Recent developments in explosive welding

Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a metal. During the collision, a high velocity jet is produced to remove away the impurities on the metal surfaces. Flyer plate collides with b...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 32; no. 3; pp. 1081 - 1093
Main Author Findik, Fehim
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a metal. During the collision, a high velocity jet is produced to remove away the impurities on the metal surfaces. Flyer plate collides with base plate resulting in a bonding at the interface of metals. The metal plates are joined at an internal point under the influence of a very high pressure and causes considerable local plastic deformation at the interface in which metallurgical bonding occurs in nature and even stronger than the parent metals. Similar and dissimilar materials can be joined by explosive welding. In this paper, after detection the theories of welding and wave formation, experimental research and numerical studies on explosive welding are reviewed for the last four decades. Also, future developments in explosive welding are predicted and criticized in an outlook.
AbstractList Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a metal. During the collision, a high velocity jet is produced to remove away the impurities on the metal surfaces. Flyer plate collides with base plate resulting in a bonding at the interface of metals. The metal plates are joined at an internal point under the influence of a very high pressure and causes considerable local plastic deformation at the interface in which metallurgical bonding occurs in nature and even stronger than the parent metals. Similar and dissimilar materials can be joined by explosive welding. In this paper, after detection the theories of welding and wave formation, experimental research and numerical studies on explosive welding are reviewed for the last four decades. Also, future developments in explosive welding are predicted and criticized in an outlook.
Author Findik, Fehim
Author_xml – sequence: 1
  givenname: Fehim
  surname: Findik
  fullname: Findik, Fehim
  email: findik@sakarya.edu.tr
  organization: Sakarya University, Faculty of Technology, Esentepe Campus, 54187 Adapazari, Turkey
BookMark eNqFkD1PwzAQhj0UiRb4BwwZuyT4YjdpGJBQxZdUCQnBbDn2BblK7GC7Bf49CWFigOlOr97npHsWZGadRULOgWZAobjYZZ2MGkOW0-8oo1DOyJzmBaSMFtUxWYSwo0MKkM_J8gkV2phoPGDr-m7YQ2Jsgh9964I5YPKOrTb29ZQcNbINePYzT8jL7c3z5j7dPt49bK63qWKsimldVs1K15xBXVC1Al1D3mjOkemi1FArXmvkFfAcK7ZGVTcFA6WRynItpaLshCynu713b3sMUXQmKGxbadHtg4CiBAZrvhqrl1NVeReCx0YoE2U0zkYvTSuAilGJ2IlJiRiVjOnw_ADzX3DvTSf953_Y1YTh4OBg0IugDFqF2nhUUWhn_j7wBf92gZ8
CitedBy_id crossref_primary_10_1080_09276440_2020_1716578
crossref_primary_10_1016_j_precisioneng_2016_07_011
crossref_primary_10_1007_s11665_016_2057_9
crossref_primary_10_3390_ma16247672
crossref_primary_10_1007_s13632_014_0120_1
crossref_primary_10_1088_1742_6596_2697_1_012051
crossref_primary_10_1016_j_vacuum_2023_112451
crossref_primary_10_1007_s12613_020_2128_7
crossref_primary_10_3390_met6080179
crossref_primary_10_1016_j_matdes_2015_12_120
crossref_primary_10_1016_j_jhazmat_2015_07_013
crossref_primary_10_3390_met7100407
crossref_primary_10_3390_ma18040898
crossref_primary_10_1016_S1003_6326_21_65685_6
crossref_primary_10_1016_j_msea_2016_07_125
crossref_primary_10_1016_j_prostr_2022_12_240
crossref_primary_10_1080_09507116_2023_2228039
crossref_primary_10_3390_met8070544
crossref_primary_10_3390_coatings10121197
crossref_primary_10_1017_S143192762101374X
crossref_primary_10_1007_s11665_019_03892_9
crossref_primary_10_1016_j_jmst_2020_04_049
crossref_primary_10_1016_j_compositesb_2015_01_023
crossref_primary_10_3390_ma11101820
crossref_primary_10_1007_s11223_022_00446_8
crossref_primary_10_1016_j_ijfatigue_2022_106977
crossref_primary_10_3390_met10050663
crossref_primary_10_1016_j_proeng_2014_11_009
crossref_primary_10_1016_j_matdes_2013_08_022
crossref_primary_10_1088_1674_1056_23_6_066802
crossref_primary_10_1007_s11223_012_9424_z
crossref_primary_10_4028_www_scientific_net_AMR_996_451
crossref_primary_10_1016_j_jmapro_2018_10_046
crossref_primary_10_1515_ama_2016_0040
crossref_primary_10_3390_met7040125
crossref_primary_10_1016_j_jmapro_2021_01_026
crossref_primary_10_1016_j_matchar_2016_05_021
crossref_primary_10_3390_cryst14110974
crossref_primary_10_1088_2053_1591_aaebf0
crossref_primary_10_1016_j_oceaneng_2018_04_070
crossref_primary_10_1007_s12666_019_01846_2
crossref_primary_10_1007_s11665_012_0203_6
crossref_primary_10_1016_j_jmatprotec_2016_04_004
crossref_primary_10_1016_j_matdes_2016_05_101
crossref_primary_10_1016_j_jmatprotec_2018_10_034
crossref_primary_10_1016_j_matpr_2022_03_330
crossref_primary_10_1016_j_pmatsci_2024_101283
crossref_primary_10_1016_j_msea_2012_07_102
crossref_primary_10_1007_s11665_017_3068_x
crossref_primary_10_1016_j_jmapro_2018_09_014
crossref_primary_10_3390_jmmp2030058
crossref_primary_10_1007_s13632_020_00632_7
crossref_primary_10_1002_app_53147
crossref_primary_10_4028_www_scientific_net_SSP_316_62
crossref_primary_10_1016_j_optlaseng_2023_107890
crossref_primary_10_3390_met10081023
crossref_primary_10_1088_1757_899X_709_3_033108
crossref_primary_10_1515_secm_2015_0491
crossref_primary_10_12989_scs_2015_19_3_569
crossref_primary_10_4028_www_scientific_net_AMM_599_601_191
crossref_primary_10_1016_j_jallcom_2016_02_120
crossref_primary_10_1007_s11665_023_08376_5
crossref_primary_10_1016_j_matchemphys_2018_03_066
crossref_primary_10_1007_s11771_023_5476_4
crossref_primary_10_1007_s11666_015_0349_5
crossref_primary_10_1016_j_fusengdes_2019_111292
crossref_primary_10_1016_j_ijmecsci_2019_02_002
crossref_primary_10_1016_j_nme_2021_101086
crossref_primary_10_1016_j_fusengdes_2014_09_002
crossref_primary_10_1016_j_matdes_2013_01_043
crossref_primary_10_1177_0954406216661009
crossref_primary_10_3390_ma15207234
crossref_primary_10_1007_s00170_016_9440_4
crossref_primary_10_1080_09276440_2023_2274698
crossref_primary_10_1007_s10853_011_5841_9
crossref_primary_10_1007_s11665_020_04595_2
crossref_primary_10_1016_j_jmapro_2019_10_004
crossref_primary_10_1080_07370652_2019_1637480
crossref_primary_10_1016_S1006_706X_17_30126_7
crossref_primary_10_1179_1362171811Y_0000000080
crossref_primary_10_1134_S0036029519050124
crossref_primary_10_1016_j_marstruc_2017_10_004
crossref_primary_10_1016_j_mtcomm_2022_103489
crossref_primary_10_1088_1361_665X_aae124
crossref_primary_10_1016_S1003_6326_19_64978_2
crossref_primary_10_1007_s11665_017_2718_3
crossref_primary_10_1007_s40195_017_0628_x
crossref_primary_10_1088_2053_1591_abd825
crossref_primary_10_1016_j_compbiomed_2024_108471
crossref_primary_10_1007_s12046_023_02193_1
crossref_primary_10_1016_j_matpr_2023_04_463
crossref_primary_10_1016_j_jmatprotec_2013_07_006
crossref_primary_10_1016_j_matdes_2020_108630
crossref_primary_10_4028_www_scientific_net_AMM_875_47
crossref_primary_10_1016_j_fusengdes_2014_10_001
crossref_primary_10_1007_s11665_022_07078_8
crossref_primary_10_3390_ma15030825
crossref_primary_10_1007_s00170_023_12892_y
crossref_primary_10_1016_j_matpr_2022_11_160
crossref_primary_10_1007_s40194_024_01834_1
crossref_primary_10_4028_www_scientific_net_DDF_410_630
crossref_primary_10_1016_j_matchar_2022_112250
crossref_primary_10_1016_j_jmapro_2021_10_006
crossref_primary_10_1016_j_addma_2023_103755
crossref_primary_10_1016_j_matdes_2013_10_091
crossref_primary_10_1016_j_prostr_2016_06_297
crossref_primary_10_1051_matecconf_202133801004
crossref_primary_10_1016_j_jmapro_2022_11_013
crossref_primary_10_1007_s12540_023_01616_2
crossref_primary_10_1063_1_4775788
crossref_primary_10_1134_S199079312401007X
crossref_primary_10_1016_j_msea_2018_06_051
crossref_primary_10_37434_tpwj2024_05_05
crossref_primary_10_1016_j_jallcom_2021_162957
crossref_primary_10_4028_www_scientific_net_KEM_592_593_594
crossref_primary_10_1179_1362171815Y_0000000092
crossref_primary_10_1007_s40194_024_01822_5
crossref_primary_10_1016_j_fusengdes_2019_03_137
crossref_primary_10_1016_j_matdes_2013_03_069
crossref_primary_10_1016_j_msea_2017_08_012
crossref_primary_10_1007_s12666_024_03431_8
crossref_primary_10_1002_adem_202402440
crossref_primary_10_1016_j_corsci_2018_06_026
crossref_primary_10_1007_s42243_017_0009_8
crossref_primary_10_1007_s40430_024_05291_1
crossref_primary_10_1002_adem_202301389
crossref_primary_10_1007_s11661_015_2768_9
crossref_primary_10_1016_j_surfcoat_2019_05_022
crossref_primary_10_1016_j_matdes_2017_08_008
crossref_primary_10_1016_j_trpro_2022_06_290
crossref_primary_10_1016_S1003_6326_16_64184_5
crossref_primary_10_1088_0964_1726_23_7_075010
crossref_primary_10_1007_s11665_014_1106_5
crossref_primary_10_1007_s11661_015_3084_0
crossref_primary_10_4028_www_scientific_net_DDF_410_306
crossref_primary_10_1016_j_jmrt_2016_04_001
crossref_primary_10_3103_S1068375520060113
crossref_primary_10_1016_S1875_5372_17_30120_0
crossref_primary_10_1016_j_jmapro_2024_05_036
crossref_primary_10_1016_j_jmrt_2022_03_050
crossref_primary_10_1007_s11665_022_07445_5
crossref_primary_10_3390_met11030501
crossref_primary_10_4028_www_scientific_net_DDF_382_167
crossref_primary_10_1080_21663831_2020_1847211
crossref_primary_10_1007_s12666_023_03105_x
crossref_primary_10_1016_j_matchar_2017_05_007
crossref_primary_10_1007_s11771_017_3528_3
crossref_primary_10_1016_j_oceaneng_2023_115990
crossref_primary_10_1515_secm_2015_0316
crossref_primary_10_4028_www_scientific_net_SSP_224_216
crossref_primary_10_1016_j_engfailanal_2022_106715
crossref_primary_10_1007_s13632_021_00715_z
crossref_primary_10_3390_met8030159
crossref_primary_10_3390_met10111500
crossref_primary_10_1007_s43452_020_00145_8
crossref_primary_10_1016_j_acme_2013_07_003
crossref_primary_10_1016_j_mtcomm_2024_110777
crossref_primary_10_1016_S1003_6326_24_66493_9
crossref_primary_10_1007_s00170_021_06800_5
crossref_primary_10_1155_2019_4535984
crossref_primary_10_3390_met9010043
crossref_primary_10_1002_prep_202200121
crossref_primary_10_1088_2053_1591_ab6538
crossref_primary_10_3390_coatings14020213
crossref_primary_10_1016_j_matdes_2015_08_085
crossref_primary_10_1016_j_matdes_2018_05_027
crossref_primary_10_1088_2053_1591_ac656d
crossref_primary_10_1016_j_jmatprotec_2017_02_030
crossref_primary_10_1007_s12540_016_5687_4
crossref_primary_10_1016_j_matchar_2018_06_005
crossref_primary_10_1007_s10853_024_09905_w
crossref_primary_10_1051_matecconf_201713203013
crossref_primary_10_4028_www_scientific_net_SSP_299_137
crossref_primary_10_1016_j_msea_2018_03_042
crossref_primary_10_1016_j_msea_2022_144110
crossref_primary_10_15407_plit2022_04_034
crossref_primary_10_1007_s40436_023_00472_y
crossref_primary_10_1080_09276440_2020_1843868
crossref_primary_10_1016_j_msea_2019_138659
crossref_primary_10_1016_j_matdes_2013_02_001
crossref_primary_10_1016_j_jalmes_2024_100078
crossref_primary_10_1515_ijmr_2021_8542
crossref_primary_10_1016_j_fusengdes_2013_12_038
crossref_primary_10_1016_j_msea_2017_02_075
crossref_primary_10_1080_09276440_2023_2179256
crossref_primary_10_3390_ma13132909
crossref_primary_10_1007_s11015_019_00798_8
crossref_primary_10_1016_j_tsep_2022_101240
crossref_primary_10_1016_j_mtcomm_2022_103552
crossref_primary_10_1016_j_jnoncrysol_2022_121912
crossref_primary_10_1051_matecconf_20168015002
crossref_primary_10_3390_met11040622
crossref_primary_10_2207_qjjws_41_107
crossref_primary_10_1177_0954405420949227
crossref_primary_10_1051_mfreview_2019028
crossref_primary_10_1016_j_matdes_2014_06_050
crossref_primary_10_1590_1980_5373_mr_2018_0350
crossref_primary_10_1007_s40194_019_00771_8
crossref_primary_10_1016_j_jmapro_2025_01_071
crossref_primary_10_1016_j_matchar_2020_110520
crossref_primary_10_1134_S106378421412024X
crossref_primary_10_1007_s11661_019_05537_x
crossref_primary_10_1016_j_jmrt_2025_03_093
crossref_primary_10_1016_j_matdes_2014_06_046
crossref_primary_10_1016_j_oceaneng_2024_118092
crossref_primary_10_1007_s11661_021_06190_z
crossref_primary_10_1016_j_jmrt_2019_09_025
crossref_primary_10_1016_j_vacuum_2020_109596
crossref_primary_10_1016_j_jmrt_2022_04_108
crossref_primary_10_1016_j_msea_2021_142178
crossref_primary_10_3390_ma13194348
crossref_primary_10_1016_j_matdes_2015_07_025
crossref_primary_10_4028_www_scientific_net_MSF_783_786_1476
crossref_primary_10_1016_j_matdes_2014_11_008
crossref_primary_10_3390_met12111950
crossref_primary_10_1007_s12666_023_02897_2
crossref_primary_10_1016_j_jmapro_2024_07_014
crossref_primary_10_2478_msp_2022_0035
crossref_primary_10_3390_ma17153713
crossref_primary_10_1016_j_jmrt_2023_07_161
crossref_primary_10_2339_politeknik_1091491
crossref_primary_10_1016_j_prostr_2022_03_113
crossref_primary_10_1016_j_matdes_2015_07_114
crossref_primary_10_1016_j_matpr_2021_04_490
crossref_primary_10_1088_1757_899X_529_1_012024
crossref_primary_10_1016_j_jmapro_2020_09_037
crossref_primary_10_1134_S0010508223030012
crossref_primary_10_1016_S1003_6326_15_63699_8
crossref_primary_10_1002_prep_201900157
crossref_primary_10_1088_1757_899X_327_3_032031
crossref_primary_10_1515_htmp_2022_0009
crossref_primary_10_1007_s11665_014_1321_0
crossref_primary_10_1007_s00170_021_07218_9
crossref_primary_10_1051_mfreview_2019007
crossref_primary_10_1007_s42247_021_00233_2
crossref_primary_10_1016_j_vacuum_2016_03_034
crossref_primary_10_3139_146_110977
crossref_primary_10_1007_s11661_013_1703_1
crossref_primary_10_1007_s11665_017_2520_2
crossref_primary_10_1016_j_matdes_2023_111603
crossref_primary_10_1007_s11665_016_2080_x
crossref_primary_10_1177_09544062211059695
crossref_primary_10_1051_matecconf_201824201007
crossref_primary_10_1016_j_dt_2020_09_003
crossref_primary_10_1109_TPS_2022_3210025
crossref_primary_10_3390_met13081438
crossref_primary_10_1016_j_acme_2015_09_006
crossref_primary_10_4028_www_scientific_net_AMR_1081_270
crossref_primary_10_1016_j_msea_2021_142260
crossref_primary_10_1002_prep_201500193
crossref_primary_10_3390_met9020144
crossref_primary_10_1007_s00170_024_13552_5
crossref_primary_10_1016_S1875_5372_17_30135_2
crossref_primary_10_1007_s40195_013_0283_9
crossref_primary_10_1016_j_matdes_2017_05_051
crossref_primary_10_1007_s11665_020_05117_w
crossref_primary_10_1016_j_jmrt_2023_07_079
crossref_primary_10_5006_4058
crossref_primary_10_1016_j_jmps_2016_07_014
crossref_primary_10_1177_0954406218813445
crossref_primary_10_1016_j_acme_2019_09_002
crossref_primary_10_3390_met11081252
crossref_primary_10_1016_j_matdes_2013_05_033
crossref_primary_10_1007_s00170_017_1462_z
crossref_primary_10_1016_j_jsv_2016_12_020
crossref_primary_10_1007_s11665_018_3174_4
crossref_primary_10_1016_j_optlastec_2023_109580
crossref_primary_10_1016_j_matdes_2016_11_053
crossref_primary_10_3390_cryst13071079
crossref_primary_10_1016_j_matdes_2015_08_021
crossref_primary_10_1016_j_enganabound_2024_01_003
crossref_primary_10_1007_s00170_024_13619_3
crossref_primary_10_1007_s11665_019_04535_9
crossref_primary_10_1016_j_matdes_2015_09_164
crossref_primary_10_1016_j_matdes_2015_10_098
crossref_primary_10_1016_j_matdes_2013_05_027
crossref_primary_10_1088_1757_899X_969_1_012090
crossref_primary_10_1007_s11665_023_08326_1
crossref_primary_10_1126_science_aag1768
crossref_primary_10_3390_met9020246
crossref_primary_10_3390_met9111189
crossref_primary_10_1080_10426914_2014_921707
crossref_primary_10_37434_as2024_02_04
crossref_primary_10_1016_j_jallcom_2020_154389
crossref_primary_10_1016_j_matdes_2015_01_008
crossref_primary_10_1016_j_matdes_2017_05_034
crossref_primary_10_1016_j_jeurceramsoc_2012_05_002
crossref_primary_10_1016_j_matchar_2019_06_008
crossref_primary_10_1016_j_jmatprotec_2023_118014
crossref_primary_10_1088_2053_1591_ac2017
crossref_primary_10_1002_adem_202400754
crossref_primary_10_1016_j_jmrt_2025_02_040
crossref_primary_10_4028_www_scientific_net_KEM_621_19
crossref_primary_10_1080_14484846_2020_1804041
crossref_primary_10_1080_09276440_2020_1794751
crossref_primary_10_1016_j_jmst_2013_07_001
crossref_primary_10_1016_j_jmapro_2023_09_046
crossref_primary_10_1088_1757_899X_161_1_012058
crossref_primary_10_1515_mt_2022_0447
crossref_primary_10_1007_s11665_018_3667_1
crossref_primary_10_4028_www_scientific_net_AMM_698_495
crossref_primary_10_1016_j_cirpj_2022_08_011
crossref_primary_10_1007_s43452_023_00731_6
crossref_primary_10_1007_s11661_018_5074_5
crossref_primary_10_1179_1432891715Z_0000000001520
crossref_primary_10_3390_met12061010
crossref_primary_10_1016_j_cja_2022_07_004
crossref_primary_10_1016_j_jmst_2021_04_075
crossref_primary_10_1016_j_matdes_2013_12_045
crossref_primary_10_3390_met10030298
crossref_primary_10_1016_j_jallcom_2017_01_129
crossref_primary_10_1016_j_matdes_2018_05_014
crossref_primary_10_1016_j_jallcom_2016_12_213
crossref_primary_10_1016_j_jmst_2014_11_014
crossref_primary_10_3390_met10121589
crossref_primary_10_1007_s42243_018_0038_y
crossref_primary_10_1016_j_ijmecsci_2022_107362
crossref_primary_10_3390_met9020119
crossref_primary_10_1016_j_jcsr_2021_106641
crossref_primary_10_1007_s10853_019_04317_7
crossref_primary_10_1016_j_jmapro_2022_01_056
crossref_primary_10_1016_j_jmapro_2024_05_076
crossref_primary_10_1051_matecconf_20179402012
crossref_primary_10_3390_app10062180
crossref_primary_10_1115_1_4041182
crossref_primary_10_1016_j_ijfatigue_2012_10_007
crossref_primary_10_1016_j_jnucmat_2020_152322
crossref_primary_10_4028_www_scientific_net_SSP_284_212
crossref_primary_10_1016_j_ijsolstr_2022_111870
crossref_primary_10_1016_j_matdes_2012_12_046
crossref_primary_10_1177_0954406217741516
crossref_primary_10_1007_s11029_014_9450_y
crossref_primary_10_1016_j_acme_2016_03_009
crossref_primary_10_1016_j_matdes_2016_01_116
crossref_primary_10_3390_jcs6100295
crossref_primary_10_1016_S1003_6326_14_63113_7
crossref_primary_10_1007_s11837_014_1134_5
crossref_primary_10_1007_s11595_017_1727_2
crossref_primary_10_1016_j_jajp_2021_100072
crossref_primary_10_1007_s00170_015_8335_0
crossref_primary_10_1080_09276440_2023_2248767
crossref_primary_10_1016_j_oceaneng_2021_108582
crossref_primary_10_1557_jmr_2017_27
crossref_primary_10_3390_ma13102226
crossref_primary_10_1016_j_matdes_2015_09_128
crossref_primary_10_1016_j_matchemphys_2021_125116
crossref_primary_10_1080_09276440_2020_1722519
crossref_primary_10_1088_2631_8695_ace6f5
crossref_primary_10_3103_S1068375524700273
crossref_primary_10_1016_j_matdes_2012_12_059
crossref_primary_10_1016_j_matdes_2012_09_037
crossref_primary_10_1017_S1431927621012174
crossref_primary_10_1088_2053_1591_ad019f
crossref_primary_10_1007_s12613_020_2240_8
crossref_primary_10_1016_j_matdes_2012_11_029
crossref_primary_10_1016_j_matdes_2012_12_070
crossref_primary_10_1002_prep_202000019
crossref_primary_10_1016_j_actamat_2016_02_019
crossref_primary_10_1007_s12666_020_01980_2
crossref_primary_10_1007_s11665_019_04193_x
crossref_primary_10_1016_j_matdes_2013_12_012
crossref_primary_10_1016_j_msea_2019_04_064
crossref_primary_10_1007_s11666_022_01448_3
crossref_primary_10_1016_j_matdes_2020_109027
crossref_primary_10_1080_09276440_2021_1890426
crossref_primary_10_1080_13621718_2017_1417783
crossref_primary_10_1007_s11665_020_04994_5
crossref_primary_10_1016_j_ijfatigue_2018_12_027
crossref_primary_10_2351_7_0001172
crossref_primary_10_1016_j_matdes_2014_08_025
crossref_primary_10_1016_j_acme_2018_07_007
crossref_primary_10_1007_s11665_023_08613_x
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126920
crossref_primary_10_1016_j_jajp_2021_100056
crossref_primary_10_1016_j_jmapro_2022_01_026
crossref_primary_10_1016_j_jmatprotec_2023_118071
crossref_primary_10_4028_www_scientific_net_AMR_926_930_354
crossref_primary_10_1080_02670836_2019_1706905
crossref_primary_10_1088_2053_1591_ab42ac
crossref_primary_10_1080_02670836_2018_1475444
crossref_primary_10_1016_j_msea_2024_146625
crossref_primary_10_1016_j_msea_2024_147716
crossref_primary_10_1134_S1061830912060022
crossref_primary_10_1142_S0217979221501447
crossref_primary_10_1016_j_matdes_2014_08_013
crossref_primary_10_1007_s00170_018_2600_y
crossref_primary_10_1007_s12289_025_01876_w
crossref_primary_10_1007_s11665_023_08685_9
crossref_primary_10_1080_09507116_2022_2099322
crossref_primary_10_1016_j_nme_2023_101389
crossref_primary_10_1007_s40194_020_00984_2
crossref_primary_10_1061_JMCEE7_MTENG_16085
crossref_primary_10_3390_ma16186259
crossref_primary_10_1007_s12206_016_0844_8
crossref_primary_10_1016_j_matdes_2015_10_136
crossref_primary_10_1007_s43452_020_00084_4
crossref_primary_10_1557_mrs_2019_184
crossref_primary_10_1016_j_fusengdes_2019_04_090
crossref_primary_10_3390_met13061087
crossref_primary_10_1016_j_matpr_2020_11_724
crossref_primary_10_1016_S1875_5372_15_60016_9
crossref_primary_10_1007_s11665_019_04361_z
crossref_primary_10_1016_j_jmrt_2021_08_129
crossref_primary_10_1016_j_promfg_2020_04_252
crossref_primary_10_1080_13621718_2023_2187546
crossref_primary_10_1007_s12598_014_0266_7
crossref_primary_10_2351_1_5040643
crossref_primary_10_1155_2013_256758
crossref_primary_10_3390_computation7010010
crossref_primary_10_1016_j_jmapro_2024_11_080
crossref_primary_10_1016_j_jnucmat_2014_02_016
crossref_primary_10_3139_146_111230
crossref_primary_10_1016_j_matdes_2011_10_022
crossref_primary_10_1007_s11595_015_1295_2
crossref_primary_10_1063_5_0069720
crossref_primary_10_1016_j_corsci_2024_112107
crossref_primary_10_1088_1742_6596_1666_1_012026
crossref_primary_10_1088_2053_1591_ab031b
crossref_primary_10_1016_j_fusengdes_2015_02_018
crossref_primary_10_1016_j_matdes_2015_10_154
crossref_primary_10_1007_s11665_020_04623_1
crossref_primary_10_1080_09276440_2019_1690352
crossref_primary_10_4028_www_scientific_net_AMR_926_930_312
crossref_primary_10_1080_10426914_2023_2187841
crossref_primary_10_1016_j_apm_2020_11_014
crossref_primary_10_1680_jemmr_17_00008
crossref_primary_10_1016_j_matdes_2019_108232
crossref_primary_10_1016_j_msea_2023_145060
crossref_primary_10_1007_s12666_024_03449_y
crossref_primary_10_3103_S1067821219020032
crossref_primary_10_1016_j_matdes_2015_11_087
crossref_primary_10_3390_met9030315
crossref_primary_10_1007_s11665_023_08687_7
crossref_primary_10_3390_ma13122686
crossref_primary_10_1007_s11665_018_3590_5
crossref_primary_10_1016_j_msea_2020_139285
crossref_primary_10_1002_prep_201800160
crossref_primary_10_1007_s00170_023_12010_y
crossref_primary_10_1016_j_jmrt_2019_10_027
crossref_primary_10_4028_www_scientific_net_AMR_996_494
crossref_primary_10_1140_epjst_e2018_00114_9
crossref_primary_10_1016_j_dt_2019_10_008
crossref_primary_10_1007_s11665_020_05126_9
crossref_primary_10_1051_matecconf_201925301007
crossref_primary_10_1016_j_dt_2019_10_002
crossref_primary_10_1016_j_matdes_2016_04_025
crossref_primary_10_3390_cryst12101413
crossref_primary_10_1134_S0010508222010099
crossref_primary_10_1016_S1875_5372_17_30174_1
crossref_primary_10_3390_coatings13030600
crossref_primary_10_1016_j_matdes_2019_108249
crossref_primary_10_4028_www_scientific_net_MSF_989_733
crossref_primary_10_3233_ISP_180252
crossref_primary_10_1016_j_fusengdes_2018_01_076
crossref_primary_10_1088_1742_6596_2680_1_012002
crossref_primary_10_1016_j_optlaseng_2014_10_006
crossref_primary_10_1016_j_fusengdes_2022_113157
crossref_primary_10_1016_j_jmrt_2023_03_071
crossref_primary_10_3390_met8121017
crossref_primary_10_1016_S1003_6326_21_65780_1
crossref_primary_10_1016_j_ijmecsci_2019_105124
crossref_primary_10_1007_s11665_018_3559_4
crossref_primary_10_1016_j_matdes_2011_12_045
crossref_primary_10_1016_j_msea_2021_142525
crossref_primary_10_1016_j_msea_2024_147633
crossref_primary_10_4028_p_pe5701
crossref_primary_10_3390_met13030571
crossref_primary_10_1016_j_mtcomm_2023_106880
crossref_primary_10_1016_j_csite_2023_102965
crossref_primary_10_4028_www_scientific_net_MSF_941_1558
Cites_doi 10.1016/j.apsusc.2009.07.033
10.1016/j.ijsolstr.2004.11.017
10.1016/S0924-0136(98)00042-9
10.1016/S0308-0161(03)00004-8
10.1016/j.ijimpeng.2003.09.049
10.1016/j.msea.2008.04.032
10.1016/S0022-3115(03)00194-6
10.1007/s10853-010-4374-y
10.1016/j.jmatprotec.2004.03.012
10.1179/030716976803391845
10.1016/j.matlet.2008.05.060
10.1007/BF01233153
10.1016/j.matdes.2008.06.016
10.1016/S0261-3069(03)00066-9
10.1016/S0924-0136(96)02604-0
10.1016/j.jmps.2005.06.001
10.1016/S0924-0136(03)00539-9
10.1016/j.jmatprotec.2005.06.045
10.1016/S0920-3796(98)00195-1
10.1016/j.matdes.2006.12.012
10.1016/j.matdes.2007.07.012
10.1016/j.ijimpeng.2004.03.003
10.1023/A:1021197328946
10.1023/A:1004485914302
10.1016/S0022-3115(00)00233-6
10.1016/S0921-5093(99)00695-4
10.1016/j.matdes.2007.06.010
10.1023/B:JMSC.0000044883.33007.20
10.1016/j.msea.2009.12.007
10.1080/09507118709451115
10.21236/ADA800105
10.1016/j.matdes.2004.07.021
10.1016/j.jmatprotec.2007.09.028
10.1016/j.jmatprotec.2005.02.264
10.1002/mawe.200900415
10.1016/j.jallcom.2009.06.082
10.1016/j.matdes.2006.11.001
10.1016/S0254-0584(03)00166-4
10.1016/j.jvolgeores.2004.10.019
10.1016/j.msea.2003.10.097
10.1016/j.jmatprotec.2007.05.002
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matdes.2010.10.017
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1093
ExternalDocumentID 10_1016_j_matdes_2010_10_017
S0261306910006138
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
7SR
8BQ
8FD
AFXIZ
JG9
ID FETCH-LOGICAL-c339t-b79f5db431b60c51db12fd44e3d67d1bc4bde49142e938ecbf631cde0a78aac03
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Fri Jul 11 13:06:00 EDT 2025
Tue Jul 01 04:23:01 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
Fri Feb 23 02:21:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Welding
Ferrous metals and alloys
Materials joining
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-b79f5db431b60c51db12fd44e3d67d1bc4bde49142e938ecbf631cde0a78aac03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671318450
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1671318450
crossref_citationtrail_10_1016_j_matdes_2010_10_017
crossref_primary_10_1016_j_matdes_2010_10_017
elsevier_sciencedirect_doi_10_1016_j_matdes_2010_10_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Durgutlu, Gulenc, Fındık (b0115) 2005; 26
Durgutlu, Okuyucu, Gulenc (b0140) 2008; 29
Akbari-Mousavi, Burley, Al-Hassani (b0185) 2005; 31
Crossland (b0010) 1976; 3
Akbari-Mousavi, Al-Hassani (b0205) 2008; 29
Balasubrahmanian, Rathinasabapathi, Raghukandan (b0050) 1997; 63
Akbari-Mousavi, Al-Hassani, Atkins (b0085) 2008; 29
Wronka (b0145) 2010; 45
Kennedy (b0225) 1972
Brasher, Butler (b0020) 1995; 3
Raghukandan (b0125) 2003; 139
ASM handbook, vol. 6, Welding, Brazing and Soldering, Metals Park, Ohio; 1993.
Han, Ahn, Shin (b0045) 2003; 38
Mousavi, Sartangi (b0075) 2009; 30
Carpenter S, Wittman RH, Carlson RJ. Relationships of explosive welding parameters to material properties and geometry factors. In: Proc first int conf of the center for high energy forming, University of Denver; June 1967. p. 124.
Akbari-Mousavia, Al-Hassanib (b0180) 2005; 53
Kahraman, Gulenc (b0120) 2005; 169
Groschopp, Heyne, Hoffman (b0215) 1987
Akbari-Mousavi, Barrett, Al-Hassani (b0080) 2008; 202
Gerland, Presles, Guin, Bertheau (b0105) 2000; A280
Jiang, Zhao, Sun (b0200) 2003; 80
Murr, Niou, Garcia, Ferreyra, Rims, Sanchez (b0235) 1997; A222
Acarer, Gulenc, Findik (b0025) 2003; 24
Manikandan, Hokamoto, Fujita, Raghukandan, Tomoshige (b0090) 2008; 195
Yan, Zhang, Shen, Wang, Zhang, Chin (b0240) 2001; 527
Ege, Inal, Zimmerly (b0095) 1998; 33
Grignon, Benson, Vecchio, Meyers (b0035) 2004; 30
Hokamoto, Nakata, Mori, Ii, Tomoshige, Tsuda (b0170) 2009; 485
Gulenc (b0160) 2008; 29
Lalwaney (b0015) 1985; 37
Crossland (b0005) 1971
Zhang, Liu, Zhao, Li, Liu, Zhang (b0190) 2005; 42
Ghanadzadeh, Darviseh (b0030) 2003; 82
Gurney RW. The initial velocities of fragments from bombs, shells, and grenades. Report 405, Ballistic Research Laboratory; 1943.
Liu, Liu, Chen, Wang, Yan, Li (b0175) 2009; 255
Acarer, Demir (b0055) 2008; 62
Mamalis, Szalay, Vaxevanidis, Manolakos (b0150) 1998; 83
Kawamura (b0165) 2004; 375–377
Keating (b0195) 2005; 142
Du, Liu, Guo (b0060) 2007; 36
Kacar, Acarer (b0040) 2004; 152
Ashani, Bagheri (b0155) 2009; 40
Mousavi, Sartangi (b0100) 2008; 494
Howes (b0245) 2001
Belyakov, Fabritsiev, Mazul, Rowcliffe (b0130) 2000; 283–287
Livne, Munitz (b0110) 1987; 22
Mudali, Rao, Shanmugam, Natarajan, Raj (b0070) 2003; 321
Tavassoli (b0135) 1998; 39–40
Kahraman, Gulenc, Findik (b0065) 2005; 169
Acarer, Gulenc, Findik (b0250) 2004; 39
Manikandan (10.1016/j.matdes.2010.10.017_b0090) 2008; 195
Yan (10.1016/j.matdes.2010.10.017_b0240) 2001; 527
Mousavi (10.1016/j.matdes.2010.10.017_b0100) 2008; 494
Raghukandan (10.1016/j.matdes.2010.10.017_b0125) 2003; 139
Acarer (10.1016/j.matdes.2010.10.017_b0025) 2003; 24
Livne (10.1016/j.matdes.2010.10.017_b0110) 1987; 22
Zhang (10.1016/j.matdes.2010.10.017_b0190) 2005; 42
10.1016/j.matdes.2010.10.017_b0220
Han (10.1016/j.matdes.2010.10.017_b0045) 2003; 38
10.1016/j.matdes.2010.10.017_b0210
Kawamura (10.1016/j.matdes.2010.10.017_b0165) 2004; 375–377
Crossland (10.1016/j.matdes.2010.10.017_b0005) 1971
Balasubrahmanian (10.1016/j.matdes.2010.10.017_b0050) 1997; 63
Mamalis (10.1016/j.matdes.2010.10.017_b0150) 1998; 83
Kahraman (10.1016/j.matdes.2010.10.017_b0120) 2005; 169
Jiang (10.1016/j.matdes.2010.10.017_b0200) 2003; 80
Hokamoto (10.1016/j.matdes.2010.10.017_b0170) 2009; 485
Keating (10.1016/j.matdes.2010.10.017_b0195) 2005; 142
Kennedy (10.1016/j.matdes.2010.10.017_b0225) 1972
Kahraman (10.1016/j.matdes.2010.10.017_b0065) 2005; 169
Lalwaney (10.1016/j.matdes.2010.10.017_b0015) 1985; 37
Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0080) 2008; 202
Ashani (10.1016/j.matdes.2010.10.017_b0155) 2009; 40
Howes (10.1016/j.matdes.2010.10.017_b0245) 2001
Mousavi (10.1016/j.matdes.2010.10.017_b0075) 2009; 30
Acarer (10.1016/j.matdes.2010.10.017_b0250) 2004; 39
Kacar (10.1016/j.matdes.2010.10.017_b0040) 2004; 152
Acarer (10.1016/j.matdes.2010.10.017_b0055) 2008; 62
Murr (10.1016/j.matdes.2010.10.017_b0235) 1997; A222
Akbari-Mousavia (10.1016/j.matdes.2010.10.017_b0180) 2005; 53
Wronka (10.1016/j.matdes.2010.10.017_b0145) 2010; 45
Brasher (10.1016/j.matdes.2010.10.017_b0020) 1995; 3
Ege (10.1016/j.matdes.2010.10.017_b0095) 1998; 33
Gulenc (10.1016/j.matdes.2010.10.017_b0160) 2008; 29
Belyakov (10.1016/j.matdes.2010.10.017_b0130) 2000; 283–287
Durgutlu (10.1016/j.matdes.2010.10.017_b0115) 2005; 26
Mudali (10.1016/j.matdes.2010.10.017_b0070) 2003; 321
Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0185) 2005; 31
Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0085) 2008; 29
Gerland (10.1016/j.matdes.2010.10.017_b0105) 2000; A280
Tavassoli (10.1016/j.matdes.2010.10.017_b0135) 1998; 39–40
Liu (10.1016/j.matdes.2010.10.017_b0175) 2009; 255
10.1016/j.matdes.2010.10.017_b0230
Durgutlu (10.1016/j.matdes.2010.10.017_b0140) 2008; 29
Grignon (10.1016/j.matdes.2010.10.017_b0035) 2004; 30
Groschopp (10.1016/j.matdes.2010.10.017_b0215) 1987
Du (10.1016/j.matdes.2010.10.017_b0060) 2007; 36
Crossland (10.1016/j.matdes.2010.10.017_b0010) 1976; 3
Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0205) 2008; 29
Ghanadzadeh (10.1016/j.matdes.2010.10.017_b0030) 2003; 82
References_xml – volume: 37
  start-page: A92
  year: 1985
  ident: b0015
  article-title: Explosive metal cladding
  publication-title: J Metals
– volume: 255
  start-page: 9343
  year: 2009
  end-page: 9347
  ident: b0175
  article-title: Metallic glass coating on metals plate by adjusted explosive welding technique
  publication-title: Appl Surf Sci
– volume: 152
  start-page: 91
  year: 2004
  end-page: 96
  ident: b0040
  article-title: An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel
  publication-title: J Mater Process Technol
– volume: 83
  start-page: 48
  year: 1998
  end-page: 53
  ident: b0150
  article-title: Fabrication of bimetallic rods by explosive cladding and warm extrusion
  publication-title: J Mater Process Technol
– volume: 53
  start-page: 2501
  year: 2005
  end-page: 2528
  ident: b0180
  article-title: Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding
  publication-title: J Mech Phys Solids
– volume: A280
  start-page: 311
  year: 2000
  ident: b0105
  article-title: Explosive cladding of a thin Ni-film to an aluminium alloy
  publication-title: Mater Sci Eng
– year: 2001
  ident: b0245
  publication-title: Explosive welding, TWI knowledge summary
– volume: 62
  start-page: 4158
  year: 2008
  ident: b0055
  article-title: An investigation of mechanical and metallurgical properties of explosive welded aluminium–dual phase steel
  publication-title: Mater Lett
– reference: ASM handbook, vol. 6, Welding, Brazing and Soldering, Metals Park, Ohio; 1993.
– volume: 494
  start-page: 329
  year: 2008
  ident: b0100
  article-title: Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite
  publication-title: Mater Sci Eng A – Struct Mater Prop Microstruct Process
– reference: Gurney RW. The initial velocities of fragments from bombs, shells, and grenades. Report 405, Ballistic Research Laboratory; 1943.
– volume: 30
  start-page: 459
  year: 2009
  end-page: 468
  ident: b0075
  article-title: Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel
  publication-title: Mater Des
– volume: A222
  start-page: 115
  year: 1997
  end-page: 132
  ident: b0235
  article-title: Comparison of jetting-related microstructures associated with hypervelocity impact crater formation in copper targets and copper shaped charges
  publication-title: Mater Sci Eng
– volume: 283–287
  start-page: 962
  year: 2000
  end-page: 967
  ident: b0130
  article-title: Status of international collaborative efforts on selected
  publication-title: Mater J Nucl Mater
– volume: 142
  start-page: 145
  year: 2005
  end-page: 171
  ident: b0195
  article-title: The role of water in cooling ignimbrites
  publication-title: J Volcanol Geoth Res
– volume: 29
  start-page: 1
  year: 2008
  end-page: 19
  ident: b0205
  article-title: Finite element simulation of explosively-driven plate impact with application to explosive welding
  publication-title: Mater Des
– volume: 29
  start-page: 275
  year: 2008
  end-page: 278
  ident: b0160
  article-title: Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method
  publication-title: Mater Des
– volume: 527
  start-page: 2241
  year: 2001
  end-page: 2245
  ident: b0240
  article-title: Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate
  publication-title: Mater Sci Eng A
– volume: 31
  start-page: 719
  year: 2005
  end-page: 734
  ident: b0185
  article-title: Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives
  publication-title: Int J Impact Eng
– volume: 29
  start-page: 1480
  year: 2008
  end-page: 1484
  ident: b0140
  article-title: Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel
  publication-title: Mater Des
– volume: 40
  year: 2009
  ident: b0155
  article-title: Explosive scarf welding of aluminum to copper plates and their interface properties
  publication-title: Materialwiss Werkst
– volume: 26
  start-page: 497
  year: 2005
  ident: b0115
  article-title: Examination of copper/stainless steel joints formed by explosive welding
  publication-title: Mater Des
– volume: 24
  start-page: 659
  year: 2003
  ident: b0025
  article-title: Investigation of explosive welding parameters and their effects on microhardness and shear strength
  publication-title: Mater Des
– volume: 45
  start-page: 3465
  year: 2010
  end-page: 3469
  ident: b0145
  article-title: Testing of explosive welding and welded joints. The microstructure of explosive welded joints and their mechanical properties
  publication-title: J Mater Sci
– volume: 139
  start-page: 573
  year: 2003
  end-page: 577
  ident: b0125
  article-title: Analysis of the explosive cladding of Cu–low carbon steel plates
  publication-title: J Mater Process Technol
– volume: 169
  start-page: 67
  year: 2005
  end-page: 71
  ident: b0120
  article-title: Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process
  publication-title: J Mater Process Technol
– start-page: 401
  year: 1971
  end-page: 402
  ident: b0005
  article-title: The development of explosive welding and its application in engineering
  publication-title: Metals Mater
– volume: 30
  start-page: 1333
  year: 2004
  end-page: 1351
  ident: b0035
  article-title: Explosive welding of aluminum to aluminum: analysis, computations and experiments
  publication-title: Int J Impact Eng
– volume: 3
  start-page: 8
  year: 1976
  ident: b0010
  article-title: An experimental investigation of explosive welding parameters
  publication-title: Metals Technol
– volume: 321
  start-page: 40
  year: 2003
  end-page: 48
  ident: b0070
  article-title: Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel
  publication-title: J Nucl Mater
– volume: 29
  start-page: 1334
  year: 2008
  end-page: 1352
  ident: b0085
  article-title: Bond strength of explosively welded specimens
  publication-title: Mater Des
– volume: 3
  start-page: 38
  year: 1995
  ident: b0020
  article-title: Explosive welding: principles and potentials
  publication-title: Adv Mater Process
– volume: 36
  start-page: 131
  year: 2007
  ident: b0060
  publication-title: Rare Metal Mater Eng
– volume: 485
  start-page: 817
  year: 2009
  end-page: 821
  ident: b0170
  article-title: Microstructural characterization of explosively welded rapidly solidified foil and stainless steel plate through the acceleration employing underwater shock wave
  publication-title: J Alloy Compd
– start-page: 109
  year: 1972
  ident: b0225
  article-title: Explosive output for driving metal
  publication-title: Proc behavior and utilization of explosives in engineering design conf
– volume: 195
  start-page: 232
  year: 2008
  end-page: 240
  ident: b0090
  article-title: Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel
  publication-title: J Mater Process Technol
– volume: 39
  start-page: 6457
  year: 2004
  end-page: 6466
  ident: b0250
  article-title: The influence of some factors on steel/steel bonding quality on their characteristics of explosive welding joints
  publication-title: J Mater Sci
– volume: 63
  start-page: 83
  year: 1997
  ident: b0050
  article-title: Modelling of process parameters in explosive cladding of mild steel and aluminium
  publication-title: J Mater Process Technol
– volume: 33
  start-page: 527
  year: 1998
  ident: b0095
  article-title: Response surface study on production of explosively-welded aluminum–titanium laminates
  publication-title: J Mater Sci
– start-page: 879
  year: 1987
  end-page: 883
  ident: b0215
  article-title: Explosively clad titanium steel composite
  publication-title: Weld Int
– volume: 80
  start-page: 129
  year: 2003
  end-page: 137
  ident: b0200
  article-title: Evaluation of interfacial crack growth in bimaterial metallic joints loaded by symmetric three-point bending
  publication-title: Int J Press Vessels Pip
– volume: 42
  start-page: 3794
  year: 2005
  end-page: 3806
  ident: b0190
  article-title: A study on the relief of residual stresses in weldments with explosive treatment
  publication-title: Int J Solids Struct
– volume: 22
  start-page: 1495
  year: 1987
  ident: b0110
  article-title: Characterization of explosively bonded iron and copper plates
  publication-title: J Mater Sci
– volume: 39–40
  start-page: 189
  year: 1998
  end-page: 200
  ident: b0135
  article-title: Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls
  publication-title: Fusion Eng Des
– volume: 82
  start-page: 78
  year: 2003
  ident: b0030
  article-title: Shock loading effect on the corrosion properties of low-carbon steel
  publication-title: Mater Chem Phys
– volume: 202
  start-page: 224
  year: 2008
  end-page: 239
  ident: b0080
  article-title: Explosive welding of metal plates
  publication-title: J Mater Process Technol
– volume: 169
  start-page: 127
  year: 2005
  end-page: 133
  ident: b0065
  article-title: Joining of titanium/stainless steel by explosive welding and effect on interface
  publication-title: J Mater Process Technol
– volume: 38
  start-page: 13
  year: 2003
  ident: b0045
  article-title: Effect of interlayer thickness on shear deformation behaviour of AA5083 aluminium alloy/SS41 steel plates manufactured by explosive welding
  publication-title: J Mater Sci
– volume: 375–377
  start-page: 112
  year: 2004
  end-page: 119
  ident: b0165
  article-title: Liquid phase and supercooled liquid phase welding of bulk metallic glasses
  publication-title: Mater Sci Eng A
– reference: Carpenter S, Wittman RH, Carlson RJ. Relationships of explosive welding parameters to material properties and geometry factors. In: Proc first int conf of the center for high energy forming, University of Denver; June 1967. p. 124.
– volume: 255
  start-page: 9343
  year: 2009
  ident: 10.1016/j.matdes.2010.10.017_b0175
  article-title: Metallic glass coating on metals plate by adjusted explosive welding technique
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2009.07.033
– volume: 42
  start-page: 3794
  year: 2005
  ident: 10.1016/j.matdes.2010.10.017_b0190
  article-title: A study on the relief of residual stresses in weldments with explosive treatment
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2004.11.017
– volume: 83
  start-page: 48
  year: 1998
  ident: 10.1016/j.matdes.2010.10.017_b0150
  article-title: Fabrication of bimetallic rods by explosive cladding and warm extrusion
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(98)00042-9
– volume: 80
  start-page: 129
  year: 2003
  ident: 10.1016/j.matdes.2010.10.017_b0200
  article-title: Evaluation of interfacial crack growth in bimaterial metallic joints loaded by symmetric three-point bending
  publication-title: Int J Press Vessels Pip
  doi: 10.1016/S0308-0161(03)00004-8
– volume: 30
  start-page: 1333
  year: 2004
  ident: 10.1016/j.matdes.2010.10.017_b0035
  article-title: Explosive welding of aluminum to aluminum: analysis, computations and experiments
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2003.09.049
– volume: 494
  start-page: 329
  issue: 1–2
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0100
  article-title: Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite
  publication-title: Mater Sci Eng A – Struct Mater Prop Microstruct Process
  doi: 10.1016/j.msea.2008.04.032
– volume: 321
  start-page: 40
  year: 2003
  ident: 10.1016/j.matdes.2010.10.017_b0070
  article-title: Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel
  publication-title: J Nucl Mater
  doi: 10.1016/S0022-3115(03)00194-6
– volume: 45
  start-page: 3465
  year: 2010
  ident: 10.1016/j.matdes.2010.10.017_b0145
  article-title: Testing of explosive welding and welded joints. The microstructure of explosive welded joints and their mechanical properties
  publication-title: J Mater Sci
  doi: 10.1007/s10853-010-4374-y
– volume: 152
  start-page: 91
  year: 2004
  ident: 10.1016/j.matdes.2010.10.017_b0040
  article-title: An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2004.03.012
– volume: 3
  start-page: 8
  year: 1976
  ident: 10.1016/j.matdes.2010.10.017_b0010
  article-title: An experimental investigation of explosive welding parameters
  publication-title: Metals Technol
  doi: 10.1179/030716976803391845
– volume: 62
  start-page: 4158
  issue: 25
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0055
  article-title: An investigation of mechanical and metallurgical properties of explosive welded aluminium–dual phase steel
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2008.05.060
– volume: 22
  start-page: 1495
  year: 1987
  ident: 10.1016/j.matdes.2010.10.017_b0110
  article-title: Characterization of explosively bonded iron and copper plates
  publication-title: J Mater Sci
  doi: 10.1007/BF01233153
– volume: 30
  start-page: 459
  year: 2009
  ident: 10.1016/j.matdes.2010.10.017_b0075
  article-title: Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2008.06.016
– year: 2001
  ident: 10.1016/j.matdes.2010.10.017_b0245
– volume: 24
  start-page: 659
  issue: 8
  year: 2003
  ident: 10.1016/j.matdes.2010.10.017_b0025
  article-title: Investigation of explosive welding parameters and their effects on microhardness and shear strength
  publication-title: Mater Des
  doi: 10.1016/S0261-3069(03)00066-9
– volume: 63
  start-page: 83
  year: 1997
  ident: 10.1016/j.matdes.2010.10.017_b0050
  article-title: Modelling of process parameters in explosive cladding of mild steel and aluminium
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(96)02604-0
– volume: 53
  start-page: 2501
  year: 2005
  ident: 10.1016/j.matdes.2010.10.017_b0180
  article-title: Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2005.06.001
– volume: 139
  start-page: 573
  year: 2003
  ident: 10.1016/j.matdes.2010.10.017_b0125
  article-title: Analysis of the explosive cladding of Cu–low carbon steel plates
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(03)00539-9
– volume: 169
  start-page: 127
  year: 2005
  ident: 10.1016/j.matdes.2010.10.017_b0065
  article-title: Joining of titanium/stainless steel by explosive welding and effect on interface
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.06.045
– volume: 39–40
  start-page: 189
  year: 1998
  ident: 10.1016/j.matdes.2010.10.017_b0135
  article-title: Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls
  publication-title: Fusion Eng Des
  doi: 10.1016/S0920-3796(98)00195-1
– volume: 29
  start-page: 1
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0205
  article-title: Finite element simulation of explosively-driven plate impact with application to explosive welding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2006.12.012
– volume: 37
  start-page: A92
  issue: 11
  year: 1985
  ident: 10.1016/j.matdes.2010.10.017_b0015
  article-title: Explosive metal cladding
  publication-title: J Metals
– volume: 29
  start-page: 1480
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0140
  article-title: Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2007.07.012
– volume: 31
  start-page: 719
  year: 2005
  ident: 10.1016/j.matdes.2010.10.017_b0185
  article-title: Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2004.03.003
– volume: 38
  start-page: 13
  year: 2003
  ident: 10.1016/j.matdes.2010.10.017_b0045
  article-title: Effect of interlayer thickness on shear deformation behaviour of AA5083 aluminium alloy/SS41 steel plates manufactured by explosive welding
  publication-title: J Mater Sci
  doi: 10.1023/A:1021197328946
– volume: 33
  start-page: 527
  year: 1998
  ident: 10.1016/j.matdes.2010.10.017_b0095
  article-title: Response surface study on production of explosively-welded aluminum–titanium laminates
  publication-title: J Mater Sci
  doi: 10.1023/A:1004485914302
– volume: 283–287
  start-page: 962
  year: 2000
  ident: 10.1016/j.matdes.2010.10.017_b0130
  article-title: Status of international collaborative efforts on selected
  publication-title: Mater J Nucl Mater
  doi: 10.1016/S0022-3115(00)00233-6
– volume: A280
  start-page: 311
  year: 2000
  ident: 10.1016/j.matdes.2010.10.017_b0105
  article-title: Explosive cladding of a thin Ni-film to an aluminium alloy
  publication-title: Mater Sci Eng
  doi: 10.1016/S0921-5093(99)00695-4
– volume: 29
  start-page: 1334
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0085
  article-title: Bond strength of explosively welded specimens
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2007.06.010
– volume: 39
  start-page: 6457
  issue: 21
  year: 2004
  ident: 10.1016/j.matdes.2010.10.017_b0250
  article-title: The influence of some factors on steel/steel bonding quality on their characteristics of explosive welding joints
  publication-title: J Mater Sci
  doi: 10.1023/B:JMSC.0000044883.33007.20
– start-page: 109
  year: 1972
  ident: 10.1016/j.matdes.2010.10.017_b0225
  article-title: Explosive output for driving metal
– volume: 527
  start-page: 2241
  year: 2001
  ident: 10.1016/j.matdes.2010.10.017_b0240
  article-title: Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2009.12.007
– start-page: 879
  issue: 9
  year: 1987
  ident: 10.1016/j.matdes.2010.10.017_b0215
  article-title: Explosively clad titanium steel composite
  publication-title: Weld Int
  doi: 10.1080/09507118709451115
– ident: 10.1016/j.matdes.2010.10.017_b0220
  doi: 10.21236/ADA800105
– volume: 3
  start-page: 38
  year: 1995
  ident: 10.1016/j.matdes.2010.10.017_b0020
  article-title: Explosive welding: principles and potentials
  publication-title: Adv Mater Process
– volume: 26
  start-page: 497
  issue: 6
  year: 2005
  ident: 10.1016/j.matdes.2010.10.017_b0115
  article-title: Examination of copper/stainless steel joints formed by explosive welding
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2004.07.021
– volume: 202
  start-page: 224
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0080
  article-title: Explosive welding of metal plates
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.09.028
– volume: 169
  start-page: 67
  year: 2005
  ident: 10.1016/j.matdes.2010.10.017_b0120
  article-title: Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.02.264
– volume: 40
  issue: 9
  year: 2009
  ident: 10.1016/j.matdes.2010.10.017_b0155
  article-title: Explosive scarf welding of aluminum to copper plates and their interface properties
  publication-title: Materialwiss Werkst
  doi: 10.1002/mawe.200900415
– volume: 485
  start-page: 817
  year: 2009
  ident: 10.1016/j.matdes.2010.10.017_b0170
  article-title: Microstructural characterization of explosively welded rapidly solidified foil and stainless steel plate through the acceleration employing underwater shock wave
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2009.06.082
– volume: A222
  start-page: 115
  year: 1997
  ident: 10.1016/j.matdes.2010.10.017_b0235
  article-title: Comparison of jetting-related microstructures associated with hypervelocity impact crater formation in copper targets and copper shaped charges
  publication-title: Mater Sci Eng
– ident: 10.1016/j.matdes.2010.10.017_b0210
– volume: 29
  start-page: 275
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0160
  article-title: Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2006.11.001
– ident: 10.1016/j.matdes.2010.10.017_b0230
– start-page: 401
  issue: December
  year: 1971
  ident: 10.1016/j.matdes.2010.10.017_b0005
  article-title: The development of explosive welding and its application in engineering
  publication-title: Metals Mater
– volume: 82
  start-page: 78
  year: 2003
  ident: 10.1016/j.matdes.2010.10.017_b0030
  article-title: Shock loading effect on the corrosion properties of low-carbon steel
  publication-title: Mater Chem Phys
  doi: 10.1016/S0254-0584(03)00166-4
– volume: 142
  start-page: 145
  year: 2005
  ident: 10.1016/j.matdes.2010.10.017_b0195
  article-title: The role of water in cooling ignimbrites
  publication-title: J Volcanol Geoth Res
  doi: 10.1016/j.jvolgeores.2004.10.019
– volume: 36
  start-page: 131
  year: 2007
  ident: 10.1016/j.matdes.2010.10.017_b0060
  publication-title: Rare Metal Mater Eng
– volume: 375–377
  start-page: 112
  year: 2004
  ident: 10.1016/j.matdes.2010.10.017_b0165
  article-title: Liquid phase and supercooled liquid phase welding of bulk metallic glasses
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2003.10.097
– volume: 195
  start-page: 232
  year: 2008
  ident: 10.1016/j.matdes.2010.10.017_b0090
  article-title: Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.05.002
SSID ssj0017112
Score 2.5138998
SecondaryResourceType review_article
Snippet Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1081
SubjectTerms Bonding
Detonation
Dissimilar materials
Explosions
Explosive welding
Ferrous metals and alloys
Joining
Materials joining
Metal plates
Plastic deformation
Welding
Title Recent developments in explosive welding
URI https://dx.doi.org/10.1016/j.matdes.2010.10.017
https://www.proquest.com/docview/1671318450
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vehBfGJ9sYIHL0s3TTa7OZZiqYq9aKG3kNdCRbalD_z7TrLZ-kAoeA2bZXcmmfkm880EoVudUCs5bCQKcCSmhZKxktqRxomiuath9u2ankdsOKaPk3TSQP26FsbRKoPtr2y6t9ZhpBOk2ZlPp50XFz0A4OXY-2GS76BWl3AGS7vVe3gajjbJhAz7pGc4amG8rqDzNC_AhcYuK46Xo3n5m8v-9FC_bLV3QIMDtB-QY9SrPu4QNWx5hPa-9RM8RncAAsGJROaLCbSMpmVkHdHO8dSjD-uTTSdoPLh_7Q_jcBVCrAnhq1hlvEiNAm-vWKJTbBTuFoZSSwzLDFaaKmMpx7RrQfBWq4IRrI1NZJZLqRNyiprlrLRnKEoyBrM1yVJNaK4Lzqmm3FgJQA-0VrQRqX9f6NAn3F1X8S5qQtibqIQmnNDcKAitjeLNrHnVJ2PL81ktWfFD3wJM-ZaZN7UiBGwFl9-QpZ2tlwIziLghYk2T83-__QLtVqfGjmV2iZqrxdpeAexYqeuwrD4BAojVmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrM4IHL6FJd_PYYymW1D4uttDbsq9ARdJiW_z7zuZRHwiC1yUTkpndmW92vp0FuFceNYLhQqIIR1yaSuFKoSxpnEga2zPMebum0ThMpvRpFsxq0K3OwlhaZen7C5-ee-typFVqs7Wcz1vPNntAwMv8PA6TeAcatjtVUIdGpz9IxttiQuTnRc9yqyVk1Qm6nOaFuFCbVcHxsjSv_OayXyPUD1-dB6DeIRyUyNHpFB93BDWTHcP-l36CJ_CAIBCDiKM_mUArZ545xhLtLE_deTd5sekUpr3HSTdxy6sQXEUIW7syYmmgJUZ7GXoq8LX026mm1BAdRtqXikptKPNp26DijZJpSHyljSeiWAjlkTOoZ4vMnIPjRSFKKxIFitBYpYxRRZk2AoEeWi1tAql-n6uyT7i9ruKVV4SwF14ojVul2VFUWhPcrdSy6JPxx_NRpVn-zd4cXfkfkneVITguBVvfEJlZbFbcDzHjxow18C7-_fZb2E0moyEf9seDS9grdpAt4-wK6uu3jblGCLKWN-UU-wAc8diB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+developments+in+explosive+welding&rft.jtitle=Materials+in+engineering&rft.au=Findik%2C+Fehim&rft.date=2011-03-01&rft.pub=Elsevier+Ltd&rft.issn=0261-3069&rft.volume=32&rft.issue=3&rft.spage=1081&rft.epage=1093&rft_id=info:doi/10.1016%2Fj.matdes.2010.10.017&rft.externalDocID=S0261306910006138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon