Linking error measures to model questions

Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we need to define what it means for the model to perform well, which depends on the question being asked. Often, it seems easy to ignore the mo...

Full description

Saved in:
Bibliographic Details
Published inEcological modelling Vol. 487; p. 110562
Main Authors Jacobs, Bas, Tobi, Hilde, Hengeveld, Geerten M.
Format Journal Article
LanguageEnglish
Published 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we need to define what it means for the model to perform well, which depends on the question being asked. Often, it seems easy to ignore the model question and take a standard well-known error measure for comparing the model to the available data. The question is whether this practice is adequate. Here, we defined different types of model-data mismatches that may be more or less relevant to different types of questions. We show that error measures differ in their sensitivity to the type of mismatch and robustness to sparse and noisy data. The results imply that a careful selection of error measures, using a clearly defined ecological question as a starting point, is vital to proper model evaluation. While we present our results as generally applicable to the validation of any type of forecasting model, we also illustrate them using cyanobacterial bloom modelling as a detailed example of a case where different questions could be asked of the same model.
AbstractList Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we need to define what it means for the model to perform well, which depends on the question being asked. Often, it seems easy to ignore the model question and take a standard well-known error measure for comparing the model to the available data. The question is whether this practice is adequate. Here, we defined different types of model-data mismatches that may be more or less relevant to different types of questions. We show that error measures differ in their sensitivity to the type of mismatch and robustness to sparse and noisy data. The results imply that a careful selection of error measures, using a clearly defined ecological question as a starting point, is vital to proper model evaluation. While we present our results as generally applicable to the validation of any type of forecasting model, we also illustrate them using cyanobacterial bloom modelling as a detailed example of a case where different questions could be asked of the same model.
ArticleNumber 110562
Author Jacobs, Bas
Hengeveld, Geerten M.
Tobi, Hilde
Author_xml – sequence: 1
  givenname: Bas
  orcidid: 0000-0003-3560-8086
  surname: Jacobs
  fullname: Jacobs, Bas
– sequence: 2
  givenname: Hilde
  surname: Tobi
  fullname: Tobi, Hilde
– sequence: 3
  givenname: Geerten M.
  surname: Hengeveld
  fullname: Hengeveld, Geerten M.
BookMark eNqFkD1PwzAURT0UibbwG8gIQ8KzHdvJwIAqKEiVWGC2XOcZOSRxsZOBf08_EAML01vuuVfvLMhsCAMSckWhoEDlbVugDV0fGuwKBowXlIKQbEbmwKHMeQVwThYptQBAWcXm5Gbjhw8_vGcYY4hZjyZNEVM2huxYk31OmEYfhnRBzpzpEl7-3CV5e3x4XT3lm5f18-p-k1vO6zHfSqyNBe6kELVVQlXozFZUwIyTJUPHkImmkULVruZCVjVaVIoyTrcGoORLcn3q3cVwHNe9Txa7zgwYpqQ5FSVVUgLdR9UpamNIKaLTu-h7E780BX0Qolv9K0QfhOiTkD1594e0fjSHP8dofPcv_w2Ipm77
CitedBy_id crossref_primary_10_1016_j_ecolmodel_2024_110671
crossref_primary_10_26599_TST_2024_9010131
Cites_doi 10.1002/eap.2500
10.1371/journal.pone.0174202
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
10.1007/s10750-020-04297-9
10.1002/ecy.3431
10.1016/j.ipm.2009.03.002
10.1016/j.watres.2020.115959
10.1029/2020WR029001
10.1086/708691
10.1016/j.hal.2019.04.004
10.1016/j.ecolmodel.2019.01.006
10.1016/j.hal.2016.01.001
10.5194/gmd-15-5481-2022
10.1016/j.envsoft.2019.05.001
10.1080/20442041.2020.1816421
10.1002/eap.1589
10.1038/s41579-018-0040-1
10.1111/rssa.12176
10.1098/rsfs.2011.0083
10.1111/2041-210X.13955
10.1016/j.envsoft.2014.01.032
10.1126/science.1155398
10.1080/01605682.2021.1892464
10.5194/nhess-21-961-2021
10.1016/j.watres.2018.01.046
10.1890/01-5345
10.1073/pnas.1710231115
10.1016/j.envsoft.2012.09.011
10.1016/j.cosust.2018.09.001
10.1002/eap.2642
10.1890/09-1275.1
10.1007/s00248-012-0159-y
10.3389/fmars.2017.00289
10.1016/S0034-4257(97)00083-7
10.1016/j.ijforecast.2006.03.001
10.1029/2021WR030600
10.1016/j.jhydrol.2017.03.050
10.1016/j.envsoft.2006.01.004
10.1016/j.procs.2016.09.332
10.1002/2017SW001669
10.2166/wst.1995.0332
10.1016/j.ecoinf.2008.04.002
10.1016/j.ecolmodel.2007.03.018
10.1016/j.envsoft.2021.105278
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2023.110562
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
ExternalDocumentID 10_1016_j_ecolmodel_2023_110562
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSA
SSH
SSJ
SSZ
T5K
VH1
WH7
WUQ
Y6R
ZY4
~02
~G-
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-b6e9ac03f6559c7578efab5802af642ef2e25dd6579f935689ece771231ba0043
ISSN 0304-3800
IngestDate Fri Aug 22 20:24:22 EDT 2025
Tue Jul 01 03:09:16 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-b6e9ac03f6559c7578efab5802af642ef2e25dd6579f935689ece771231ba0043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3560-8086
OpenAccessLink https://doi.org/10.1016/j.ecolmodel.2023.110562
PQID 3154176601
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3154176601
crossref_primary_10_1016_j_ecolmodel_2023_110562
crossref_citationtrail_10_1016_j_ecolmodel_2023_110562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationTitle Ecological modelling
PublicationYear 2024
References Morley (10.1016/j.ecolmodel.2023.110562_b29) 2018; 16
Carey (10.1016/j.ecolmodel.2023.110562_b4) 2022; 12
Jakeman (10.1016/j.ecolmodel.2023.110562_b17) 2006; 21
Bennett (10.1016/j.ecolmodel.2023.110562_b1) 2013; 40
Brier (10.1016/j.ecolmodel.2023.110562_b2) 1950; 78
Janssen (10.1016/j.ecolmodel.2023.110562_b19) 2019; 36
Paerl (10.1016/j.ecolmodel.2023.110562_b31) 2013; 65
Simonis (10.1016/j.ecolmodel.2023.110562_b40) 2021; 102
Ibelings (10.1016/j.ecolmodel.2023.110562_b15) 2003; 13
Dietze (10.1016/j.ecolmodel.2023.110562_b8) 2018; 115
Lewis (10.1016/j.ecolmodel.2023.110562_b24) 2022; 32
Schets (10.1016/j.ecolmodel.2023.110562_b39) 2020
He (10.1016/j.ecolmodel.2023.110562_b11) 2016; 54
Lewis (10.1016/j.ecolmodel.2023.110562_b23) 2023; 14
Melsen (10.1016/j.ecolmodel.2023.110562_b28) 2022; 58
Burford (10.1016/j.ecolmodel.2023.110562_b3) 2020; 91
Clark (10.1016/j.ecolmodel.2023.110562_b6) 2021; 57
Mehdiyev (10.1016/j.ecolmodel.2023.110562_b27) 2016; 95
Trolle (10.1016/j.ecolmodel.2023.110562_b44) 2014; 61
Janssen (10.1016/j.ecolmodel.2023.110562_b20) 2019; 396
Taylor (10.1016/j.ecolmodel.2023.110562_b43) 2016; 179
Hyndman (10.1016/j.ecolmodel.2023.110562_b14) 2006; 22
Jackson (10.1016/j.ecolmodel.2023.110562_b16) 2019; 119
Luo (10.1016/j.ecolmodel.2023.110562_b25) 2011; 21
van Basshuysen (10.1016/j.ecolmodel.2023.110562_b45) 2023
Lürling (10.1016/j.ecolmodel.2023.110562_b26) 2020; 847
Parker (10.1016/j.ecolmodel.2023.110562_b33) 2020; 87
Chen (10.1016/j.ecolmodel.2023.110562_b5) 2017; 12
Hodson (10.1016/j.ecolmodel.2023.110562_b12) 2022; 15
Koutsandreas (10.1016/j.ecolmodel.2023.110562_b22) 2022; 73
Stehman (10.1016/j.ecolmodel.2023.110562_b42) 1997; 62
Rousso (10.1016/j.ecolmodel.2023.110562_b37) 2020; 182
Gleckler (10.1016/j.ecolmodel.2023.110562_b9) 2008; 113
Page (10.1016/j.ecolmodel.2023.110562_b32) 2018; 134
Recknagel (10.1016/j.ecolmodel.2023.110562_b36) 2008; 3
Saloranta (10.1016/j.ecolmodel.2023.110562_b38) 2007; 207
Dietze (10.1016/j.ecolmodel.2023.110562_b7) 2017; 27
Huisman (10.1016/j.ecolmodel.2023.110562_b13) 2018; 16
Korppoo (10.1016/j.ecolmodel.2023.110562_b21) 2017; 549
Paerl (10.1016/j.ecolmodel.2023.110562_b30) 2008; 320
Petrovskii (10.1016/j.ecolmodel.2023.110562_b35) 2012; 2
Wilks (10.1016/j.ecolmodel.2023.110562_b47) 2011
Payne (10.1016/j.ecolmodel.2023.110562_b34) 2017; 4
van Kempen (10.1016/j.ecolmodel.2023.110562_b46) 2021; 21
Hamilton (10.1016/j.ecolmodel.2023.110562_b10) 2022; 148
Sokolova (10.1016/j.ecolmodel.2023.110562_b41) 2009; 45
Janse (10.1016/j.ecolmodel.2023.110562_b18) 1995; 31
Woelmer (10.1016/j.ecolmodel.2023.110562_b48) 2022; 32
References_xml – volume: 32
  issue: 2
  year: 2022
  ident: 10.1016/j.ecolmodel.2023.110562_b24
  article-title: Increased adoption of best practices in ecological forecasting enables comparisons of forecastability
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2500
– volume: 12
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.ecolmodel.2023.110562_b5
  article-title: A new accuracy measure based on bounded relative error for time series forecasting
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0174202
– volume: 78
  start-page: 1
  issue: 1
  year: 1950
  ident: 10.1016/j.ecolmodel.2023.110562_b2
  article-title: Verification of forecasts expressed in terms of probability
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
– volume: 847
  start-page: 4447
  issue: 21
  year: 2020
  ident: 10.1016/j.ecolmodel.2023.110562_b26
  article-title: Mitigating eutrophication nuisance: in-lake measures are becoming inevitable in eutrophic waters in the netherlands
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-020-04297-9
– volume: 102
  issue: 8
  year: 2021
  ident: 10.1016/j.ecolmodel.2023.110562_b40
  article-title: Evaluating probabilistic ecological forecasts
  publication-title: Ecology
  doi: 10.1002/ecy.3431
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.ecolmodel.2023.110562_b41
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 182
  year: 2020
  ident: 10.1016/j.ecolmodel.2023.110562_b37
  article-title: A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115959
– volume: 57
  issue: 9
  year: 2021
  ident: 10.1016/j.ecolmodel.2023.110562_b6
  article-title: The abuse of popular performance metrics in hydrologic modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR029001
– volume: 87
  start-page: 457
  issue: 3
  year: 2020
  ident: 10.1016/j.ecolmodel.2023.110562_b33
  article-title: Model evaluation: An adequacy-for-purpose view
  publication-title: Philos. Sci.
  doi: 10.1086/708691
– volume: 113
  issue: D6
  year: 2008
  ident: 10.1016/j.ecolmodel.2023.110562_b9
  article-title: Performance metrics for climate models
  publication-title: J. Geophys. Res.: Atmos.
– volume: 91
  year: 2020
  ident: 10.1016/j.ecolmodel.2023.110562_b3
  article-title: Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.04.004
– volume: 396
  start-page: 23
  year: 2019
  ident: 10.1016/j.ecolmodel.2023.110562_b20
  article-title: PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.01.006
– start-page: 1
  year: 2023
  ident: 10.1016/j.ecolmodel.2023.110562_b45
  article-title: Austinian model evaluation
  publication-title: Philos. Sci.
– volume: 54
  start-page: 174
  year: 2016
  ident: 10.1016/j.ecolmodel.2023.110562_b11
  article-title: Toxic cyanobacteria and drinking water: Impacts, detection, and treatment
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2016.01.001
– volume: 15
  start-page: 5481
  issue: 14
  year: 2022
  ident: 10.1016/j.ecolmodel.2023.110562_b12
  article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-5481-2022
– volume: 119
  start-page: 32
  year: 2019
  ident: 10.1016/j.ecolmodel.2023.110562_b16
  article-title: Introductory overview: Error metrics for hydrologic modelling – a review of common practices and an open source library to facilitate use and adoption
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.05.001
– volume: 12
  start-page: 107
  issue: 1
  year: 2022
  ident: 10.1016/j.ecolmodel.2023.110562_b4
  article-title: Advancing lake and reservoir water quality management with near-term, iterative ecological forecasting
  publication-title: Inland Waters
  doi: 10.1080/20442041.2020.1816421
– volume: 27
  start-page: 2048
  issue: 7
  year: 2017
  ident: 10.1016/j.ecolmodel.2023.110562_b7
  article-title: Prediction in ecology: a first-principles framework
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.1589
– volume: 16
  start-page: 471
  issue: 8
  year: 2018
  ident: 10.1016/j.ecolmodel.2023.110562_b13
  article-title: Cyanobacterial blooms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0040-1
– volume: 179
  start-page: 1069
  issue: 4
  year: 2016
  ident: 10.1016/j.ecolmodel.2023.110562_b43
  article-title: Using auto-regressive logit models to forecast the exceedance probability for financial risk management
  publication-title: J. R. Stat. Soc. A (Stat. Soc.)
  doi: 10.1111/rssa.12176
– volume: 2
  start-page: 241
  issue: 2
  year: 2012
  ident: 10.1016/j.ecolmodel.2023.110562_b35
  article-title: Computational ecology as an emerging science
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2011.0083
– year: 2011
  ident: 10.1016/j.ecolmodel.2023.110562_b47
– volume: 14
  start-page: 746
  issue: 3
  year: 2023
  ident: 10.1016/j.ecolmodel.2023.110562_b23
  article-title: The power of forecasts to advance ecological theory
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13955
– volume: 61
  start-page: 371
  year: 2014
  ident: 10.1016/j.ecolmodel.2023.110562_b44
  article-title: Advancing projections of phytoplankton responses to climate change through ensemble modelling
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.01.032
– year: 2020
  ident: 10.1016/j.ecolmodel.2023.110562_b39
– volume: 320
  start-page: 57
  issue: 5872
  year: 2008
  ident: 10.1016/j.ecolmodel.2023.110562_b30
  article-title: Blooms like it hot
  publication-title: Science
  doi: 10.1126/science.1155398
– volume: 73
  start-page: 937
  issue: 5
  year: 2022
  ident: 10.1016/j.ecolmodel.2023.110562_b22
  article-title: On the selection of forecasting accuracy measures
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2021.1892464
– volume: 21
  start-page: 961
  issue: 3
  year: 2021
  ident: 10.1016/j.ecolmodel.2023.110562_b46
  article-title: The impact of hydrological model structure on the simulation of extreme runoff events
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-21-961-2021
– volume: 134
  start-page: 74
  year: 2018
  ident: 10.1016/j.ecolmodel.2023.110562_b32
  article-title: Adaptive forecasting of phytoplankton communities
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.046
– volume: 13
  start-page: 1456
  issue: 5
  year: 2003
  ident: 10.1016/j.ecolmodel.2023.110562_b15
  article-title: Fuzzy modeling of cyanobacterial surface waterblooms: Validation with noaa-avhrr satellite images
  publication-title: Ecol. Appl.
  doi: 10.1890/01-5345
– volume: 115
  start-page: 1424
  issue: 7
  year: 2018
  ident: 10.1016/j.ecolmodel.2023.110562_b8
  article-title: Iterative near-term ecological forecasting: Needs, opportunities, and challenges
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1710231115
– volume: 40
  start-page: 1
  year: 2013
  ident: 10.1016/j.ecolmodel.2023.110562_b1
  article-title: Characterising performance of environmental models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2012.09.011
– volume: 36
  start-page: 1
  year: 2019
  ident: 10.1016/j.ecolmodel.2023.110562_b19
  article-title: How to model algal blooms in any lake on earth
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2018.09.001
– volume: 32
  issue: 7
  year: 2022
  ident: 10.1016/j.ecolmodel.2023.110562_b48
  article-title: Near-term phytoplankton forecasts reveal the effects of model time step and forecast horizon on predictability
  publication-title: Ecol. Appl.
  doi: 10.1002/eap.2642
– volume: 21
  start-page: 1429
  issue: 5
  year: 2011
  ident: 10.1016/j.ecolmodel.2023.110562_b25
  article-title: Ecological forecasting and data assimilation in a data-rich era
  publication-title: Ecol. Appl.
  doi: 10.1890/09-1275.1
– volume: 65
  start-page: 995
  issue: 4
  year: 2013
  ident: 10.1016/j.ecolmodel.2023.110562_b31
  article-title: Harmful cyanobacterial blooms: Causes, consequences, and controls
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-012-0159-y
– volume: 4
  start-page: 289
  year: 2017
  ident: 10.1016/j.ecolmodel.2023.110562_b34
  article-title: Lessons from the first generation of marine ecological forecast products
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2017.00289
– volume: 62
  start-page: 77
  issue: 1
  year: 1997
  ident: 10.1016/j.ecolmodel.2023.110562_b42
  article-title: Selecting and interpreting measures of thematic classification accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00083-7
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.ecolmodel.2023.110562_b14
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 58
  issue: 2
  year: 2022
  ident: 10.1016/j.ecolmodel.2023.110562_b28
  article-title: It takes a village to run a model — The social practices of hydrological modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR030600
– volume: 549
  start-page: 363
  year: 2017
  ident: 10.1016/j.ecolmodel.2023.110562_b21
  article-title: Simulation of bioavailable phosphorus and nitrogen loading in an agricultural river basin in Finland using VEMALA v.3
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.03.050
– volume: 21
  start-page: 602
  issue: 5
  year: 2006
  ident: 10.1016/j.ecolmodel.2023.110562_b17
  article-title: Ten iterative steps in development and evaluation of environmental models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2006.01.004
– volume: 95
  start-page: 264
  year: 2016
  ident: 10.1016/j.ecolmodel.2023.110562_b27
  article-title: Evaluating forecasting methods by considering different accuracy measures
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.332
– volume: 16
  start-page: 69
  issue: 1
  year: 2018
  ident: 10.1016/j.ecolmodel.2023.110562_b29
  article-title: Measures of model performance based on the log accuracy ratio
  publication-title: Space Weather
  doi: 10.1002/2017SW001669
– volume: 31
  start-page: 371
  issue: 8
  year: 1995
  ident: 10.1016/j.ecolmodel.2023.110562_b18
  article-title: PCLake: A modelling tool for the evaluation of lake restoration scenarios
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1995.0332
– volume: 3
  start-page: 170
  issue: 2
  year: 2008
  ident: 10.1016/j.ecolmodel.2023.110562_b36
  article-title: Process-based simulation library SALMO-OO for lake ecosystems. Part 1: Object-oriented implementation and validation
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2008.04.002
– volume: 207
  start-page: 45
  issue: 1
  year: 2007
  ident: 10.1016/j.ecolmodel.2023.110562_b38
  article-title: MyLake—A multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2007.03.018
– volume: 148
  year: 2022
  ident: 10.1016/j.ecolmodel.2023.110562_b10
  article-title: Fit-for-purpose environmental modeling: Targeting the intersection of usability, reliability and feasibility
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105278
SSID ssj0001282
Score 2.4369338
Snippet Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 110562
SubjectTerms ecosystems
model validation
Title Linking error measures to model questions
URI https://www.proquest.com/docview/3154176601
Volume 487
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddR2GX0XUr67oND3YZwUGRbDk-jpKujNBeHMhNyPITrGRxcdzBeujf3qcP2w0E2u1ijJES8X7ivZ_ehx4hX4FWJuHMxBkazzjJ1CRWJuWxqCqdGKVs8abNtrgUF4vk5zJdDt09XXVJW4713c66kv9BFb8hrrZK9h-Q7X8UP-A74otPRBifz8J47hsfjKBp6mb027v73JUNrsHNyOn83iHX-d91r-_cqFVnvHzFfV1ufByiJ9tFXfrW1r9W1bANbDbsn9De-gdAg9w7eFaDD4Elj3wIoXbKxkemlD7Wi3iUGd3YMgGkSPFObesP_tdjPCiv3IrHthl7mDIYmC6ofnklzxfzuSxmy-IFecmQ2NueE-P7ISkHrWWI-_j1bGXk7fybbT6xbU4dRygOyetA7qPvHqk3ZA_WR-TAC_zvETmeDVWFOCyo1c1b8i0AGTkgow7IqK0jt5KoB_IdWZzPirOLOPSwiDXneRuXAnKlKTcCj27aNg8Ao8p0SpkyePQDw4ClVSXSLDc5T8U0Bw1ZhnxiUiobpj0m--t6De9JRDOjDGpYRoVOgDOV6gqU4GwCLC-z5ISIThJShwvebZ-Rlewy-a5lL0JpRSi9CE8I7Sfe-DtOnp7ypRO1RH1kg0xqDfXtRnLk5PbSUTr58Iwxp-TVsB8_kv22uYVPyPLa8rPbGA9rbFKc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+error+measures+to+model+questions&rft.jtitle=Ecological+modelling&rft.au=Jacobs%2C+Bas&rft.au=Tobi%2C+Hilde&rft.au=Hengeveld%2C+Geerten+M&rft.date=2024-01-01&rft.issn=0304-3800&rft.volume=487+p.110562-&rft_id=info:doi/10.1016%2Fj.ecolmodel.2023.110562&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon