Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal
Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membran...
Saved in:
Published in | Journal of membrane science Vol. 642; p. 119971 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membranes. In particular, branched amino macromolecules (BAMs) with different charged group numbers and molecular sizes were selected as aqueous monomers, allowing for wide-range-tunable membrane chargeability. We found that larger BAMs tend to form intramolecularly crosslinked networks with more amino residues, conferring membrane chargeability up to +5.53 mC m−2. Besides, the slower diffusion of larger BAMs also led to ultrathin membranes down to 9.0 nm in thickness. The optimal composite nanofiltration membrane displayed a high rejection to multivalent cations (e.g., MgCl2 rejection of 98.7%) with ultrahigh pure water permeance of 31.5 L m−2 h−1 bar−1, which was around 2–10 times higher than that of the reported positively charged nanofiltration membranes. Our monomer design strategy for interfacial polymerization may evolve into a facile approach to constructing advanced charged membranes.
[Display omitted]
•Ultrathin positively charged polyamide membranes were made by IP process.•The membrane chargeability was tuned by unreacted amino groups in PEI molecules.•The membrane thickness was reduced by decreasing the diffusion rate of PEI in IP.•The membrane exhibits 31.5 (L m−2 h−1 bar −1) water flux, 98.7% MgCl2 rejection. |
---|---|
AbstractList | Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membranes. In particular, branched amino macromolecules (BAMs) with different charged group numbers and molecular sizes were selected as aqueous monomers, allowing for wide-range-tunable membrane chargeability. We found that larger BAMs tend to form intramolecularly crosslinked networks with more amino residues, conferring membrane chargeability up to +5.53 mC m−2. Besides, the slower diffusion of larger BAMs also led to ultrathin membranes down to 9.0 nm in thickness. The optimal composite nanofiltration membrane displayed a high rejection to multivalent cations (e.g., MgCl2 rejection of 98.7%) with ultrahigh pure water permeance of 31.5 L m−2 h−1 bar−1, which was around 2–10 times higher than that of the reported positively charged nanofiltration membranes. Our monomer design strategy for interfacial polymerization may evolve into a facile approach to constructing advanced charged membranes.
[Display omitted]
•Ultrathin positively charged polyamide membranes were made by IP process.•The membrane chargeability was tuned by unreacted amino groups in PEI molecules.•The membrane thickness was reduced by decreasing the diffusion rate of PEI in IP.•The membrane exhibits 31.5 (L m−2 h−1 bar −1) water flux, 98.7% MgCl2 rejection. Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability remains a great challenge. Here, we proposed a charged-monomer-engineered interfacial polymerization toward positively charged polyamide membranes. In particular, branched amino macromolecules (BAMs) with different charged group numbers and molecular sizes were selected as aqueous monomers, allowing for wide-range-tunable membrane chargeability. We found that larger BAMs tend to form intramolecularly crosslinked networks with more amino residues, conferring membrane chargeability up to +5.53 mC m⁻². Besides, the slower diffusion of larger BAMs also led to ultrathin membranes down to 9.0 nm in thickness. The optimal composite nanofiltration membrane displayed a high rejection to multivalent cations (e.g., MgCl₂ rejection of 98.7%) with ultrahigh pure water permeance of 31.5 L m⁻² h⁻¹ bar⁻¹, which was around 2–10 times higher than that of the reported positively charged nanofiltration membranes. Our monomer design strategy for interfacial polymerization may evolve into a facile approach to constructing advanced charged membranes. |
ArticleNumber | 119971 |
Author | You, Xinda Li, Wenwen Li, Ya Wang, Zhen Shen, Jianliang Zhang, Runnan Jiang, Zhongyi Yang, Chao Su, Yanlei Li, Yafei |
Author_xml | – sequence: 1 givenname: Zhen surname: Wang fullname: Wang, Zhen email: 17806242156@163.com organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 2 givenname: Xinda surname: You fullname: You, Xinda email: xindayou@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 3 givenname: Chao orcidid: 0000-0002-5328-0355 surname: Yang fullname: Yang, Chao email: chaoyang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 4 givenname: Wenwen surname: Li fullname: Li, Wenwen email: liwenwen@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 5 givenname: Yafei surname: Li fullname: Li, Yafei email: liyafei@gmail.com organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 6 givenname: Ya surname: Li fullname: Li, Ya email: liya0822@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 7 givenname: Jianliang surname: Shen fullname: Shen, Jianliang email: shenjianliang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 8 givenname: Runnan surname: Zhang fullname: Zhang, Runnan email: runnan.zhang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 9 givenname: Yanlei surname: Su fullname: Su, Yanlei email: suyanlei@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 10 givenname: Zhongyi orcidid: 0000-0002-3813-9943 surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China |
BookMark | eNqFkD1PwzAQhi0EEuXjHzB4ZEnxxWmcMCAhxJeExAKz5Thn6sqxi-2C-u9JCRMDTCf53ufV-Tki-z54JOQM2BwY1Ber-YBD0nZeshLmAG0rYI_MoBG84FDyfTJjXNSF4E1zSI5SWjEGgjXtjJhXl6PKS-vpOritGmyP1CsfjP1e2ODpWN5F5THRT5uXNG-86hxSvVTxDVVnnc1bakKkw8Zl-6Ec-kz1xEYcwvhyQg6McglPf-Yxeb27fbl5KJ6e7x9vrp8KzXmbi04vGDSqh6btFLKy7YVmtQGjuegqVYoGtFrwxvQdLqDCRcsAW-yNqOpdmh-T86l3HcP7BlOWg00anRvPD5sky5rXVQ0lsDF6OUV1DClFNFLb_H30-G_rJDC5kytXcpIrd3LlJHeEq1_wOtpBxe1_2NWE4ejgw2KUYwK9xt5G1Fn2wf5d8AXehJsd |
CitedBy_id | crossref_primary_10_1016_j_advmem_2022_100032 crossref_primary_10_1016_j_apsusc_2023_159021 crossref_primary_10_1039_D4NJ05377J crossref_primary_10_1007_s11706_024_0706_8 crossref_primary_10_1016_j_memsci_2024_123019 crossref_primary_10_1002_smll_202405159 crossref_primary_10_1016_j_talanta_2025_127957 crossref_primary_10_1016_j_memsci_2023_122133 crossref_primary_10_1016_j_memsci_2025_123812 crossref_primary_10_1016_j_memsci_2022_121083 crossref_primary_10_1016_j_memsci_2022_120590 crossref_primary_10_1016_j_desal_2024_118415 crossref_primary_10_1016_j_desal_2025_118659 crossref_primary_10_1016_j_cej_2025_161671 crossref_primary_10_3390_agronomy14081640 crossref_primary_10_1016_j_seppur_2022_121785 crossref_primary_10_1016_j_desal_2024_117780 crossref_primary_10_1021_acs_iecr_3c00542 crossref_primary_10_1007_s10311_023_01571_9 crossref_primary_10_1016_j_seppur_2022_122272 crossref_primary_10_1016_j_memsci_2024_123405 crossref_primary_10_1016_j_jwpe_2023_104465 crossref_primary_10_1016_j_jwpe_2023_103894 crossref_primary_10_1016_j_cherd_2022_11_042 crossref_primary_10_1016_j_memsci_2025_123989 crossref_primary_10_1039_D4EW00135D crossref_primary_10_1016_j_memsci_2024_123172 crossref_primary_10_1016_j_memsci_2024_123292 crossref_primary_10_1016_j_cjche_2022_07_011 crossref_primary_10_1016_j_desal_2023_116540 crossref_primary_10_1021_acsapm_3c01590 crossref_primary_10_1016_j_desal_2022_116205 crossref_primary_10_1016_j_desal_2022_115553 crossref_primary_10_1016_j_desal_2024_117379 crossref_primary_10_1016_j_desal_2024_117577 crossref_primary_10_1016_j_jece_2024_112273 crossref_primary_10_1016_j_memsci_2022_120802 crossref_primary_10_1002_app_56130 crossref_primary_10_3390_separations9070180 crossref_primary_10_1002_app_56296 crossref_primary_10_1016_j_seppur_2024_126508 crossref_primary_10_1016_j_desal_2024_118162 crossref_primary_10_1016_j_jtice_2023_104822 crossref_primary_10_1016_j_seppur_2022_122661 crossref_primary_10_1021_acs_iecr_2c00365 crossref_primary_10_1016_j_jwpe_2024_106759 crossref_primary_10_1016_j_jtice_2024_105473 crossref_primary_10_1016_j_memsci_2025_123882 crossref_primary_10_1016_j_jece_2024_112439 crossref_primary_10_1016_j_memsci_2024_122984 crossref_primary_10_1016_j_memsci_2022_121063 crossref_primary_10_1360_SSC_2024_0158 crossref_primary_10_1016_j_memsci_2023_121385 crossref_primary_10_1016_j_memsci_2023_121382 crossref_primary_10_1016_j_polymer_2025_128218 crossref_primary_10_1002_adma_202108457 crossref_primary_10_1016_j_desal_2024_117389 crossref_primary_10_1021_acssuschemeng_4c08611 crossref_primary_10_1016_j_chemosphere_2024_142464 crossref_primary_10_1016_j_cjche_2023_09_015 crossref_primary_10_1021_acs_iecr_3c04647 crossref_primary_10_1016_j_jece_2024_112223 crossref_primary_10_1016_j_memsci_2023_121868 crossref_primary_10_1016_j_desal_2024_118295 crossref_primary_10_1016_j_cej_2023_142689 crossref_primary_10_1016_j_memsci_2024_122418 crossref_primary_10_1016_j_memsci_2023_121988 crossref_primary_10_1016_j_memsci_2024_122778 crossref_primary_10_1016_j_memsci_2023_121388 crossref_primary_10_1016_j_memsci_2023_121863 crossref_primary_10_1016_j_memsci_2025_123964 crossref_primary_10_1016_j_memsci_2023_121551 crossref_primary_10_1016_j_seppur_2024_129124 crossref_primary_10_1016_j_cej_2025_160132 crossref_primary_10_1016_j_desal_2022_116148 |
Cites_doi | 10.1002/pola.10615 10.1016/j.memsci.2020.118176 10.1021/acsami.6b13761 10.1039/D0TA12283A 10.1021/cr500006j 10.1126/science.abf5991 10.1039/D0TA09319J 10.1016/j.apsusc.2016.06.150 10.1021/la020920q 10.1016/j.memsci.2011.11.047 10.1039/C9RA07114H 10.1016/j.memsci.2020.117997 10.1016/S0032-3861(03)00179-4 10.1007/s10853-017-1225-0 10.1016/j.desal.2005.06.041 10.1016/j.memsci.2015.12.038 10.1016/j.memsci.2015.03.017 10.1016/j.isci.2021.102369 10.1038/s41467-020-15771-2 10.1126/science.1200488 10.1016/j.jenvman.2019.110001 10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9 10.1016/j.seppur.2007.09.010 10.1016/j.memsci.2016.05.033 10.1016/j.memsci.2013.04.022 10.1016/j.memsci.2016.07.038 10.1016/j.memsci.2012.12.011 10.1016/j.memsci.2016.10.012 10.1016/S1383-5866(98)00070-7 10.1016/j.memsci.2013.10.003 10.1016/j.memsci.2015.03.050 10.1016/S0376-7388(97)00125-7 10.1002/(SICI)1099-0518(19990701)37:13<1931::AID-POLA6>3.0.CO;2-4 10.1039/C8TA05687K 10.1126/science.aar6308 10.1021/la048085v 10.1016/j.memsci.2014.07.006 10.1021/acsanm.0c01961 10.1039/C9TA08163A 10.1021/acsnano.1c00936 10.1016/j.desal.2004.01.007 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2021.119971 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
ExternalDocumentID | 10_1016_j_memsci_2021_119971 S0376738821009145 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCE SEW SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-bc5018ad189bae029d7c06f1fc37b4a2781ca538fdbe514e5901e9edf746029d3 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Sun Aug 24 04:05:39 EDT 2025 Tue Jul 01 02:49:50 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Fri Feb 23 02:41:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ultrathin polyamide nanofilms Polyethyleneimine Interfacial polymerization Nanofiltration Positive charge |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-bc5018ad189bae029d7c06f1fc37b4a2781ca538fdbe514e5901e9edf746029d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3813-9943 0000-0002-5328-0355 |
PQID | 2636461210 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636461210 crossref_citationtrail_10_1016_j_memsci_2021_119971 crossref_primary_10_1016_j_memsci_2021_119971 elsevier_sciencedirect_doi_10_1016_j_memsci_2021_119971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Freger (bib39) 2005; 21 Wang, Wang, Lin, Jin, Gao, Zhu, Jin (bib18) 2018; 9 Zhu, Hou, Zhang, Yuan, Li, Tian, Wang, Zhang, Volodin, Van der Bruggen (bib19) 2018; 6 Zhao, Yao, Ba, Zheng, Economy, Wang (bib28) 2015; 492 Yang, Fang, Wang, Zhang, Zhu, Jin (bib34) 2021 Marchetti, Solomon, Szekely, Livingston (bib5) 2014; 114 Wang, Tsuru, Nakao, Kimura (bib48) 1997; 135 Uliana, Bui, Kamcev, Taylor, Urban, Long (bib15) 2021; 372 Shen, Wang, You, Shi, Xue, Yuan, Li, Guan, Ma, Su, Zhang, Jiang (bib20) 2021; 9 Wang, Wang, Jiang, Sheng, Wei, Li, Wu, Li (bib32) 2020; 3 Qiu, Fang, Shen, Yu, Zhu, Helix-Nielsen, Zhang (bib8) 2021; 15 Sabate, Pujoa, Labanda, Llorens (bib6) 2008; 58 Tan, Chen, Peng, Zhang, Gao (bib17) 2018; 360 Nan, Li, Cao (bib26) 2016; 387 Kiguchi, Aota, Matsumoto (bib41) 2003; 41 Li, You, Li, Yuan, Shen, Zhang, Wu, Su, Jiang (bib13) 2020; 8 Bera, Trivedi, Jewrajka, Ghosh (bib24) 2016; 519 Zhao, Zhang, Hu, Ma, Song, Li (bib9) 2020; 610 Yun, Kwak (bib27) 2020; 260 Fang, Shi, Wang (bib1) 2013; 430 Freger (bib38) 2003; 19 Elimelech, Phillip (bib4) 2011; 333 Ang, Tang, De Guzman, Maganto, Caparanga, Huang, Tsai, Hu, Lee, Lai (bib30) 2020 Ji, An, Zhao, Sun, Lee, Chen, Gao (bib21) 2012; 390 Li, Guo, Shi, Xu, Xu, Teng, Shan, Qian (bib37) 2021; 32 Ma, Su, Li, Zhang, Liu, He, Li, Dong, Wu, Jiang (bib33) 2016; 503 Hashimoto, Mishima, Kodaira (bib43) 1999; 37 Lv, Du, Qiu, Xu (bib22) 2017; 9 Wu, Lin, Feng, Liu, Wang, Yao, Wang (bib3) 2020; 603 Zhang, Guan, Ji, Liu, Jin, Xu (bib40) 2019; 10 Smedberg, Hjertberg, Gustafsson (bib42) 2003; 44 Liu, Wang, Li, Liu, Deng (bib36) 2019; 9 Feng, Xu, Li, Tang, Gao (bib2) 2014; 451 Su, Wang, Wang, Ando, Shintani (bib7) 2006; 191 Liang, Zhu, Liu, Lee, Hung, Wang, Li, Elimelech, Jin, Lin (bib16) 2020; 11 Lee, Bargeman, de Rooij, Kemperman, Benes (bib31) 2017; 523 Hilal, Al-Zoubi, Darwish, Mohammad, Abu Arabi (bib10) 2004; 170 Yuan, Wu, Wu, Liu, You, Zhang, Su, Yang, Shen, Jiang (bib29) 2019; 7 You, Xiao, Wu, Li, Li, Yuan, Zhang, Zhang, Liang, Shen, Jiang (bib14) 2021; 24 Jiang, Karan, Livingston (bib35) 2018; 30 Schaep, Van der Bruggen, Vandecasteele, Wilms (bib45) 1998; 14 Galama, Post, Stuart, Biesheuvel (bib46) 2013; 442 W (bib23) 2011 Mecerreyes, Lee, Hawker, Hedrick, Wursch, Volksen, Magbitang, Huang, Miller (bib44) 2001; 13 Liu, Shi, Wang (bib25) 2015; 486 Zhang, Su, Zhao, Li, Zhao, Jiang (bib11) 2014; 470 Wu, Liu, Wang, Zhang, Wang, Lu, Jia, Hung, Lee (bib12) 2016; 517 Wei, Hong, Zhu, Chen, Lv (bib47) 2017; 52 Zhang (10.1016/j.memsci.2021.119971_bib11) 2014; 470 Tan (10.1016/j.memsci.2021.119971_bib17) 2018; 360 Li (10.1016/j.memsci.2021.119971_bib37) 2021; 32 Lee (10.1016/j.memsci.2021.119971_bib31) 2017; 523 Zhao (10.1016/j.memsci.2021.119971_bib28) 2015; 492 Lv (10.1016/j.memsci.2021.119971_bib22) 2017; 9 Schaep (10.1016/j.memsci.2021.119971_bib45) 1998; 14 Qiu (10.1016/j.memsci.2021.119971_bib8) 2021; 15 Freger (10.1016/j.memsci.2021.119971_bib38) 2003; 19 Smedberg (10.1016/j.memsci.2021.119971_bib42) 2003; 44 Su (10.1016/j.memsci.2021.119971_bib7) 2006; 191 Yuan (10.1016/j.memsci.2021.119971_bib29) 2019; 7 Elimelech (10.1016/j.memsci.2021.119971_bib4) 2011; 333 Wang (10.1016/j.memsci.2021.119971_bib48) 1997; 135 Sabate (10.1016/j.memsci.2021.119971_bib6) 2008; 58 Mecerreyes (10.1016/j.memsci.2021.119971_bib44) 2001; 13 Hashimoto (10.1016/j.memsci.2021.119971_bib43) 1999; 37 Li (10.1016/j.memsci.2021.119971_bib13) 2020; 8 Wu (10.1016/j.memsci.2021.119971_bib3) 2020; 603 W (10.1016/j.memsci.2021.119971_bib23) 2011 Wu (10.1016/j.memsci.2021.119971_bib12) 2016; 517 Liu (10.1016/j.memsci.2021.119971_bib25) 2015; 486 Liang (10.1016/j.memsci.2021.119971_bib16) 2020; 11 Ang (10.1016/j.memsci.2021.119971_bib30) 2020 Nan (10.1016/j.memsci.2021.119971_bib26) 2016; 387 Marchetti (10.1016/j.memsci.2021.119971_bib5) 2014; 114 Ma (10.1016/j.memsci.2021.119971_bib33) 2016; 503 Kiguchi (10.1016/j.memsci.2021.119971_bib41) 2003; 41 Jiang (10.1016/j.memsci.2021.119971_bib35) 2018; 30 Bera (10.1016/j.memsci.2021.119971_bib24) 2016; 519 Freger (10.1016/j.memsci.2021.119971_bib39) 2005; 21 Hilal (10.1016/j.memsci.2021.119971_bib10) 2004; 170 Yang (10.1016/j.memsci.2021.119971_bib34) 2021 Liu (10.1016/j.memsci.2021.119971_bib36) 2019; 9 Wang (10.1016/j.memsci.2021.119971_bib18) 2018; 9 Wang (10.1016/j.memsci.2021.119971_bib32) 2020; 3 Feng (10.1016/j.memsci.2021.119971_bib2) 2014; 451 Zhao (10.1016/j.memsci.2021.119971_bib9) 2020; 610 Zhu (10.1016/j.memsci.2021.119971_bib19) 2018; 6 Yun (10.1016/j.memsci.2021.119971_bib27) 2020; 260 Ji (10.1016/j.memsci.2021.119971_bib21) 2012; 390 Galama (10.1016/j.memsci.2021.119971_bib46) 2013; 442 You (10.1016/j.memsci.2021.119971_bib14) 2021; 24 Fang (10.1016/j.memsci.2021.119971_bib1) 2013; 430 Zhang (10.1016/j.memsci.2021.119971_bib40) 2019; 10 Shen (10.1016/j.memsci.2021.119971_bib20) 2021; 9 Uliana (10.1016/j.memsci.2021.119971_bib15) 2021; 372 Wei (10.1016/j.memsci.2021.119971_bib47) 2017; 52 |
References_xml | – volume: 8 start-page: 23930 year: 2020 end-page: 23938 ident: bib13 article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. – volume: 30 year: 2018 ident: bib35 article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis publication-title: Adv. Mater. – start-page: 481 year: 2020 ident: bib30 article-title: Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment publication-title: Desalination – volume: 41 start-page: 606 year: 2003 end-page: 615 ident: bib41 article-title: Crosslinking polymerization leading to interpenetrating polymer network formation. I. Polyaddition crosslinking reactions of poly(methyl methacrylate-co-2-methacryloyloxyethyl isocyante)s with ethylene glycol resulting in polyurethane networks publication-title: J. Polym. Sci., Polym. Chem. Ed. – volume: 442 start-page: 131 year: 2013 end-page: 139 ident: bib46 article-title: Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane-solution interface publication-title: J. Membr. Sci. – volume: 13 start-page: 204 year: 2001 end-page: 208 ident: bib44 article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution publication-title: Adv. Mater. – volume: 260 year: 2020 ident: bib27 article-title: Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance publication-title: J. Environ. Manag. – volume: 14 start-page: 155 year: 1998 end-page: 162 ident: bib45 article-title: Influence of ion size and charge in nanofiltration publication-title: Separ. Purif. Technol. – volume: 7 start-page: 25641 year: 2019 end-page: 25649 ident: bib29 article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes publication-title: J. Mater. Chem. – volume: 24 year: 2021 ident: bib14 article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes publication-title: Iscience – volume: 360 start-page: 518 year: 2018 ident: bib17 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science – volume: 114 start-page: 10735 year: 2014 end-page: 10806 ident: bib5 article-title: Molecular separation with organic solvent nanofiltration: a critical review publication-title: Chem. Rev. – volume: 58 start-page: 424 year: 2008 end-page: 428 ident: bib6 article-title: Influence of pH and operation variables on biogenic amines nanofiltration publication-title: Separ. Purif. Technol. – volume: 32 year: 2021 ident: bib37 article-title: Analysis of Mg2+/Li+ separation mechanism by charged nanofiltration membranes: visual simulation publication-title: Nanotechnology – volume: 486 start-page: 169 year: 2015 end-page: 176 ident: bib25 article-title: Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water publication-title: J. Membr. Sci. – volume: 430 start-page: 129 year: 2013 end-page: 139 ident: bib1 article-title: Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening publication-title: J. Membr. Sci. – volume: 191 start-page: 303 year: 2006 end-page: 308 ident: bib7 article-title: Rejection of ions by NF membranes for binary electrolyte solutions of NaCl, NaCl, NaNO3, CaCl2 and Ca(NO3)(2) publication-title: Desalination – volume: 9 year: 2018 ident: bib18 article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination publication-title: Nat. Commun. – volume: 52 start-page: 11701 year: 2017 end-page: 11714 ident: bib47 article-title: Structure-performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine publication-title: J. Mater. Sci. – volume: 372 start-page: 296 year: 2021 end-page: + ident: bib15 article-title: Ion-capture electrodialysis using multifunctional adsorptive membranes publication-title: Science – volume: 135 start-page: 19 year: 1997 end-page: 32 ident: bib48 article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes publication-title: J. Membr. Sci. – volume: 11 start-page: 9 year: 2020 ident: bib16 article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation publication-title: Nat. Commun. – start-page: 564 year: 2011 ident: bib23 article-title: Guidelines for Drinking-Water Quality – volume: 9 start-page: 35417 year: 2019 end-page: 35428 ident: bib36 article-title: A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification publication-title: RSC Adv. – volume: 610 year: 2020 ident: bib9 article-title: Efficient removal of perfluorooctane sulphonate by nanofiltration: insights into the effect and mechanism of coexisting inorganic ions and humic acid publication-title: J. Membr. Sci. – volume: 15 start-page: 7522 year: 2021 end-page: 7535 ident: bib8 article-title: Ionic dendrimer based polyamide membranes for ion separation publication-title: ACS Nano – volume: 387 start-page: 521 year: 2016 end-page: 528 ident: bib26 article-title: Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination publication-title: Appl. Surf. Sci. – volume: 492 start-page: 620 year: 2015 end-page: 629 ident: bib28 article-title: Enhancing the performance of polyethylenimine modified nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) for removing sulfamerazine publication-title: J. Membr. Sci. – volume: 10 year: 2019 ident: bib40 article-title: Controllable ion transport by surface-charged graphene oxide membrane publication-title: Nat. Commun. – volume: 603 year: 2020 ident: bib3 article-title: A novel nanofiltration membrane with MimAP Tf 2 N ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio publication-title: J. Membr. Sci. – volume: 170 start-page: 281 year: 2004 end-page: 308 ident: bib10 article-title: A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy publication-title: Desalination – volume: 523 start-page: 487 year: 2017 end-page: 496 ident: bib31 article-title: Interfacial polymerization of cyanuric chloride and monomeric amines: pH resistant thin film composite polyamine nanofiltration membranes publication-title: J. Membr. Sci. – volume: 9 start-page: 8470 year: 2021 end-page: 8479 ident: bib20 article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane publication-title: J. Mater. Chem. – volume: 9 start-page: 2966 year: 2017 end-page: 2972 ident: bib22 article-title: Nanocomposite Membranes via the Codeposition of Polydopamine/Polyethylenimin e with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability publication-title: ACS Appl. Mater. Interfaces – volume: 451 start-page: 103 year: 2014 end-page: 110 ident: bib2 article-title: Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate publication-title: J. Membr. Sci. – volume: 517 start-page: 64 year: 2016 end-page: 72 ident: bib12 article-title: Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection publication-title: J. Membr. Sci. – volume: 470 start-page: 9 year: 2014 end-page: 17 ident: bib11 article-title: A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine) publication-title: J. Membr. Sci. – volume: 19 start-page: 4791 year: 2003 end-page: 4797 ident: bib38 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir – volume: 44 start-page: 3395 year: 2003 end-page: 3405 ident: bib42 article-title: Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene publication-title: Polymer – volume: 21 start-page: 1884 year: 2005 end-page: 1894 ident: bib39 article-title: Kinetics of film formation by interfacial polycondensation publication-title: Langmuir – volume: 390 start-page: 243 year: 2012 end-page: 253 ident: bib21 article-title: Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance publication-title: J. Membr. Sci. – volume: 519 start-page: 64 year: 2016 end-page: 76 ident: bib24 article-title: In situ manipulation of properties and performance of polyethyleneimine nanofiltration membranes by polyethyleniminedextran conjugate publication-title: J. Membr. Sci. – volume: 333 start-page: 712 year: 2011 end-page: 717 ident: bib4 article-title: The future of seawater desalination: energy, Technology, and the environment publication-title: Science – volume: 6 start-page: 15701 year: 2018 end-page: 15709 ident: bib19 article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. – volume: 3 start-page: 9329 year: 2020 end-page: 9339 ident: bib32 article-title: Positively charged polysulfonamide nanocomposite membranes incorporating hydrophilic triazine-structured COFs for highly efficient nanofiltration publication-title: ACS Appl. Nano Mater. – volume: 503 start-page: 101 year: 2016 end-page: 109 ident: bib33 article-title: Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer publication-title: J. Membr. Sci. – start-page: 620 year: 2021 ident: bib34 article-title: Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation publication-title: J. Membr. Sci. – volume: 37 start-page: 1931 year: 1999 end-page: 1941 ident: bib43 article-title: Gel formation in cationic polymerization of divinyl ethers. II-2,2-bis{4- (2-vinyloxy)ethoxy phenyl}propane publication-title: J. Polym. Sci., Polym. Chem. Ed. – volume: 41 start-page: 606 year: 2003 ident: 10.1016/j.memsci.2021.119971_bib41 article-title: Crosslinking polymerization leading to interpenetrating polymer network formation. I. Polyaddition crosslinking reactions of poly(methyl methacrylate-co-2-methacryloyloxyethyl isocyante)s with ethylene glycol resulting in polyurethane networks publication-title: J. Polym. Sci., Polym. Chem. Ed. doi: 10.1002/pola.10615 – volume: 610 year: 2020 ident: 10.1016/j.memsci.2021.119971_bib9 article-title: Efficient removal of perfluorooctane sulphonate by nanofiltration: insights into the effect and mechanism of coexisting inorganic ions and humic acid publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118176 – volume: 9 start-page: 2966 year: 2017 ident: 10.1016/j.memsci.2021.119971_bib22 article-title: Nanocomposite Membranes via the Codeposition of Polydopamine/Polyethylenimin e with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13761 – volume: 10 year: 2019 ident: 10.1016/j.memsci.2021.119971_bib40 article-title: Controllable ion transport by surface-charged graphene oxide membrane publication-title: Nat. Commun. – volume: 9 start-page: 8470 year: 2021 ident: 10.1016/j.memsci.2021.119971_bib20 article-title: Thermal-facilitated interfacial polymerization toward high-performance polyester desalination membrane publication-title: J. Mater. Chem. doi: 10.1039/D0TA12283A – volume: 114 start-page: 10735 year: 2014 ident: 10.1016/j.memsci.2021.119971_bib5 article-title: Molecular separation with organic solvent nanofiltration: a critical review publication-title: Chem. Rev. doi: 10.1021/cr500006j – volume: 372 start-page: 296 year: 2021 ident: 10.1016/j.memsci.2021.119971_bib15 article-title: Ion-capture electrodialysis using multifunctional adsorptive membranes publication-title: Science doi: 10.1126/science.abf5991 – volume: 8 start-page: 23930 year: 2020 ident: 10.1016/j.memsci.2021.119971_bib13 article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. doi: 10.1039/D0TA09319J – volume: 387 start-page: 521 year: 2016 ident: 10.1016/j.memsci.2021.119971_bib26 article-title: Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.06.150 – volume: 19 start-page: 4791 year: 2003 ident: 10.1016/j.memsci.2021.119971_bib38 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir doi: 10.1021/la020920q – volume: 390 start-page: 243 year: 2012 ident: 10.1016/j.memsci.2021.119971_bib21 article-title: Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.047 – volume: 9 start-page: 35417 year: 2019 ident: 10.1016/j.memsci.2021.119971_bib36 article-title: A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification publication-title: RSC Adv. doi: 10.1039/C9RA07114H – volume: 603 year: 2020 ident: 10.1016/j.memsci.2021.119971_bib3 article-title: A novel nanofiltration membrane with MimAP Tf 2 N ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.117997 – volume: 44 start-page: 3395 year: 2003 ident: 10.1016/j.memsci.2021.119971_bib42 article-title: Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene publication-title: Polymer doi: 10.1016/S0032-3861(03)00179-4 – volume: 52 start-page: 11701 year: 2017 ident: 10.1016/j.memsci.2021.119971_bib47 article-title: Structure-performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1225-0 – volume: 191 start-page: 303 year: 2006 ident: 10.1016/j.memsci.2021.119971_bib7 article-title: Rejection of ions by NF membranes for binary electrolyte solutions of NaCl, NaCl, NaNO3, CaCl2 and Ca(NO3)(2) publication-title: Desalination doi: 10.1016/j.desal.2005.06.041 – volume: 503 start-page: 101 year: 2016 ident: 10.1016/j.memsci.2021.119971_bib33 article-title: Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.12.038 – volume: 9 year: 2018 ident: 10.1016/j.memsci.2021.119971_bib18 article-title: Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination publication-title: Nat. Commun. – volume: 492 start-page: 620 year: 2015 ident: 10.1016/j.memsci.2021.119971_bib28 article-title: Enhancing the performance of polyethylenimine modified nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) for removing sulfamerazine publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.03.017 – volume: 24 year: 2021 ident: 10.1016/j.memsci.2021.119971_bib14 article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes publication-title: Iscience doi: 10.1016/j.isci.2021.102369 – volume: 11 start-page: 9 year: 2020 ident: 10.1016/j.memsci.2021.119971_bib16 article-title: Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 angstrom precision separation publication-title: Nat. Commun. doi: 10.1038/s41467-020-15771-2 – volume: 333 start-page: 712 year: 2011 ident: 10.1016/j.memsci.2021.119971_bib4 article-title: The future of seawater desalination: energy, Technology, and the environment publication-title: Science doi: 10.1126/science.1200488 – volume: 260 year: 2020 ident: 10.1016/j.memsci.2021.119971_bib27 article-title: Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.110001 – start-page: 564 year: 2011 ident: 10.1016/j.memsci.2021.119971_bib23 – volume: 13 start-page: 204 year: 2001 ident: 10.1016/j.memsci.2021.119971_bib44 article-title: A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution publication-title: Adv. Mater. doi: 10.1002/1521-4095(200102)13:3<204::AID-ADMA204>3.0.CO;2-9 – volume: 32 year: 2021 ident: 10.1016/j.memsci.2021.119971_bib37 article-title: Analysis of Mg2+/Li+ separation mechanism by charged nanofiltration membranes: visual simulation publication-title: Nanotechnology – volume: 58 start-page: 424 year: 2008 ident: 10.1016/j.memsci.2021.119971_bib6 article-title: Influence of pH and operation variables on biogenic amines nanofiltration publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2007.09.010 – start-page: 481 year: 2020 ident: 10.1016/j.memsci.2021.119971_bib30 article-title: Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment publication-title: Desalination – volume: 517 start-page: 64 year: 2016 ident: 10.1016/j.memsci.2021.119971_bib12 article-title: Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.05.033 – volume: 442 start-page: 131 year: 2013 ident: 10.1016/j.memsci.2021.119971_bib46 article-title: Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane-solution interface publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.022 – volume: 519 start-page: 64 year: 2016 ident: 10.1016/j.memsci.2021.119971_bib24 article-title: In situ manipulation of properties and performance of polyethyleneimine nanofiltration membranes by polyethyleniminedextran conjugate publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.07.038 – volume: 430 start-page: 129 year: 2013 ident: 10.1016/j.memsci.2021.119971_bib1 article-title: Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.12.011 – volume: 523 start-page: 487 year: 2017 ident: 10.1016/j.memsci.2021.119971_bib31 article-title: Interfacial polymerization of cyanuric chloride and monomeric amines: pH resistant thin film composite polyamine nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.10.012 – volume: 14 start-page: 155 year: 1998 ident: 10.1016/j.memsci.2021.119971_bib45 article-title: Influence of ion size and charge in nanofiltration publication-title: Separ. Purif. Technol. doi: 10.1016/S1383-5866(98)00070-7 – volume: 451 start-page: 103 year: 2014 ident: 10.1016/j.memsci.2021.119971_bib2 article-title: Studies on a novel nanofiltration membrane prepared by cross-linking of polyethyleneimine on polyacrylonitrile substrate publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.003 – volume: 486 start-page: 169 year: 2015 ident: 10.1016/j.memsci.2021.119971_bib25 article-title: Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42- in feed water publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.03.050 – volume: 135 start-page: 19 year: 1997 ident: 10.1016/j.memsci.2021.119971_bib48 article-title: The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00125-7 – volume: 30 year: 2018 ident: 10.1016/j.memsci.2021.119971_bib35 article-title: Water transport through ultrathin polyamide nanofilms used for reverse osmosis publication-title: Adv. Mater. – volume: 37 start-page: 1931 year: 1999 ident: 10.1016/j.memsci.2021.119971_bib43 article-title: Gel formation in cationic polymerization of divinyl ethers. II-2,2-bis{4- (2-vinyloxy)ethoxy phenyl}propane publication-title: J. Polym. Sci., Polym. Chem. Ed. doi: 10.1002/(SICI)1099-0518(19990701)37:13<1931::AID-POLA6>3.0.CO;2-4 – volume: 6 start-page: 15701 year: 2018 ident: 10.1016/j.memsci.2021.119971_bib19 article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. doi: 10.1039/C8TA05687K – start-page: 620 year: 2021 ident: 10.1016/j.memsci.2021.119971_bib34 article-title: Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation publication-title: J. Membr. Sci. – volume: 360 start-page: 518 year: 2018 ident: 10.1016/j.memsci.2021.119971_bib17 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science doi: 10.1126/science.aar6308 – volume: 21 start-page: 1884 year: 2005 ident: 10.1016/j.memsci.2021.119971_bib39 article-title: Kinetics of film formation by interfacial polycondensation publication-title: Langmuir doi: 10.1021/la048085v – volume: 470 start-page: 9 year: 2014 ident: 10.1016/j.memsci.2021.119971_bib11 article-title: A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine) publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.07.006 – volume: 3 start-page: 9329 year: 2020 ident: 10.1016/j.memsci.2021.119971_bib32 article-title: Positively charged polysulfonamide nanocomposite membranes incorporating hydrophilic triazine-structured COFs for highly efficient nanofiltration publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01961 – volume: 7 start-page: 25641 year: 2019 ident: 10.1016/j.memsci.2021.119971_bib29 article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes publication-title: J. Mater. Chem. doi: 10.1039/C9TA08163A – volume: 15 start-page: 7522 year: 2021 ident: 10.1016/j.memsci.2021.119971_bib8 article-title: Ionic dendrimer based polyamide membranes for ion separation publication-title: ACS Nano doi: 10.1021/acsnano.1c00936 – volume: 170 start-page: 281 year: 2004 ident: 10.1016/j.memsci.2021.119971_bib10 article-title: A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy publication-title: Desalination doi: 10.1016/j.desal.2004.01.007 |
SSID | ssj0017089 |
Score | 2.6368585 |
Snippet | Positively charged nanofiltration membranes are promising in water softening and heavy metal ion removal. However, facile modulation on their chargeability... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119971 |
SubjectTerms | branched chain amino acids cation-exchange membranes electrical charges heavy metals Interfacial polymerization magnesium chloride metal ions nanocomposites Nanofiltration polyamides Polyethyleneimine polymerization Positive charge Ultrathin polyamide nanofilms water purification |
Title | Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal |
URI | https://dx.doi.org/10.1016/j.memsci.2021.119971 https://www.proquest.com/docview/2636461210 |
Volume | 642 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1wfSwSvdZM2bdqjiLIq7kUXvIWkTbCy2y66e_Dib3cmbRcVRPCaJmmYTGe-pDPfEHIW64LBMxdkiUsDIWQWaI1hYgbgRMxzZgtMcL4fJcOxuH2Kn1bIZZcLg2GVre1vbLq31m3LoJXmYFaWgweGRCQRIEQOOIELTDSHd6GWn38swzy4ZL4MHnYOsHeXPudjvKZ2ClPDKTHkYDuyTPLf3NMPQ-29z_UW2WxhI71oVrZNVmy1Qza-kAnuEjeeINPsc1nRWT1519OysLTSFdbkbrlxKawETsdg3Sjev9L5wmdOUU-XZBvG7ncKMJb6OENQQnBJtLnUo692WkPLHhlfXz1eDoO2ikKQR1E2D0yOnH264GlmtGVhVsicJY67PJJG6FCmPNdg9lxhLKAni8moNoMtkiLB3tE-Wa3qyh4QmpoC4GRoXMKcsIKZWErHbe6ikBmjRY9EnfBU3lKMY6WLiepiyV5UI3KFIleNyHskWI6aNRQbf_SX3b6ob6qiwAv8MfK020YFXxH-GgGR14s3FSZRIjyZ2uG_Zz8i6yHmRmC1mPiYrM5fF_YEEMvc9L1K9snaxc3dcPQJv17uoA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSD-MS3EbwuTXazm-5RitL66EUL3kKym2Cl3RZtD_57Z_YhKojgNZuEMJOd-ZLMfANwEZuc4zcfpInvBFKqNDCGwsQswolYZNzllOB8P0h6Q3nzFD8tQbfJhaGwytr2Vza9tNZ1S7uWZns2GrUfOBGRRIgQBeIEIeNlWCF2qrgFK5f9297g8zFB8bISHvUPaECTQVeGeU3cBGfHg2Io0HykqRK_eagftrp0QNebsFEjR3ZZLW4LllyxDetf-AR3wA_HRDb7PCrYbDp-N5NR7lhhCirLXdPjMlwJHpDRwDG6gmXzRZk8xUrGJFeRdr8zRLKsDDXEfYheiVX3euzVTabYsgvD66vHbi-oCykEWRSl88BmRNtnctFJrXE8THOV8cQLn0XKShOqjsgMWj6fW4cAylE-qktRS0om1Dvag1YxLdw-sI7NEVGG1ifcSye5jZXywmU-Crm1Rh5A1AhPZzXLOBW7GOsmnOxFVyLXJHJdifwAgs9Rs4pl44_-qtGL_rZbNDqCP0aeN2rU-CPR6wiKfLp402ESJbLkUzv89-xnsNp7vL_Td_3B7RGshZQqQcVj4mNozV8X7gQBzNye1hv0A-gP8VE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+polyamide+nanofiltration+membranes+with+tunable+chargeability+for+multivalent+cation+removal&rft.jtitle=Journal+of+membrane+science&rft.au=Wang%2C+Zhen&rft.au=You%2C+Xinda&rft.au=Yang%2C+Chao&rft.au=Li%2C+Wenwen&rft.date=2022-02-15&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=642&rft_id=info:doi/10.1016%2Fj.memsci.2021.119971&rft.externalDocID=S0376738821009145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |