral-based modelling of soil properties
  publication-title: Int J Emerg Technol Adv Eng
– volume: 181
  start-page: 13
  year: 2016
  ident: 10.1016/j.geodrs.2022.e00566_bb0270
  article-title: Selection of “local” models for prediction of soil organic matter using a regional soil Vis-nir spectral library
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000132
– volume: 182
  year: 2021
  ident: 10.1016/j.geodrs.2022.e00566_bb0290
  article-title: Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: effects of multiple calibration models and spiking
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.105990
– volume: 107
  start-page: 163
  year: 2010
  ident: 10.1016/j.geodrs.2022.e00566_bb0245
  article-title: Visible and near infrared spectroscopy in soil science
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(10)07005-7
– volume: 84
  start-page: 314
  issue: 2
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00566_bb0010
  article-title: Field-scale digital soil mapping of clay: combining different proximal sensed data and comparing various statistical models
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20008
– volume: 340
  start-page: 38
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00566_bb0145
  article-title: Digital soil mapping based site-specific nutrient management in a sugarcane field in Burdekin
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.033
– volume: 340
  start-page: 279
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00566_bb0195
  article-title: Transfer learning to localise a continental soil Vis-NIR calibration model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.009
– volume: 28
  start-page: 1201
  year: 2009
  ident: 10.1016/j.geodrs.2022.e00566_bb0220
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
– volume: 207
  start-page: 304
  issue: 2–4
  year: 2007
  ident: 10.1016/j.geodrs.2022.e00566_bb0200
  article-title: Random forests as a tool for ecohydrological distribution modelling
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2007.05.011
– volume: 22
  start-page: 96
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0070
  article-title: Impact of subsampling and tree depth on random forests
  publication-title: ESAIM: Probabil. Stat.
  doi: 10.1051/ps/2018008
– volume: 57
  start-page: 1671
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00566_bb0240
  article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-013-4808-x
– year: 1998
  ident: 10.1016/j.geodrs.2022.e00566_bb0105
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geodrs.2022.e00566_bb0170
  article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– volume: 196
  year: 2021
  ident: 10.1016/j.geodrs.2022.e00566_bb0015
  article-title: Proximally sensed digital data library to predict topsoil clay across multiple sugarcane fields of Australia: applicability of local and universal support vector machine
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104934
– volume: 151
  start-page: 469
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0180
  article-title: Optimal sample selection for measurement of soil organic carbon using on-line Vis-NIR spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.06.042
– volume: 82
  start-page: 1347
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0275
  article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2018.03.0100
– volume: 17
  start-page: 537
  year: 2003
  ident: 10.1016/j.geodrs.2022.e00566_bb0120
  article-title: Robust methods for partial least squares regression
  publication-title: J. Chemometr. A J. Chemometrics Soc.
– start-page: 343
  year: 1992
  ident: 10.1016/j.geodrs.2022.e00566_bb0205
  article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence
  publication-title: World Scientific
– volume: 10
  start-page: 28
  issue: 1
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0115
  article-title: Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture
  publication-title: Remote Sens.
  doi: 10.3390/rs10010028
– volume: 34
  start-page: 219
  issue: 2
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0060
  article-title: Identifying soil management zones in a sugarcane field using proximal sensed electromagnetic induction and gamma-ray spectrometry data
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12410
– start-page: 341
  year: 2007
  ident: 10.1016/j.geodrs.2022.e00566_bb0225
– volume: 52
  start-page: 394
  year: 2015
  ident: 10.1016/j.geodrs.2022.e00566_bb0265
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.028
– year: 2015
  ident: 10.1016/j.geodrs.2022.e00566_bb0135
  article-title: Caret: classification and regression training
– start-page: 255
  year: 1989
  ident: 10.1016/j.geodrs.2022.e00566_bb0140
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– start-page: 3
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00566_bb0250
  article-title: An introduction to the prospectr package
– volume: 6
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0185
  article-title: In search of an optimum sampling lgorithm for prediction of soil properties from infrared spectra
  publication-title: PeerJ
  doi: 10.7717/peerj.5722
– year: 2015
  ident: 10.1016/j.geodrs.2022.e00566_bb0165
  article-title: Misc functions of the department of statistics, probability theory group (formerly: E1071)
– year: 2005
  ident: 10.1016/j.geodrs.2022.e00566_bb0155
– volume: 119
  start-page: 582
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00566_bb0085
  article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression
  publication-title: Talanta
  doi: 10.1016/j.talanta.2013.11.056
– volume: 27
  year: 2021
  ident: 10.1016/j.geodrs.2022.e00566_bb0055
  article-title: Comparison of PLS and SVM models for soil organic matter and particle size using Vis-NIR spectral libraries
  publication-title: Geoderma Reg.
– year: 2007
  ident: 10.1016/j.geodrs.2022.e00566_bb0175
– volume: 6
  year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0065
  article-title: Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy
  publication-title: PeerJ
  doi: 10.7717/peerj.5714
– volume: 213
  start-page: 1
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00566_bb0090
  article-title: Which strategy is best to predict soil properties of a local site from a national Vis–NIR database?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.016
– year: 2011
  ident: 10.1016/j.geodrs.2022.e00566_bb0160
  article-title: pls: Partial least squares and principal component regression
– volume: 195
  start-page: 268
  year: 2013
  ident: 10.1016/j.geodrs.2022.e00566_bb0210
  article-title: The spectrum-based learner: a new local approach for modeling soil Vis–NIR spectra of complex datasets
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.12.014
– year: 2018
  ident: 10.1016/j.geodrs.2022.e00566_bb0035
– year: 2011
  ident: 10.1016/j.geodrs.2022.e00566_bb0215
– volume: 125
  start-page: 93
  year: 2014
  ident: 10.1016/j.geodrs.2022.e00566_bb0005
  article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800137-0.00003-0
– volume: 146
  start-page: 403
  year: 2008
  ident: 10.1016/j.geodrs.2022.e00566_bb0095
  article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.06.011
– volume: 354
  year: 2019
  ident: 10.1016/j.geodrs.2022.e00566_bb0235
  article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with Vis-NIR spectroscopy: spectral libraries and spiking vs. local calibrations
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.07.014
SSID ssj0002953762
Score 2.3693552
Snippet To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00566
SubjectTerms Australia
biomass production
calibration
Leptosols
Library
Modelling
nitrogen fertilizers
prediction
profitability
soil organic carbon
Soil organic carbon (SOC)
Solonetz
spectroscopy
sugarcane
Sugarcane fields
support vector machines
topsoil
Vertisols
Vis–NIR
Title Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches
URI https://dx.doi.org/10.1016/j.geodrs.2022.e00566
https://www.proquest.com/docview/2718347857
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XryIouKbETzooa5N2m57lEVZXVjB9XUrSZouFWmX7e7Bm0fv_kN_iTNpqyiI4KkPktLOJPmmyeT7GDtAFFFBmkhHRCp1PKMj7HOhxDPCbzfxubRsn4Ogd-tdPvgPc6zb7IWhtMp67K_GdDta13fatTXb4yxrD7mwlEEe5zYw9-bZAkd0PWmxhdOLfm_wOdXCI-Is4VZmzucO1Wk20dlMr5EpkglRd3N-bIgbM_gNpH4M1xaDzpfZUh08wmn1fitszuSr7HVYZE9QqTNp0HKiihwOh1fdIxhPaBmGTA9ZDl_TGlDORtjAZW7AZrCVQOnvI7jLyveXt8HFNdgNmER0WYyfgeZqoVFSmYIVz4HS2IxpaEjJTbnGbs_Pbro9p9ZXcLQQ0dTRbqi4lgkRvggpuY6kciWJjnOTYL9PTvDnzAgiiUsD5Uccod54GOAKg5YTiVhnrbzIzQaDEN1gtOu5Hk-9ThhEqeJ-qBLpkx6WH20y0Rg01jX5OGlgPMVNltljXLkhJjfElRs2mfNZa1yRb_xRvtP4Kv7WiGLEhz9q7jeujbF_0aIJ-qCYYSEEb4Gf5He2_v30bbZIV1Vq2g5rTSczs4uxzFTt1W2Vjv3r-_4HuY32SA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoLAtGqlNcg9dAe0m3sJJscVytWuzy2UhcqbpbtOKtUKFltdg_cOHLnH_JLmHESEEgIiVuU2FEyM54Z2-PvY-w7RhEdZanyRKIzL7AmwTEXK7yi-O2nIVcO7XMcDS-C48vwcoX127MwVFbZ-P7apztv3dzpNNLszPK8M-HCQQYFnLvEPPjA1gidCs18rTc6GY4fl1p4Qpgl3NHMhdyjPu0hOlfpNbVlOifobs5_WcLGjF4LUi_ctYtBgw223iSP0Ku_b5Ot2GKL3U7K_ApqdiYDRs11WcCPyZ_-T5jNaRuGRA95AU_LGlAtp2jgqrDgKtgqoPL3KfzLq_ubu_HoL7gDmAR0Wc6ugdZqoWVSWYAjz4HKuoppaEHJbfWZXQyOzvtDr-FX8IwQycIzfqy5USkBvgiluEmU9hWRjnOb4rhPf-PkzAoCicsiHSYcQ70NMMEVFiUnUvGFrRZlYb8yiFEN1viBH_As6MZRkmkexjpVIfFhhck2E61ApWnAx4kD40q2VWb_Za0GSWqQtRq2mffYa1aDb7zRvtvqSj4zIonx4Y2eh61qJY4v2jRBHZRLbITBW-Avhd1v7377Afs4PD87laej8ckO-0RP6jK1Xba6mC_tHuY1C73f2O0DtJL3lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+carbon+%28SOC%29+prediction+in+Australian+sugarcane+fields+using+Vis%E2%80%93NIR+spectroscopy+with+different+model+setting+approaches&rft.jtitle=Geoderma+Regional&rft.au=Zhao%2C+Xueyu&rft.au=Zhao%2C+Dongxue&rft.au=Wang%2C+Jie&rft.au=Triantafilis%2C+John&rft.date=2022-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=30+p.e00566-&rft_id=info:doi/10.1016%2Fj.geodrs.2022.e00566&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon