Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal

Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membran...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 642; p. 119971
Main Authors Wang, Zhen, You, Xinda, Yang, Chao, Li, Wenwen, Li, Yafei, Li, Ya, Shen, Jianliang, Zhang, Runnan, Su, Yanlei, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membranes. In particular, branched amino macromolecules (BAMs) with different charged group numbers and molecular sizes were selected as aqueous monomers, allowing for wide-range-tunable membrane chargeability. We found that larger BAMs tend to form intramolecularly crosslinked networks with more amino residues, conferring membrane chargeability up to +5.53 mC m−2. Besides, the slower diffusion of larger BAMs also led to ultrathin membranes down to 9.0 nm in thickness. The optimal composite nanofiltration membrane displayed a high rejection to multivalent cations (e.g., MgCl2 rejection of 98.7%) with ultrahigh pure water permeance of 31.5 L m−2 h−1 bar−1, which was around 2–10 times higher than that of the reported positively charged nanofiltration membranes. Our monomer design strategy for interfacial polymerization may evolve into a facile approach to constructing advanced charged membranes. [Display omitted] •Ultrathin positively charged polyamide membranes were made by IP process.•The membrane chargeability was tuned by unreacted amino groups in PEI molecules.•The membrane thickness was reduced by decreasing the diffusion rate of PEI in IP.•The membrane exhibits 31.5 (L m−2 h−1 bar −1) water flux, 98.7% MgCl2 rejection.
AbstractList Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membranes. In particular, branched amino macromolecules (BAMs) with different charged group numbers and molecular sizes were selected as aqueous monomers, allowing for wide-range-tunable membrane chargeability. We found that larger BAMs tend to form intramolecularly crosslinked networks with more amino residues, conferring membrane chargeability up to +5.53 mC m−2. Besides, the slower diffusion of larger BAMs also led to ultrathin membranes down to 9.0 nm in thickness. The optimal composite nanofiltration membrane displayed a high rejection to multivalent cations (e.g., MgCl2 rejection of 98.7%) with ultrahigh pure water permeance of 31.5 L m−2 h−1 bar−1, which was around 2–10 times higher than that of the reported positively charged nanofiltration membranes. Our monomer design strategy for interfacial polymerization may evolve into a facile approach to constructing advanced charged membranes. [Display omitted] •Ultrathin positively charged polyamide membranes were made by IP process.•The membrane chargeability was tuned by unreacted amino groups in PEI molecules.•The membrane thickness was reduced by decreasing the diffusion rate of PEI in IP.•The membrane exhibits 31.5 (L m−2 h−1 bar −1) water flux, 98.7% MgCl2 rejection.
Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membranes. In particular, branched amino macromolecules (BAMs) with different charged group numbers and molecular sizes were selected as aqueous monomers, allowing for wide-range-tunable membrane chargeability. We found that larger BAMs tend to form intramolecularly crosslinked networks with more amino residues, conferring membrane chargeability up to +5.53 mC m⁻². Besides, the slower diffusion of larger BAMs also led to ultrathin membranes down to 9.0 nm in thickness. The optimal composite nanofiltration membrane displayed a high rejection to multivalent cations (e.g., MgCl₂ rejection of 98.7%) with ultrahigh pure water permeance of 31.5 L m⁻² h⁻¹ bar⁻¹, which was around 2–10 times higher than that of the reported positively charged nanofiltration membranes. Our monomer design strategy for interfacial polymerization may evolve into a facile approach to constructing advanced charged membranes.
ArticleNumber 119971
Author You, Xinda
Li, Wenwen
Li, Ya
Wang, Zhen
Shen, Jianliang
Zhang, Runnan
Jiang, Zhongyi
Yang, Chao
Su, Yanlei
Li, Yafei
Author_xml – sequence: 1
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  email: 17806242156@163.com
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 2
  givenname: Xinda
  surname: You
  fullname: You, Xinda
  email: xindayou@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-5328-0355
  surname: Yang
  fullname: Yang, Chao
  email: chaoyang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 4
  givenname: Wenwen
  surname: Li
  fullname: Li, Wenwen
  email: liwenwen@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 5
  givenname: Yafei
  surname: Li
  fullname: Li, Yafei
  email: liyafei@gmail.com
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 6
  givenname: Ya
  surname: Li
  fullname: Li, Ya
  email: liya0822@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 7
  givenname: Jianliang
  surname: Shen
  fullname: Shen, Jianliang
  email: shenjianliang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 8
  givenname: Runnan
  surname: Zhang
  fullname: Zhang, Runnan
  email: runnan.zhang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 9
  givenname: Yanlei
  surname: Su
  fullname: Su, Yanlei
  email: suyanlei@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 10
  givenname: Zhongyi
  orcidid: 0000-0002-3813-9943
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
BookMark eNqFkD1PwzAQhi0EEuXjHzB4ZEnxxWmcMCAhxJeExAKz5Thn6sqxi-2C-u9JCRMDTCf53ufV-Tki-z54JOQM2BwY1Ber-YBD0nZeshLmAG0rYI_MoBG84FDyfTJjXNSF4E1zSI5SWjEGgjXtjJhXl6PKS-vpOritGmyP1CsfjP1e2ODpWN5F5THRT5uXNG-86hxSvVTxDVVnnc1bakKkw8Zl-6Ec-kz1xEYcwvhyQg6McglPf-Yxeb27fbl5KJ6e7x9vrp8KzXmbi04vGDSqh6btFLKy7YVmtQGjuegqVYoGtFrwxvQdLqDCRcsAW-yNqOpdmh-T86l3HcP7BlOWg00anRvPD5sky5rXVQ0lsDF6OUV1DClFNFLb_H30-G_rJDC5kytXcpIrd3LlJHeEq1_wOtpBxe1_2NWE4ejgw2KUYwK9xt5G1Fn2wf5d8AXehJsd
CitedBy_id crossref_primary_10_1016_j_advmem_2022_100032
crossref_primary_10_1016_j_apsusc_2023_159021
crossref_primary_10_1039_D4NJ05377J
crossref_primary_10_1007_s11706_024_0706_8
crossref_primary_10_1016_j_memsci_2024_123019
crossref_primary_10_1002_smll_202405159
crossref_primary_10_1016_j_talanta_2025_127957
crossref_primary_10_1016_j_memsci_2023_122133
crossref_primary_10_1016_j_memsci_2025_123812
crossref_primary_10_1016_j_memsci_2022_121083
crossref_primary_10_1016_j_memsci_2022_120590
crossref_primary_10_1016_j_desal_2024_118415
crossref_primary_10_1016_j_desal_2025_118659
crossref_primary_10_1016_j_cej_2025_161671
crossref_primary_10_3390_agronomy14081640
crossref_primary_10_1016_j_seppur_2022_121785
crossref_primary_10_1016_j_desal_2024_117780
crossref_primary_10_1021_acs_iecr_3c00542
crossref_primary_10_1007_s10311_023_01571_9
crossref_primary_10_1016_j_seppur_2022_122272
crossref_primary_10_1016_j_memsci_2024_123405
crossref_primary_10_1016_j_jwpe_2023_104465
crossref_primary_10_1016_j_jwpe_2023_103894
crossref_primary_10_1016_j_cherd_2022_11_042
crossref_primary_10_1016_j_memsci_2025_123989
crossref_primary_10_1039_D4EW00135D
crossref_primary_10_1016_j_memsci_2024_123172
crossref_primary_10_1016_j_memsci_2024_123292
crossref_primary_10_1016_j_cjche_2022_07_011
crossref_primary_10_1016_j_desal_2023_116540
crossref_primary_10_1021_acsapm_3c01590
crossref_primary_10_1016_j_desal_2022_116205
crossref_primary_10_1016_j_desal_2022_115553
crossref_primary_10_1016_j_desal_2024_117379
crossref_primary_10_1016_j_desal_2024_117577
crossref_primary_10_1016_j_jece_2024_112273
crossref_primary_10_1016_j_memsci_2022_120802
crossref_primary_10_1002_app_56130
crossref_primary_10_3390_separations9070180
crossref_primary_10_1002_app_56296
crossref_primary_10_1016_j_seppur_2024_126508
crossref_primary_10_1016_j_desal_2024_118162
crossref_primary_10_1016_j_jtice_2023_104822
crossref_primary_10_1016_j_seppur_2022_122661
crossref_primary_10_1021_acs_iecr_2c00365
crossref_primary_10_1016_j_jwpe_2024_106759
crossref_primary_10_1016_j_jtice_2024_105473
crossref_primary_10_1016_j_memsci_2025_123882
crossref_primary_10_1016_j_jece_2024_112439
crossref_primary_10_1016_j_memsci_2024_122984
crossref_primary_10_1016_j_memsci_2022_121063
crossref_primary_10_1360_SSC_2024_0158
crossref_primary_10_1016_j_memsci_2023_121385
crossref_primary_10_1016_j_memsci_2023_121382
crossref_primary_10_1016_j_polymer_2025_128218
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1016_j_desal_2024_117389
crossref_primary_10_1021_acssuschemeng_4c08611
crossref_primary_10_1016_j_chemosphere_2024_142464
crossref_primary_10_1016_j_cjche_2023_09_015
crossref_primary_10_1021_acs_iecr_3c04647
crossref_primary_10_1016_j_jece_2024_112223
crossref_primary_10_1016_j_memsci_2023_121868
crossref_primary_10_1016_j_desal_2024_118295
crossref_primary_10_1016_j_cej_2023_142689
crossref_primary_10_1016_j_memsci_2024_122418
crossref_primary_10_1016_j_memsci_2023_121988
crossref_primary_10_1016_j_memsci_2024_122778
crossref_primary_10_1016_j_memsci_2023_121388
crossref_primary_10_1016_j_memsci_2023_121863
crossref_primary_10_1016_j_memsci_2025_123964
crossref_primary_10_1016_j_memsci_2023_121551
crossref_primary_10_1016_j_seppur_2024_129124
crossref_primary_10_1016_j_cej_2025_160132
crossref_primary_10_1016_j_desal_2022_116148
Cites_doi 10.1002/pola.10615
10.1016/j.memsci.2020.118176
10.1021/acsami.6b13761
10.1039/D0TA12283A
10.1021/cr500006j
10.1126/science.abf5991
10.1039/D0TA09319J
10.1016/j.apsusc.2016.06.150
10.1021/la020920q
10.1016/j.memsci.2011.11.047
10.1039/C9RA07114H
10.1016/j.memsci.2020.117997
10.1016/S0032-3861(03)00179-4
10.1007/s10853-017-1225-0
10.1016/j.desal.2005.06.041
10.1016/j.memsci.2015.12.038
10.1016/j.memsci.2015.03.017
10.1016/j.isci.2021.102369
10.1038/s41467-020-15771-2
10.1126/science.1200488
10.1016/j.jenvman.2019.110001
10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9
10.1016/j.seppur.2007.09.010
10.1016/j.memsci.2016.05.033
10.1016/j.memsci.2013.04.022
10.1016/j.memsci.2016.07.038
10.1016/j.memsci.2012.12.011
10.1016/j.memsci.2016.10.012
10.1016/S1383-5866(98)00070-7
10.1016/j.memsci.2013.10.003
10.1016/j.memsci.2015.03.050
10.1016/S0376-7388(97)00125-7
10.1002/(SICI)1099-0518(19990701)37:13<1931::AID-POLA6>3.0.CO;2-4
10.1039/C8TA05687K
10.1126/science.aar6308
10.1021/la048085v
10.1016/j.memsci.2014.07.006
10.1021/acsanm.0c01961
10.1039/C9TA08163A
10.1021/acsnano.1c00936
10.1016/j.desal.2004.01.007
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2021.119971
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
ExternalDocumentID 10_1016_j_memsci_2021_119971
S0376738821009145
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-bc5018ad189bae029d7c06f1fc37b4a2781ca538fdbe514e5901e9edf746029d3
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Sun Aug 24 04:05:39 EDT 2025
Tue Jul 01 02:49:50 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Fri Feb 23 02:41:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ultrathin polyamide nanofilms
Polyethyleneimine
Interfacial polymerization
Nanofiltration
Positive charge
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-bc5018ad189bae029d7c06f1fc37b4a2781ca538fdbe514e5901e9edf746029d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3813-9943
0000-0002-5328-0355
PQID 2636461210
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636461210
crossref_citationtrail_10_1016_j_memsci_2021_119971
crossref_primary_10_1016_j_memsci_2021_119971
elsevier_sciencedirect_doi_10_1016_j_memsci_2021_119971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of membrane science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Freger (bib39) 2005; 21
Wang, Wang, Lin, Jin, Gao, Zhu, Jin (bib18) 2018; 9
Zhu, Hou, Zhang, Yuan, Li, Tian, Wang, Zhang, Volodin, Van der Bruggen (bib19) 2018; 6
Zhao, Yao, Ba, Zheng, Economy, Wang (bib28) 2015; 492
Yang, Fang, Wang, Zhang, Zhu, Jin (bib34) 2021
Marchetti, Solomon, Szekely, Livingston (bib5) 2014; 114
Wang, Tsuru, Nakao, Kimura (bib48) 1997; 135
Uliana, Bui, Kamcev, Taylor, Urban, Long (bib15) 2021; 372
Shen, Wang, You, Shi, Xue, Yuan, Li, Guan, Ma, Su, Zhang, Jiang (bib20) 2021; 9
Wang, Wang, Jiang, Sheng, Wei, Li, Wu, Li (bib32) 2020; 3
Qiu, Fang, Shen, Yu, Zhu, Helix-Nielsen, Zhang (bib8) 2021; 15
Sabate, Pujoa, Labanda, Llorens (bib6) 2008; 58
Tan, Chen, Peng, Zhang, Gao (bib17) 2018; 360
Nan, Li, Cao (bib26) 2016; 387
Kiguchi, Aota, Matsumoto (bib41) 2003; 41
Li, You, Li, Yuan, Shen, Zhang, Wu, Su, Jiang (bib13) 2020; 8
Bera, Trivedi, Jewrajka, Ghosh (bib24) 2016; 519
Zhao, Zhang, Hu, Ma, Song, Li (bib9) 2020; 610
Yun, Kwak (bib27) 2020; 260
Fang, Shi, Wang (bib1) 2013; 430
Freger (bib38) 2003; 19
Elimelech, Phillip (bib4) 2011; 333
Ang, Tang, De Guzman, Maganto, Caparanga, Huang, Tsai, Hu, Lee, Lai (bib30) 2020
Ji, An, Zhao, Sun, Lee, Chen, Gao (bib21) 2012; 390
Li, Guo, Shi, Xu, Xu, Teng, Shan, Qian (bib37) 2021; 32
Ma, Su, Li, Zhang, Liu, He, Li, Dong, Wu, Jiang (bib33) 2016; 503
Hashimoto, Mishima, Kodaira (bib43) 1999; 37
Lv, Du, Qiu, Xu (bib22) 2017; 9
Wu, Lin, Feng, Liu, Wang, Yao, Wang (bib3) 2020; 603
Zhang, Guan, Ji, Liu, Jin, Xu (bib40) 2019; 10
Smedberg, Hjertberg, Gustafsson (bib42) 2003; 44
Liu, Wang, Li, Liu, Deng (bib36) 2019; 9
Feng, Xu, Li, Tang, Gao (bib2) 2014; 451
Su, Wang, Wang, Ando, Shintani (bib7) 2006; 191
Liang, Zhu, Liu, Lee, Hung, Wang, Li, Elimelech, Jin, Lin (bib16) 2020; 11
Lee, Bargeman, de Rooij, Kemperman, Benes (bib31) 2017; 523
Hilal, Al-Zoubi, Darwish, Mohammad, Abu Arabi (bib10) 2004; 170
Yuan, Wu, Wu, Liu, You, Zhang, Su, Yang, Shen, Jiang (bib29) 2019; 7
You, Xiao, Wu, Li, Li, Yuan, Zhang, Zhang, Liang, Shen, Jiang (bib14) 2021; 24
Jiang, Karan, Livingston (bib35) 2018; 30
Schaep, Van der Bruggen, Vandecasteele, Wilms (bib45) 1998; 14
Galama, Post, Stuart, Biesheuvel (bib46) 2013; 442
W (bib23) 2011
Mecerreyes, Lee, Hawker, Hedrick, Wursch, Volksen, Magbitang, Huang, Miller (bib44) 2001; 13
Liu, Shi, Wang (bib25) 2015; 486
Zhang, Su, Zhao, Li, Zhao, Jiang (bib11) 2014; 470
Wu, Liu, Wang, Zhang, Wang, Lu, Jia, Hung, Lee (bib12) 2016; 517
Wei, Hong, Zhu, Chen, Lv (bib47) 2017; 52
Zhang (10.1016/j.memsci.2021.119971_bib11) 2014; 470
Tan (10.1016/j.memsci.2021.119971_bib17) 2018; 360
Li (10.1016/j.memsci.2021.119971_bib37) 2021; 32
Lee (10.1016/j.memsci.2021.119971_bib31) 2017; 523
Zhao (10.1016/j.memsci.2021.119971_bib28) 2015; 492
Lv (10.1016/j.memsci.2021.119971_bib22) 2017; 9
Schaep (10.1016/j.memsci.2021.119971_bib45) 1998; 14
Qiu (10.1016/j.memsci.2021.119971_bib8) 2021; 15
Freger (10.1016/j.memsci.2021.119971_bib38) 2003; 19
Smedberg (10.1016/j.memsci.2021.119971_bib42) 2003; 44
Su (10.1016/j.memsci.2021.119971_bib7) 2006; 191
Yuan (10.1016/j.memsci.2021.119971_bib29) 2019; 7
Elimelech (10.1016/j.memsci.2021.119971_bib4) 2011; 333
Wang (10.1016/j.memsci.2021.119971_bib48) 1997; 135
Sabate (10.1016/j.memsci.2021.119971_bib6) 2008; 58
Mecerreyes (10.1016/j.memsci.2021.119971_bib44) 2001; 13
Hashimoto (10.1016/j.memsci.2021.119971_bib43) 1999; 37
Li (10.1016/j.memsci.2021.119971_bib13) 2020; 8
Wu (10.1016/j.memsci.2021.119971_bib3) 2020; 603
W (10.1016/j.memsci.2021.119971_bib23) 2011
Wu (10.1016/j.memsci.2021.119971_bib12) 2016; 517
Liu (10.1016/j.memsci.2021.119971_bib25) 2015; 486
Liang (10.1016/j.memsci.2021.119971_bib16) 2020; 11
Ang (10.1016/j.memsci.2021.119971_bib30) 2020
Nan (10.1016/j.memsci.2021.119971_bib26) 2016; 387
Marchetti (10.1016/j.memsci.2021.119971_bib5) 2014; 114
Ma (10.1016/j.memsci.2021.119971_bib33) 2016; 503
Kiguchi (10.1016/j.memsci.2021.119971_bib41) 2003; 41
Jiang (10.1016/j.memsci.2021.119971_bib35) 2018; 30
Bera (10.1016/j.memsci.2021.119971_bib24) 2016; 519
Freger (10.1016/j.memsci.2021.119971_bib39) 2005; 21
Hilal (10.1016/j.memsci.2021.119971_bib10) 2004; 170
Yang (10.1016/j.memsci.2021.119971_bib34) 2021
Liu (10.1016/j.memsci.2021.119971_bib36) 2019; 9
Wang (10.1016/j.memsci.2021.119971_bib18) 2018; 9
Wang (10.1016/j.memsci.2021.119971_bib32) 2020; 3
Feng (10.1016/j.memsci.2021.119971_bib2) 2014; 451
Zhao (10.1016/j.memsci.2021.119971_bib9) 2020; 610
Zhu (10.1016/j.memsci.2021.119971_bib19) 2018; 6
Yun (10.1016/j.memsci.2021.119971_bib27) 2020; 260
Ji (10.1016/j.memsci.2021.119971_bib21) 2012; 390
Galama (10.1016/j.memsci.2021.119971_bib46) 2013; 442
You (10.1016/j.memsci.2021.119971_bib14) 2021; 24
Fang (10.1016/j.memsci.2021.119971_bib1) 2013; 430
Zhang (10.1016/j.memsci.2021.119971_bib40) 2019; 10
Shen (10.1016/j.memsci.2021.119971_bib20) 2021; 9
Uliana (10.1016/j.memsci.2021.119971_bib15) 2021; 372
Wei (10.1016/j.memsci.2021.119971_bib47) 2017; 52
References_xml – volume: 8
  start-page: 23930
  year: 2020
  end-page: 23938
  ident: bib13
  article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem.
– volume: 30
  year: 2018
  ident: bib35
  article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis
  publication-title: Adv. Mater.
– start-page: 481
  year: 2020
  ident: bib30
  article-title: Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment
  publication-title: Desalination
– volume: 41
  start-page: 606
  year: 2003
  end-page: 615
  ident: bib41
  article-title: Crosslinking polymerization leading to interpenetrating polymer network formation. I. Polyaddition crosslinking reactions of poly(methyl methacrylate-co-2-methacryloyloxyethyl isocyante)s with ethylene glycol resulting in polyurethane networks
  publication-title: J. Polym. Sci., Polym. Chem. Ed.
– volume: 442
  start-page: 131
  year: 2013
  end-page: 139
  ident: bib46
  article-title: Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane-solution interface
  publication-title: J. Membr. Sci.
– volume: 13
  start-page: 204
  year: 2001
  end-page: 208
  ident: bib44
  article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution
  publication-title: Adv. Mater.
– volume: 260
  year: 2020
  ident: bib27
  article-title: Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance
  publication-title: J. Environ. Manag.
– volume: 14
  start-page: 155
  year: 1998
  end-page: 162
  ident: bib45
  article-title: Influence of ion size and charge in nanofiltration
  publication-title: Separ. Purif. Technol.
– volume: 7
  start-page: 25641
  year: 2019
  end-page: 25649
  ident: bib29
  article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes
  publication-title: J. Mater. Chem.
– volume: 24
  year: 2021
  ident: bib14
  article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes
  publication-title: Iscience
– volume: 360
  start-page: 518
  year: 2018
  ident: bib17
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
– volume: 114
  start-page: 10735
  year: 2014
  end-page: 10806
  ident: bib5
  article-title: Molecular separation with organic solvent nanofiltration: a critical review
  publication-title: Chem. Rev.
– volume: 58
  start-page: 424
  year: 2008
  end-page: 428
  ident: bib6
  article-title: Influence of pH and operation variables on biogenic amines nanofiltration
  publication-title: Separ. Purif. Technol.
– volume: 32
  year: 2021
  ident: bib37
  article-title: Analysis of Mg2+/Li+ separation mechanism by charged nanofiltration membranes: visual simulation
  publication-title: Nanotechnology
– volume: 486
  start-page: 169
  year: 2015
  end-page: 176
  ident: bib25
  article-title: Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water
  publication-title: J. Membr. Sci.
– volume: 430
  start-page: 129
  year: 2013
  end-page: 139
  ident: bib1
  article-title: Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening
  publication-title: J. Membr. Sci.
– volume: 191
  start-page: 303
  year: 2006
  end-page: 308
  ident: bib7
  article-title: Rejection of ions by NF membranes for binary electrolyte solutions of NaCl, NaCl, NaNO3, CaCl2 and Ca(NO3)(2)
  publication-title: Desalination
– volume: 9
  year: 2018
  ident: bib18
  article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination
  publication-title: Nat. Commun.
– volume: 52
  start-page: 11701
  year: 2017
  end-page: 11714
  ident: bib47
  article-title: Structure-performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine
  publication-title: J. Mater. Sci.
– volume: 372
  start-page: 296
  year: 2021
  end-page: +
  ident: bib15
  article-title: Ion-capture electrodialysis using multifunctional adsorptive membranes
  publication-title: Science
– volume: 135
  start-page: 19
  year: 1997
  end-page: 32
  ident: bib48
  article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 11
  start-page: 9
  year: 2020
  ident: bib16
  article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation
  publication-title: Nat. Commun.
– start-page: 564
  year: 2011
  ident: bib23
  article-title: Guidelines for Drinking-Water Quality
– volume: 9
  start-page: 35417
  year: 2019
  end-page: 35428
  ident: bib36
  article-title: A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification
  publication-title: RSC Adv.
– volume: 610
  year: 2020
  ident: bib9
  article-title: Efficient removal of perfluorooctane sulphonate by nanofiltration: insights into the effect and mechanism of coexisting inorganic ions and humic acid
  publication-title: J. Membr. Sci.
– volume: 15
  start-page: 7522
  year: 2021
  end-page: 7535
  ident: bib8
  article-title: Ionic dendrimer based polyamide membranes for ion separation
  publication-title: ACS Nano
– volume: 387
  start-page: 521
  year: 2016
  end-page: 528
  ident: bib26
  article-title: Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination
  publication-title: Appl. Surf. Sci.
– volume: 492
  start-page: 620
  year: 2015
  end-page: 629
  ident: bib28
  article-title: Enhancing the performance of polyethylenimine modified nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) for removing sulfamerazine
  publication-title: J. Membr. Sci.
– volume: 10
  year: 2019
  ident: bib40
  article-title: Controllable ion transport by surface-charged graphene oxide membrane
  publication-title: Nat. Commun.
– volume: 603
  year: 2020
  ident: bib3
  article-title: A novel nanofiltration membrane with MimAP Tf 2 N ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio
  publication-title: J. Membr. Sci.
– volume: 170
  start-page: 281
  year: 2004
  end-page: 308
  ident: bib10
  article-title: A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy
  publication-title: Desalination
– volume: 523
  start-page: 487
  year: 2017
  end-page: 496
  ident: bib31
  article-title: Interfacial polymerization of cyanuric chloride and monomeric amines: pH resistant thin film composite polyamine nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 9
  start-page: 8470
  year: 2021
  end-page: 8479
  ident: bib20
  article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 2966
  year: 2017
  end-page: 2972
  ident: bib22
  article-title: Nanocomposite Membranes via the Codeposition of Polydopamine/Polyethylenimin e with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability
  publication-title: ACS Appl. Mater. Interfaces
– volume: 451
  start-page: 103
  year: 2014
  end-page: 110
  ident: bib2
  article-title: Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate
  publication-title: J. Membr. Sci.
– volume: 517
  start-page: 64
  year: 2016
  end-page: 72
  ident: bib12
  article-title: Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection
  publication-title: J. Membr. Sci.
– volume: 470
  start-page: 9
  year: 2014
  end-page: 17
  ident: bib11
  article-title: A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine)
  publication-title: J. Membr. Sci.
– volume: 19
  start-page: 4791
  year: 2003
  end-page: 4797
  ident: bib38
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
– volume: 44
  start-page: 3395
  year: 2003
  end-page: 3405
  ident: bib42
  article-title: Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene
  publication-title: Polymer
– volume: 21
  start-page: 1884
  year: 2005
  end-page: 1894
  ident: bib39
  article-title: Kinetics of film formation by interfacial polycondensation
  publication-title: Langmuir
– volume: 390
  start-page: 243
  year: 2012
  end-page: 253
  ident: bib21
  article-title: Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance
  publication-title: J. Membr. Sci.
– volume: 519
  start-page: 64
  year: 2016
  end-page: 76
  ident: bib24
  article-title: In situ manipulation of properties and performance of polyethyleneimine nanofiltration membranes by polyethyleniminedextran conjugate
  publication-title: J. Membr. Sci.
– volume: 333
  start-page: 712
  year: 2011
  end-page: 717
  ident: bib4
  article-title: The future of seawater desalination: energy, Technology, and the environment
  publication-title: Science
– volume: 6
  start-page: 15701
  year: 2018
  end-page: 15709
  ident: bib19
  article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 9329
  year: 2020
  end-page: 9339
  ident: bib32
  article-title: Positively charged polysulfonamide nanocomposite membranes incorporating hydrophilic triazine-structured COFs for highly efficient nanofiltration
  publication-title: ACS Appl. Nano Mater.
– volume: 503
  start-page: 101
  year: 2016
  end-page: 109
  ident: bib33
  article-title: Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer
  publication-title: J. Membr. Sci.
– start-page: 620
  year: 2021
  ident: bib34
  article-title: Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation
  publication-title: J. Membr. Sci.
– volume: 37
  start-page: 1931
  year: 1999
  end-page: 1941
  ident: bib43
  article-title: Gel formation in cationic polymerization of divinyl ethers. II-2,2-bis{4- (2-vinyloxy)ethoxy phenyl}propane
  publication-title: J. Polym. Sci., Polym. Chem. Ed.
– volume: 41
  start-page: 606
  year: 2003
  ident: 10.1016/j.memsci.2021.119971_bib41
  article-title: Crosslinking polymerization leading to interpenetrating polymer network formation. I. Polyaddition crosslinking reactions of poly(methyl methacrylate-co-2-methacryloyloxyethyl isocyante)s with ethylene glycol resulting in polyurethane networks
  publication-title: J. Polym. Sci., Polym. Chem. Ed.
  doi: 10.1002/pola.10615
– volume: 610
  year: 2020
  ident: 10.1016/j.memsci.2021.119971_bib9
  article-title: Efficient removal of perfluorooctane sulphonate by nanofiltration: insights into the effect and mechanism of coexisting inorganic ions and humic acid
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118176
– volume: 9
  start-page: 2966
  year: 2017
  ident: 10.1016/j.memsci.2021.119971_bib22
  article-title: Nanocomposite Membranes via the Codeposition of Polydopamine/Polyethylenimin e with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13761
– volume: 10
  year: 2019
  ident: 10.1016/j.memsci.2021.119971_bib40
  article-title: Controllable ion transport by surface-charged graphene oxide membrane
  publication-title: Nat. Commun.
– volume: 9
  start-page: 8470
  year: 2021
  ident: 10.1016/j.memsci.2021.119971_bib20
  article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA12283A
– volume: 114
  start-page: 10735
  year: 2014
  ident: 10.1016/j.memsci.2021.119971_bib5
  article-title: Molecular separation with organic solvent nanofiltration: a critical review
  publication-title: Chem. Rev.
  doi: 10.1021/cr500006j
– volume: 372
  start-page: 296
  year: 2021
  ident: 10.1016/j.memsci.2021.119971_bib15
  article-title: Ion-capture electrodialysis using multifunctional adsorptive membranes
  publication-title: Science
  doi: 10.1126/science.abf5991
– volume: 8
  start-page: 23930
  year: 2020
  ident: 10.1016/j.memsci.2021.119971_bib13
  article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA09319J
– volume: 387
  start-page: 521
  year: 2016
  ident: 10.1016/j.memsci.2021.119971_bib26
  article-title: Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.06.150
– volume: 19
  start-page: 4791
  year: 2003
  ident: 10.1016/j.memsci.2021.119971_bib38
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
  doi: 10.1021/la020920q
– volume: 390
  start-page: 243
  year: 2012
  ident: 10.1016/j.memsci.2021.119971_bib21
  article-title: Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.11.047
– volume: 9
  start-page: 35417
  year: 2019
  ident: 10.1016/j.memsci.2021.119971_bib36
  article-title: A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification
  publication-title: RSC Adv.
  doi: 10.1039/C9RA07114H
– volume: 603
  year: 2020
  ident: 10.1016/j.memsci.2021.119971_bib3
  article-title: A novel nanofiltration membrane with MimAP Tf 2 N ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117997
– volume: 44
  start-page: 3395
  year: 2003
  ident: 10.1016/j.memsci.2021.119971_bib42
  article-title: Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene
  publication-title: Polymer
  doi: 10.1016/S0032-3861(03)00179-4
– volume: 52
  start-page: 11701
  year: 2017
  ident: 10.1016/j.memsci.2021.119971_bib47
  article-title: Structure-performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1225-0
– volume: 191
  start-page: 303
  year: 2006
  ident: 10.1016/j.memsci.2021.119971_bib7
  article-title: Rejection of ions by NF membranes for binary electrolyte solutions of NaCl, NaCl, NaNO3, CaCl2 and Ca(NO3)(2)
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.06.041
– volume: 503
  start-page: 101
  year: 2016
  ident: 10.1016/j.memsci.2021.119971_bib33
  article-title: Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.12.038
– volume: 9
  year: 2018
  ident: 10.1016/j.memsci.2021.119971_bib18
  article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination
  publication-title: Nat. Commun.
– volume: 492
  start-page: 620
  year: 2015
  ident: 10.1016/j.memsci.2021.119971_bib28
  article-title: Enhancing the performance of polyethylenimine modified nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) for removing sulfamerazine
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.03.017
– volume: 24
  year: 2021
  ident: 10.1016/j.memsci.2021.119971_bib14
  article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes
  publication-title: Iscience
  doi: 10.1016/j.isci.2021.102369
– volume: 11
  start-page: 9
  year: 2020
  ident: 10.1016/j.memsci.2021.119971_bib16
  article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15771-2
– volume: 333
  start-page: 712
  year: 2011
  ident: 10.1016/j.memsci.2021.119971_bib4
  article-title: The future of seawater desalination: energy, Technology, and the environment
  publication-title: Science
  doi: 10.1126/science.1200488
– volume: 260
  year: 2020
  ident: 10.1016/j.memsci.2021.119971_bib27
  article-title: Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.110001
– start-page: 564
  year: 2011
  ident: 10.1016/j.memsci.2021.119971_bib23
– volume: 13
  start-page: 204
  year: 2001
  ident: 10.1016/j.memsci.2021.119971_bib44
  article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9
– volume: 32
  year: 2021
  ident: 10.1016/j.memsci.2021.119971_bib37
  article-title: Analysis of Mg2+/Li+ separation mechanism by charged nanofiltration membranes: visual simulation
  publication-title: Nanotechnology
– volume: 58
  start-page: 424
  year: 2008
  ident: 10.1016/j.memsci.2021.119971_bib6
  article-title: Influence of pH and operation variables on biogenic amines nanofiltration
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2007.09.010
– start-page: 481
  year: 2020
  ident: 10.1016/j.memsci.2021.119971_bib30
  article-title: Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment
  publication-title: Desalination
– volume: 517
  start-page: 64
  year: 2016
  ident: 10.1016/j.memsci.2021.119971_bib12
  article-title: Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.05.033
– volume: 442
  start-page: 131
  year: 2013
  ident: 10.1016/j.memsci.2021.119971_bib46
  article-title: Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane-solution interface
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.022
– volume: 519
  start-page: 64
  year: 2016
  ident: 10.1016/j.memsci.2021.119971_bib24
  article-title: In situ manipulation of properties and performance of polyethyleneimine nanofiltration membranes by polyethyleniminedextran conjugate
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.07.038
– volume: 430
  start-page: 129
  year: 2013
  ident: 10.1016/j.memsci.2021.119971_bib1
  article-title: Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.12.011
– volume: 523
  start-page: 487
  year: 2017
  ident: 10.1016/j.memsci.2021.119971_bib31
  article-title: Interfacial polymerization of cyanuric chloride and monomeric amines: pH resistant thin film composite polyamine nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.10.012
– volume: 14
  start-page: 155
  year: 1998
  ident: 10.1016/j.memsci.2021.119971_bib45
  article-title: Influence of ion size and charge in nanofiltration
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/S1383-5866(98)00070-7
– volume: 451
  start-page: 103
  year: 2014
  ident: 10.1016/j.memsci.2021.119971_bib2
  article-title: Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.10.003
– volume: 486
  start-page: 169
  year: 2015
  ident: 10.1016/j.memsci.2021.119971_bib25
  article-title: Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.03.050
– volume: 135
  start-page: 19
  year: 1997
  ident: 10.1016/j.memsci.2021.119971_bib48
  article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(97)00125-7
– volume: 30
  year: 2018
  ident: 10.1016/j.memsci.2021.119971_bib35
  article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis
  publication-title: Adv. Mater.
– volume: 37
  start-page: 1931
  year: 1999
  ident: 10.1016/j.memsci.2021.119971_bib43
  article-title: Gel formation in cationic polymerization of divinyl ethers. II-2,2-bis{4- (2-vinyloxy)ethoxy phenyl}propane
  publication-title: J. Polym. Sci., Polym. Chem. Ed.
  doi: 10.1002/(SICI)1099-0518(19990701)37:13<1931::AID-POLA6>3.0.CO;2-4
– volume: 6
  start-page: 15701
  year: 2018
  ident: 10.1016/j.memsci.2021.119971_bib19
  article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA05687K
– start-page: 620
  year: 2021
  ident: 10.1016/j.memsci.2021.119971_bib34
  article-title: Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation
  publication-title: J. Membr. Sci.
– volume: 360
  start-page: 518
  year: 2018
  ident: 10.1016/j.memsci.2021.119971_bib17
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
  doi: 10.1126/science.aar6308
– volume: 21
  start-page: 1884
  year: 2005
  ident: 10.1016/j.memsci.2021.119971_bib39
  article-title: Kinetics of film formation by interfacial polycondensation
  publication-title: Langmuir
  doi: 10.1021/la048085v
– volume: 470
  start-page: 9
  year: 2014
  ident: 10.1016/j.memsci.2021.119971_bib11
  article-title: A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine)
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.07.006
– volume: 3
  start-page: 9329
  year: 2020
  ident: 10.1016/j.memsci.2021.119971_bib32
  article-title: Positively charged polysulfonamide nanocomposite membranes incorporating hydrophilic triazine-structured COFs for highly efficient nanofiltration
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01961
– volume: 7
  start-page: 25641
  year: 2019
  ident: 10.1016/j.memsci.2021.119971_bib29
  article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA08163A
– volume: 15
  start-page: 7522
  year: 2021
  ident: 10.1016/j.memsci.2021.119971_bib8
  article-title: Ionic dendrimer based polyamide membranes for ion separation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00936
– volume: 170
  start-page: 281
  year: 2004
  ident: 10.1016/j.memsci.2021.119971_bib10
  article-title: A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy
  publication-title: Desalination
  doi: 10.1016/j.desal.2004.01.007
SSID ssj0017089
Score 2.6368585
Snippet Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119971
SubjectTerms branched chain amino acids
cation-exchange membranes
electrical charges
heavy metals
Interfacial polymerization
magnesium chloride
metal ions
nanocomposites
Nanofiltration
polyamides
Polyethyleneimine
polymerization
Positive charge
Ultrathin polyamide nanofilms
water purification
Title Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal
URI https://dx.doi.org/10.1016/j.memsci.2021.119971
https://www.proquest.com/docview/2636461210
Volume 642
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1wfSwSvdZM2bdqjiLIq7kUXvIWkTbCy2y66e_Dib3cmbRcVRPCaJmmYTGe-pDPfEHIW64LBMxdkiUsDIWQWaI1hYgbgRMxzZgtMcL4fJcOxuH2Kn1bIZZcLg2GVre1vbLq31m3LoJXmYFaWgweGRCQRIEQOOIELTDSHd6GWn38swzy4ZL4MHnYOsHeXPudjvKZ2ClPDKTHkYDuyTPLf3NMPQ-29z_UW2WxhI71oVrZNVmy1Qza-kAnuEjeeINPsc1nRWT1519OysLTSFdbkbrlxKawETsdg3Sjev9L5wmdOUU-XZBvG7ncKMJb6OENQQnBJtLnUo692WkPLHhlfXz1eDoO2ikKQR1E2D0yOnH264GlmtGVhVsicJY67PJJG6FCmPNdg9lxhLKAni8moNoMtkiLB3tE-Wa3qyh4QmpoC4GRoXMKcsIKZWErHbe6ikBmjRY9EnfBU3lKMY6WLiepiyV5UI3KFIleNyHskWI6aNRQbf_SX3b6ob6qiwAv8MfK020YFXxH-GgGR14s3FSZRIjyZ2uG_Zz8i6yHmRmC1mPiYrM5fF_YEEMvc9L1K9snaxc3dcPQJv17uoA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSD-MS3EbwuTXazm-5RitL66EUL3kKym2Cl3RZtD_57Z_YhKojgNZuEMJOd-ZLMfANwEZuc4zcfpInvBFKqNDCGwsQswolYZNzllOB8P0h6Q3nzFD8tQbfJhaGwytr2Vza9tNZ1S7uWZns2GrUfOBGRRIgQBeIEIeNlWCF2qrgFK5f9297g8zFB8bISHvUPaECTQVeGeU3cBGfHg2Io0HykqRK_eagftrp0QNebsFEjR3ZZLW4LllyxDetf-AR3wA_HRDb7PCrYbDp-N5NR7lhhCirLXdPjMlwJHpDRwDG6gmXzRZk8xUrGJFeRdr8zRLKsDDXEfYheiVX3euzVTabYsgvD66vHbi-oCykEWRSl88BmRNtnctFJrXE8THOV8cQLn0XKShOqjsgMWj6fW4cAylE-qktRS0om1Dvag1YxLdw-sI7NEVGG1ifcSye5jZXywmU-Crm1Rh5A1AhPZzXLOBW7GOsmnOxFVyLXJHJdifwAgs9Rs4pl44_-qtGL_rZbNDqCP0aeN2rU-CPR6wiKfLp402ESJbLkUzv89-xnsNp7vL_Td_3B7RGshZQqQcVj4mNozV8X7gQBzNye1hv0A-gP8VE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+polyamide+nanofiltration+membranes+with+tunable+chargeability+for+multivalent+cation+removal&rft.jtitle=Journal+of+membrane+science&rft.au=Wang%2C+Zhen&rft.au=You%2C+Xinda&rft.au=Yang%2C+Chao&rft.au=Li%2C+Wenwen&rft.date=2022-02-15&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=642&rft_id=info:doi/10.1016%2Fj.memsci.2021.119971&rft.externalDocID=S0376738821009145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon