Recent developments in explosive welding
Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a metal. During the collision, a high velocity jet is produced to remove away the impurities on the metal surfaces. Flyer plate collides with b...
Saved in:
Published in | Materials in engineering Vol. 32; no. 3; pp. 1081 - 1093 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a metal. During the collision, a high velocity jet is produced to remove away the impurities on the metal surfaces. Flyer plate collides with base plate resulting in a bonding at the interface of metals. The metal plates are joined at an internal point under the influence of a very high pressure and causes considerable local plastic deformation at the interface in which metallurgical bonding occurs in nature and even stronger than the parent metals. Similar and dissimilar materials can be joined by explosive welding. In this paper, after detection the theories of welding and wave formation, experimental research and numerical studies on explosive welding are reviewed for the last four decades. Also, future developments in explosive welding are predicted and criticized in an outlook. |
---|---|
AbstractList | Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a metal. During the collision, a high velocity jet is produced to remove away the impurities on the metal surfaces. Flyer plate collides with base plate resulting in a bonding at the interface of metals. The metal plates are joined at an internal point under the influence of a very high pressure and causes considerable local plastic deformation at the interface in which metallurgical bonding occurs in nature and even stronger than the parent metals. Similar and dissimilar materials can be joined by explosive welding. In this paper, after detection the theories of welding and wave formation, experimental research and numerical studies on explosive welding are reviewed for the last four decades. Also, future developments in explosive welding are predicted and criticized in an outlook. |
Author | Findik, Fehim |
Author_xml | – sequence: 1 givenname: Fehim surname: Findik fullname: Findik, Fehim email: findik@sakarya.edu.tr organization: Sakarya University, Faculty of Technology, Esentepe Campus, 54187 Adapazari, Turkey |
BookMark | eNqFkD1PwzAQhj0UiRb4BwwZuyT4YjdpGJBQxZdUCQnBbDn2BblK7GC7Bf49CWFigOlOr97npHsWZGadRULOgWZAobjYZZ2MGkOW0-8oo1DOyJzmBaSMFtUxWYSwo0MKkM_J8gkV2phoPGDr-m7YQ2Jsgh9964I5YPKOrTb29ZQcNbINePYzT8jL7c3z5j7dPt49bK63qWKsimldVs1K15xBXVC1Al1D3mjOkemi1FArXmvkFfAcK7ZGVTcFA6WRynItpaLshCynu713b3sMUXQmKGxbadHtg4CiBAZrvhqrl1NVeReCx0YoE2U0zkYvTSuAilGJ2IlJiRiVjOnw_ADzX3DvTSf953_Y1YTh4OBg0IugDFqF2nhUUWhn_j7wBf92gZ8 |
CitedBy_id | crossref_primary_10_1080_09276440_2020_1716578 crossref_primary_10_1016_j_precisioneng_2016_07_011 crossref_primary_10_1007_s11665_016_2057_9 crossref_primary_10_3390_ma16247672 crossref_primary_10_1007_s13632_014_0120_1 crossref_primary_10_1088_1742_6596_2697_1_012051 crossref_primary_10_1016_j_vacuum_2023_112451 crossref_primary_10_1007_s12613_020_2128_7 crossref_primary_10_3390_met6080179 crossref_primary_10_1016_j_matdes_2015_12_120 crossref_primary_10_1016_j_jhazmat_2015_07_013 crossref_primary_10_3390_met7100407 crossref_primary_10_3390_ma18040898 crossref_primary_10_1016_S1003_6326_21_65685_6 crossref_primary_10_1016_j_msea_2016_07_125 crossref_primary_10_1016_j_prostr_2022_12_240 crossref_primary_10_1080_09507116_2023_2228039 crossref_primary_10_3390_met8070544 crossref_primary_10_3390_coatings10121197 crossref_primary_10_1017_S143192762101374X crossref_primary_10_1007_s11665_019_03892_9 crossref_primary_10_1016_j_jmst_2020_04_049 crossref_primary_10_1016_j_compositesb_2015_01_023 crossref_primary_10_3390_ma11101820 crossref_primary_10_1007_s11223_022_00446_8 crossref_primary_10_1016_j_ijfatigue_2022_106977 crossref_primary_10_3390_met10050663 crossref_primary_10_1016_j_proeng_2014_11_009 crossref_primary_10_1016_j_matdes_2013_08_022 crossref_primary_10_1088_1674_1056_23_6_066802 crossref_primary_10_1007_s11223_012_9424_z crossref_primary_10_4028_www_scientific_net_AMR_996_451 crossref_primary_10_1016_j_jmapro_2018_10_046 crossref_primary_10_1515_ama_2016_0040 crossref_primary_10_3390_met7040125 crossref_primary_10_1016_j_jmapro_2021_01_026 crossref_primary_10_1016_j_matchar_2016_05_021 crossref_primary_10_3390_cryst14110974 crossref_primary_10_1088_2053_1591_aaebf0 crossref_primary_10_1016_j_oceaneng_2018_04_070 crossref_primary_10_1007_s12666_019_01846_2 crossref_primary_10_1007_s11665_012_0203_6 crossref_primary_10_1016_j_jmatprotec_2016_04_004 crossref_primary_10_1016_j_matdes_2016_05_101 crossref_primary_10_1016_j_jmatprotec_2018_10_034 crossref_primary_10_1016_j_matpr_2022_03_330 crossref_primary_10_1016_j_pmatsci_2024_101283 crossref_primary_10_1016_j_msea_2012_07_102 crossref_primary_10_1007_s11665_017_3068_x crossref_primary_10_1016_j_jmapro_2018_09_014 crossref_primary_10_3390_jmmp2030058 crossref_primary_10_1007_s13632_020_00632_7 crossref_primary_10_1002_app_53147 crossref_primary_10_4028_www_scientific_net_SSP_316_62 crossref_primary_10_1016_j_optlaseng_2023_107890 crossref_primary_10_3390_met10081023 crossref_primary_10_1088_1757_899X_709_3_033108 crossref_primary_10_1515_secm_2015_0491 crossref_primary_10_12989_scs_2015_19_3_569 crossref_primary_10_4028_www_scientific_net_AMM_599_601_191 crossref_primary_10_1016_j_jallcom_2016_02_120 crossref_primary_10_1007_s11665_023_08376_5 crossref_primary_10_1016_j_matchemphys_2018_03_066 crossref_primary_10_1007_s11771_023_5476_4 crossref_primary_10_1007_s11666_015_0349_5 crossref_primary_10_1016_j_fusengdes_2019_111292 crossref_primary_10_1016_j_ijmecsci_2019_02_002 crossref_primary_10_1016_j_nme_2021_101086 crossref_primary_10_1016_j_fusengdes_2014_09_002 crossref_primary_10_1016_j_matdes_2013_01_043 crossref_primary_10_1177_0954406216661009 crossref_primary_10_3390_ma15207234 crossref_primary_10_1007_s00170_016_9440_4 crossref_primary_10_1080_09276440_2023_2274698 crossref_primary_10_1007_s10853_011_5841_9 crossref_primary_10_1007_s11665_020_04595_2 crossref_primary_10_1016_j_jmapro_2019_10_004 crossref_primary_10_1080_07370652_2019_1637480 crossref_primary_10_1016_S1006_706X_17_30126_7 crossref_primary_10_1179_1362171811Y_0000000080 crossref_primary_10_1134_S0036029519050124 crossref_primary_10_1016_j_marstruc_2017_10_004 crossref_primary_10_1016_j_mtcomm_2022_103489 crossref_primary_10_1088_1361_665X_aae124 crossref_primary_10_1016_S1003_6326_19_64978_2 crossref_primary_10_1007_s11665_017_2718_3 crossref_primary_10_1007_s40195_017_0628_x crossref_primary_10_1088_2053_1591_abd825 crossref_primary_10_1016_j_compbiomed_2024_108471 crossref_primary_10_1007_s12046_023_02193_1 crossref_primary_10_1016_j_matpr_2023_04_463 crossref_primary_10_1016_j_jmatprotec_2013_07_006 crossref_primary_10_1016_j_matdes_2020_108630 crossref_primary_10_4028_www_scientific_net_AMM_875_47 crossref_primary_10_1016_j_fusengdes_2014_10_001 crossref_primary_10_1007_s11665_022_07078_8 crossref_primary_10_3390_ma15030825 crossref_primary_10_1007_s00170_023_12892_y crossref_primary_10_1016_j_matpr_2022_11_160 crossref_primary_10_1007_s40194_024_01834_1 crossref_primary_10_4028_www_scientific_net_DDF_410_630 crossref_primary_10_1016_j_matchar_2022_112250 crossref_primary_10_1016_j_jmapro_2021_10_006 crossref_primary_10_1016_j_addma_2023_103755 crossref_primary_10_1016_j_matdes_2013_10_091 crossref_primary_10_1016_j_prostr_2016_06_297 crossref_primary_10_1051_matecconf_202133801004 crossref_primary_10_1016_j_jmapro_2022_11_013 crossref_primary_10_1007_s12540_023_01616_2 crossref_primary_10_1063_1_4775788 crossref_primary_10_1134_S199079312401007X crossref_primary_10_1016_j_msea_2018_06_051 crossref_primary_10_37434_tpwj2024_05_05 crossref_primary_10_1016_j_jallcom_2021_162957 crossref_primary_10_4028_www_scientific_net_KEM_592_593_594 crossref_primary_10_1179_1362171815Y_0000000092 crossref_primary_10_1007_s40194_024_01822_5 crossref_primary_10_1016_j_fusengdes_2019_03_137 crossref_primary_10_1016_j_matdes_2013_03_069 crossref_primary_10_1016_j_msea_2017_08_012 crossref_primary_10_1007_s12666_024_03431_8 crossref_primary_10_1002_adem_202402440 crossref_primary_10_1016_j_corsci_2018_06_026 crossref_primary_10_1007_s42243_017_0009_8 crossref_primary_10_1007_s40430_024_05291_1 crossref_primary_10_1002_adem_202301389 crossref_primary_10_1007_s11661_015_2768_9 crossref_primary_10_1016_j_surfcoat_2019_05_022 crossref_primary_10_1016_j_matdes_2017_08_008 crossref_primary_10_1016_j_trpro_2022_06_290 crossref_primary_10_1016_S1003_6326_16_64184_5 crossref_primary_10_1088_0964_1726_23_7_075010 crossref_primary_10_1007_s11665_014_1106_5 crossref_primary_10_1007_s11661_015_3084_0 crossref_primary_10_4028_www_scientific_net_DDF_410_306 crossref_primary_10_1016_j_jmrt_2016_04_001 crossref_primary_10_3103_S1068375520060113 crossref_primary_10_1016_S1875_5372_17_30120_0 crossref_primary_10_1016_j_jmapro_2024_05_036 crossref_primary_10_1016_j_jmrt_2022_03_050 crossref_primary_10_1007_s11665_022_07445_5 crossref_primary_10_3390_met11030501 crossref_primary_10_4028_www_scientific_net_DDF_382_167 crossref_primary_10_1080_21663831_2020_1847211 crossref_primary_10_1007_s12666_023_03105_x crossref_primary_10_1016_j_matchar_2017_05_007 crossref_primary_10_1007_s11771_017_3528_3 crossref_primary_10_1016_j_oceaneng_2023_115990 crossref_primary_10_1515_secm_2015_0316 crossref_primary_10_4028_www_scientific_net_SSP_224_216 crossref_primary_10_1016_j_engfailanal_2022_106715 crossref_primary_10_1007_s13632_021_00715_z crossref_primary_10_3390_met8030159 crossref_primary_10_3390_met10111500 crossref_primary_10_1007_s43452_020_00145_8 crossref_primary_10_1016_j_acme_2013_07_003 crossref_primary_10_1016_j_mtcomm_2024_110777 crossref_primary_10_1016_S1003_6326_24_66493_9 crossref_primary_10_1007_s00170_021_06800_5 crossref_primary_10_1155_2019_4535984 crossref_primary_10_3390_met9010043 crossref_primary_10_1002_prep_202200121 crossref_primary_10_1088_2053_1591_ab6538 crossref_primary_10_3390_coatings14020213 crossref_primary_10_1016_j_matdes_2015_08_085 crossref_primary_10_1016_j_matdes_2018_05_027 crossref_primary_10_1088_2053_1591_ac656d crossref_primary_10_1016_j_jmatprotec_2017_02_030 crossref_primary_10_1007_s12540_016_5687_4 crossref_primary_10_1016_j_matchar_2018_06_005 crossref_primary_10_1007_s10853_024_09905_w crossref_primary_10_1051_matecconf_201713203013 crossref_primary_10_4028_www_scientific_net_SSP_299_137 crossref_primary_10_1016_j_msea_2018_03_042 crossref_primary_10_1016_j_msea_2022_144110 crossref_primary_10_15407_plit2022_04_034 crossref_primary_10_1007_s40436_023_00472_y crossref_primary_10_1080_09276440_2020_1843868 crossref_primary_10_1016_j_msea_2019_138659 crossref_primary_10_1016_j_matdes_2013_02_001 crossref_primary_10_1016_j_jalmes_2024_100078 crossref_primary_10_1515_ijmr_2021_8542 crossref_primary_10_1016_j_fusengdes_2013_12_038 crossref_primary_10_1016_j_msea_2017_02_075 crossref_primary_10_1080_09276440_2023_2179256 crossref_primary_10_3390_ma13132909 crossref_primary_10_1007_s11015_019_00798_8 crossref_primary_10_1016_j_tsep_2022_101240 crossref_primary_10_1016_j_mtcomm_2022_103552 crossref_primary_10_1016_j_jnoncrysol_2022_121912 crossref_primary_10_1051_matecconf_20168015002 crossref_primary_10_3390_met11040622 crossref_primary_10_2207_qjjws_41_107 crossref_primary_10_1177_0954405420949227 crossref_primary_10_1051_mfreview_2019028 crossref_primary_10_1016_j_matdes_2014_06_050 crossref_primary_10_1590_1980_5373_mr_2018_0350 crossref_primary_10_1007_s40194_019_00771_8 crossref_primary_10_1016_j_jmapro_2025_01_071 crossref_primary_10_1016_j_matchar_2020_110520 crossref_primary_10_1134_S106378421412024X crossref_primary_10_1007_s11661_019_05537_x crossref_primary_10_1016_j_jmrt_2025_03_093 crossref_primary_10_1016_j_matdes_2014_06_046 crossref_primary_10_1016_j_oceaneng_2024_118092 crossref_primary_10_1007_s11661_021_06190_z crossref_primary_10_1016_j_jmrt_2019_09_025 crossref_primary_10_1016_j_vacuum_2020_109596 crossref_primary_10_1016_j_jmrt_2022_04_108 crossref_primary_10_1016_j_msea_2021_142178 crossref_primary_10_3390_ma13194348 crossref_primary_10_1016_j_matdes_2015_07_025 crossref_primary_10_4028_www_scientific_net_MSF_783_786_1476 crossref_primary_10_1016_j_matdes_2014_11_008 crossref_primary_10_3390_met12111950 crossref_primary_10_1007_s12666_023_02897_2 crossref_primary_10_1016_j_jmapro_2024_07_014 crossref_primary_10_2478_msp_2022_0035 crossref_primary_10_3390_ma17153713 crossref_primary_10_1016_j_jmrt_2023_07_161 crossref_primary_10_2339_politeknik_1091491 crossref_primary_10_1016_j_prostr_2022_03_113 crossref_primary_10_1016_j_matdes_2015_07_114 crossref_primary_10_1016_j_matpr_2021_04_490 crossref_primary_10_1088_1757_899X_529_1_012024 crossref_primary_10_1016_j_jmapro_2020_09_037 crossref_primary_10_1134_S0010508223030012 crossref_primary_10_1016_S1003_6326_15_63699_8 crossref_primary_10_1002_prep_201900157 crossref_primary_10_1088_1757_899X_327_3_032031 crossref_primary_10_1515_htmp_2022_0009 crossref_primary_10_1007_s11665_014_1321_0 crossref_primary_10_1007_s00170_021_07218_9 crossref_primary_10_1051_mfreview_2019007 crossref_primary_10_1007_s42247_021_00233_2 crossref_primary_10_1016_j_vacuum_2016_03_034 crossref_primary_10_3139_146_110977 crossref_primary_10_1007_s11661_013_1703_1 crossref_primary_10_1007_s11665_017_2520_2 crossref_primary_10_1016_j_matdes_2023_111603 crossref_primary_10_1007_s11665_016_2080_x crossref_primary_10_1177_09544062211059695 crossref_primary_10_1051_matecconf_201824201007 crossref_primary_10_1016_j_dt_2020_09_003 crossref_primary_10_1109_TPS_2022_3210025 crossref_primary_10_3390_met13081438 crossref_primary_10_1016_j_acme_2015_09_006 crossref_primary_10_4028_www_scientific_net_AMR_1081_270 crossref_primary_10_1016_j_msea_2021_142260 crossref_primary_10_1002_prep_201500193 crossref_primary_10_3390_met9020144 crossref_primary_10_1007_s00170_024_13552_5 crossref_primary_10_1016_S1875_5372_17_30135_2 crossref_primary_10_1007_s40195_013_0283_9 crossref_primary_10_1016_j_matdes_2017_05_051 crossref_primary_10_1007_s11665_020_05117_w crossref_primary_10_1016_j_jmrt_2023_07_079 crossref_primary_10_5006_4058 crossref_primary_10_1016_j_jmps_2016_07_014 crossref_primary_10_1177_0954406218813445 crossref_primary_10_1016_j_acme_2019_09_002 crossref_primary_10_3390_met11081252 crossref_primary_10_1016_j_matdes_2013_05_033 crossref_primary_10_1007_s00170_017_1462_z crossref_primary_10_1016_j_jsv_2016_12_020 crossref_primary_10_1007_s11665_018_3174_4 crossref_primary_10_1016_j_optlastec_2023_109580 crossref_primary_10_1016_j_matdes_2016_11_053 crossref_primary_10_3390_cryst13071079 crossref_primary_10_1016_j_matdes_2015_08_021 crossref_primary_10_1016_j_enganabound_2024_01_003 crossref_primary_10_1007_s00170_024_13619_3 crossref_primary_10_1007_s11665_019_04535_9 crossref_primary_10_1016_j_matdes_2015_09_164 crossref_primary_10_1016_j_matdes_2015_10_098 crossref_primary_10_1016_j_matdes_2013_05_027 crossref_primary_10_1088_1757_899X_969_1_012090 crossref_primary_10_1007_s11665_023_08326_1 crossref_primary_10_1126_science_aag1768 crossref_primary_10_3390_met9020246 crossref_primary_10_3390_met9111189 crossref_primary_10_1080_10426914_2014_921707 crossref_primary_10_37434_as2024_02_04 crossref_primary_10_1016_j_jallcom_2020_154389 crossref_primary_10_1016_j_matdes_2015_01_008 crossref_primary_10_1016_j_matdes_2017_05_034 crossref_primary_10_1016_j_jeurceramsoc_2012_05_002 crossref_primary_10_1016_j_matchar_2019_06_008 crossref_primary_10_1016_j_jmatprotec_2023_118014 crossref_primary_10_1088_2053_1591_ac2017 crossref_primary_10_1002_adem_202400754 crossref_primary_10_1016_j_jmrt_2025_02_040 crossref_primary_10_4028_www_scientific_net_KEM_621_19 crossref_primary_10_1080_14484846_2020_1804041 crossref_primary_10_1080_09276440_2020_1794751 crossref_primary_10_1016_j_jmst_2013_07_001 crossref_primary_10_1016_j_jmapro_2023_09_046 crossref_primary_10_1088_1757_899X_161_1_012058 crossref_primary_10_1515_mt_2022_0447 crossref_primary_10_1007_s11665_018_3667_1 crossref_primary_10_4028_www_scientific_net_AMM_698_495 crossref_primary_10_1016_j_cirpj_2022_08_011 crossref_primary_10_1007_s43452_023_00731_6 crossref_primary_10_1007_s11661_018_5074_5 crossref_primary_10_1179_1432891715Z_0000000001520 crossref_primary_10_3390_met12061010 crossref_primary_10_1016_j_cja_2022_07_004 crossref_primary_10_1016_j_jmst_2021_04_075 crossref_primary_10_1016_j_matdes_2013_12_045 crossref_primary_10_3390_met10030298 crossref_primary_10_1016_j_jallcom_2017_01_129 crossref_primary_10_1016_j_matdes_2018_05_014 crossref_primary_10_1016_j_jallcom_2016_12_213 crossref_primary_10_1016_j_jmst_2014_11_014 crossref_primary_10_3390_met10121589 crossref_primary_10_1007_s42243_018_0038_y crossref_primary_10_1016_j_ijmecsci_2022_107362 crossref_primary_10_3390_met9020119 crossref_primary_10_1016_j_jcsr_2021_106641 crossref_primary_10_1007_s10853_019_04317_7 crossref_primary_10_1016_j_jmapro_2022_01_056 crossref_primary_10_1016_j_jmapro_2024_05_076 crossref_primary_10_1051_matecconf_20179402012 crossref_primary_10_3390_app10062180 crossref_primary_10_1115_1_4041182 crossref_primary_10_1016_j_ijfatigue_2012_10_007 crossref_primary_10_1016_j_jnucmat_2020_152322 crossref_primary_10_4028_www_scientific_net_SSP_284_212 crossref_primary_10_1016_j_ijsolstr_2022_111870 crossref_primary_10_1016_j_matdes_2012_12_046 crossref_primary_10_1177_0954406217741516 crossref_primary_10_1007_s11029_014_9450_y crossref_primary_10_1016_j_acme_2016_03_009 crossref_primary_10_1016_j_matdes_2016_01_116 crossref_primary_10_3390_jcs6100295 crossref_primary_10_1016_S1003_6326_14_63113_7 crossref_primary_10_1007_s11837_014_1134_5 crossref_primary_10_1007_s11595_017_1727_2 crossref_primary_10_1016_j_jajp_2021_100072 crossref_primary_10_1007_s00170_015_8335_0 crossref_primary_10_1080_09276440_2023_2248767 crossref_primary_10_1016_j_oceaneng_2021_108582 crossref_primary_10_1557_jmr_2017_27 crossref_primary_10_3390_ma13102226 crossref_primary_10_1016_j_matdes_2015_09_128 crossref_primary_10_1016_j_matchemphys_2021_125116 crossref_primary_10_1080_09276440_2020_1722519 crossref_primary_10_1088_2631_8695_ace6f5 crossref_primary_10_3103_S1068375524700273 crossref_primary_10_1016_j_matdes_2012_12_059 crossref_primary_10_1016_j_matdes_2012_09_037 crossref_primary_10_1017_S1431927621012174 crossref_primary_10_1088_2053_1591_ad019f crossref_primary_10_1007_s12613_020_2240_8 crossref_primary_10_1016_j_matdes_2012_11_029 crossref_primary_10_1016_j_matdes_2012_12_070 crossref_primary_10_1002_prep_202000019 crossref_primary_10_1016_j_actamat_2016_02_019 crossref_primary_10_1007_s12666_020_01980_2 crossref_primary_10_1007_s11665_019_04193_x crossref_primary_10_1016_j_matdes_2013_12_012 crossref_primary_10_1016_j_msea_2019_04_064 crossref_primary_10_1007_s11666_022_01448_3 crossref_primary_10_1016_j_matdes_2020_109027 crossref_primary_10_1080_09276440_2021_1890426 crossref_primary_10_1080_13621718_2017_1417783 crossref_primary_10_1007_s11665_020_04994_5 crossref_primary_10_1016_j_ijfatigue_2018_12_027 crossref_primary_10_2351_7_0001172 crossref_primary_10_1016_j_matdes_2014_08_025 crossref_primary_10_1016_j_acme_2018_07_007 crossref_primary_10_1007_s11665_023_08613_x crossref_primary_10_1016_j_ijheatmasstransfer_2025_126920 crossref_primary_10_1016_j_jajp_2021_100056 crossref_primary_10_1016_j_jmapro_2022_01_026 crossref_primary_10_1016_j_jmatprotec_2023_118071 crossref_primary_10_4028_www_scientific_net_AMR_926_930_354 crossref_primary_10_1080_02670836_2019_1706905 crossref_primary_10_1088_2053_1591_ab42ac crossref_primary_10_1080_02670836_2018_1475444 crossref_primary_10_1016_j_msea_2024_146625 crossref_primary_10_1016_j_msea_2024_147716 crossref_primary_10_1134_S1061830912060022 crossref_primary_10_1142_S0217979221501447 crossref_primary_10_1016_j_matdes_2014_08_013 crossref_primary_10_1007_s00170_018_2600_y crossref_primary_10_1007_s12289_025_01876_w crossref_primary_10_1007_s11665_023_08685_9 crossref_primary_10_1080_09507116_2022_2099322 crossref_primary_10_1016_j_nme_2023_101389 crossref_primary_10_1007_s40194_020_00984_2 crossref_primary_10_1061_JMCEE7_MTENG_16085 crossref_primary_10_3390_ma16186259 crossref_primary_10_1007_s12206_016_0844_8 crossref_primary_10_1016_j_matdes_2015_10_136 crossref_primary_10_1007_s43452_020_00084_4 crossref_primary_10_1557_mrs_2019_184 crossref_primary_10_1016_j_fusengdes_2019_04_090 crossref_primary_10_3390_met13061087 crossref_primary_10_1016_j_matpr_2020_11_724 crossref_primary_10_1016_S1875_5372_15_60016_9 crossref_primary_10_1007_s11665_019_04361_z crossref_primary_10_1016_j_jmrt_2021_08_129 crossref_primary_10_1016_j_promfg_2020_04_252 crossref_primary_10_1080_13621718_2023_2187546 crossref_primary_10_1007_s12598_014_0266_7 crossref_primary_10_2351_1_5040643 crossref_primary_10_1155_2013_256758 crossref_primary_10_3390_computation7010010 crossref_primary_10_1016_j_jmapro_2024_11_080 crossref_primary_10_1016_j_jnucmat_2014_02_016 crossref_primary_10_3139_146_111230 crossref_primary_10_1016_j_matdes_2011_10_022 crossref_primary_10_1007_s11595_015_1295_2 crossref_primary_10_1063_5_0069720 crossref_primary_10_1016_j_corsci_2024_112107 crossref_primary_10_1088_1742_6596_1666_1_012026 crossref_primary_10_1088_2053_1591_ab031b crossref_primary_10_1016_j_fusengdes_2015_02_018 crossref_primary_10_1016_j_matdes_2015_10_154 crossref_primary_10_1007_s11665_020_04623_1 crossref_primary_10_1080_09276440_2019_1690352 crossref_primary_10_4028_www_scientific_net_AMR_926_930_312 crossref_primary_10_1080_10426914_2023_2187841 crossref_primary_10_1016_j_apm_2020_11_014 crossref_primary_10_1680_jemmr_17_00008 crossref_primary_10_1016_j_matdes_2019_108232 crossref_primary_10_1016_j_msea_2023_145060 crossref_primary_10_1007_s12666_024_03449_y crossref_primary_10_3103_S1067821219020032 crossref_primary_10_1016_j_matdes_2015_11_087 crossref_primary_10_3390_met9030315 crossref_primary_10_1007_s11665_023_08687_7 crossref_primary_10_3390_ma13122686 crossref_primary_10_1007_s11665_018_3590_5 crossref_primary_10_1016_j_msea_2020_139285 crossref_primary_10_1002_prep_201800160 crossref_primary_10_1007_s00170_023_12010_y crossref_primary_10_1016_j_jmrt_2019_10_027 crossref_primary_10_4028_www_scientific_net_AMR_996_494 crossref_primary_10_1140_epjst_e2018_00114_9 crossref_primary_10_1016_j_dt_2019_10_008 crossref_primary_10_1007_s11665_020_05126_9 crossref_primary_10_1051_matecconf_201925301007 crossref_primary_10_1016_j_dt_2019_10_002 crossref_primary_10_1016_j_matdes_2016_04_025 crossref_primary_10_3390_cryst12101413 crossref_primary_10_1134_S0010508222010099 crossref_primary_10_1016_S1875_5372_17_30174_1 crossref_primary_10_3390_coatings13030600 crossref_primary_10_1016_j_matdes_2019_108249 crossref_primary_10_4028_www_scientific_net_MSF_989_733 crossref_primary_10_3233_ISP_180252 crossref_primary_10_1016_j_fusengdes_2018_01_076 crossref_primary_10_1088_1742_6596_2680_1_012002 crossref_primary_10_1016_j_optlaseng_2014_10_006 crossref_primary_10_1016_j_fusengdes_2022_113157 crossref_primary_10_1016_j_jmrt_2023_03_071 crossref_primary_10_3390_met8121017 crossref_primary_10_1016_S1003_6326_21_65780_1 crossref_primary_10_1016_j_ijmecsci_2019_105124 crossref_primary_10_1007_s11665_018_3559_4 crossref_primary_10_1016_j_matdes_2011_12_045 crossref_primary_10_1016_j_msea_2021_142525 crossref_primary_10_1016_j_msea_2024_147633 crossref_primary_10_4028_p_pe5701 crossref_primary_10_3390_met13030571 crossref_primary_10_1016_j_mtcomm_2023_106880 crossref_primary_10_1016_j_csite_2023_102965 crossref_primary_10_4028_www_scientific_net_MSF_941_1558 |
Cites_doi | 10.1016/j.apsusc.2009.07.033 10.1016/j.ijsolstr.2004.11.017 10.1016/S0924-0136(98)00042-9 10.1016/S0308-0161(03)00004-8 10.1016/j.ijimpeng.2003.09.049 10.1016/j.msea.2008.04.032 10.1016/S0022-3115(03)00194-6 10.1007/s10853-010-4374-y 10.1016/j.jmatprotec.2004.03.012 10.1179/030716976803391845 10.1016/j.matlet.2008.05.060 10.1007/BF01233153 10.1016/j.matdes.2008.06.016 10.1016/S0261-3069(03)00066-9 10.1016/S0924-0136(96)02604-0 10.1016/j.jmps.2005.06.001 10.1016/S0924-0136(03)00539-9 10.1016/j.jmatprotec.2005.06.045 10.1016/S0920-3796(98)00195-1 10.1016/j.matdes.2006.12.012 10.1016/j.matdes.2007.07.012 10.1016/j.ijimpeng.2004.03.003 10.1023/A:1021197328946 10.1023/A:1004485914302 10.1016/S0022-3115(00)00233-6 10.1016/S0921-5093(99)00695-4 10.1016/j.matdes.2007.06.010 10.1023/B:JMSC.0000044883.33007.20 10.1016/j.msea.2009.12.007 10.1080/09507118709451115 10.21236/ADA800105 10.1016/j.matdes.2004.07.021 10.1016/j.jmatprotec.2007.09.028 10.1016/j.jmatprotec.2005.02.264 10.1002/mawe.200900415 10.1016/j.jallcom.2009.06.082 10.1016/j.matdes.2006.11.001 10.1016/S0254-0584(03)00166-4 10.1016/j.jvolgeores.2004.10.019 10.1016/j.msea.2003.10.097 10.1016/j.jmatprotec.2007.05.002 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd |
Copyright_xml | – notice: 2010 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.matdes.2010.10.017 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1093 |
ExternalDocumentID | 10_1016_j_matdes_2010_10_017 S0261306910006138 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH 7SR 8BQ 8FD AFXIZ JG9 |
ID | FETCH-LOGICAL-c339t-b79f5db431b60c51db12fd44e3d67d1bc4bde49142e938ecbf631cde0a78aac03 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Fri Jul 11 13:06:00 EDT 2025 Tue Jul 01 04:23:01 EDT 2025 Thu Apr 24 23:04:31 EDT 2025 Fri Feb 23 02:21:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Welding Ferrous metals and alloys Materials joining |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-b79f5db431b60c51db12fd44e3d67d1bc4bde49142e938ecbf631cde0a78aac03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671318450 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1671318450 crossref_citationtrail_10_1016_j_matdes_2010_10_017 crossref_primary_10_1016_j_matdes_2010_10_017 elsevier_sciencedirect_doi_10_1016_j_matdes_2010_10_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Durgutlu, Gulenc, Fındık (b0115) 2005; 26 Durgutlu, Okuyucu, Gulenc (b0140) 2008; 29 Akbari-Mousavi, Burley, Al-Hassani (b0185) 2005; 31 Crossland (b0010) 1976; 3 Akbari-Mousavi, Al-Hassani (b0205) 2008; 29 Balasubrahmanian, Rathinasabapathi, Raghukandan (b0050) 1997; 63 Akbari-Mousavi, Al-Hassani, Atkins (b0085) 2008; 29 Wronka (b0145) 2010; 45 Kennedy (b0225) 1972 Brasher, Butler (b0020) 1995; 3 Raghukandan (b0125) 2003; 139 ASM handbook, vol. 6, Welding, Brazing and Soldering, Metals Park, Ohio; 1993. Han, Ahn, Shin (b0045) 2003; 38 Mousavi, Sartangi (b0075) 2009; 30 Carpenter S, Wittman RH, Carlson RJ. Relationships of explosive welding parameters to material properties and geometry factors. In: Proc first int conf of the center for high energy forming, University of Denver; June 1967. p. 124. Akbari-Mousavia, Al-Hassanib (b0180) 2005; 53 Kahraman, Gulenc (b0120) 2005; 169 Groschopp, Heyne, Hoffman (b0215) 1987 Akbari-Mousavi, Barrett, Al-Hassani (b0080) 2008; 202 Gerland, Presles, Guin, Bertheau (b0105) 2000; A280 Jiang, Zhao, Sun (b0200) 2003; 80 Murr, Niou, Garcia, Ferreyra, Rims, Sanchez (b0235) 1997; A222 Acarer, Gulenc, Findik (b0025) 2003; 24 Manikandan, Hokamoto, Fujita, Raghukandan, Tomoshige (b0090) 2008; 195 Yan, Zhang, Shen, Wang, Zhang, Chin (b0240) 2001; 527 Ege, Inal, Zimmerly (b0095) 1998; 33 Grignon, Benson, Vecchio, Meyers (b0035) 2004; 30 Hokamoto, Nakata, Mori, Ii, Tomoshige, Tsuda (b0170) 2009; 485 Gulenc (b0160) 2008; 29 Lalwaney (b0015) 1985; 37 Crossland (b0005) 1971 Zhang, Liu, Zhao, Li, Liu, Zhang (b0190) 2005; 42 Ghanadzadeh, Darviseh (b0030) 2003; 82 Gurney RW. The initial velocities of fragments from bombs, shells, and grenades. Report 405, Ballistic Research Laboratory; 1943. Liu, Liu, Chen, Wang, Yan, Li (b0175) 2009; 255 Acarer, Demir (b0055) 2008; 62 Mamalis, Szalay, Vaxevanidis, Manolakos (b0150) 1998; 83 Kawamura (b0165) 2004; 375–377 Keating (b0195) 2005; 142 Du, Liu, Guo (b0060) 2007; 36 Kacar, Acarer (b0040) 2004; 152 Ashani, Bagheri (b0155) 2009; 40 Mousavi, Sartangi (b0100) 2008; 494 Howes (b0245) 2001 Belyakov, Fabritsiev, Mazul, Rowcliffe (b0130) 2000; 283–287 Livne, Munitz (b0110) 1987; 22 Mudali, Rao, Shanmugam, Natarajan, Raj (b0070) 2003; 321 Tavassoli (b0135) 1998; 39–40 Kahraman, Gulenc, Findik (b0065) 2005; 169 Acarer, Gulenc, Findik (b0250) 2004; 39 Manikandan (10.1016/j.matdes.2010.10.017_b0090) 2008; 195 Yan (10.1016/j.matdes.2010.10.017_b0240) 2001; 527 Mousavi (10.1016/j.matdes.2010.10.017_b0100) 2008; 494 Raghukandan (10.1016/j.matdes.2010.10.017_b0125) 2003; 139 Acarer (10.1016/j.matdes.2010.10.017_b0025) 2003; 24 Livne (10.1016/j.matdes.2010.10.017_b0110) 1987; 22 Zhang (10.1016/j.matdes.2010.10.017_b0190) 2005; 42 10.1016/j.matdes.2010.10.017_b0220 Han (10.1016/j.matdes.2010.10.017_b0045) 2003; 38 10.1016/j.matdes.2010.10.017_b0210 Kawamura (10.1016/j.matdes.2010.10.017_b0165) 2004; 375–377 Crossland (10.1016/j.matdes.2010.10.017_b0005) 1971 Balasubrahmanian (10.1016/j.matdes.2010.10.017_b0050) 1997; 63 Mamalis (10.1016/j.matdes.2010.10.017_b0150) 1998; 83 Kahraman (10.1016/j.matdes.2010.10.017_b0120) 2005; 169 Jiang (10.1016/j.matdes.2010.10.017_b0200) 2003; 80 Hokamoto (10.1016/j.matdes.2010.10.017_b0170) 2009; 485 Keating (10.1016/j.matdes.2010.10.017_b0195) 2005; 142 Kennedy (10.1016/j.matdes.2010.10.017_b0225) 1972 Kahraman (10.1016/j.matdes.2010.10.017_b0065) 2005; 169 Lalwaney (10.1016/j.matdes.2010.10.017_b0015) 1985; 37 Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0080) 2008; 202 Ashani (10.1016/j.matdes.2010.10.017_b0155) 2009; 40 Howes (10.1016/j.matdes.2010.10.017_b0245) 2001 Mousavi (10.1016/j.matdes.2010.10.017_b0075) 2009; 30 Acarer (10.1016/j.matdes.2010.10.017_b0250) 2004; 39 Kacar (10.1016/j.matdes.2010.10.017_b0040) 2004; 152 Acarer (10.1016/j.matdes.2010.10.017_b0055) 2008; 62 Murr (10.1016/j.matdes.2010.10.017_b0235) 1997; A222 Akbari-Mousavia (10.1016/j.matdes.2010.10.017_b0180) 2005; 53 Wronka (10.1016/j.matdes.2010.10.017_b0145) 2010; 45 Brasher (10.1016/j.matdes.2010.10.017_b0020) 1995; 3 Ege (10.1016/j.matdes.2010.10.017_b0095) 1998; 33 Gulenc (10.1016/j.matdes.2010.10.017_b0160) 2008; 29 Belyakov (10.1016/j.matdes.2010.10.017_b0130) 2000; 283–287 Durgutlu (10.1016/j.matdes.2010.10.017_b0115) 2005; 26 Mudali (10.1016/j.matdes.2010.10.017_b0070) 2003; 321 Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0185) 2005; 31 Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0085) 2008; 29 Gerland (10.1016/j.matdes.2010.10.017_b0105) 2000; A280 Tavassoli (10.1016/j.matdes.2010.10.017_b0135) 1998; 39–40 Liu (10.1016/j.matdes.2010.10.017_b0175) 2009; 255 10.1016/j.matdes.2010.10.017_b0230 Durgutlu (10.1016/j.matdes.2010.10.017_b0140) 2008; 29 Grignon (10.1016/j.matdes.2010.10.017_b0035) 2004; 30 Groschopp (10.1016/j.matdes.2010.10.017_b0215) 1987 Du (10.1016/j.matdes.2010.10.017_b0060) 2007; 36 Crossland (10.1016/j.matdes.2010.10.017_b0010) 1976; 3 Akbari-Mousavi (10.1016/j.matdes.2010.10.017_b0205) 2008; 29 Ghanadzadeh (10.1016/j.matdes.2010.10.017_b0030) 2003; 82 |
References_xml | – volume: 37 start-page: A92 year: 1985 ident: b0015 article-title: Explosive metal cladding publication-title: J Metals – volume: 255 start-page: 9343 year: 2009 end-page: 9347 ident: b0175 article-title: Metallic glass coating on metals plate by adjusted explosive welding technique publication-title: Appl Surf Sci – volume: 152 start-page: 91 year: 2004 end-page: 96 ident: b0040 article-title: An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel publication-title: J Mater Process Technol – volume: 83 start-page: 48 year: 1998 end-page: 53 ident: b0150 article-title: Fabrication of bimetallic rods by explosive cladding and warm extrusion publication-title: J Mater Process Technol – volume: 53 start-page: 2501 year: 2005 end-page: 2528 ident: b0180 article-title: Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding publication-title: J Mech Phys Solids – volume: A280 start-page: 311 year: 2000 ident: b0105 article-title: Explosive cladding of a thin Ni-film to an aluminium alloy publication-title: Mater Sci Eng – year: 2001 ident: b0245 publication-title: Explosive welding, TWI knowledge summary – volume: 62 start-page: 4158 year: 2008 ident: b0055 article-title: An investigation of mechanical and metallurgical properties of explosive welded aluminium–dual phase steel publication-title: Mater Lett – reference: ASM handbook, vol. 6, Welding, Brazing and Soldering, Metals Park, Ohio; 1993. – volume: 494 start-page: 329 year: 2008 ident: b0100 article-title: Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite publication-title: Mater Sci Eng A – Struct Mater Prop Microstruct Process – reference: Gurney RW. The initial velocities of fragments from bombs, shells, and grenades. Report 405, Ballistic Research Laboratory; 1943. – volume: 30 start-page: 459 year: 2009 end-page: 468 ident: b0075 article-title: Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel publication-title: Mater Des – volume: A222 start-page: 115 year: 1997 end-page: 132 ident: b0235 article-title: Comparison of jetting-related microstructures associated with hypervelocity impact crater formation in copper targets and copper shaped charges publication-title: Mater Sci Eng – volume: 283–287 start-page: 962 year: 2000 end-page: 967 ident: b0130 article-title: Status of international collaborative efforts on selected publication-title: Mater J Nucl Mater – volume: 142 start-page: 145 year: 2005 end-page: 171 ident: b0195 article-title: The role of water in cooling ignimbrites publication-title: J Volcanol Geoth Res – volume: 29 start-page: 1 year: 2008 end-page: 19 ident: b0205 article-title: Finite element simulation of explosively-driven plate impact with application to explosive welding publication-title: Mater Des – volume: 29 start-page: 275 year: 2008 end-page: 278 ident: b0160 article-title: Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method publication-title: Mater Des – volume: 527 start-page: 2241 year: 2001 end-page: 2245 ident: b0240 article-title: Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate publication-title: Mater Sci Eng A – volume: 31 start-page: 719 year: 2005 end-page: 734 ident: b0185 article-title: Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives publication-title: Int J Impact Eng – volume: 29 start-page: 1480 year: 2008 end-page: 1484 ident: b0140 article-title: Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel publication-title: Mater Des – volume: 40 year: 2009 ident: b0155 article-title: Explosive scarf welding of aluminum to copper plates and their interface properties publication-title: Materialwiss Werkst – volume: 26 start-page: 497 year: 2005 ident: b0115 article-title: Examination of copper/stainless steel joints formed by explosive welding publication-title: Mater Des – volume: 24 start-page: 659 year: 2003 ident: b0025 article-title: Investigation of explosive welding parameters and their effects on microhardness and shear strength publication-title: Mater Des – volume: 45 start-page: 3465 year: 2010 end-page: 3469 ident: b0145 article-title: Testing of explosive welding and welded joints. The microstructure of explosive welded joints and their mechanical properties publication-title: J Mater Sci – volume: 139 start-page: 573 year: 2003 end-page: 577 ident: b0125 article-title: Analysis of the explosive cladding of Cu–low carbon steel plates publication-title: J Mater Process Technol – volume: 169 start-page: 67 year: 2005 end-page: 71 ident: b0120 article-title: Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process publication-title: J Mater Process Technol – start-page: 401 year: 1971 end-page: 402 ident: b0005 article-title: The development of explosive welding and its application in engineering publication-title: Metals Mater – volume: 30 start-page: 1333 year: 2004 end-page: 1351 ident: b0035 article-title: Explosive welding of aluminum to aluminum: analysis, computations and experiments publication-title: Int J Impact Eng – volume: 3 start-page: 8 year: 1976 ident: b0010 article-title: An experimental investigation of explosive welding parameters publication-title: Metals Technol – volume: 321 start-page: 40 year: 2003 end-page: 48 ident: b0070 article-title: Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel publication-title: J Nucl Mater – volume: 29 start-page: 1334 year: 2008 end-page: 1352 ident: b0085 article-title: Bond strength of explosively welded specimens publication-title: Mater Des – volume: 3 start-page: 38 year: 1995 ident: b0020 article-title: Explosive welding: principles and potentials publication-title: Adv Mater Process – volume: 36 start-page: 131 year: 2007 ident: b0060 publication-title: Rare Metal Mater Eng – volume: 485 start-page: 817 year: 2009 end-page: 821 ident: b0170 article-title: Microstructural characterization of explosively welded rapidly solidified foil and stainless steel plate through the acceleration employing underwater shock wave publication-title: J Alloy Compd – start-page: 109 year: 1972 ident: b0225 article-title: Explosive output for driving metal publication-title: Proc behavior and utilization of explosives in engineering design conf – volume: 195 start-page: 232 year: 2008 end-page: 240 ident: b0090 article-title: Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel publication-title: J Mater Process Technol – volume: 39 start-page: 6457 year: 2004 end-page: 6466 ident: b0250 article-title: The influence of some factors on steel/steel bonding quality on their characteristics of explosive welding joints publication-title: J Mater Sci – volume: 63 start-page: 83 year: 1997 ident: b0050 article-title: Modelling of process parameters in explosive cladding of mild steel and aluminium publication-title: J Mater Process Technol – volume: 33 start-page: 527 year: 1998 ident: b0095 article-title: Response surface study on production of explosively-welded aluminum–titanium laminates publication-title: J Mater Sci – start-page: 879 year: 1987 end-page: 883 ident: b0215 article-title: Explosively clad titanium steel composite publication-title: Weld Int – volume: 80 start-page: 129 year: 2003 end-page: 137 ident: b0200 article-title: Evaluation of interfacial crack growth in bimaterial metallic joints loaded by symmetric three-point bending publication-title: Int J Press Vessels Pip – volume: 42 start-page: 3794 year: 2005 end-page: 3806 ident: b0190 article-title: A study on the relief of residual stresses in weldments with explosive treatment publication-title: Int J Solids Struct – volume: 22 start-page: 1495 year: 1987 ident: b0110 article-title: Characterization of explosively bonded iron and copper plates publication-title: J Mater Sci – volume: 39–40 start-page: 189 year: 1998 end-page: 200 ident: b0135 article-title: Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls publication-title: Fusion Eng Des – volume: 82 start-page: 78 year: 2003 ident: b0030 article-title: Shock loading effect on the corrosion properties of low-carbon steel publication-title: Mater Chem Phys – volume: 202 start-page: 224 year: 2008 end-page: 239 ident: b0080 article-title: Explosive welding of metal plates publication-title: J Mater Process Technol – volume: 169 start-page: 127 year: 2005 end-page: 133 ident: b0065 article-title: Joining of titanium/stainless steel by explosive welding and effect on interface publication-title: J Mater Process Technol – volume: 38 start-page: 13 year: 2003 ident: b0045 article-title: Effect of interlayer thickness on shear deformation behaviour of AA5083 aluminium alloy/SS41 steel plates manufactured by explosive welding publication-title: J Mater Sci – volume: 375–377 start-page: 112 year: 2004 end-page: 119 ident: b0165 article-title: Liquid phase and supercooled liquid phase welding of bulk metallic glasses publication-title: Mater Sci Eng A – reference: Carpenter S, Wittman RH, Carlson RJ. Relationships of explosive welding parameters to material properties and geometry factors. In: Proc first int conf of the center for high energy forming, University of Denver; June 1967. p. 124. – volume: 255 start-page: 9343 year: 2009 ident: 10.1016/j.matdes.2010.10.017_b0175 article-title: Metallic glass coating on metals plate by adjusted explosive welding technique publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2009.07.033 – volume: 42 start-page: 3794 year: 2005 ident: 10.1016/j.matdes.2010.10.017_b0190 article-title: A study on the relief of residual stresses in weldments with explosive treatment publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2004.11.017 – volume: 83 start-page: 48 year: 1998 ident: 10.1016/j.matdes.2010.10.017_b0150 article-title: Fabrication of bimetallic rods by explosive cladding and warm extrusion publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(98)00042-9 – volume: 80 start-page: 129 year: 2003 ident: 10.1016/j.matdes.2010.10.017_b0200 article-title: Evaluation of interfacial crack growth in bimaterial metallic joints loaded by symmetric three-point bending publication-title: Int J Press Vessels Pip doi: 10.1016/S0308-0161(03)00004-8 – volume: 30 start-page: 1333 year: 2004 ident: 10.1016/j.matdes.2010.10.017_b0035 article-title: Explosive welding of aluminum to aluminum: analysis, computations and experiments publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2003.09.049 – volume: 494 start-page: 329 issue: 1–2 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0100 article-title: Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite publication-title: Mater Sci Eng A – Struct Mater Prop Microstruct Process doi: 10.1016/j.msea.2008.04.032 – volume: 321 start-page: 40 year: 2003 ident: 10.1016/j.matdes.2010.10.017_b0070 article-title: Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel publication-title: J Nucl Mater doi: 10.1016/S0022-3115(03)00194-6 – volume: 45 start-page: 3465 year: 2010 ident: 10.1016/j.matdes.2010.10.017_b0145 article-title: Testing of explosive welding and welded joints. The microstructure of explosive welded joints and their mechanical properties publication-title: J Mater Sci doi: 10.1007/s10853-010-4374-y – volume: 152 start-page: 91 year: 2004 ident: 10.1016/j.matdes.2010.10.017_b0040 article-title: An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2004.03.012 – volume: 3 start-page: 8 year: 1976 ident: 10.1016/j.matdes.2010.10.017_b0010 article-title: An experimental investigation of explosive welding parameters publication-title: Metals Technol doi: 10.1179/030716976803391845 – volume: 62 start-page: 4158 issue: 25 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0055 article-title: An investigation of mechanical and metallurgical properties of explosive welded aluminium–dual phase steel publication-title: Mater Lett doi: 10.1016/j.matlet.2008.05.060 – volume: 22 start-page: 1495 year: 1987 ident: 10.1016/j.matdes.2010.10.017_b0110 article-title: Characterization of explosively bonded iron and copper plates publication-title: J Mater Sci doi: 10.1007/BF01233153 – volume: 30 start-page: 459 year: 2009 ident: 10.1016/j.matdes.2010.10.017_b0075 article-title: Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel publication-title: Mater Des doi: 10.1016/j.matdes.2008.06.016 – year: 2001 ident: 10.1016/j.matdes.2010.10.017_b0245 – volume: 24 start-page: 659 issue: 8 year: 2003 ident: 10.1016/j.matdes.2010.10.017_b0025 article-title: Investigation of explosive welding parameters and their effects on microhardness and shear strength publication-title: Mater Des doi: 10.1016/S0261-3069(03)00066-9 – volume: 63 start-page: 83 year: 1997 ident: 10.1016/j.matdes.2010.10.017_b0050 article-title: Modelling of process parameters in explosive cladding of mild steel and aluminium publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(96)02604-0 – volume: 53 start-page: 2501 year: 2005 ident: 10.1016/j.matdes.2010.10.017_b0180 article-title: Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2005.06.001 – volume: 139 start-page: 573 year: 2003 ident: 10.1016/j.matdes.2010.10.017_b0125 article-title: Analysis of the explosive cladding of Cu–low carbon steel plates publication-title: J Mater Process Technol doi: 10.1016/S0924-0136(03)00539-9 – volume: 169 start-page: 127 year: 2005 ident: 10.1016/j.matdes.2010.10.017_b0065 article-title: Joining of titanium/stainless steel by explosive welding and effect on interface publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.06.045 – volume: 39–40 start-page: 189 year: 1998 ident: 10.1016/j.matdes.2010.10.017_b0135 article-title: Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls publication-title: Fusion Eng Des doi: 10.1016/S0920-3796(98)00195-1 – volume: 29 start-page: 1 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0205 article-title: Finite element simulation of explosively-driven plate impact with application to explosive welding publication-title: Mater Des doi: 10.1016/j.matdes.2006.12.012 – volume: 37 start-page: A92 issue: 11 year: 1985 ident: 10.1016/j.matdes.2010.10.017_b0015 article-title: Explosive metal cladding publication-title: J Metals – volume: 29 start-page: 1480 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0140 article-title: Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel publication-title: Mater Des doi: 10.1016/j.matdes.2007.07.012 – volume: 31 start-page: 719 year: 2005 ident: 10.1016/j.matdes.2010.10.017_b0185 article-title: Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2004.03.003 – volume: 38 start-page: 13 year: 2003 ident: 10.1016/j.matdes.2010.10.017_b0045 article-title: Effect of interlayer thickness on shear deformation behaviour of AA5083 aluminium alloy/SS41 steel plates manufactured by explosive welding publication-title: J Mater Sci doi: 10.1023/A:1021197328946 – volume: 33 start-page: 527 year: 1998 ident: 10.1016/j.matdes.2010.10.017_b0095 article-title: Response surface study on production of explosively-welded aluminum–titanium laminates publication-title: J Mater Sci doi: 10.1023/A:1004485914302 – volume: 283–287 start-page: 962 year: 2000 ident: 10.1016/j.matdes.2010.10.017_b0130 article-title: Status of international collaborative efforts on selected publication-title: Mater J Nucl Mater doi: 10.1016/S0022-3115(00)00233-6 – volume: A280 start-page: 311 year: 2000 ident: 10.1016/j.matdes.2010.10.017_b0105 article-title: Explosive cladding of a thin Ni-film to an aluminium alloy publication-title: Mater Sci Eng doi: 10.1016/S0921-5093(99)00695-4 – volume: 29 start-page: 1334 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0085 article-title: Bond strength of explosively welded specimens publication-title: Mater Des doi: 10.1016/j.matdes.2007.06.010 – volume: 39 start-page: 6457 issue: 21 year: 2004 ident: 10.1016/j.matdes.2010.10.017_b0250 article-title: The influence of some factors on steel/steel bonding quality on their characteristics of explosive welding joints publication-title: J Mater Sci doi: 10.1023/B:JMSC.0000044883.33007.20 – start-page: 109 year: 1972 ident: 10.1016/j.matdes.2010.10.017_b0225 article-title: Explosive output for driving metal – volume: 527 start-page: 2241 year: 2001 ident: 10.1016/j.matdes.2010.10.017_b0240 article-title: Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2009.12.007 – start-page: 879 issue: 9 year: 1987 ident: 10.1016/j.matdes.2010.10.017_b0215 article-title: Explosively clad titanium steel composite publication-title: Weld Int doi: 10.1080/09507118709451115 – ident: 10.1016/j.matdes.2010.10.017_b0220 doi: 10.21236/ADA800105 – volume: 3 start-page: 38 year: 1995 ident: 10.1016/j.matdes.2010.10.017_b0020 article-title: Explosive welding: principles and potentials publication-title: Adv Mater Process – volume: 26 start-page: 497 issue: 6 year: 2005 ident: 10.1016/j.matdes.2010.10.017_b0115 article-title: Examination of copper/stainless steel joints formed by explosive welding publication-title: Mater Des doi: 10.1016/j.matdes.2004.07.021 – volume: 202 start-page: 224 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0080 article-title: Explosive welding of metal plates publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.09.028 – volume: 169 start-page: 67 year: 2005 ident: 10.1016/j.matdes.2010.10.017_b0120 article-title: Microstructural and mechanical properties of Cu–Ti plates bonded through explosive welding process publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2005.02.264 – volume: 40 issue: 9 year: 2009 ident: 10.1016/j.matdes.2010.10.017_b0155 article-title: Explosive scarf welding of aluminum to copper plates and their interface properties publication-title: Materialwiss Werkst doi: 10.1002/mawe.200900415 – volume: 485 start-page: 817 year: 2009 ident: 10.1016/j.matdes.2010.10.017_b0170 article-title: Microstructural characterization of explosively welded rapidly solidified foil and stainless steel plate through the acceleration employing underwater shock wave publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2009.06.082 – volume: A222 start-page: 115 year: 1997 ident: 10.1016/j.matdes.2010.10.017_b0235 article-title: Comparison of jetting-related microstructures associated with hypervelocity impact crater formation in copper targets and copper shaped charges publication-title: Mater Sci Eng – ident: 10.1016/j.matdes.2010.10.017_b0210 – volume: 29 start-page: 275 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0160 article-title: Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method publication-title: Mater Des doi: 10.1016/j.matdes.2006.11.001 – ident: 10.1016/j.matdes.2010.10.017_b0230 – start-page: 401 issue: December year: 1971 ident: 10.1016/j.matdes.2010.10.017_b0005 article-title: The development of explosive welding and its application in engineering publication-title: Metals Mater – volume: 82 start-page: 78 year: 2003 ident: 10.1016/j.matdes.2010.10.017_b0030 article-title: Shock loading effect on the corrosion properties of low-carbon steel publication-title: Mater Chem Phys doi: 10.1016/S0254-0584(03)00166-4 – volume: 142 start-page: 145 year: 2005 ident: 10.1016/j.matdes.2010.10.017_b0195 article-title: The role of water in cooling ignimbrites publication-title: J Volcanol Geoth Res doi: 10.1016/j.jvolgeores.2004.10.019 – volume: 36 start-page: 131 year: 2007 ident: 10.1016/j.matdes.2010.10.017_b0060 publication-title: Rare Metal Mater Eng – volume: 375–377 start-page: 112 year: 2004 ident: 10.1016/j.matdes.2010.10.017_b0165 article-title: Liquid phase and supercooled liquid phase welding of bulk metallic glasses publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2003.10.097 – volume: 195 start-page: 232 year: 2008 ident: 10.1016/j.matdes.2010.10.017_b0090 article-title: Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.05.002 |
SSID | ssj0017112 |
Score | 2.5138998 |
SecondaryResourceType | review_article |
Snippet | Explosion welding (EXW) is one of the joining methods consisting of a solid state welding process in which controlled explosive detonation on the surface of a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1081 |
SubjectTerms | Bonding Detonation Dissimilar materials Explosions Explosive welding Ferrous metals and alloys Joining Materials joining Metal plates Plastic deformation Welding |
Title | Recent developments in explosive welding |
URI | https://dx.doi.org/10.1016/j.matdes.2010.10.017 https://www.proquest.com/docview/1671318450 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vehBfGJ9sYIHL0s3TTa7OZZiqYq9aKG3kNdCRbalD_z7TrLZ-kAoeA2bZXcmmfkm880EoVudUCs5bCQKcCSmhZKxktqRxomiuath9u2ankdsOKaPk3TSQP26FsbRKoPtr2y6t9ZhpBOk2ZlPp50XFz0A4OXY-2GS76BWl3AGS7vVe3gajjbJhAz7pGc4amG8rqDzNC_AhcYuK46Xo3n5m8v-9FC_bLV3QIMDtB-QY9SrPu4QNWx5hPa-9RM8RncAAsGJROaLCbSMpmVkHdHO8dSjD-uTTSdoPLh_7Q_jcBVCrAnhq1hlvEiNAm-vWKJTbBTuFoZSSwzLDFaaKmMpx7RrQfBWq4IRrI1NZJZLqRNyiprlrLRnKEoyBrM1yVJNaK4Lzqmm3FgJQA-0VrQRqX9f6NAn3F1X8S5qQtibqIQmnNDcKAitjeLNrHnVJ2PL81ktWfFD3wJM-ZaZN7UiBGwFl9-QpZ2tlwIziLghYk2T83-__QLtVqfGjmV2iZqrxdpeAexYqeuwrD4BAojVmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPrM4IHL6FJd_PYYymW1D4uttDbsq9ARdJiW_z7zuZRHwiC1yUTkpndmW92vp0FuFceNYLhQqIIR1yaSuFKoSxpnEga2zPMebum0ThMpvRpFsxq0K3OwlhaZen7C5-ee-typFVqs7Wcz1vPNntAwMv8PA6TeAcatjtVUIdGpz9IxttiQuTnRc9yqyVk1Qm6nOaFuFCbVcHxsjSv_OayXyPUD1-dB6DeIRyUyNHpFB93BDWTHcP-l36CJ_CAIBCDiKM_mUArZ545xhLtLE_deTd5sekUpr3HSTdxy6sQXEUIW7syYmmgJUZ7GXoq8LX026mm1BAdRtqXikptKPNp26DijZJpSHyljSeiWAjlkTOoZ4vMnIPjRSFKKxIFitBYpYxRRZk2AoEeWi1tAql-n6uyT7i9ruKVV4SwF14ojVul2VFUWhPcrdSy6JPxx_NRpVn-zd4cXfkfkneVITguBVvfEJlZbFbcDzHjxow18C7-_fZb2E0moyEf9seDS9grdpAt4-wK6uu3jblGCLKWN-UU-wAc8diB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+developments+in+explosive+welding&rft.jtitle=Materials+in+engineering&rft.au=Findik%2C+Fehim&rft.date=2011-03-01&rft.pub=Elsevier+Ltd&rft.issn=0261-3069&rft.volume=32&rft.issue=3&rft.spage=1081&rft.epage=1093&rft_id=info:doi/10.1016%2Fj.matdes.2010.10.017&rft.externalDocID=S0261306910006138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |