Inhibition of glutaminolysis ameliorates lupus by regulating T and B cell subsets and downregulating the mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice
•Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate the glutamine metabolism level, avoiding the metabolic environmental difference between in vitro culture and in vivo and reflected a more intui...
Saved in:
Published in | International immunopharmacology Vol. 112; p. 109133 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1567-5769 1878-1705 1878-1705 |
DOI | 10.1016/j.intimp.2022.109133 |
Cover
Loading…
Abstract | •Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate the glutamine metabolism level, avoiding the metabolic environmental difference between in vitro culture and in vivo and reflected a more intuitive metabolic profile.•Evaluated the effect of regulation of glutamine metabolism on B cell subsets in MRL/lpr mice for the first time.•Previous studies have shown that inhibiting glutamine metabolism may be beneficial to lupus, and this study conducted a more in-depth study of the mechanism. Inhibition of glutamine metabolism could regulate mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in lupus.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice.
We assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting.
In this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment.
Our study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease. |
---|---|
AbstractList | Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice.BACKGROUND AND AIM OF THE STUDYSystemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice.We assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting.METHODSWe assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting.In this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment.RESULTSIn this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment.Our study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease.CONCLUSIONOur study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease. •Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate the glutamine metabolism level, avoiding the metabolic environmental difference between in vitro culture and in vivo and reflected a more intuitive metabolic profile.•Evaluated the effect of regulation of glutamine metabolism on B cell subsets in MRL/lpr mice for the first time.•Previous studies have shown that inhibiting glutamine metabolism may be beneficial to lupus, and this study conducted a more in-depth study of the mechanism. Inhibition of glutamine metabolism could regulate mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in lupus. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive regulation from intracellular energy metabolism. Herein, we aimed to investigate glutamine metabolism levels in SLE and explore the effects of modulating glutamine metabolism on T and B cell subsets and related signaling pathways in MRL/lpr lupus mice. We assessed intracellular glutamine metabolism in SLE patients and MRL/lpr mice by measuring intracellular glutamate and Glutaminase 1 (GLS1) protein levels. Intraperitoneal injection of the GLS1 inhibitor CB839 was performed to reduce glutamine metabolism and lupus-like manifestations in MRL/lpr mice were evaluated. The proportions and numbers of T and B cell subsets were determinedvia flow cytometry. Pathway-related proteins were detected using western blotting. In this study, we reported that glutamine metabolism levels were aberrantly elevated in splenic mononuclear cells from MRL/lpr lupus mice, as well as in peripheral blood mononuclear cells (PBMCs) of SLE patients. Inhibition of glutamine metabolism by CB839 treatment for 8 weeks alleviated the lupus-like manifestations in MRL/lpr mice, including the kidney lesions, urinary protein/creatinine ratio, spleen index, and serum IgG1. Meanwhile, CB839 treatment ameliorated the depletion of IL-10 producing B cells (B10) and adjusted the Th1/TH2 and TH17/Treg imbalance. The inhibition of GLS1 by CB839 reduced the numbers of follicular helper T (TfH) cells and activated B cells in lupus mice. The proportions of mature B cells and plasma cells were not affected. Furthermore, the hyperactivated mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice were reversed by CB839 treatment. Our study confirmed the presence of abnormal intracellular glutamine metabolism in SLE and revealed potential therapeutic targets for this disease. |
ArticleNumber | 109133 |
Author | Wang, Xiaofei Wang, Gang Bi, Ying Jiang, Zhihang Zhang, Xiaomei |
Author_xml | – sequence: 1 givenname: Xiaomei surname: Zhang fullname: Zhang, Xiaomei organization: Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China – sequence: 2 givenname: Gang orcidid: 0000-0001-7612-2977 surname: Wang fullname: Wang, Gang email: neurowang@163.com organization: Department of Neurosurgery, the First Hospital of China Medical University, Shenyang 110001, China – sequence: 3 givenname: Ying surname: Bi fullname: Bi, Ying organization: Department of Rheumatology and Immunology, the Fourth Hospital of China Medical University, Shenyang 110001, China – sequence: 4 givenname: Zhihang surname: Jiang fullname: Jiang, Zhihang organization: Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China – sequence: 5 givenname: Xiaofei surname: Wang fullname: Wang, Xiaofei organization: Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, China |
BookMark | eNqFkc1u1DAUhSNUJNrCG7Dwkk0mdv6csECiVUtHBDoahrXlOHdmPHLs4OtQzUt1wYPwTGQaFogFrO7V0TlHuve7iM6ssxBFrxldMMrK5LDQNuh-WKQ0TSepZln2LDpnFa9ixmlxNu1FyeOCl_WL6ALxQOmk5-w8elzavW510M4StyU7MwbZa-vMETUS2YPRzssASMw4jEjaI_GwG40M2u7IhkjbkSuiwBiCY4sQ8Enq3IP9wxf2QPrN_TpZcfql_JjkN1cr9mT83KxXWaIkDhIhZsmyidnPH2SQYf8gj0i0JZ_WTWIGT3qt4GX0fCsNwqvf8zL6enuzub6Lm_sPy-v3TayyrA5xW_FMFUUJtJLpVjLathJyVrQ5pLzkjAFL5XQ_o0WdV1XHecXbrGxVqjhQWmaX0Zu5d_Du2wgYRK_xdKW04EYUKWdFnqc0qydrPluVd4getmLwupf-KBgVJzziIGY84oRHzHim2Nu_YkoHeeIQvNTmf-F3cximH3zX4AUqDVZBpz2oIDqn_13wC4KbsEM |
CitedBy_id | crossref_primary_10_1016_j_coi_2024_102484 crossref_primary_10_1038_s41392_024_01954_6 crossref_primary_10_1111_1756_185X_70040 crossref_primary_10_3389_fimmu_2023_1284133 crossref_primary_10_1016_j_autrev_2024_103583 crossref_primary_10_3389_fimmu_2024_1443440 crossref_primary_10_3389_fmed_2022_1085339 crossref_primary_10_1016_j_clim_2024_110224 crossref_primary_10_1002_jmv_70197 crossref_primary_10_2147_DMSO_S471711 crossref_primary_10_1038_s41392_025_02141_x crossref_primary_10_1007_s12013_024_01231_x crossref_primary_10_2147_JIR_S443482 crossref_primary_10_1021_acs_jnatprod_4c00237 crossref_primary_10_3389_fimmu_2023_1155421 crossref_primary_10_1016_j_tem_2024_01_005 crossref_primary_10_1002_mnfr_202200755 crossref_primary_10_1097_MD_0000000000036299 crossref_primary_10_1186_s13046_024_02994_0 crossref_primary_10_1016_j_autrev_2024_103714 crossref_primary_10_1111_imr_13360 crossref_primary_10_3389_fimmu_2023_1221530 crossref_primary_10_1007_s00011_023_01729_9 |
Cites_doi | 10.1016/j.semarthrit.2019.09.022 10.1111/sji.13139 10.1038/s41568-018-0074-8 10.1016/j.kint.2017.11.023 10.1002/art.38993 10.3389/fimmu.2021.611795 10.4049/jimmunol.0902385 10.1016/j.mito.2018.01.002 10.1016/j.clim.2011.08.005 10.3390/ijms23084208 10.1002/eji.201545760 10.1038/onc.2012.465 10.1002/art.40380 10.1038/nrrheum.2015.172 10.1093/abbs/gmy088 10.1172/JCI129269 10.4049/jimmunol.0803052 10.1007/s10753-021-01439-6 10.1016/j.molimm.2013.02.003 10.1038/s41467-018-06686-0 10.1097/BOR.0000000000000088 10.1016/j.biocel.2009.03.003 10.1158/1535-7163.MCT-13-0870 10.1038/nrrheum.2015.178 10.1111/imr.12847 10.1016/j.jim.2010.06.009 10.1016/j.intimp.2021.107375 10.3389/fimmu.2020.01027 10.1016/j.celrep.2020.108333 10.1371/journal.pone.0185092 10.1016/j.semarthrit.2019.04.006 10.4161/cc.22632 10.1038/mt.2012.127 10.4049/jimmunol.178.12.7868 10.1165/rcmb.2017-0238OC 10.4161/gmic.1.2.11515 10.1016/j.intimp.2019.105682 10.1002/art.10949 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.intimp.2022.109133 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1878-1705 |
ExternalDocumentID | 10_1016_j_intimp_2022_109133 S1567576922006178 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATCM AAXUO ABBQC ABFNM ABFRF ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CJTIS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM L7B LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSI SSP SSZ T5K TEORI UNMZH VH1 ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7X8 |
ID | FETCH-LOGICAL-c339t-b873c556e08a2fa10bbae415b4e276711e12a0411059488d7787b36bc2c7e0063 |
IEDL.DBID | .~1 |
ISSN | 1567-5769 1878-1705 |
IngestDate | Fri Jul 11 16:19:40 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Tue Jul 01 03:40:19 EDT 2025 Fri Feb 23 02:40:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CB839 Systemic lupus erythematosus Glutamine metabolism mTOR pathway NLRP3 pathway Lupus nephritis B cell subsets T cell subsets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-b873c556e08a2fa10bbae415b4e276711e12a0411059488d7787b36bc2c7e0063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7612-2977 |
PQID | 2715442039 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2715442039 crossref_primary_10_1016_j_intimp_2022_109133 crossref_citationtrail_10_1016_j_intimp_2022_109133 elsevier_sciencedirect_doi_10_1016_j_intimp_2022_109133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | International immunopharmacology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Perl (b0075) 2016; 12 Hsieh, Williams, Rafei (b0125) 2012; 20 Hong, Zhang, Gao (b0130) 2013; 55 Evans, Chavez-Rueda, Eddaoudi (b0135) 2007; 178 <Glutamine-dependent α-ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation.pdf>[J]. Choi, Titov, Abboud (b0050) 2018; 9 Lee, Lin, Pan (b0040) 2019; 44 Anton-Pampols, Diaz-Requena, Martinez-Valenzuela (b0085) 2022; 23 Dolff, Bijl, Huitema (b0155) 2011; 141 Fleming, Castro-Dopico, Clatworthy (b0150) 2022; 95 He, Ma, Ren (b0170) 2020; 50 Sumikawa, Iwata, Zhang (b0145) 2021 Mossmann, Park, Hall (b0175) 2018; 18 Chen, Ye, He (b0210) 2021; 44 Wang, Wallace (b0005) 2020 Teng, Brown, Choi (b0090) 2020; 295 Gu, Zhu, Deng (b0195) 2021; 93 Zhao, Wang, Huang (b0205) 2015; 67 Blair, Chavez-Rueda, Evans (b0110) 2009; 182 Deng, Chen, Wang (b0200) 2019; 74 Takeshima, Iwasaki, Fujio (b0010) 2019; 48 Duran, MacKenzie, Boulahbel (b0180) 2013; 32 Duran, Hall (b0070) 2012; 11 Jacobi, Odendahl, Reiter (b0035) 2003; 48 Bajema, Wilhelmus, Alpers (b0055) 2018; 93 Watanabe, Ishiura, Nakashima (b0140) 2010; 184 Lampa, Arlt, He (b0185) 2017; 12 Kahlenberg, Kaplan (b0190) 2014; 26 Li, Zhang, Pan (b0215) 2018; 50 Haniuda, Fukao, Kitamura (b0025) 2020; 33 Xia, Cao, Sun (b0100) 2020; 130 Ochoa-Reparaz, Mielcarz, Haque-Begum (b0120) 2010; 1 Lou, Ling, Cao (b0060) 2022; 102861 Tsokos (b0080) 2016; 12 Gross, Demo, Dennison (b0105) 2014; 13 Ge, Cui, Xie (b0065) 2018; 58 Mates, Segura, Campos-Sandoval (b0095) 2009; 41 Catalan, Mansilla, Ferrier (b0115) 2021; 12 Wang, Zhang, Luo (b0045) 2021; 46 Shan, Jin, Xu (b0015) 2020; 11 Blanco, Ueno, Schmitt (b0160) 2016; 46 Kato, Perl (b0165) 2018; 70 Dorner, Jacobi, Lee (b0030) 2011; 363 Teng (10.1016/j.intimp.2022.109133_b0090) 2020; 295 Ge (10.1016/j.intimp.2022.109133_b0065) 2018; 58 Deng (10.1016/j.intimp.2022.109133_b0200) 2019; 74 Catalan (10.1016/j.intimp.2022.109133_b0115) 2021; 12 Hsieh (10.1016/j.intimp.2022.109133_b0125) 2012; 20 Watanabe (10.1016/j.intimp.2022.109133_b0140) 2010; 184 Lee (10.1016/j.intimp.2022.109133_b0040) 2019; 44 Gross (10.1016/j.intimp.2022.109133_b0105) 2014; 13 He (10.1016/j.intimp.2022.109133_b0170) 2020; 50 Duran (10.1016/j.intimp.2022.109133_b0180) 2013; 32 Chen (10.1016/j.intimp.2022.109133_b0210) 2021; 44 Shan (10.1016/j.intimp.2022.109133_b0015) 2020; 11 Fleming (10.1016/j.intimp.2022.109133_b0150) 2022; 95 Tsokos (10.1016/j.intimp.2022.109133_b0080) 2016; 12 Kato (10.1016/j.intimp.2022.109133_b0165) 2018; 70 Anton-Pampols (10.1016/j.intimp.2022.109133_b0085) 2022; 23 Hong (10.1016/j.intimp.2022.109133_b0130) 2013; 55 Bajema (10.1016/j.intimp.2022.109133_b0055) 2018; 93 Mates (10.1016/j.intimp.2022.109133_b0095) 2009; 41 Mossmann (10.1016/j.intimp.2022.109133_b0175) 2018; 18 Jacobi (10.1016/j.intimp.2022.109133_b0035) 2003; 48 Lampa (10.1016/j.intimp.2022.109133_b0185) 2017; 12 Haniuda (10.1016/j.intimp.2022.109133_b0025) 2020; 33 Xia (10.1016/j.intimp.2022.109133_b0100) 2020; 130 Evans (10.1016/j.intimp.2022.109133_b0135) 2007; 178 Duran (10.1016/j.intimp.2022.109133_b0070) 2012; 11 Sumikawa (10.1016/j.intimp.2022.109133_b0145) 2021 Li (10.1016/j.intimp.2022.109133_b0215) 2018; 50 Wang (10.1016/j.intimp.2022.109133_b0045) 2021; 46 Lou (10.1016/j.intimp.2022.109133_b0060) 2022; 102861 Perl (10.1016/j.intimp.2022.109133_b0075) 2016; 12 Blair (10.1016/j.intimp.2022.109133_b0110) 2009; 182 Wang (10.1016/j.intimp.2022.109133_b0005) 2020 Ochoa-Reparaz (10.1016/j.intimp.2022.109133_b0120) 2010; 1 Blanco (10.1016/j.intimp.2022.109133_b0160) 2016; 46 Takeshima (10.1016/j.intimp.2022.109133_b0010) 2019; 48 Dorner (10.1016/j.intimp.2022.109133_b0030) 2011; 363 Gu (10.1016/j.intimp.2022.109133_b0195) 2021; 93 Zhao (10.1016/j.intimp.2022.109133_b0205) 2015; 67 Choi (10.1016/j.intimp.2022.109133_b0050) 2018; 9 Kahlenberg (10.1016/j.intimp.2022.109133_b0190) 2014; 26 10.1016/j.intimp.2022.109133_b0020 Dolff (10.1016/j.intimp.2022.109133_b0155) 2011; 141 |
References_xml | – volume: 12 start-page: 74 year: 2016 end-page: 76 ident: b0080 article-title: Systemic lupus erythematosus in 2015: Cellular and metabolic requirements of effector T cells[J] publication-title: Nat. Rev. Rheumatol. – volume: 93 start-page: 789 year: 2018 end-page: 796 ident: b0055 article-title: Revision of the international society of nephrology/renal pathology society classification for lupus nephritis: clarification of definitions, and modified national institutes of health activity and chronicity indices[J] publication-title: Kidney Int. – volume: 48 start-page: 1332 year: 2003 end-page: 1342 ident: b0035 article-title: Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus[J] publication-title: Arthritis Rheum. – year: 2021 ident: b0145 article-title: An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus[J] publication-title: Rheumatol. (Oxford) – volume: 41 start-page: 2051 year: 2009 end-page: 2061 ident: b0095 article-title: Glutamine homeostasis and mitochondrial dynamics[J] publication-title: Int. J. Biochem. Cell Biol. – volume: 11 start-page: 1027 year: 2020 ident: b0015 article-title: T Cell Metabolism: a new perspective on Th17/Treg Cell Imbalance in systemic lupus erythematosus[J] publication-title: Front Immunol. – volume: 141 start-page: 197 year: 2011 end-page: 204 ident: b0155 article-title: Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus[J] publication-title: Clin. Immunol. – volume: 48 start-page: 1142 year: 2019 end-page: 1145 ident: b0010 article-title: Metabolism as a key regulator in the pathogenesis of systemic lupus erythematosus[J] publication-title: Semin. Arthritis Rheum. – volume: 12 start-page: e0185092 year: 2017 ident: b0185 article-title: Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition[J] publication-title: PLoS One – volume: 33 year: 2020 ident: b0025 article-title: Metabolic reprogramming induces germinal center B cell differentiation through Bcl6 locus remodeling[J] publication-title: Cell Rep. – volume: 95 start-page: e13139 year: 2022 ident: b0150 article-title: B cell class switching in intestinal immunity in health and disease[J] publication-title: Scand J. Immunol. – volume: 26 start-page: 475 year: 2014 end-page: 481 ident: b0190 article-title: The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis?[J] publication-title: Curr. Opin. Rheumatol. – volume: 58 start-page: 378 year: 2018 end-page: 390 ident: b0065 article-title: Glutaminolysis Promotes Collagen Translation and Stability via alpha-Ketoglutarate-mediated mTOR Activation and Proline Hydroxylation[J] publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 12 start-page: 169 year: 2016 end-page: 182 ident: b0075 article-title: Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J] publication-title: Nat. Rev. Rheumatol. – volume: 55 start-page: 237 year: 2013 end-page: 246 ident: b0130 article-title: Recombinant murine calreticulin fragment 39–272 expands CD1d(hi)CD5+ IL-10-secreting B cells that modulate experimental autoimmune encephalomyelitis in C57BL/6 mice[J] publication-title: Mol. Immunol. – volume: 93 year: 2021 ident: b0195 article-title: Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation[J] publication-title: Int. Immunopharmacol. – volume: 44 start-page: 65 year: 2019 end-page: 74 ident: b0040 article-title: Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients[J] publication-title: Mitochondrion – volume: 182 start-page: 3492 year: 2009 end-page: 3502 ident: b0110 article-title: Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice[J] publication-title: J. Immunol. – reference: <Glutamine-dependent α-ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation.pdf>[J]. – volume: 13 start-page: 890 year: 2014 end-page: 901 ident: b0105 article-title: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer[J] publication-title: Mol. Cancer Ther. – volume: 102861 year: 2022 ident: b0060 article-title: Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J] publication-title: J. Autoimmun. – volume: 363 start-page: 187 year: 2011 end-page: 197 ident: b0030 article-title: Abnormalities of B cell subsets in patients with systemic lupus erythematosus[J] publication-title: J. Immunol. Methods – volume: 46 start-page: 1267 year: 2021 end-page: 1275 ident: b0045 article-title: Advances in therapeutic targets-related study on systemic lupus erythematosus[J] publication-title: Zhong Nan Da Xue Xue Bao Yi Xue Ban – volume: 50 start-page: 314 year: 2020 end-page: 320 ident: b0170 article-title: Advances in systemic lupus erythematosus pathogenesis via mTOR signaling pathway[J] publication-title: Semin. Arthritis Rheum. – volume: 50 start-page: 888 year: 2018 end-page: 896 ident: b0215 article-title: mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus[J] publication-title: Acta. Biochim. Biophys. Sin. (Shanghai) – volume: 23 year: 2022 ident: b0085 article-title: The Role of Inflammasomes in Glomerulonephritis[J] publication-title: Int. J. Mol. Sci. – volume: 44 start-page: 1229 year: 2021 end-page: 1245 ident: b0210 article-title: The Signaling Pathways Regulating NLRP3 Inflammasome Activation[J] publication-title: Inflammation – volume: 11 start-page: 4107 year: 2012 end-page: 4108 ident: b0070 article-title: Glutaminolysis feeds mTORC1[J] publication-title: Cell Cycle – volume: 178 start-page: 7868 year: 2007 end-page: 7878 ident: b0135 article-title: Novel suppressive function of transitional 2 B cells in experimental arthritis[J] publication-title: J. Immunol. – volume: 46 start-page: 281 year: 2016 end-page: 290 ident: b0160 article-title: T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis[J] publication-title: Eur. J. Immunol. – volume: 9 start-page: 4369 year: 2018 ident: b0050 article-title: Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells[J] publication-title: Nat. Commun. – volume: 295 start-page: 167 year: 2020 end-page: 186 ident: b0090 article-title: Metabolic determinants of lupus pathogenesis[J] publication-title: Immunol. Rev. – volume: 20 start-page: 1767 year: 2012 end-page: 1777 ident: b0125 article-title: Inducible IL10(+) suppressor B cells inhibit CNS inflammation and T helper 17 polarization[J] publication-title: Mol. Ther. – volume: 1 start-page: 103 year: 2010 end-page: 108 ident: b0120 article-title: Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora[J] publication-title: Gut. Microbes – volume: 184 start-page: 4801 year: 2010 end-page: 4809 ident: b0140 article-title: Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity[J] publication-title: J. Immunol. – volume: 32 start-page: 4549 year: 2013 end-page: 4556 ident: b0180 article-title: HIF-independent role of prolyl hydroxylases in the cellular response to amino acids[J] publication-title: Oncogene – year: 2020 ident: b0005 article-title: New insights into systemic lupus erythematosus therapies: 2010–2020[J] publication-title: J. Clin. Rheumatol. – volume: 74 year: 2019 ident: b0200 article-title: Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice[J] publication-title: Int. Immunopharmacol. – volume: 12 year: 2021 ident: b0115 article-title: Immunosuppressive Mechanisms of Regulatory B Cells[J] publication-title: Front Immunol. – volume: 70 start-page: 427 year: 2018 end-page: 438 ident: b0165 article-title: Blockade of Treg Cell Differentiation and Function by the Interleukin-21-Mechanistic Target of Rapamycin Axis Via Suppression of Autophagy in Patients With Systemic Lupus Erythematosus[J] publication-title: Arthritis Rheumatol. – volume: 130 start-page: 5180 year: 2020 end-page: 5196 ident: b0100 article-title: GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis[J] publication-title: J. Clin. Investigation – volume: 67 start-page: 1036 year: 2015 end-page: 1044 ident: b0205 article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice[J] publication-title: Arthritis Rheumatol. – volume: 18 start-page: 744 year: 2018 end-page: 757 ident: b0175 article-title: mTOR signalling and cellular metabolism are mutual determinants in cancer[J] publication-title: Nat. Rev. Cancer – volume: 50 start-page: 314 issue: 2 year: 2020 ident: 10.1016/j.intimp.2022.109133_b0170 article-title: Advances in systemic lupus erythematosus pathogenesis via mTOR signaling pathway[J] publication-title: Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2019.09.022 – volume: 95 start-page: e13139 issue: 2 year: 2022 ident: 10.1016/j.intimp.2022.109133_b0150 article-title: B cell class switching in intestinal immunity in health and disease[J] publication-title: Scand J. Immunol. doi: 10.1111/sji.13139 – volume: 18 start-page: 744 issue: 12 year: 2018 ident: 10.1016/j.intimp.2022.109133_b0175 article-title: mTOR signalling and cellular metabolism are mutual determinants in cancer[J] publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0074-8 – volume: 93 start-page: 789 issue: 4 year: 2018 ident: 10.1016/j.intimp.2022.109133_b0055 article-title: Revision of the international society of nephrology/renal pathology society classification for lupus nephritis: clarification of definitions, and modified national institutes of health activity and chronicity indices[J] publication-title: Kidney Int. doi: 10.1016/j.kint.2017.11.023 – volume: 102861 year: 2022 ident: 10.1016/j.intimp.2022.109133_b0060 article-title: Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target[J] publication-title: J. Autoimmun. – volume: 67 start-page: 1036 issue: 4 year: 2015 ident: 10.1016/j.intimp.2022.109133_b0205 article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice[J] publication-title: Arthritis Rheumatol. doi: 10.1002/art.38993 – volume: 12 year: 2021 ident: 10.1016/j.intimp.2022.109133_b0115 article-title: Immunosuppressive Mechanisms of Regulatory B Cells[J] publication-title: Front Immunol. doi: 10.3389/fimmu.2021.611795 – volume: 184 start-page: 4801 issue: 9 year: 2010 ident: 10.1016/j.intimp.2022.109133_b0140 article-title: Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity[J] publication-title: J. Immunol. doi: 10.4049/jimmunol.0902385 – year: 2021 ident: 10.1016/j.intimp.2022.109133_b0145 article-title: An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus[J] publication-title: Rheumatol. (Oxford) – volume: 44 start-page: 65 year: 2019 ident: 10.1016/j.intimp.2022.109133_b0040 article-title: Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients[J] publication-title: Mitochondrion doi: 10.1016/j.mito.2018.01.002 – volume: 141 start-page: 197 issue: 2 year: 2011 ident: 10.1016/j.intimp.2022.109133_b0155 article-title: Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus[J] publication-title: Clin. Immunol. doi: 10.1016/j.clim.2011.08.005 – volume: 23 issue: 8 year: 2022 ident: 10.1016/j.intimp.2022.109133_b0085 article-title: The Role of Inflammasomes in Glomerulonephritis[J] publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23084208 – volume: 46 start-page: 281 issue: 2 year: 2016 ident: 10.1016/j.intimp.2022.109133_b0160 article-title: T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis[J] publication-title: Eur. J. Immunol. doi: 10.1002/eji.201545760 – volume: 32 start-page: 4549 issue: 38 year: 2013 ident: 10.1016/j.intimp.2022.109133_b0180 article-title: HIF-independent role of prolyl hydroxylases in the cellular response to amino acids[J] publication-title: Oncogene doi: 10.1038/onc.2012.465 – volume: 46 start-page: 1267 issue: 11 year: 2021 ident: 10.1016/j.intimp.2022.109133_b0045 article-title: Advances in therapeutic targets-related study on systemic lupus erythematosus[J] publication-title: Zhong Nan Da Xue Xue Bao Yi Xue Ban – volume: 70 start-page: 427 issue: 3 year: 2018 ident: 10.1016/j.intimp.2022.109133_b0165 article-title: Blockade of Treg Cell Differentiation and Function by the Interleukin-21-Mechanistic Target of Rapamycin Axis Via Suppression of Autophagy in Patients With Systemic Lupus Erythematosus[J] publication-title: Arthritis Rheumatol. doi: 10.1002/art.40380 – volume: 12 start-page: 169 issue: 3 year: 2016 ident: 10.1016/j.intimp.2022.109133_b0075 article-title: Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J] publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2015.172 – volume: 50 start-page: 888 issue: 9 year: 2018 ident: 10.1016/j.intimp.2022.109133_b0215 article-title: mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus[J] publication-title: Acta. Biochim. Biophys. Sin. (Shanghai) doi: 10.1093/abbs/gmy088 – volume: 130 start-page: 5180 issue: 10 year: 2020 ident: 10.1016/j.intimp.2022.109133_b0100 article-title: GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis[J] publication-title: J. Clin. Investigation doi: 10.1172/JCI129269 – volume: 182 start-page: 3492 issue: 6 year: 2009 ident: 10.1016/j.intimp.2022.109133_b0110 article-title: Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice[J] publication-title: J. Immunol. doi: 10.4049/jimmunol.0803052 – volume: 44 start-page: 1229 issue: 4 year: 2021 ident: 10.1016/j.intimp.2022.109133_b0210 article-title: The Signaling Pathways Regulating NLRP3 Inflammasome Activation[J] publication-title: Inflammation doi: 10.1007/s10753-021-01439-6 – volume: 55 start-page: 237 issue: 3–4 year: 2013 ident: 10.1016/j.intimp.2022.109133_b0130 article-title: Recombinant murine calreticulin fragment 39–272 expands CD1d(hi)CD5+ IL-10-secreting B cells that modulate experimental autoimmune encephalomyelitis in C57BL/6 mice[J] publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2013.02.003 – volume: 9 start-page: 4369 issue: 1 year: 2018 ident: 10.1016/j.intimp.2022.109133_b0050 article-title: Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells[J] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06686-0 – volume: 26 start-page: 475 issue: 5 year: 2014 ident: 10.1016/j.intimp.2022.109133_b0190 article-title: The inflammasome and lupus: another innate immune mechanism contributing to disease pathogenesis?[J] publication-title: Curr. Opin. Rheumatol. doi: 10.1097/BOR.0000000000000088 – volume: 41 start-page: 2051 issue: 10 year: 2009 ident: 10.1016/j.intimp.2022.109133_b0095 article-title: Glutamine homeostasis and mitochondrial dynamics[J] publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.03.003 – volume: 13 start-page: 890 issue: 4 year: 2014 ident: 10.1016/j.intimp.2022.109133_b0105 article-title: Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer[J] publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-13-0870 – ident: 10.1016/j.intimp.2022.109133_b0020 – volume: 12 start-page: 74 issue: 2 year: 2016 ident: 10.1016/j.intimp.2022.109133_b0080 article-title: Systemic lupus erythematosus in 2015: Cellular and metabolic requirements of effector T cells[J] publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2015.178 – volume: 295 start-page: 167 issue: 1 year: 2020 ident: 10.1016/j.intimp.2022.109133_b0090 article-title: Metabolic determinants of lupus pathogenesis[J] publication-title: Immunol. Rev. doi: 10.1111/imr.12847 – volume: 363 start-page: 187 issue: 2 year: 2011 ident: 10.1016/j.intimp.2022.109133_b0030 article-title: Abnormalities of B cell subsets in patients with systemic lupus erythematosus[J] publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2010.06.009 – volume: 93 year: 2021 ident: 10.1016/j.intimp.2022.109133_b0195 article-title: Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation[J] publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2021.107375 – year: 2020 ident: 10.1016/j.intimp.2022.109133_b0005 article-title: New insights into systemic lupus erythematosus therapies: 2010–2020[J] publication-title: J. Clin. Rheumatol. – volume: 11 start-page: 1027 year: 2020 ident: 10.1016/j.intimp.2022.109133_b0015 article-title: T Cell Metabolism: a new perspective on Th17/Treg Cell Imbalance in systemic lupus erythematosus[J] publication-title: Front Immunol. doi: 10.3389/fimmu.2020.01027 – volume: 33 issue: 5 year: 2020 ident: 10.1016/j.intimp.2022.109133_b0025 article-title: Metabolic reprogramming induces germinal center B cell differentiation through Bcl6 locus remodeling[J] publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108333 – volume: 12 start-page: e0185092 issue: 9 year: 2017 ident: 10.1016/j.intimp.2022.109133_b0185 article-title: Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition[J] publication-title: PLoS One doi: 10.1371/journal.pone.0185092 – volume: 48 start-page: 1142 issue: 6 year: 2019 ident: 10.1016/j.intimp.2022.109133_b0010 article-title: Metabolism as a key regulator in the pathogenesis of systemic lupus erythematosus[J] publication-title: Semin. Arthritis Rheum. doi: 10.1016/j.semarthrit.2019.04.006 – volume: 11 start-page: 4107 issue: 22 year: 2012 ident: 10.1016/j.intimp.2022.109133_b0070 article-title: Glutaminolysis feeds mTORC1[J] publication-title: Cell Cycle doi: 10.4161/cc.22632 – volume: 20 start-page: 1767 issue: 9 year: 2012 ident: 10.1016/j.intimp.2022.109133_b0125 article-title: Inducible IL10(+) suppressor B cells inhibit CNS inflammation and T helper 17 polarization[J] publication-title: Mol. Ther. doi: 10.1038/mt.2012.127 – volume: 178 start-page: 7868 issue: 12 year: 2007 ident: 10.1016/j.intimp.2022.109133_b0135 article-title: Novel suppressive function of transitional 2 B cells in experimental arthritis[J] publication-title: J. Immunol. doi: 10.4049/jimmunol.178.12.7868 – volume: 58 start-page: 378 issue: 3 year: 2018 ident: 10.1016/j.intimp.2022.109133_b0065 article-title: Glutaminolysis Promotes Collagen Translation and Stability via alpha-Ketoglutarate-mediated mTOR Activation and Proline Hydroxylation[J] publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2017-0238OC – volume: 1 start-page: 103 issue: 2 year: 2010 ident: 10.1016/j.intimp.2022.109133_b0120 article-title: Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora[J] publication-title: Gut. Microbes doi: 10.4161/gmic.1.2.11515 – volume: 74 year: 2019 ident: 10.1016/j.intimp.2022.109133_b0200 article-title: Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice[J] publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2019.105682 – volume: 48 start-page: 1332 issue: 5 year: 2003 ident: 10.1016/j.intimp.2022.109133_b0035 article-title: Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus[J] publication-title: Arthritis Rheum. doi: 10.1002/art.10949 |
SSID | ssj0017041 |
Score | 2.484468 |
Snippet | •Herein, intracellular glutamine metabolism level in lupus was revealed.•In this study, a direct detection of intracellular metabolites was used to evaluate... Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by lymphocyte imbalance. The differentiation and function of T and B cells receive... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109133 |
SubjectTerms | B cell subsets CB839 Glutamine metabolism Lupus nephritis mTOR pathway NLRP3 pathway Systemic lupus erythematosus T cell subsets |
Title | Inhibition of glutaminolysis ameliorates lupus by regulating T and B cell subsets and downregulating the mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice |
URI | https://dx.doi.org/10.1016/j.intimp.2022.109133 https://www.proquest.com/docview/2715442039 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9RAEF5KRfBFtCpWaxlB-tRtsptNNvfYlpY7ez3D9Qp9C7t7G41ccsclR8mLP8kHf4i_yd1N0qogBR-zzIaQmXzzbZj5BqEPQRgpk_gJzrhimFGaYUNiOc58TinJ9EDFtsH5chINr9nHm_BmC532vTC2rLLD_hbTHVp3K173Nr1VnntX5uTBDVseUOrysG34ZYzbKD_6dlfmQbjPWs1U8wDWum-fczVeeVnnhVWtpPTIKWQG_0pPfwG1yz7nz9DTjjbCcftkz9GWLnfQ43aQZLODDpJWgbo5hNl9Q1V1CAeQ3GtTNy_Q91H5JZeuTAuWGXw2cSeKvFw6YRIQhV7Yln1DP2GxWW0qkA2s22n1JsXBDEQ5hxOwf_uhMpCj68otzc1Z_jc7QyqhmH2aegn3r6ILj52dJMQZTsbTJPCUMDhWaUy80RiTnz_AzkW-FU0FeQmX07G3WK2hMBD2El2fn81Oh7gb2YBVEAxqLGMeqDCMtB8LmgniSym04QiSacojTogmVBiPECcTE8-5wQsZRFJRxbWlS6_Qdrks9WsEAZlHnIUWcDI75lJGYahEKMyJVEUxZbso6D2Vqk7P3I7VWKR94drXtPVvav2btv7dRfhu16rV83jAnvdBkP4Rl6lJOQ_sfN_HTGo-WesZUerlpkoptxJI1A8Gb_777m_RE3vVdkXuoe16vdHvDD2q5b6L_3306Hh0MZz8Ai5UDjc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVGJwQvEwzQxudFQnuaSWwncfq4TZtampaoy6S9RY7rQFCTVk2qKX-KB34Ivwk7HxsgoUm8JnZk5V6fe5zcey5CH5jrSR34CU65dLBDaYo1ieU4tTmlJFVD6ZsC5-nMG105n67d6x101tfCmLTKDvtbTG_QurtidW_TWmeZdalPHlyz5SGlTRz2H6Bdo07lDtDuyXgymt3-TOC208qm6jWYCX0FXZPmlRVVlhvhSko_NiKZ7F8R6i-sbgLQxRO01zFHOGkX9xTtqGIfPWx7Sdb76ChsRajrY4juaqrKYziC8E6eun6Gvo-Lr1nSZGrBKoUv2vVEnhWrRpsERK6WpmpfM1BYbtfbEpIaNm3Deh3lIAJRLOAUzAd_KDXqqKpsLi30cf63cZpXQh59nlshty-9ieWcn4akGTgL5iGzpNBQVipMrHGAyc8fYFoj34i6hKyA6TywlusN5BrFnqOri_PobIS7rg1YMjascOJzJl3XU7YvaCqInSRCaZqQOIpyjxOiCBXaIqRRivEXXENGwrxEUsmVYUwv0KBYFeoAASMLjzuuwZzUdLpMPNeVwhX6UCo9nzqHiPWWimUnaW46ayzjPnftW9zaNzb2jVv7HiJ8O2vdSnrcM573ThD_4Zqxjjr3zHzf-0ysd62xjCjUalvGlBsVJGqz4cv_fvo79GgUTYM4GM8mr9Bjc6ctknyNBtVmq95otlQlb7vd8AtlwRDo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+glutaminolysis+ameliorates+lupus+by+regulating+T+and+B+cell+subsets+and+downregulating+the+mTOR%2FP70S6K%2F4EBP1+and+NLRP3%2Fcaspase-1%2FIL-1%CE%B2+pathways+in+MRL%2Flpr+mice&rft.jtitle=International+immunopharmacology&rft.au=Zhang%2C+Xiaomei&rft.au=Wang%2C+Gang&rft.au=Bi%2C+Ying&rft.au=Jiang%2C+Zhihang&rft.date=2022-11-01&rft.issn=1878-1705&rft.eissn=1878-1705&rft.volume=112&rft.spage=109133&rft_id=info:doi/10.1016%2Fj.intimp.2022.109133&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-5769&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-5769&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-5769&client=summon |