Inhibition of glutaminolysis ameliorates lupus by regulating T and B cell subsets and downregulating the mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice

•Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate the glutamine metabolism level, avoiding the metabolic environmental difference between in vitro culture and in vivo and reflected a more intui...

Full description

Saved in:
Bibliographic Details
Published inInternational immunopharmacology Vol. 112; p. 109133
Main Authors Zhang, Xiaomei, Wang, Gang, Bi, Ying, Jiang, Zhihang, Wang, Xiaofei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN1567-5769
1878-1705
1878-1705
DOI10.1016/j.intimp.2022.109133

Cover

Loading…
Abstract •Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate the glutamine metabolism level, avoiding the metabolic environmental difference between in vitro culture and in vivo and reflected a more intuitive metabolic profile.•Evaluated the effect of regulation of glutamine metabolism on B cell subsets in MRL/lpr mice for the first time.•Previous studies have shown that inhibiting glutamine metabolism may be beneficial to lupus, and this study conducted a more in-depth study of the mechanism. Inhibition of glutamine metabolism could regulate mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in lupus. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice. We assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting. In this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment. Our study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease.
AbstractList Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice.BACKGROUND AND AIM OF THE STUDYSystemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice.We assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting.METHODSWe assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting.In this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment.RESULTSIn this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment.Our study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease.CONCLUSIONOur study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease.
•Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate the glutamine metabolism level, avoiding the metabolic environmental difference between in vitro culture and in vivo and reflected a more intuitive metabolic profile.•Evaluated the effect of regulation of glutamine metabolism on B cell subsets in MRL/lpr mice for the first time.•Previous studies have shown that inhibiting glutamine metabolism may be beneficial to lupus, and this study conducted a more in-depth study of the mechanism. Inhibition of glutamine metabolism could regulate mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in lupus. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice. We assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting. In this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment. Our study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease.
ArticleNumber 109133
Author Wang, Xiaofei
Wang, Gang
Bi, Ying
Jiang, Zhihang
Zhang, Xiaomei
Author_xml – sequence: 1
  givenname: Xiaomei
  surname: Zhang
  fullname: Zhang, Xiaomei
  organization: Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China
– sequence: 2
  givenname: Gang
  orcidid: 0000-0001-7612-2977
  surname: Wang
  fullname: Wang, Gang
  email: neurowang@163.com
  organization: Department of Neurosurgery, the First Hospital of China Medical University, Shenyang 110001, China
– sequence: 3
  givenname: Ying
  surname: Bi
  fullname: Bi, Ying
  organization: Department of Rheumatology and Immunology, the Fourth Hospital of China Medical University, Shenyang 110001, China
– sequence: 4
  givenname: Zhihang
  surname: Jiang
  fullname: Jiang, Zhihang
  organization: Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China
– sequence: 5
  givenname: Xiaofei
  surname: Wang
  fullname: Wang, Xiaofei
  organization: Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China
BookMark eNqFkc1u1DAUhSNUJNrCG7Dwkk0mdv6csECiVUtHBDoahrXlOHdmPHLs4OtQzUt1wYPwTGQaFogFrO7V0TlHuve7iM6ssxBFrxldMMrK5LDQNuh-WKQ0TSepZln2LDpnFa9ixmlxNu1FyeOCl_WL6ALxQOmk5-w8elzavW510M4StyU7MwbZa-vMETUS2YPRzssASMw4jEjaI_GwG40M2u7IhkjbkSuiwBiCY4sQ8Enq3IP9wxf2QPrN_TpZcfql_JjkN1cr9mT83KxXWaIkDhIhZsmyidnPH2SQYf8gj0i0JZ_WTWIGT3qt4GX0fCsNwqvf8zL6enuzub6Lm_sPy-v3TayyrA5xW_FMFUUJtJLpVjLathJyVrQ5pLzkjAFL5XQ_o0WdV1XHecXbrGxVqjhQWmaX0Zu5d_Du2wgYRK_xdKW04EYUKWdFnqc0qydrPluVd4getmLwupf-KBgVJzziIGY84oRHzHim2Nu_YkoHeeIQvNTmf-F3cximH3zX4AUqDVZBpz2oIDqn_13wC4KbsEM
CitedBy_id crossref_primary_10_1016_j_coi_2024_102484
crossref_primary_10_1038_s41392_024_01954_6
crossref_primary_10_1111_1756_185X_70040
crossref_primary_10_3389_fimmu_2023_1284133
crossref_primary_10_1016_j_autrev_2024_103583
crossref_primary_10_3389_fimmu_2024_1443440
crossref_primary_10_3389_fmed_2022_1085339
crossref_primary_10_1016_j_clim_2024_110224
crossref_primary_10_1002_jmv_70197
crossref_primary_10_2147_DMSO_S471711
crossref_primary_10_1038_s41392_025_02141_x
crossref_primary_10_1007_s12013_024_01231_x
crossref_primary_10_2147_JIR_S443482
crossref_primary_10_1021_acs_jnatprod_4c00237
crossref_primary_10_3389_fimmu_2023_1155421
crossref_primary_10_1016_j_tem_2024_01_005
crossref_primary_10_1002_mnfr_202200755
crossref_primary_10_1097_MD_0000000000036299
crossref_primary_10_1186_s13046_024_02994_0
crossref_primary_10_1016_j_autrev_2024_103714
crossref_primary_10_1111_imr_13360
crossref_primary_10_3389_fimmu_2023_1221530
crossref_primary_10_1007_s00011_023_01729_9
Cites_doi 10.1016/j.semarthrit.2019.09.022
10.1111/sji.13139
10.1038/s41568-018-0074-8
10.1016/j.kint.2017.11.023
10.1002/art.38993
10.3389/fimmu.2021.611795
10.4049/jimmunol.0902385
10.1016/j.mito.2018.01.002
10.1016/j.clim.2011.08.005
10.3390/ijms23084208
10.1002/eji.201545760
10.1038/onc.2012.465
10.1002/art.40380
10.1038/nrrheum.2015.172
10.1093/abbs/gmy088
10.1172/JCI129269
10.4049/jimmunol.0803052
10.1007/s10753-021-01439-6
10.1016/j.molimm.2013.02.003
10.1038/s41467-018-06686-0
10.1097/BOR.0000000000000088
10.1016/j.biocel.2009.03.003
10.1158/1535-7163.MCT-13-0870
10.1038/nrrheum.2015.178
10.1111/imr.12847
10.1016/j.jim.2010.06.009
10.1016/j.intimp.2021.107375
10.3389/fimmu.2020.01027
10.1016/j.celrep.2020.108333
10.1371/journal.pone.0185092
10.1016/j.semarthrit.2019.04.006
10.4161/cc.22632
10.1038/mt.2012.127
10.4049/jimmunol.178.12.7868
10.1165/rcmb.2017-0238OC
10.4161/gmic.1.2.11515
10.1016/j.intimp.2019.105682
10.1002/art.10949
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.intimp.2022.109133
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1878-1705
ExternalDocumentID 10_1016_j_intimp_2022_109133
S1567576922006178
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATCM
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CJTIS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
L7B
LCYCR
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSI
SSP
SSZ
T5K
TEORI
UNMZH
VH1
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7X8
ID FETCH-LOGICAL-c339t-b873c556e08a2fa10bbae415b4e276711e12a0411059488d7787b36bc2c7e0063
IEDL.DBID .~1
ISSN 1567-5769
1878-1705
IngestDate Fri Jul 11 16:19:40 EDT 2025
Thu Apr 24 22:56:48 EDT 2025
Tue Jul 01 03:40:19 EDT 2025
Fri Feb 23 02:40:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CB839
Systemic lupus erythematosus
Glutamine metabolism
mTOR pathway
NLRP3 pathway
Lupus nephritis
B cell subsets
T cell subsets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-b873c556e08a2fa10bbae415b4e276711e12a0411059488d7787b36bc2c7e0063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7612-2977
PQID 2715442039
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2715442039
crossref_primary_10_1016_j_intimp_2022_109133
crossref_citationtrail_10_1016_j_intimp_2022_109133
elsevier_sciencedirect_doi_10_1016_j_intimp_2022_109133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle International immunopharmacology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Perl (b0075) 2016; 12
Hsieh, Williams, Rafei (b0125) 2012; 20
Hong, Zhang, Gao (b0130) 2013; 55
Evans, Chavez-Rueda, Eddaoudi (b0135) 2007; 178
<Glutamine-dependent α-ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation.pdf>[J].
Choi, Titov, Abboud (b0050) 2018; 9
Lee, Lin, Pan (b0040) 2019; 44
Anton-Pampols, Diaz-Requena, Martinez-Valenzuela (b0085) 2022; 23
Dolff, Bijl, Huitema (b0155) 2011; 141
Fleming, Castro-Dopico, Clatworthy (b0150) 2022; 95
He, Ma, Ren (b0170) 2020; 50
Sumikawa, Iwata, Zhang (b0145) 2021
Mossmann, Park, Hall (b0175) 2018; 18
Chen, Ye, He (b0210) 2021; 44
Wang, Wallace (b0005) 2020
Teng, Brown, Choi (b0090) 2020; 295
Gu, Zhu, Deng (b0195) 2021; 93
Zhao, Wang, Huang (b0205) 2015; 67
Blair, Chavez-Rueda, Evans (b0110) 2009; 182
Deng, Chen, Wang (b0200) 2019; 74
Takeshima, Iwasaki, Fujio (b0010) 2019; 48
Duran, MacKenzie, Boulahbel (b0180) 2013; 32
Duran, Hall (b0070) 2012; 11
Jacobi, Odendahl, Reiter (b0035) 2003; 48
Bajema, Wilhelmus, Alpers (b0055) 2018; 93
Watanabe, Ishiura, Nakashima (b0140) 2010; 184
Lampa, Arlt, He (b0185) 2017; 12
Kahlenberg, Kaplan (b0190) 2014; 26
Li, Zhang, Pan (b0215) 2018; 50
Haniuda, Fukao, Kitamura (b0025) 2020; 33
Xia, Cao, Sun (b0100) 2020; 130
Ochoa-Reparaz, Mielcarz, Haque-Begum (b0120) 2010; 1
Lou, Ling, Cao (b0060) 2022; 102861
Tsokos (b0080) 2016; 12
Gross, Demo, Dennison (b0105) 2014; 13
Ge, Cui, Xie (b0065) 2018; 58
Mates, Segura, Campos-Sandoval (b0095) 2009; 41
Catalan, Mansilla, Ferrier (b0115) 2021; 12
Wang, Zhang, Luo (b0045) 2021; 46
Shan, Jin, Xu (b0015) 2020; 11
Blanco, Ueno, Schmitt (b0160) 2016; 46
Kato, Perl (b0165) 2018; 70
Dorner, Jacobi, Lee (b0030) 2011; 363
Teng (10.1016/j.intimp.2022.109133_b0090) 2020; 295
Ge (10.1016/j.intimp.2022.109133_b0065) 2018; 58
Deng (10.1016/j.intimp.2022.109133_b0200) 2019; 74
Catalan (10.1016/j.intimp.2022.109133_b0115) 2021; 12
Hsieh (10.1016/j.intimp.2022.109133_b0125) 2012; 20
Watanabe (10.1016/j.intimp.2022.109133_b0140) 2010; 184
Lee (10.1016/j.intimp.2022.109133_b0040) 2019; 44
Gross (10.1016/j.intimp.2022.109133_b0105) 2014; 13
He (10.1016/j.intimp.2022.109133_b0170) 2020; 50
Duran (10.1016/j.intimp.2022.109133_b0180) 2013; 32
Chen (10.1016/j.intimp.2022.109133_b0210) 2021; 44
Shan (10.1016/j.intimp.2022.109133_b0015) 2020; 11
Fleming (10.1016/j.intimp.2022.109133_b0150) 2022; 95
Tsokos (10.1016/j.intimp.2022.109133_b0080) 2016; 12
Kato (10.1016/j.intimp.2022.109133_b0165) 2018; 70
Anton-Pampols (10.1016/j.intimp.2022.109133_b0085) 2022; 23
Hong (10.1016/j.intimp.2022.109133_b0130) 2013; 55
Bajema (10.1016/j.intimp.2022.109133_b0055) 2018; 93
Mates (10.1016/j.intimp.2022.109133_b0095) 2009; 41
Mossmann (10.1016/j.intimp.2022.109133_b0175) 2018; 18
Jacobi (10.1016/j.intimp.2022.109133_b0035) 2003; 48
Lampa (10.1016/j.intimp.2022.109133_b0185) 2017; 12
Haniuda (10.1016/j.intimp.2022.109133_b0025) 2020; 33
Xia (10.1016/j.intimp.2022.109133_b0100) 2020; 130
Evans (10.1016/j.intimp.2022.109133_b0135) 2007; 178
Duran (10.1016/j.intimp.2022.109133_b0070) 2012; 11
Sumikawa (10.1016/j.intimp.2022.109133_b0145) 2021
Li (10.1016/j.intimp.2022.109133_b0215) 2018; 50
Wang (10.1016/j.intimp.2022.109133_b0045) 2021; 46
Lou (10.1016/j.intimp.2022.109133_b0060) 2022; 102861
Perl (10.1016/j.intimp.2022.109133_b0075) 2016; 12
Blair (10.1016/j.intimp.2022.109133_b0110) 2009; 182
Wang (10.1016/j.intimp.2022.109133_b0005) 2020
Ochoa-Reparaz (10.1016/j.intimp.2022.109133_b0120) 2010; 1
Blanco (10.1016/j.intimp.2022.109133_b0160) 2016; 46
Takeshima (10.1016/j.intimp.2022.109133_b0010) 2019; 48
Dorner (10.1016/j.intimp.2022.109133_b0030) 2011; 363
Gu (10.1016/j.intimp.2022.109133_b0195) 2021; 93
Zhao (10.1016/j.intimp.2022.109133_b0205) 2015; 67
Choi (10.1016/j.intimp.2022.109133_b0050) 2018; 9
Kahlenberg (10.1016/j.intimp.2022.109133_b0190) 2014; 26
10.1016/j.intimp.2022.109133_b0020
Dolff (10.1016/j.intimp.2022.109133_b0155) 2011; 141
References_xml – volume: 12
  start-page: 74
  year: 2016
  end-page: 76
  ident: b0080
  article-title: Systemic lupus erythematosus in 2015: Cellular and metabolic requirements of effector T cells[J]
  publication-title: Nat. Rev. Rheumatol.
– volume: 93
  start-page: 789
  year: 2018
  end-page: 796
  ident: b0055
  article-title: Revision of the international society of nephrology/renal pathology society classification for lupus nephritis: clarification of definitions, and modified national institutes of health activity and chronicity indices[J]
  publication-title: Kidney Int.
– volume: 48
  start-page: 1332
  year: 2003
  end-page: 1342
  ident: b0035
  article-title: Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus[J]
  publication-title: Arthritis Rheum.
– year: 2021
  ident: b0145
  article-title: An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus[J]
  publication-title: Rheumatol. (Oxford)
– volume: 41
  start-page: 2051
  year: 2009
  end-page: 2061
  ident: b0095
  article-title: Glutamine homeostasis and mitochondrial dynamics[J]
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 11
  start-page: 1027
  year: 2020
  ident: b0015
  article-title: T Cell Metabolism: a new perspective on Th17/Treg Cell Imbalance in systemic lupus erythematosus[J]
  publication-title: Front Immunol.
– volume: 141
  start-page: 197
  year: 2011
  end-page: 204
  ident: b0155
  article-title: Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus[J]
  publication-title: Clin. Immunol.
– volume: 48
  start-page: 1142
  year: 2019
  end-page: 1145
  ident: b0010
  article-title: Metabolism as a key regulator in the pathogenesis of systemic lupus erythematosus[J]
  publication-title: Semin. Arthritis Rheum.
– volume: 12
  start-page: e0185092
  year: 2017
  ident: b0185
  article-title: Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition[J]
  publication-title: PLoS One
– volume: 33
  year: 2020
  ident: b0025
  article-title: Metabolic reprogramming induces germinal center B cell differentiation through Bcl6 locus remodeling[J]
  publication-title: Cell Rep.
– volume: 95
  start-page: e13139
  year: 2022
  ident: b0150
  article-title: B cell class switching in intestinal immunity in health and disease[J]
  publication-title: Scand J. Immunol.
– volume: 26
  start-page: 475
  year: 2014
  end-page: 481
  ident: b0190
  article-title: The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis?[J]
  publication-title: Curr. Opin. Rheumatol.
– volume: 58
  start-page: 378
  year: 2018
  end-page: 390
  ident: b0065
  article-title: Glutaminolysis Promotes Collagen Translation and Stability via alpha-Ketoglutarate-mediated mTOR Activation and Proline Hydroxylation[J]
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 12
  start-page: 169
  year: 2016
  end-page: 182
  ident: b0075
  article-title: Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J]
  publication-title: Nat. Rev. Rheumatol.
– volume: 55
  start-page: 237
  year: 2013
  end-page: 246
  ident: b0130
  article-title: Recombinant murine calreticulin fragment 39–272 expands CD1d(hi)CD5+ IL-10-secreting B cells that modulate experimental autoimmune encephalomyelitis in C57BL/6 mice[J]
  publication-title: Mol. Immunol.
– volume: 93
  year: 2021
  ident: b0195
  article-title: Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation[J]
  publication-title: Int. Immunopharmacol.
– volume: 44
  start-page: 65
  year: 2019
  end-page: 74
  ident: b0040
  article-title: Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients[J]
  publication-title: Mitochondrion
– volume: 182
  start-page: 3492
  year: 2009
  end-page: 3502
  ident: b0110
  article-title: Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice[J]
  publication-title: J. Immunol.
– reference: <Glutamine-dependent α-ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation.pdf>[J].
– volume: 13
  start-page: 890
  year: 2014
  end-page: 901
  ident: b0105
  article-title: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer[J]
  publication-title: Mol. Cancer Ther.
– volume: 102861
  year: 2022
  ident: b0060
  article-title: Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J]
  publication-title: J. Autoimmun.
– volume: 363
  start-page: 187
  year: 2011
  end-page: 197
  ident: b0030
  article-title: Abnormalities of B cell subsets in patients with systemic lupus erythematosus[J]
  publication-title: J. Immunol. Methods
– volume: 46
  start-page: 1267
  year: 2021
  end-page: 1275
  ident: b0045
  article-title: Advances in therapeutic targets-related study on systemic lupus erythematosus[J]
  publication-title: Zhong Nan Da Xue Xue Bao Yi Xue Ban
– volume: 50
  start-page: 314
  year: 2020
  end-page: 320
  ident: b0170
  article-title: Advances in systemic lupus erythematosus pathogenesis via mTOR signaling pathway[J]
  publication-title: Semin. Arthritis Rheum.
– volume: 50
  start-page: 888
  year: 2018
  end-page: 896
  ident: b0215
  article-title: mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus[J]
  publication-title: Acta. Biochim. Biophys. Sin. (Shanghai)
– volume: 23
  year: 2022
  ident: b0085
  article-title: The Role of Inflammasomes in Glomerulonephritis[J]
  publication-title: Int. J. Mol. Sci.
– volume: 44
  start-page: 1229
  year: 2021
  end-page: 1245
  ident: b0210
  article-title: The Signaling Pathways Regulating NLRP3 Inflammasome Activation[J]
  publication-title: Inflammation
– volume: 11
  start-page: 4107
  year: 2012
  end-page: 4108
  ident: b0070
  article-title: Glutaminolysis feeds mTORC1[J]
  publication-title: Cell Cycle
– volume: 178
  start-page: 7868
  year: 2007
  end-page: 7878
  ident: b0135
  article-title: Novel suppressive function of transitional 2 B cells in experimental arthritis[J]
  publication-title: J. Immunol.
– volume: 46
  start-page: 281
  year: 2016
  end-page: 290
  ident: b0160
  article-title: T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis[J]
  publication-title: Eur. J. Immunol.
– volume: 9
  start-page: 4369
  year: 2018
  ident: b0050
  article-title: Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells[J]
  publication-title: Nat. Commun.
– volume: 295
  start-page: 167
  year: 2020
  end-page: 186
  ident: b0090
  article-title: Metabolic determinants of lupus pathogenesis[J]
  publication-title: Immunol. Rev.
– volume: 20
  start-page: 1767
  year: 2012
  end-page: 1777
  ident: b0125
  article-title: Inducible IL10(+) suppressor B cells inhibit CNS inflammation and T helper 17 polarization[J]
  publication-title: Mol. Ther.
– volume: 1
  start-page: 103
  year: 2010
  end-page: 108
  ident: b0120
  article-title: Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora[J]
  publication-title: Gut. Microbes
– volume: 184
  start-page: 4801
  year: 2010
  end-page: 4809
  ident: b0140
  article-title: Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity[J]
  publication-title: J. Immunol.
– volume: 32
  start-page: 4549
  year: 2013
  end-page: 4556
  ident: b0180
  article-title: HIF-independent role of prolyl hydroxylases in the cellular response to amino acids[J]
  publication-title: Oncogene
– year: 2020
  ident: b0005
  article-title: New insights into systemic lupus erythematosus therapies: 2010–2020[J]
  publication-title: J. Clin. Rheumatol.
– volume: 74
  year: 2019
  ident: b0200
  article-title: Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice[J]
  publication-title: Int. Immunopharmacol.
– volume: 12
  year: 2021
  ident: b0115
  article-title: Immunosuppressive Mechanisms of Regulatory B Cells[J]
  publication-title: Front Immunol.
– volume: 70
  start-page: 427
  year: 2018
  end-page: 438
  ident: b0165
  article-title: Blockade of Treg Cell Differentiation and Function by the Interleukin-21-Mechanistic Target of Rapamycin Axis Via Suppression of Autophagy in Patients With Systemic Lupus Erythematosus[J]
  publication-title: Arthritis Rheumatol.
– volume: 130
  start-page: 5180
  year: 2020
  end-page: 5196
  ident: b0100
  article-title: GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis[J]
  publication-title: J. Clin. Investigation
– volume: 67
  start-page: 1036
  year: 2015
  end-page: 1044
  ident: b0205
  article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice[J]
  publication-title: Arthritis Rheumatol.
– volume: 18
  start-page: 744
  year: 2018
  end-page: 757
  ident: b0175
  article-title: mTOR signalling and cellular metabolism are mutual determinants in cancer[J]
  publication-title: Nat. Rev. Cancer
– volume: 50
  start-page: 314
  issue: 2
  year: 2020
  ident: 10.1016/j.intimp.2022.109133_b0170
  article-title: Advances in systemic lupus erythematosus pathogenesis via mTOR signaling pathway[J]
  publication-title: Semin. Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2019.09.022
– volume: 95
  start-page: e13139
  issue: 2
  year: 2022
  ident: 10.1016/j.intimp.2022.109133_b0150
  article-title: B cell class switching in intestinal immunity in health and disease[J]
  publication-title: Scand J. Immunol.
  doi: 10.1111/sji.13139
– volume: 18
  start-page: 744
  issue: 12
  year: 2018
  ident: 10.1016/j.intimp.2022.109133_b0175
  article-title: mTOR signalling and cellular metabolism are mutual determinants in cancer[J]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0074-8
– volume: 93
  start-page: 789
  issue: 4
  year: 2018
  ident: 10.1016/j.intimp.2022.109133_b0055
  article-title: Revision of the international society of nephrology/renal pathology society classification for lupus nephritis: clarification of definitions, and modified national institutes of health activity and chronicity indices[J]
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2017.11.023
– volume: 102861
  year: 2022
  ident: 10.1016/j.intimp.2022.109133_b0060
  article-title: Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J]
  publication-title: J. Autoimmun.
– volume: 67
  start-page: 1036
  issue: 4
  year: 2015
  ident: 10.1016/j.intimp.2022.109133_b0205
  article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice[J]
  publication-title: Arthritis Rheumatol.
  doi: 10.1002/art.38993
– volume: 12
  year: 2021
  ident: 10.1016/j.intimp.2022.109133_b0115
  article-title: Immunosuppressive Mechanisms of Regulatory B Cells[J]
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2021.611795
– volume: 184
  start-page: 4801
  issue: 9
  year: 2010
  ident: 10.1016/j.intimp.2022.109133_b0140
  article-title: Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity[J]
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902385
– year: 2021
  ident: 10.1016/j.intimp.2022.109133_b0145
  article-title: An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus[J]
  publication-title: Rheumatol. (Oxford)
– volume: 44
  start-page: 65
  year: 2019
  ident: 10.1016/j.intimp.2022.109133_b0040
  article-title: Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients[J]
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2018.01.002
– volume: 141
  start-page: 197
  issue: 2
  year: 2011
  ident: 10.1016/j.intimp.2022.109133_b0155
  article-title: Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus[J]
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2011.08.005
– volume: 23
  issue: 8
  year: 2022
  ident: 10.1016/j.intimp.2022.109133_b0085
  article-title: The Role of Inflammasomes in Glomerulonephritis[J]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23084208
– volume: 46
  start-page: 281
  issue: 2
  year: 2016
  ident: 10.1016/j.intimp.2022.109133_b0160
  article-title: T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis[J]
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201545760
– volume: 32
  start-page: 4549
  issue: 38
  year: 2013
  ident: 10.1016/j.intimp.2022.109133_b0180
  article-title: HIF-independent role of prolyl hydroxylases in the cellular response to amino acids[J]
  publication-title: Oncogene
  doi: 10.1038/onc.2012.465
– volume: 46
  start-page: 1267
  issue: 11
  year: 2021
  ident: 10.1016/j.intimp.2022.109133_b0045
  article-title: Advances in therapeutic targets-related study on systemic lupus erythematosus[J]
  publication-title: Zhong Nan Da Xue Xue Bao Yi Xue Ban
– volume: 70
  start-page: 427
  issue: 3
  year: 2018
  ident: 10.1016/j.intimp.2022.109133_b0165
  article-title: Blockade of Treg Cell Differentiation and Function by the Interleukin-21-Mechanistic Target of Rapamycin Axis Via Suppression of Autophagy in Patients With Systemic Lupus Erythematosus[J]
  publication-title: Arthritis Rheumatol.
  doi: 10.1002/art.40380
– volume: 12
  start-page: 169
  issue: 3
  year: 2016
  ident: 10.1016/j.intimp.2022.109133_b0075
  article-title: Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J]
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2015.172
– volume: 50
  start-page: 888
  issue: 9
  year: 2018
  ident: 10.1016/j.intimp.2022.109133_b0215
  article-title: mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus[J]
  publication-title: Acta. Biochim. Biophys. Sin. (Shanghai)
  doi: 10.1093/abbs/gmy088
– volume: 130
  start-page: 5180
  issue: 10
  year: 2020
  ident: 10.1016/j.intimp.2022.109133_b0100
  article-title: GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis[J]
  publication-title: J. Clin. Investigation
  doi: 10.1172/JCI129269
– volume: 182
  start-page: 3492
  issue: 6
  year: 2009
  ident: 10.1016/j.intimp.2022.109133_b0110
  article-title: Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice[J]
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803052
– volume: 44
  start-page: 1229
  issue: 4
  year: 2021
  ident: 10.1016/j.intimp.2022.109133_b0210
  article-title: The Signaling Pathways Regulating NLRP3 Inflammasome Activation[J]
  publication-title: Inflammation
  doi: 10.1007/s10753-021-01439-6
– volume: 55
  start-page: 237
  issue: 3–4
  year: 2013
  ident: 10.1016/j.intimp.2022.109133_b0130
  article-title: Recombinant murine calreticulin fragment 39–272 expands CD1d(hi)CD5+ IL-10-secreting B cells that modulate experimental autoimmune encephalomyelitis in C57BL/6 mice[J]
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2013.02.003
– volume: 9
  start-page: 4369
  issue: 1
  year: 2018
  ident: 10.1016/j.intimp.2022.109133_b0050
  article-title: Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells[J]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06686-0
– volume: 26
  start-page: 475
  issue: 5
  year: 2014
  ident: 10.1016/j.intimp.2022.109133_b0190
  article-title: The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis?[J]
  publication-title: Curr. Opin. Rheumatol.
  doi: 10.1097/BOR.0000000000000088
– volume: 41
  start-page: 2051
  issue: 10
  year: 2009
  ident: 10.1016/j.intimp.2022.109133_b0095
  article-title: Glutamine homeostasis and mitochondrial dynamics[J]
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.03.003
– volume: 13
  start-page: 890
  issue: 4
  year: 2014
  ident: 10.1016/j.intimp.2022.109133_b0105
  article-title: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer[J]
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-13-0870
– ident: 10.1016/j.intimp.2022.109133_b0020
– volume: 12
  start-page: 74
  issue: 2
  year: 2016
  ident: 10.1016/j.intimp.2022.109133_b0080
  article-title: Systemic lupus erythematosus in 2015: Cellular and metabolic requirements of effector T cells[J]
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2015.178
– volume: 295
  start-page: 167
  issue: 1
  year: 2020
  ident: 10.1016/j.intimp.2022.109133_b0090
  article-title: Metabolic determinants of lupus pathogenesis[J]
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12847
– volume: 363
  start-page: 187
  issue: 2
  year: 2011
  ident: 10.1016/j.intimp.2022.109133_b0030
  article-title: Abnormalities of B cell subsets in patients with systemic lupus erythematosus[J]
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2010.06.009
– volume: 93
  year: 2021
  ident: 10.1016/j.intimp.2022.109133_b0195
  article-title: Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation[J]
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2021.107375
– year: 2020
  ident: 10.1016/j.intimp.2022.109133_b0005
  article-title: New insights into systemic lupus erythematosus therapies: 2010–2020[J]
  publication-title: J. Clin. Rheumatol.
– volume: 11
  start-page: 1027
  year: 2020
  ident: 10.1016/j.intimp.2022.109133_b0015
  article-title: T Cell Metabolism: a new perspective on Th17/Treg Cell Imbalance in systemic lupus erythematosus[J]
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2020.01027
– volume: 33
  issue: 5
  year: 2020
  ident: 10.1016/j.intimp.2022.109133_b0025
  article-title: Metabolic reprogramming induces germinal center B cell differentiation through Bcl6 locus remodeling[J]
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108333
– volume: 12
  start-page: e0185092
  issue: 9
  year: 2017
  ident: 10.1016/j.intimp.2022.109133_b0185
  article-title: Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition[J]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0185092
– volume: 48
  start-page: 1142
  issue: 6
  year: 2019
  ident: 10.1016/j.intimp.2022.109133_b0010
  article-title: Metabolism as a key regulator in the pathogenesis of systemic lupus erythematosus[J]
  publication-title: Semin. Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2019.04.006
– volume: 11
  start-page: 4107
  issue: 22
  year: 2012
  ident: 10.1016/j.intimp.2022.109133_b0070
  article-title: Glutaminolysis feeds mTORC1[J]
  publication-title: Cell Cycle
  doi: 10.4161/cc.22632
– volume: 20
  start-page: 1767
  issue: 9
  year: 2012
  ident: 10.1016/j.intimp.2022.109133_b0125
  article-title: Inducible IL10(+) suppressor B cells inhibit CNS inflammation and T helper 17 polarization[J]
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.127
– volume: 178
  start-page: 7868
  issue: 12
  year: 2007
  ident: 10.1016/j.intimp.2022.109133_b0135
  article-title: Novel suppressive function of transitional 2 B cells in experimental arthritis[J]
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.12.7868
– volume: 58
  start-page: 378
  issue: 3
  year: 2018
  ident: 10.1016/j.intimp.2022.109133_b0065
  article-title: Glutaminolysis Promotes Collagen Translation and Stability via alpha-Ketoglutarate-mediated mTOR Activation and Proline Hydroxylation[J]
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2017-0238OC
– volume: 1
  start-page: 103
  issue: 2
  year: 2010
  ident: 10.1016/j.intimp.2022.109133_b0120
  article-title: Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora[J]
  publication-title: Gut. Microbes
  doi: 10.4161/gmic.1.2.11515
– volume: 74
  year: 2019
  ident: 10.1016/j.intimp.2022.109133_b0200
  article-title: Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice[J]
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2019.105682
– volume: 48
  start-page: 1332
  issue: 5
  year: 2003
  ident: 10.1016/j.intimp.2022.109133_b0035
  article-title: Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus[J]
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.10949
SSID ssj0017041
Score 2.484468
Snippet •Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate...
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109133
SubjectTerms B cell subsets
CB839
Glutamine metabolism
Lupus nephritis
mTOR pathway
NLRP3 pathway
Systemic lupus erythematosus
T cell subsets
Title Inhibition of glutaminolysis ameliorates lupus by regulating T and B cell subsets and downregulating the mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice
URI https://dx.doi.org/10.1016/j.intimp.2022.109133
https://www.proquest.com/docview/2715442039
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9RAEF5KRfBFtCpWaxlB-tRtsptNNvfYlpY7ez3D9Qp9C7t7G41ccsclR8mLP8kHf4i_yd1N0qogBR-zzIaQmXzzbZj5BqEPQRgpk_gJzrhimFGaYUNiOc58TinJ9EDFtsH5chINr9nHm_BmC532vTC2rLLD_hbTHVp3K173Nr1VnntX5uTBDVseUOrysG34ZYzbKD_6dlfmQbjPWs1U8wDWum-fczVeeVnnhVWtpPTIKWQG_0pPfwG1yz7nz9DTjjbCcftkz9GWLnfQ43aQZLODDpJWgbo5hNl9Q1V1CAeQ3GtTNy_Q91H5JZeuTAuWGXw2cSeKvFw6YRIQhV7Yln1DP2GxWW0qkA2s22n1JsXBDEQ5hxOwf_uhMpCj68otzc1Z_jc7QyqhmH2aegn3r6ILj52dJMQZTsbTJPCUMDhWaUy80RiTnz_AzkW-FU0FeQmX07G3WK2hMBD2El2fn81Oh7gb2YBVEAxqLGMeqDCMtB8LmgniSym04QiSacojTogmVBiPECcTE8-5wQsZRFJRxbWlS6_Qdrks9WsEAZlHnIUWcDI75lJGYahEKMyJVEUxZbso6D2Vqk7P3I7VWKR94drXtPVvav2btv7dRfhu16rV83jAnvdBkP4Rl6lJOQ_sfN_HTGo-WesZUerlpkoptxJI1A8Gb_777m_RE3vVdkXuoe16vdHvDD2q5b6L_3306Hh0MZz8Ai5UDjc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVGJwQvEwzQxudFQnuaSWwncfq4TZtampaoy6S9RY7rQFCTVk2qKX-KB34Ivwk7HxsgoUm8JnZk5V6fe5zcey5CH5jrSR34CU65dLBDaYo1ieU4tTmlJFVD6ZsC5-nMG105n67d6x101tfCmLTKDvtbTG_QurtidW_TWmeZdalPHlyz5SGlTRz2H6Bdo07lDtDuyXgymt3-TOC208qm6jWYCX0FXZPmlRVVlhvhSko_NiKZ7F8R6i-sbgLQxRO01zFHOGkX9xTtqGIfPWx7Sdb76ChsRajrY4juaqrKYziC8E6eun6Gvo-Lr1nSZGrBKoUv2vVEnhWrRpsERK6WpmpfM1BYbtfbEpIaNm3Deh3lIAJRLOAUzAd_KDXqqKpsLi30cf63cZpXQh59nlshty-9ieWcn4akGTgL5iGzpNBQVipMrHGAyc8fYFoj34i6hKyA6TywlusN5BrFnqOri_PobIS7rg1YMjascOJzJl3XU7YvaCqInSRCaZqQOIpyjxOiCBXaIqRRivEXXENGwrxEUsmVYUwv0KBYFeoAASMLjzuuwZzUdLpMPNeVwhX6UCo9nzqHiPWWimUnaW46ayzjPnftW9zaNzb2jVv7HiJ8O2vdSnrcM573ThD_4Zqxjjr3zHzf-0ysd62xjCjUalvGlBsVJGqz4cv_fvo79GgUTYM4GM8mr9Bjc6ctknyNBtVmq95otlQlb7vd8AtlwRDo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+glutaminolysis+ameliorates+lupus+by+regulating+T+and+B+cell+subsets+and+downregulating+the+mTOR%2FP70S6K%2F4EBP1+and+NLRP3%2Fcaspase-1%2FIL-1%CE%B2+pathways+in+MRL%2Flpr+mice&rft.jtitle=International+immunopharmacology&rft.au=Zhang%2C+Xiaomei&rft.au=Wang%2C+Gang&rft.au=Bi%2C+Ying&rft.au=Jiang%2C+Zhihang&rft.date=2022-11-01&rft.issn=1878-1705&rft.eissn=1878-1705&rft.volume=112&rft.spage=109133&rft_id=info:doi/10.1016%2Fj.intimp.2022.109133&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-5769&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-5769&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-5769&client=summon