Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches
To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visibl...
Saved in:
Published in | Geoderma Regional Vol. 30; p. e00566 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visible–near infrared (Vis–NIR) spectroscopy library. Herein, a Vis–NIR library is developed to predict topsoil (0–0.3 m) SOC using partial least squares regression (PLSR) and machine learning (i.e., Cubist, random forest [RF] and support vector machine [SVM]) in four sugarcane districts (i.e., Mossman, Lannercost, Herbert, and Proserpine). Different approaches were compared (i.e., site-specific, site-independent, hold-out and spiking) with spike size also considered. In all comparisons, a consistent set of calibration and validation data were used. The calibration coefficient of determination (R2) was always strong (> 0.7), and generally better than the validation R2, regardless of the modelling approach, district, or spike size. For the validation, the Lin's concordance correlation coefficient (LCCC) showed PLSR (0.92, and 0.9) and Cubist (0.91 and 0.9) were close to perfect (> 0.9) for site-specific and site-independent, respectively. This was not the case for hold-out, with only strong R2 (0.71) and substantial agreement (0.80) in Herbert using Cubist and moderate overall using PLSR. Similar results were achieved in terms of the accuracy considering the ratio of performance to interquartile (RPIQ), whereby overall site-specific and site-independent approaches had excellent accuracy (> 2.5) with Cubist slightly more accurate than PLSR. Hold-out accuracy was generally very poor (< 1.4). Spiking the hold-out data sets produced mixed results with prediction R2, agreement and accuracy respectively best in Lannercost with 70 or more samples using PLSR (strong, substantial and excellent) and Hebert with 10 or more using Cubist (strong, near perfect and excellent), while in Mossman with 50 or more samples using SVM (very weak, poor and fair) and Proserpine with 30 or more samples using Cubist (weak, moderate and fair) the results were not as good. It can be concluded that either site-specific or site-independent approach to calibration and prediction using either PLSR or Cubist was best, with the use of the latter approach being more efficient and allowing for the potential to add to this spectral library when new samples from each area or new areas can be added.
•Hold-out method was not adequate to modelling SOC in Australian sugarcane fields.•Vis-NIR combined with PLSR or Cubist was useful to predicted SOC in Australian sugarcane fields.•Spiking size was recommended in different fields. |
---|---|
AbstractList | To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visible–near infrared (Vis–NIR) spectroscopy library. Herein, a Vis–NIR library is developed to predict topsoil (0–0.3 m) SOC using partial least squares regression (PLSR) and machine learning (i.e., Cubist, random forest [RF] and support vector machine [SVM]) in four sugarcane districts (i.e., Mossman, Lannercost, Herbert, and Proserpine). Different approaches were compared (i.e., site-specific, site-independent, hold-out and spiking) with spike size also considered. In all comparisons, a consistent set of calibration and validation data were used. The calibration coefficient of determination (R2) was always strong (> 0.7), and generally better than the validation R2, regardless of the modelling approach, district, or spike size. For the validation, the Lin's concordance correlation coefficient (LCCC) showed PLSR (0.92, and 0.9) and Cubist (0.91 and 0.9) were close to perfect (> 0.9) for site-specific and site-independent, respectively. This was not the case for hold-out, with only strong R2 (0.71) and substantial agreement (0.80) in Herbert using Cubist and moderate overall using PLSR. Similar results were achieved in terms of the accuracy considering the ratio of performance to interquartile (RPIQ), whereby overall site-specific and site-independent approaches had excellent accuracy (> 2.5) with Cubist slightly more accurate than PLSR. Hold-out accuracy was generally very poor (< 1.4). Spiking the hold-out data sets produced mixed results with prediction R2, agreement and accuracy respectively best in Lannercost with 70 or more samples using PLSR (strong, substantial and excellent) and Hebert with 10 or more using Cubist (strong, near perfect and excellent), while in Mossman with 50 or more samples using SVM (very weak, poor and fair) and Proserpine with 30 or more samples using Cubist (weak, moderate and fair) the results were not as good. It can be concluded that either site-specific or site-independent approach to calibration and prediction using either PLSR or Cubist was best, with the use of the latter approach being more efficient and allowing for the potential to add to this spectral library when new samples from each area or new areas can be added.
•Hold-out method was not adequate to modelling SOC in Australian sugarcane fields.•Vis-NIR combined with PLSR or Cubist was useful to predicted SOC in Australian sugarcane fields.•Spiking size was recommended in different fields. To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen fertiliser requires consideration of soil organic carbon (SOC, %). However, determining SOC is time-consuming. An alternative is to use a visible–near infrared (Vis–NIR) spectroscopy library. Herein, a Vis–NIR library is developed to predict topsoil (0–0.3 m) SOC using partial least squares regression (PLSR) and machine learning (i.e., Cubist, random forest [RF] and support vector machine [SVM]) in four sugarcane districts (i.e., Mossman, Lannercost, Herbert, and Proserpine). Different approaches were compared (i.e., site-specific, site-independent, hold-out and spiking) with spike size also considered. In all comparisons, a consistent set of calibration and validation data were used. The calibration coefficient of determination (R²) was always strong (> 0.7), and generally better than the validation R², regardless of the modelling approach, district, or spike size. For the validation, the Lin's concordance correlation coefficient (LCCC) showed PLSR (0.92, and 0.9) and Cubist (0.91 and 0.9) were close to perfect (> 0.9) for site-specific and site-independent, respectively. This was not the case for hold-out, with only strong R² (0.71) and substantial agreement (0.80) in Herbert using Cubist and moderate overall using PLSR. Similar results were achieved in terms of the accuracy considering the ratio of performance to interquartile (RPIQ), whereby overall site-specific and site-independent approaches had excellent accuracy (> 2.5) with Cubist slightly more accurate than PLSR. Hold-out accuracy was generally very poor (< 1.4). Spiking the hold-out data sets produced mixed results with prediction R², agreement and accuracy respectively best in Lannercost with 70 or more samples using PLSR (strong, substantial and excellent) and Hebert with 10 or more using Cubist (strong, near perfect and excellent), while in Mossman with 50 or more samples using SVM (very weak, poor and fair) and Proserpine with 30 or more samples using Cubist (weak, moderate and fair) the results were not as good. It can be concluded that either site-specific or site-independent approach to calibration and prediction using either PLSR or Cubist was best, with the use of the latter approach being more efficient and allowing for the potential to add to this spectral library when new samples from each area or new areas can be added. |
ArticleNumber | e00566 |
Author | Zhao, Dongxue Triantafilis, John Zhao, Xueyu Wang, Jie |
Author_xml | – sequence: 1 givenname: Xueyu surname: Zhao fullname: Zhao, Xueyu organization: School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW 2052, Australia – sequence: 2 givenname: Dongxue surname: Zhao fullname: Zhao, Dongxue organization: School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW 2052, Australia – sequence: 3 givenname: Jie surname: Wang fullname: Wang, Jie organization: School of Biological, Earth and Environmental Sciences, Faculty of Science, UNSW Sydney, Kensington, NSW 2052, Australia – sequence: 4 givenname: John surname: Triantafilis fullname: Triantafilis, John email: triantafilisj@landcareresearch.co.nz organization: Manaaki Whenua Landcare Research, PO Box 69040, Lincoln 7640, New Zealand |
BookMark | eNqFkb1uFDEQgC2USISQN6BwGYo7_LO7t0uBFJ34iRQRKQm0ls-evcxpz148XlA6SnrekCfBp6VAFKSa0Wi-Gc03z9hRiAEYeyHFUgrZvNottxB9oqUSSi1BiLppnrATpWu1EKKrjv7Kn7Izop0QQnW1XjXqhP24jTjwmLY2oOPOpk0M_Pz2ev2Sjwk8uoylgIFfTJSTHdAGTtPWJmcD8B5h8MQnwrDln5F-ff_58fKG0wgup0gujg_8G-Z77rHvIUHIfB89DJwg5wNjxzFF6-6BnrPj3g4EZ3_iKfv07u3d-sPi6vr95friauG07vLCyXajnPWqaSttrXKd3UhbV7VS4IWUXnSqAi1lK_pmU3eqVhKqVnoNxZb2-pSdz3PL4i8TUDZ7JAfDUO6JExm1kq2uVm29Kq3V3OrKLZSgN2PCvU0PRgpzcG92ZnZvDu7N7L5gr__BHGZ78FgE4vAY_GaGoTj4ipAMOYTgyitSkWp8xP8P-A0lXacs |
CitedBy_id | crossref_primary_10_3390_su15054489 crossref_primary_10_1038_s41598_024_74469_3 crossref_primary_10_3390_land12111984 crossref_primary_10_3390_rs16101655 crossref_primary_10_1016_j_geoderma_2023_116589 crossref_primary_10_3390_su16104312 crossref_primary_10_1007_s40808_024_02189_8 crossref_primary_10_1139_cjss_2023_0084 crossref_primary_10_1016_j_stress_2023_100200 crossref_primary_10_3390_agriculture15050567 crossref_primary_10_1021_acs_analchem_3c05311 crossref_primary_10_1016_j_geoderma_2024_117012 crossref_primary_10_1007_s10705_022_10233_1 crossref_primary_10_3390_s24216855 crossref_primary_10_1002_saj2_20593 crossref_primary_10_3390_app142411687 crossref_primary_10_1007_s12665_023_11073_0 crossref_primary_10_1016_j_ecolind_2023_110037 crossref_primary_10_1016_j_jafr_2024_101519 |
Cites_doi | 10.1016/j.geoderma.2019.01.033 10.1016/j.still.2015.07.008 10.1016/j.geoderma.2017.01.030 10.1016/j.geoderma.2009.12.025 10.1080/01621459.2013.823775 10.2136/sssaj1974.03615995003800010046x 10.1016/j.compag.2021.106640 10.2134/jeq2009.0314 10.2136/sssaj2018.03.0099 10.1016/j.geoderma.2021.115501 10.1097/SS.0000000000000132 10.1016/j.compag.2021.105990 10.1016/S0065-2113(10)07005-7 10.1002/saj2.20008 10.1016/j.geoderma.2018.12.033 10.1016/j.geoderma.2019.01.009 10.1016/j.trac.2009.07.007 10.1016/j.ecolmodel.2007.05.011 10.1051/ps/2018008 10.1007/s11430-013-4808-x 10.1016/j.cageo.2005.12.009 10.1016/j.catena.2020.104934 10.1016/j.compag.2018.06.042 10.2136/sssaj2018.03.0100 10.3390/rs10010028 10.1111/sum.12410 10.1016/j.ecolind.2014.12.028 10.7717/peerj.5722 10.1016/j.talanta.2013.11.056 10.7717/peerj.5714 10.1016/j.geoderma.2013.07.016 10.1016/j.geoderma.2012.12.014 10.1016/B978-0-12-800137-0.00003-0 10.1016/j.geoderma.2008.06.011 10.1016/j.geoderma.2019.07.014 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2022.e00566 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2022_e00566 S2352009422000864 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-c18b2cad26843aa2c9ab1a54522ed011d0924e31180f6b592521e481d3e1013d3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri Jul 11 12:15:52 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Tue Jul 01 02:07:19 EDT 2025 Fri Feb 23 02:40:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Leptosols Vertisols Soil organic carbon (SOC) Modelling Vis–NIR Library Solonetz Sugarcane fields |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-c18b2cad26843aa2c9ab1a54522ed011d0924e31180f6b592521e481d3e1013d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2718347857 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2718347857 crossref_primary_10_1016_j_geodrs_2022_e00566 crossref_citationtrail_10_1016_j_geodrs_2022_e00566 elsevier_sciencedirect_doi_10_1016_j_geodrs_2022_e00566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hubert, Branden (bb0120) 2003; 17 de Oliveira, Macêdo, Martins, da Silva, de Oliveira (bb0050) 2018; 1 Shi, Wang, Peng, Ji, Liu, Li, Rossel (bb0240) 2014; 57 Rayment, Lyons (bb0215) 2011 Duroux, Scornet (bb0070) 2018; 22 Minasny, McBratney (bb0170) 2006; 32 Carmon, Ben-Dor (bb0040) 2017; 7 Ng, Minasny, Jones, McBratney (bib291) 2022; 406 Rossel, Behrens (bb0230) 2010; 158 Lawrence, Lin (bb0140) 1989 Ding, Yang, Wang, Sagan, Yu (bb0065) 2018; 6 Malone, Minasny, McBratney (bb0150) 2017 Were, Bui, Dick, Singh (bb0265) 2015; 52 Zhao, Arshad, Wang, Triantafilis (bb0290) 2021; 182 Ng, Minasny, Malone, Filippi (bb0185) 2018; 6 Calcino, Schroeder, Panitz, Hurney, Skocaj, Wood, Salter (bb0035) 2018 Robertson, Groffman (bb0225) 2007 Arrouays, Grundy, Hartemink, Hempel, Heuvelink, Hong, Lagacherie, Lelyk, McBratney, McKenzie (bb0005) 2014; 125 Zhao, Wang, Zhao, Li, Zare, Triantafilis (bb0280) 2019; 346 Filgueiras, Alves, Poppi (bb0085) 2014; 119 ASD FieldSpec (bb0020) 2021 Mevik, Wehrens, Liland (bb0160) 2011 Stevens, Ramirez-Lopez (bb0250) 2014 Padarian, Minasny, McBratney (bb0195) 2019; 340 Peters, De Baets, Verhoest, Samson, Degroeve, De Becker, Huybrechts (bb0200) 2007; 207 Hong, Chen, Zhang, Liu, Liu, Yu, Liu, Cheng (bb0110) 2018; 82 de Santana, Otani, de Souza, Poppi (bb0055) 2021; 27 Wang, Zhao, Zare, Sefton, Triantafilis (bb0260) 2022; 193 Arshad, Zhao, Zare, Sefton, Triantafilis (bb0015) 2021; 196 Arshad, Li, Bella, Triantafilis (bb0010) 2019; 84 Quinlan (bb0205) 1992 Brás, Lopes, Ferreira, Menezes (bb0025) 2008; 22 Ng, Anggria, Siregar, Hartatik, Sulaeman, Jones, Minasny (bb0190) 2020; 22 Schroeder, Hurney, Wood, Moody, Allsopp (bib292) 2010; 27 Ramirez-Lopez, Behrens, Schmidt, Stevens, Demattê, Scholten (bb0210) 2013; 195 Seidel, Hutengs, Ludwig, Thiele-Bruhn, Vohland (bb0235) 2019; 354 FAO (bb0080) 1998 Hong, Yu, Chen, Liu, Liu, Liu, Cheng (bb0115) 2018; 10 Guerrero, Wetterlind, Stenberg, Mouazen, Gabarrón-Galeote, Ruiz-Sinoga, Zornoza, Rossel (bb0100) 2016; 155 Meyer, Dimitriadou, Hornik, Weingessel, Leisch, Chang, Lin (bb0165) 2015 Vasques, Grunwald, Harris (bb0255) 2010; 39 Stenberg, Rossel, Mouazen, Wetterlind (bb0245) 2010; 107 Gogé, Gomez, Jolivet, Joffre (bb0090) 2014; 213 Gunn (bb0105) 1998 Davies (bb0045) 1974; 38 Breiman (bb0030) 2001; 45 Rinnan, Van Den Berg, Engelsen (bb0220) 2009; 28 Kuhn (bb0135) 2015 McBride (bb0155) 2005 Moore, Kirkland (bb0175) 2007 Nawar, Mouazen (bb0180) 2018; 151 Isbell (bb0125) 2016 Jiang, Li, Wang, Wu, Yang, Liu (bb0130) 2017; 293 Zhao, Zhao, Khongnawang, Arshad, Triantafilis (bb0275) 2018; 82 Zeng, Zhao, Li, Wu, Wei, Zhang (bb0270) 2016; 181 Dennerley, Huang, Nielson, Sefton, Triantafilis (bb0060) 2018; 34 Efron (bb0075) 2014; 109 Li, Zhao, Wang, Sefton, Triantafilis (bb0145) 2019; 340 Zhao, Arshad, Li, Zare, Triantafilis (bb0285) 2020 Gomez, Rossel, McBratney (bb0095) 2008; 146 Guerrero (10.1016/j.geodrs.2022.e00566_bb0100) 2016; 155 Stevens (10.1016/j.geodrs.2022.e00566_bb0250) 2014 Gunn (10.1016/j.geodrs.2022.e00566_bb0105) 1998 Li (10.1016/j.geodrs.2022.e00566_bb0145) 2019; 340 Nawar (10.1016/j.geodrs.2022.e00566_bb0180) 2018; 151 Minasny (10.1016/j.geodrs.2022.e00566_bb0170) 2006; 32 Meyer (10.1016/j.geodrs.2022.e00566_bb0165) 2015 Zhao (10.1016/j.geodrs.2022.e00566_bb0280) 2019; 346 Ramirez-Lopez (10.1016/j.geodrs.2022.e00566_bb0210) 2013; 195 Gomez (10.1016/j.geodrs.2022.e00566_bb0095) 2008; 146 Zhao (10.1016/j.geodrs.2022.e00566_bb0290) 2021; 182 Were (10.1016/j.geodrs.2022.e00566_bb0265) 2015; 52 Efron (10.1016/j.geodrs.2022.e00566_bb0075) 2014; 109 Duroux (10.1016/j.geodrs.2022.e00566_bb0070) 2018; 22 Dennerley (10.1016/j.geodrs.2022.e00566_bb0060) 2018; 34 McBride (10.1016/j.geodrs.2022.e00566_bb0155) 2005 Hong (10.1016/j.geodrs.2022.e00566_bb0115) 2018; 10 Arshad (10.1016/j.geodrs.2022.e00566_bb0010) 2019; 84 Lawrence (10.1016/j.geodrs.2022.e00566_bb0140) 1989 Zhao (10.1016/j.geodrs.2022.e00566_bb0275) 2018; 82 Kuhn (10.1016/j.geodrs.2022.e00566_bb0135) 2015 Shi (10.1016/j.geodrs.2022.e00566_bb0240) 2014; 57 Breiman (10.1016/j.geodrs.2022.e00566_bb0030) 2001; 45 Robertson (10.1016/j.geodrs.2022.e00566_bb0225) 2007 Schroeder (10.1016/j.geodrs.2022.e00566_bib292) 2010; 27 Carmon (10.1016/j.geodrs.2022.e00566_bb0040) 2017; 7 Ng (10.1016/j.geodrs.2022.e00566_bib291) 2022; 406 FAO (10.1016/j.geodrs.2022.e00566_bb0080) 1998 Zeng (10.1016/j.geodrs.2022.e00566_bb0270) 2016; 181 Malone (10.1016/j.geodrs.2022.e00566_bb0150) 2017 Ng (10.1016/j.geodrs.2022.e00566_bb0190) 2020; 22 Ding (10.1016/j.geodrs.2022.e00566_bb0065) 2018; 6 Stenberg (10.1016/j.geodrs.2022.e00566_bb0245) 2010; 107 Calcino (10.1016/j.geodrs.2022.e00566_bb0035) 2018 Brás (10.1016/j.geodrs.2022.e00566_bb0025) 2008; 22 Hong (10.1016/j.geodrs.2022.e00566_bb0110) 2018; 82 ASD FieldSpec (10.1016/j.geodrs.2022.e00566_bb0020) Zhao (10.1016/j.geodrs.2022.e00566_bb0285) 2020 Moore (10.1016/j.geodrs.2022.e00566_bb0175) 2007 Vasques (10.1016/j.geodrs.2022.e00566_bb0255) 2010; 39 Filgueiras (10.1016/j.geodrs.2022.e00566_bb0085) 2014; 119 Isbell (10.1016/j.geodrs.2022.e00566_bb0125) 2016 Padarian (10.1016/j.geodrs.2022.e00566_bb0195) 2019; 340 Mevik (10.1016/j.geodrs.2022.e00566_bb0160) 2011 Wang (10.1016/j.geodrs.2022.e00566_bb0260) 2022; 193 Arshad (10.1016/j.geodrs.2022.e00566_bb0015) 2021; 196 Gogé (10.1016/j.geodrs.2022.e00566_bb0090) 2014; 213 de Oliveira (10.1016/j.geodrs.2022.e00566_bb0050) 2018; 1 Arrouays (10.1016/j.geodrs.2022.e00566_bb0005) 2014; 125 Davies (10.1016/j.geodrs.2022.e00566_bb0045) 1974; 38 Hubert (10.1016/j.geodrs.2022.e00566_bb0120) 2003; 17 Rinnan (10.1016/j.geodrs.2022.e00566_bb0220) 2009; 28 Ng (10.1016/j.geodrs.2022.e00566_bb0185) 2018; 6 Jiang (10.1016/j.geodrs.2022.e00566_bb0130) 2017; 293 Seidel (10.1016/j.geodrs.2022.e00566_bb0235) 2019; 354 Quinlan (10.1016/j.geodrs.2022.e00566_bb0205) 1992 Peters (10.1016/j.geodrs.2022.e00566_bb0200) 2007; 207 Rayment (10.1016/j.geodrs.2022.e00566_bb0215) 2011 Rossel (10.1016/j.geodrs.2022.e00566_bb0230) 2010; 158 de Santana (10.1016/j.geodrs.2022.e00566_bb0055) 2021; 27 |
References_xml | – volume: 195 start-page: 268 year: 2013 end-page: 279 ident: bb0210 article-title: The spectrum-based learner: a new local approach for modeling soil Vis–NIR spectra of complex datasets publication-title: Geoderma – volume: 107 start-page: 163 year: 2010 end-page: 215 ident: bb0245 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. – volume: 17 start-page: 537 year: 2003 end-page: 549 ident: bb0120 article-title: Robust methods for partial least squares regression publication-title: J. Chemometr. A J. Chemometrics Soc. – year: 2018 ident: bb0035 article-title: Australian Sugarcane Nutrition Manual – volume: 196 year: 2021 ident: bb0015 article-title: Proximally sensed digital data library to predict topsoil clay across multiple sugarcane fields of Australia: applicability of local and universal support vector machine publication-title: CATENA – year: 2011 ident: bb0160 article-title: pls: Partial least squares and principal component regression publication-title: R Package Version 2 – volume: 151 start-page: 469 year: 2018 end-page: 477 ident: bb0180 article-title: Optimal sample selection for measurement of soil organic carbon using on-line Vis-NIR spectroscopy publication-title: Comput. Electron. Agric. – volume: 22 year: 2020 ident: bb0190 article-title: Developing a soil spectral library using a low-cost NIR spectrometer for precision fertilization in Indonesia publication-title: Geoderma Reg. – volume: 146 start-page: 403 year: 2008 end-page: 411 ident: bb0095 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study publication-title: Geoderma – volume: 155 start-page: 501 year: 2016 end-page: 509 ident: bb0100 article-title: Do we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy? publication-title: Soil Tillage Res. – volume: 57 start-page: 1671 year: 2014 end-page: 1680 ident: bb0240 article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations publication-title: Sci. China Earth Sci. – volume: 346 start-page: 18 year: 2019 end-page: 29 ident: bb0280 article-title: Digital regolith mapping of clay across the Ashley irrigation area using electromagnetic induction data and inversion modelling publication-title: Geoderma – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0030 article-title: Random Forests Machine Learning – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bb0170 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – volume: 6 year: 2018 ident: bb0065 article-title: Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy publication-title: PeerJ – volume: 82 start-page: 1347 year: 2018 end-page: 1357 ident: bb0275 article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil publication-title: Soil Sci. Soc. Am. J. – volume: 39 start-page: 923 year: 2010 end-page: 934 ident: bb0255 article-title: Spectroscopic models of soil organic carbon in Florida, USA publication-title: J. Environ. Qual. – volume: 84 start-page: 314 year: 2019 end-page: 330 ident: bb0010 article-title: Field-scale digital soil mapping of clay: combining different proximal sensed data and comparing various statistical models publication-title: Soil Sci. Soc. Am. J. – volume: 109 start-page: 991 year: 2014 end-page: 1007 ident: bb0075 article-title: Estimation and accuracy after model selection publication-title: J. Am. Stat. Assoc. – year: 2016 ident: bb0125 article-title: The Australian Soil Classification – volume: 193 year: 2022 ident: bb0260 article-title: Unravelling drivers of field-scale digital mapping of topsoil organic carbon and its implications for nitrogen practices publication-title: Comput. Electron. Agric. – volume: 7 start-page: 90 year: 2017 end-page: 97 ident: bb0040 article-title: An advanced analytical approach for spectral-based modelling of soil properties publication-title: Int J Emerg Technol Adv Eng – year: 2005 ident: bb0155 article-title: A Proposal for Strength-of-Agreement Criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Report: HAM2005-062 62 – volume: 125 start-page: 93 year: 2014 end-page: 134 ident: bb0005 article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties publication-title: Adv. Agron. – volume: 340 start-page: 279 year: 2019 end-page: 288 ident: bb0195 article-title: Transfer learning to localise a continental soil Vis-NIR calibration model publication-title: Geoderma – volume: 38 start-page: 150 year: 1974 end-page: 151 ident: bb0045 article-title: Loss-on-ignition as an estimate of soil organic matter publication-title: Soil Sci. Soc. Am. J. – volume: 182 year: 2021 ident: bb0290 article-title: Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: effects of multiple calibration models and spiking publication-title: Comput. Electron. Agric. – year: 2011 ident: bb0215 article-title: Soil Chemical Methods: Australasia – start-page: 343 year: 1992 end-page: 348 ident: bb0205 article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence publication-title: World Scientific – start-page: 255 year: 1989 end-page: 268 ident: bb0140 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 52 start-page: 394 year: 2015 end-page: 403 ident: bb0265 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. – volume: 27 year: 2021 ident: bb0055 article-title: Comparison of PLS and SVM models for soil organic matter and particle size using Vis-NIR spectral libraries publication-title: Geoderma Reg. – start-page: 3 year: 2014 ident: bb0250 article-title: An introduction to the prospectr package publication-title: R Package Vignette, Report No: R Package Version 0.1 – year: 2021 ident: bb0020 article-title: Hi-Res: ASD FieldSpec 4 Hi-Res: High Resolution Spectroradiometer – year: 1998 ident: bb0105 article-title: SVM for Classification and Regression – volume: 10 start-page: 28 year: 2018 ident: bb0115 article-title: Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture publication-title: Remote Sens. – volume: 27 year: 2010 ident: bib292 article-title: Concepts and value of the nitrogen guidelines contained in the Australian sugar industry’s ‘six easy steps’ nutrient management program publication-title: Proc. Int. Soc Sugar Cane Technol. – volume: 22 start-page: 96 year: 2018 end-page: 128 ident: bb0070 article-title: Impact of subsampling and tree depth on random forests publication-title: ESAIM: Probabil. Stat. – year: 2007 ident: bb0175 article-title: The Basic Practice of Statistics – volume: 354 year: 2019 ident: bb0235 article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with Vis-NIR spectroscopy: spectral libraries and spiking vs. local calibrations publication-title: Geoderma – volume: 207 start-page: 304 year: 2007 end-page: 318 ident: bb0200 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecol. Model. – volume: 6 year: 2018 ident: bb0185 article-title: In search of an optimum sampling lgorithm for prediction of soil properties from infrared spectra publication-title: PeerJ – start-page: 341 year: 2007 end-page: 364 ident: bb0225 article-title: Nitrogen Transformations, Soil Microbiology, Ecology and Biochemistry – volume: 34 start-page: 219 year: 2018 end-page: 235 ident: bb0060 article-title: Identifying soil management zones in a sugarcane field using proximal sensed electromagnetic induction and gamma-ray spectrometry data publication-title: Soil Use Manag. – volume: 119 start-page: 582 year: 2014 end-page: 589 ident: bb0085 article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression publication-title: Talanta – volume: 28 start-page: 1201 year: 2009 end-page: 1222 ident: bb0220 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC Trends Anal. Chem. – volume: 158 start-page: 46 year: 2010 end-page: 54 ident: bb0230 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma – start-page: 173 year: 2020 ident: bb0285 article-title: Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field publication-title: Comput. Electron. Agric. – volume: 1 start-page: 169 year: 2018 end-page: 191 ident: bb0050 article-title: Mineral nutrition and fertilization of sugarcane publication-title: Sugarcane Technol. Res. – volume: 213 start-page: 1 year: 2014 end-page: 9 ident: bb0090 article-title: Which strategy is best to predict soil properties of a local site from a national Vis–NIR database? publication-title: Geoderma – volume: 406 year: 2022 ident: bib291 article-title: To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library publication-title: Geoderma – volume: 293 start-page: 54 year: 2017 end-page: 63 ident: bb0130 article-title: Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: effects of spiking on model applicability publication-title: Geoderma – year: 2017 ident: bb0150 article-title: Using R for Digital Soil Mapping, Progress in Soil Science – volume: 22 start-page: 695 year: 2008 end-page: 700 ident: bb0025 article-title: A bootstrap-based strategy for spectral interval selection in PLS regression publication-title: J. Chemometr. A J. Chemometrics Soc. – year: 2015 ident: bb0165 article-title: Misc functions of the department of statistics, probability theory group (formerly: E1071) publication-title: Package e1071. TU Wien – volume: 181 start-page: 13 year: 2016 end-page: 19 ident: bb0270 article-title: Selection of “local” models for prediction of soil organic matter using a regional soil Vis-nir spectral library publication-title: Soil Sci. – year: 1998 ident: bb0080 article-title: World Reference Base for Soil Resources – volume: 82 start-page: 1231 year: 2018 end-page: 1242 ident: bb0110 article-title: Transferability of Vis-NIR models for soil organic carbon estimation between two study areas by using spiking publication-title: Soil Sci. Soc. Am. J. – volume: 340 start-page: 38 year: 2019 end-page: 48 ident: bb0145 article-title: Digital soil mapping based site-specific nutrient management in a sugarcane field in Burdekin publication-title: Geoderma – year: 2015 ident: bb0135 article-title: Caret: classification and regression training publication-title: Astrophysics Source Code Library – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geodrs.2022.e00566_bb0030 – ident: 10.1016/j.geodrs.2022.e00566_bb0020 – volume: 1 start-page: 169 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0050 article-title: Mineral nutrition and fertilization of sugarcane publication-title: Sugarcane Technol. Res. – volume: 22 year: 2020 ident: 10.1016/j.geodrs.2022.e00566_bb0190 article-title: Developing a soil spectral library using a low-cost NIR spectrometer for precision fertilization in Indonesia publication-title: Geoderma Reg. – volume: 346 start-page: 18 year: 2019 ident: 10.1016/j.geodrs.2022.e00566_bb0280 article-title: Digital regolith mapping of clay across the Ashley irrigation area using electromagnetic induction data and inversion modelling publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.033 – volume: 155 start-page: 501 year: 2016 ident: 10.1016/j.geodrs.2022.e00566_bb0100 article-title: Do we really need large spectral libraries for local scale SOC assessment with NIR spectroscopy? publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.07.008 – year: 2017 ident: 10.1016/j.geodrs.2022.e00566_bb0150 – volume: 293 start-page: 54 year: 2017 ident: 10.1016/j.geodrs.2022.e00566_bb0130 article-title: Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: effects of spiking on model applicability publication-title: Geoderma doi: 10.1016/j.geoderma.2017.01.030 – year: 2016 ident: 10.1016/j.geodrs.2022.e00566_bb0125 – volume: 158 start-page: 46 year: 2010 ident: 10.1016/j.geodrs.2022.e00566_bb0230 article-title: Using data mining to model and interpret soil diffuse reflectance spectra publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.025 – volume: 109 start-page: 991 issue: 507 year: 2014 ident: 10.1016/j.geodrs.2022.e00566_bb0075 article-title: Estimation and accuracy after model selection publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.823775 – volume: 22 start-page: 695 year: 2008 ident: 10.1016/j.geodrs.2022.e00566_bb0025 article-title: A bootstrap-based strategy for spectral interval selection in PLS regression publication-title: J. Chemometr. A J. Chemometrics Soc. – volume: 38 start-page: 150 year: 1974 ident: 10.1016/j.geodrs.2022.e00566_bb0045 article-title: Loss-on-ignition as an estimate of soil organic matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1974.03615995003800010046x – year: 1998 ident: 10.1016/j.geodrs.2022.e00566_bb0080 – volume: 193 year: 2022 ident: 10.1016/j.geodrs.2022.e00566_bb0260 article-title: Unravelling drivers of field-scale digital mapping of topsoil organic carbon and its implications for nitrogen practices publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106640 – volume: 27 issue: 11 year: 2010 ident: 10.1016/j.geodrs.2022.e00566_bib292 article-title: Concepts and value of the nitrogen guidelines contained in the Australian sugar industry’s ‘six easy steps’ nutrient management program publication-title: Proc. Int. Soc Sugar Cane Technol. – volume: 39 start-page: 923 issue: 3 year: 2010 ident: 10.1016/j.geodrs.2022.e00566_bb0255 article-title: Spectroscopic models of soil organic carbon in Florida, USA publication-title: J. Environ. Qual. doi: 10.2134/jeq2009.0314 – start-page: 173 year: 2020 ident: 10.1016/j.geodrs.2022.e00566_bb0285 article-title: Determination of the optimal mathematical model, sample size, digital data and transect spacing to map CEC (Cation exchange capacity) in a sugarcane field publication-title: Comput. Electron. Agric. – volume: 82 start-page: 1231 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0110 article-title: Transferability of Vis-NIR models for soil organic carbon estimation between two study areas by using spiking publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.03.0099 – volume: 406 year: 2022 ident: 10.1016/j.geodrs.2022.e00566_bib291 article-title: To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115501 – volume: 7 start-page: 90 year: 2017 ident: 10.1016/j.geodrs.2022.e00566_bb0040 article-title: An advanced analytical approach for spectral-based modelling of soil properties publication-title: Int J Emerg Technol Adv Eng – volume: 181 start-page: 13 year: 2016 ident: 10.1016/j.geodrs.2022.e00566_bb0270 article-title: Selection of “local” models for prediction of soil organic matter using a regional soil Vis-nir spectral library publication-title: Soil Sci. doi: 10.1097/SS.0000000000000132 – volume: 182 year: 2021 ident: 10.1016/j.geodrs.2022.e00566_bb0290 article-title: Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: effects of multiple calibration models and spiking publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.105990 – volume: 107 start-page: 163 year: 2010 ident: 10.1016/j.geodrs.2022.e00566_bb0245 article-title: Visible and near infrared spectroscopy in soil science publication-title: Adv. Agron. doi: 10.1016/S0065-2113(10)07005-7 – volume: 84 start-page: 314 issue: 2 year: 2019 ident: 10.1016/j.geodrs.2022.e00566_bb0010 article-title: Field-scale digital soil mapping of clay: combining different proximal sensed data and comparing various statistical models publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20008 – volume: 340 start-page: 38 year: 2019 ident: 10.1016/j.geodrs.2022.e00566_bb0145 article-title: Digital soil mapping based site-specific nutrient management in a sugarcane field in Burdekin publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.033 – volume: 340 start-page: 279 year: 2019 ident: 10.1016/j.geodrs.2022.e00566_bb0195 article-title: Transfer learning to localise a continental soil Vis-NIR calibration model publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.009 – volume: 28 start-page: 1201 year: 2009 ident: 10.1016/j.geodrs.2022.e00566_bb0220 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 – volume: 207 start-page: 304 issue: 2–4 year: 2007 ident: 10.1016/j.geodrs.2022.e00566_bb0200 article-title: Random forests as a tool for ecohydrological distribution modelling publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2007.05.011 – volume: 22 start-page: 96 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0070 article-title: Impact of subsampling and tree depth on random forests publication-title: ESAIM: Probabil. Stat. doi: 10.1051/ps/2018008 – volume: 57 start-page: 1671 year: 2014 ident: 10.1016/j.geodrs.2022.e00566_bb0240 article-title: Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-013-4808-x – year: 1998 ident: 10.1016/j.geodrs.2022.e00566_bb0105 – volume: 32 start-page: 1378 year: 2006 ident: 10.1016/j.geodrs.2022.e00566_bb0170 article-title: A conditioned Latin hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – volume: 196 year: 2021 ident: 10.1016/j.geodrs.2022.e00566_bb0015 article-title: Proximally sensed digital data library to predict topsoil clay across multiple sugarcane fields of Australia: applicability of local and universal support vector machine publication-title: CATENA doi: 10.1016/j.catena.2020.104934 – volume: 151 start-page: 469 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0180 article-title: Optimal sample selection for measurement of soil organic carbon using on-line Vis-NIR spectroscopy publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.06.042 – volume: 82 start-page: 1347 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0275 article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.03.0100 – volume: 17 start-page: 537 year: 2003 ident: 10.1016/j.geodrs.2022.e00566_bb0120 article-title: Robust methods for partial least squares regression publication-title: J. Chemometr. A J. Chemometrics Soc. – start-page: 343 year: 1992 ident: 10.1016/j.geodrs.2022.e00566_bb0205 article-title: Learning with continuous classes, 5th Australian joint conference on artificial intelligence publication-title: World Scientific – volume: 10 start-page: 28 issue: 1 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0115 article-title: Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture publication-title: Remote Sens. doi: 10.3390/rs10010028 – volume: 34 start-page: 219 issue: 2 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0060 article-title: Identifying soil management zones in a sugarcane field using proximal sensed electromagnetic induction and gamma-ray spectrometry data publication-title: Soil Use Manag. doi: 10.1111/sum.12410 – start-page: 341 year: 2007 ident: 10.1016/j.geodrs.2022.e00566_bb0225 – volume: 52 start-page: 394 year: 2015 ident: 10.1016/j.geodrs.2022.e00566_bb0265 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – year: 2015 ident: 10.1016/j.geodrs.2022.e00566_bb0135 article-title: Caret: classification and regression training – start-page: 255 year: 1989 ident: 10.1016/j.geodrs.2022.e00566_bb0140 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – start-page: 3 year: 2014 ident: 10.1016/j.geodrs.2022.e00566_bb0250 article-title: An introduction to the prospectr package – volume: 6 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0185 article-title: In search of an optimum sampling lgorithm for prediction of soil properties from infrared spectra publication-title: PeerJ doi: 10.7717/peerj.5722 – year: 2015 ident: 10.1016/j.geodrs.2022.e00566_bb0165 article-title: Misc functions of the department of statistics, probability theory group (formerly: E1071) – year: 2005 ident: 10.1016/j.geodrs.2022.e00566_bb0155 – volume: 119 start-page: 582 year: 2014 ident: 10.1016/j.geodrs.2022.e00566_bb0085 article-title: Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression publication-title: Talanta doi: 10.1016/j.talanta.2013.11.056 – volume: 27 year: 2021 ident: 10.1016/j.geodrs.2022.e00566_bb0055 article-title: Comparison of PLS and SVM models for soil organic matter and particle size using Vis-NIR spectral libraries publication-title: Geoderma Reg. – year: 2007 ident: 10.1016/j.geodrs.2022.e00566_bb0175 – volume: 6 year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0065 article-title: Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy publication-title: PeerJ doi: 10.7717/peerj.5714 – volume: 213 start-page: 1 year: 2014 ident: 10.1016/j.geodrs.2022.e00566_bb0090 article-title: Which strategy is best to predict soil properties of a local site from a national Vis–NIR database? publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.016 – year: 2011 ident: 10.1016/j.geodrs.2022.e00566_bb0160 article-title: pls: Partial least squares and principal component regression – volume: 195 start-page: 268 year: 2013 ident: 10.1016/j.geodrs.2022.e00566_bb0210 article-title: The spectrum-based learner: a new local approach for modeling soil Vis–NIR spectra of complex datasets publication-title: Geoderma doi: 10.1016/j.geoderma.2012.12.014 – year: 2018 ident: 10.1016/j.geodrs.2022.e00566_bb0035 – year: 2011 ident: 10.1016/j.geodrs.2022.e00566_bb0215 – volume: 125 start-page: 93 year: 2014 ident: 10.1016/j.geodrs.2022.e00566_bb0005 article-title: GlobalSoilMap: toward a fine-resolution global grid of soil properties publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800137-0.00003-0 – volume: 146 start-page: 403 year: 2008 ident: 10.1016/j.geodrs.2022.e00566_bb0095 article-title: Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study publication-title: Geoderma doi: 10.1016/j.geoderma.2008.06.011 – volume: 354 year: 2019 ident: 10.1016/j.geodrs.2022.e00566_bb0235 article-title: Strategies for the efficient estimation of soil organic carbon at the field scale with Vis-NIR spectroscopy: spectral libraries and spiking vs. local calibrations publication-title: Geoderma doi: 10.1016/j.geoderma.2019.07.014 |
SSID | ssj0002953762 |
Score | 2.3693552 |
Snippet | To maintain profitability in sugarcane areas of Australia, soil nutrients need to be applied to replace losses to biomass production. For example, nitrogen... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00566 |
SubjectTerms | Australia biomass production calibration Leptosols Library Modelling nitrogen fertilizers prediction profitability soil organic carbon Soil organic carbon (SOC) Solonetz spectroscopy sugarcane Sugarcane fields support vector machines topsoil Vertisols Vis–NIR |
Title | Soil organic carbon (SOC) prediction in Australian sugarcane fields using Vis–NIR spectroscopy with different model setting approaches |
URI | https://dx.doi.org/10.1016/j.geodrs.2022.e00566 https://www.proquest.com/docview/2718347857 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66XryIouKbETzooa5N2m57lEVZXVjB9XUrSZouFWmX7e7Bm0fv_kN_iTNpqyiI4KkPktLOJPmmyeT7GDtAFFFBmkhHRCp1PKMj7HOhxDPCbzfxubRsn4Ogd-tdPvgPc6zb7IWhtMp67K_GdDta13fatTXb4yxrD7mwlEEe5zYw9-bZAkd0PWmxhdOLfm_wOdXCI-Is4VZmzucO1Wk20dlMr5EpkglRd3N-bIgbM_gNpH4M1xaDzpfZUh08wmn1fitszuSr7HVYZE9QqTNp0HKiihwOh1fdIxhPaBmGTA9ZDl_TGlDORtjAZW7AZrCVQOnvI7jLyveXt8HFNdgNmER0WYyfgeZqoVFSmYIVz4HS2IxpaEjJTbnGbs_Pbro9p9ZXcLQQ0dTRbqi4lgkRvggpuY6kciWJjnOTYL9PTvDnzAgiiUsD5Uccod54GOAKg5YTiVhnrbzIzQaDEN1gtOu5Hk-9ThhEqeJ-qBLpkx6WH20y0Rg01jX5OGlgPMVNltljXLkhJjfElRs2mfNZa1yRb_xRvtP4Kv7WiGLEhz9q7jeujbF_0aIJ-qCYYSEEb4Gf5He2_v30bbZIV1Vq2g5rTSczs4uxzFTt1W2Vjv3r-_4HuY32SA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNoLAtGqlNcg9dAe0m3sJJscVytWuzy2UhcqbpbtOKtUKFltdg_cOHLnH_JLmHESEEgIiVuU2FEyM54Z2-PvY-w7RhEdZanyRKIzL7AmwTEXK7yi-O2nIVcO7XMcDS-C48vwcoX127MwVFbZ-P7apztv3dzpNNLszPK8M-HCQQYFnLvEPPjA1gidCs18rTc6GY4fl1p4Qpgl3NHMhdyjPu0hOlfpNbVlOifobs5_WcLGjF4LUi_ctYtBgw223iSP0Ku_b5Ot2GKL3U7K_ApqdiYDRs11WcCPyZ_-T5jNaRuGRA95AU_LGlAtp2jgqrDgKtgqoPL3KfzLq_ubu_HoL7gDmAR0Wc6ugdZqoWVSWYAjz4HKuoppaEHJbfWZXQyOzvtDr-FX8IwQycIzfqy5USkBvgiluEmU9hWRjnOb4rhPf-PkzAoCicsiHSYcQ70NMMEVFiUnUvGFrRZlYb8yiFEN1viBH_As6MZRkmkexjpVIfFhhck2E61ApWnAx4kD40q2VWb_Za0GSWqQtRq2mffYa1aDb7zRvtvqSj4zIonx4Y2eh61qJY4v2jRBHZRLbITBW-Avhd1v7377Afs4PD87laej8ckO-0RP6jK1Xba6mC_tHuY1C73f2O0DtJL3lA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+organic+carbon+%28SOC%29+prediction+in+Australian+sugarcane+fields+using+Vis%E2%80%93NIR+spectroscopy+with+different+model+setting+approaches&rft.jtitle=Geoderma+Regional&rft.au=Zhao%2C+Xueyu&rft.au=Zhao%2C+Dongxue&rft.au=Wang%2C+Jie&rft.au=Triantafilis%2C+John&rft.date=2022-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=30+p.e00566-&rft_id=info:doi/10.1016%2Fj.geodrs.2022.e00566&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |