Linking error measures to model questions
Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we need to define what it means for the model to perform well, which depends on the question being asked. Often, it seems easy to ignore the mo...
Saved in:
Published in | Ecological modelling Vol. 487; p. 110562 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we need to define what it means for the model to perform well, which depends on the question being asked. Often, it seems easy to ignore the model question and take a standard well-known error measure for comparing the model to the available data. The question is whether this practice is adequate. Here, we defined different types of model-data mismatches that may be more or less relevant to different types of questions. We show that error measures differ in their sensitivity to the type of mismatch and robustness to sparse and noisy data. The results imply that a careful selection of error measures, using a clearly defined ecological question as a starting point, is vital to proper model evaluation. While we present our results as generally applicable to the validation of any type of forecasting model, we also illustrate them using cyanobacterial bloom modelling as a detailed example of a case where different questions could be asked of the same model. |
---|---|
AbstractList | Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we need to define what it means for the model to perform well, which depends on the question being asked. Often, it seems easy to ignore the model question and take a standard well-known error measure for comparing the model to the available data. The question is whether this practice is adequate. Here, we defined different types of model-data mismatches that may be more or less relevant to different types of questions. We show that error measures differ in their sensitivity to the type of mismatch and robustness to sparse and noisy data. The results imply that a careful selection of error measures, using a clearly defined ecological question as a starting point, is vital to proper model evaluation. While we present our results as generally applicable to the validation of any type of forecasting model, we also illustrate them using cyanobacterial bloom modelling as a detailed example of a case where different questions could be asked of the same model. |
ArticleNumber | 110562 |
Author | Jacobs, Bas Hengeveld, Geerten M. Tobi, Hilde |
Author_xml | – sequence: 1 givenname: Bas orcidid: 0000-0003-3560-8086 surname: Jacobs fullname: Jacobs, Bas – sequence: 2 givenname: Hilde surname: Tobi fullname: Tobi, Hilde – sequence: 3 givenname: Geerten M. surname: Hengeveld fullname: Hengeveld, Geerten M. |
BookMark | eNqFkD1PwzAURT0UibbwG8gIQ8KzHdvJwIAqKEiVWGC2XOcZOSRxsZOBf08_EAML01vuuVfvLMhsCAMSckWhoEDlbVugDV0fGuwKBowXlIKQbEbmwKHMeQVwThYptQBAWcXm5Gbjhw8_vGcYY4hZjyZNEVM2huxYk31OmEYfhnRBzpzpEl7-3CV5e3x4XT3lm5f18-p-k1vO6zHfSqyNBe6kELVVQlXozFZUwIyTJUPHkImmkULVruZCVjVaVIoyTrcGoORLcn3q3cVwHNe9Txa7zgwYpqQ5FSVVUgLdR9UpamNIKaLTu-h7E780BX0Qolv9K0QfhOiTkD1594e0fjSHP8dofPcv_w2Ipm77 |
CitedBy_id | crossref_primary_10_1016_j_ecolmodel_2024_110671 crossref_primary_10_26599_TST_2024_9010131 |
Cites_doi | 10.1002/eap.2500 10.1371/journal.pone.0174202 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 10.1007/s10750-020-04297-9 10.1002/ecy.3431 10.1016/j.ipm.2009.03.002 10.1016/j.watres.2020.115959 10.1029/2020WR029001 10.1086/708691 10.1016/j.hal.2019.04.004 10.1016/j.ecolmodel.2019.01.006 10.1016/j.hal.2016.01.001 10.5194/gmd-15-5481-2022 10.1016/j.envsoft.2019.05.001 10.1080/20442041.2020.1816421 10.1002/eap.1589 10.1038/s41579-018-0040-1 10.1111/rssa.12176 10.1098/rsfs.2011.0083 10.1111/2041-210X.13955 10.1016/j.envsoft.2014.01.032 10.1126/science.1155398 10.1080/01605682.2021.1892464 10.5194/nhess-21-961-2021 10.1016/j.watres.2018.01.046 10.1890/01-5345 10.1073/pnas.1710231115 10.1016/j.envsoft.2012.09.011 10.1016/j.cosust.2018.09.001 10.1002/eap.2642 10.1890/09-1275.1 10.1007/s00248-012-0159-y 10.3389/fmars.2017.00289 10.1016/S0034-4257(97)00083-7 10.1016/j.ijforecast.2006.03.001 10.1029/2021WR030600 10.1016/j.jhydrol.2017.03.050 10.1016/j.envsoft.2006.01.004 10.1016/j.procs.2016.09.332 10.1002/2017SW001669 10.2166/wst.1995.0332 10.1016/j.ecoinf.2008.04.002 10.1016/j.ecolmodel.2007.03.018 10.1016/j.envsoft.2021.105278 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.ecolmodel.2023.110562 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
ExternalDocumentID | 10_1016_j_ecolmodel_2023_110562 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV AEBSH AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEN SES SEW SPCBC SSA SSH SSJ SSZ T5K VH1 WH7 WUQ Y6R ZY4 ~02 ~G- 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-b6e9ac03f6559c7578efab5802af642ef2e25dd6579f935689ece771231ba0043 |
ISSN | 0304-3800 |
IngestDate | Fri Aug 22 20:24:22 EDT 2025 Tue Jul 01 03:09:16 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c339t-b6e9ac03f6559c7578efab5802af642ef2e25dd6579f935689ece771231ba0043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3560-8086 |
OpenAccessLink | https://doi.org/10.1016/j.ecolmodel.2023.110562 |
PQID | 3154176601 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3154176601 crossref_primary_10_1016_j_ecolmodel_2023_110562 crossref_citationtrail_10_1016_j_ecolmodel_2023_110562 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationTitle | Ecological modelling |
PublicationYear | 2024 |
References | Morley (10.1016/j.ecolmodel.2023.110562_b29) 2018; 16 Carey (10.1016/j.ecolmodel.2023.110562_b4) 2022; 12 Jakeman (10.1016/j.ecolmodel.2023.110562_b17) 2006; 21 Bennett (10.1016/j.ecolmodel.2023.110562_b1) 2013; 40 Brier (10.1016/j.ecolmodel.2023.110562_b2) 1950; 78 Janssen (10.1016/j.ecolmodel.2023.110562_b19) 2019; 36 Paerl (10.1016/j.ecolmodel.2023.110562_b31) 2013; 65 Simonis (10.1016/j.ecolmodel.2023.110562_b40) 2021; 102 Ibelings (10.1016/j.ecolmodel.2023.110562_b15) 2003; 13 Dietze (10.1016/j.ecolmodel.2023.110562_b8) 2018; 115 Lewis (10.1016/j.ecolmodel.2023.110562_b24) 2022; 32 Schets (10.1016/j.ecolmodel.2023.110562_b39) 2020 He (10.1016/j.ecolmodel.2023.110562_b11) 2016; 54 Lewis (10.1016/j.ecolmodel.2023.110562_b23) 2023; 14 Melsen (10.1016/j.ecolmodel.2023.110562_b28) 2022; 58 Burford (10.1016/j.ecolmodel.2023.110562_b3) 2020; 91 Clark (10.1016/j.ecolmodel.2023.110562_b6) 2021; 57 Mehdiyev (10.1016/j.ecolmodel.2023.110562_b27) 2016; 95 Trolle (10.1016/j.ecolmodel.2023.110562_b44) 2014; 61 Janssen (10.1016/j.ecolmodel.2023.110562_b20) 2019; 396 Taylor (10.1016/j.ecolmodel.2023.110562_b43) 2016; 179 Hyndman (10.1016/j.ecolmodel.2023.110562_b14) 2006; 22 Jackson (10.1016/j.ecolmodel.2023.110562_b16) 2019; 119 Luo (10.1016/j.ecolmodel.2023.110562_b25) 2011; 21 van Basshuysen (10.1016/j.ecolmodel.2023.110562_b45) 2023 Lürling (10.1016/j.ecolmodel.2023.110562_b26) 2020; 847 Parker (10.1016/j.ecolmodel.2023.110562_b33) 2020; 87 Chen (10.1016/j.ecolmodel.2023.110562_b5) 2017; 12 Hodson (10.1016/j.ecolmodel.2023.110562_b12) 2022; 15 Koutsandreas (10.1016/j.ecolmodel.2023.110562_b22) 2022; 73 Stehman (10.1016/j.ecolmodel.2023.110562_b42) 1997; 62 Rousso (10.1016/j.ecolmodel.2023.110562_b37) 2020; 182 Gleckler (10.1016/j.ecolmodel.2023.110562_b9) 2008; 113 Page (10.1016/j.ecolmodel.2023.110562_b32) 2018; 134 Recknagel (10.1016/j.ecolmodel.2023.110562_b36) 2008; 3 Saloranta (10.1016/j.ecolmodel.2023.110562_b38) 2007; 207 Dietze (10.1016/j.ecolmodel.2023.110562_b7) 2017; 27 Huisman (10.1016/j.ecolmodel.2023.110562_b13) 2018; 16 Korppoo (10.1016/j.ecolmodel.2023.110562_b21) 2017; 549 Paerl (10.1016/j.ecolmodel.2023.110562_b30) 2008; 320 Petrovskii (10.1016/j.ecolmodel.2023.110562_b35) 2012; 2 Wilks (10.1016/j.ecolmodel.2023.110562_b47) 2011 Payne (10.1016/j.ecolmodel.2023.110562_b34) 2017; 4 van Kempen (10.1016/j.ecolmodel.2023.110562_b46) 2021; 21 Hamilton (10.1016/j.ecolmodel.2023.110562_b10) 2022; 148 Sokolova (10.1016/j.ecolmodel.2023.110562_b41) 2009; 45 Janse (10.1016/j.ecolmodel.2023.110562_b18) 1995; 31 Woelmer (10.1016/j.ecolmodel.2023.110562_b48) 2022; 32 |
References_xml | – volume: 32 issue: 2 year: 2022 ident: 10.1016/j.ecolmodel.2023.110562_b24 article-title: Increased adoption of best practices in ecological forecasting enables comparisons of forecastability publication-title: Ecol. Appl. doi: 10.1002/eap.2500 – volume: 12 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.ecolmodel.2023.110562_b5 article-title: A new accuracy measure based on bounded relative error for time series forecasting publication-title: PLoS One doi: 10.1371/journal.pone.0174202 – volume: 78 start-page: 1 issue: 1 year: 1950 ident: 10.1016/j.ecolmodel.2023.110562_b2 article-title: Verification of forecasts expressed in terms of probability publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 – volume: 847 start-page: 4447 issue: 21 year: 2020 ident: 10.1016/j.ecolmodel.2023.110562_b26 article-title: Mitigating eutrophication nuisance: in-lake measures are becoming inevitable in eutrophic waters in the netherlands publication-title: Hydrobiologia doi: 10.1007/s10750-020-04297-9 – volume: 102 issue: 8 year: 2021 ident: 10.1016/j.ecolmodel.2023.110562_b40 article-title: Evaluating probabilistic ecological forecasts publication-title: Ecology doi: 10.1002/ecy.3431 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.ecolmodel.2023.110562_b41 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – volume: 182 year: 2020 ident: 10.1016/j.ecolmodel.2023.110562_b37 article-title: A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes publication-title: Water Res. doi: 10.1016/j.watres.2020.115959 – volume: 57 issue: 9 year: 2021 ident: 10.1016/j.ecolmodel.2023.110562_b6 article-title: The abuse of popular performance metrics in hydrologic modeling publication-title: Water Resour. Res. doi: 10.1029/2020WR029001 – volume: 87 start-page: 457 issue: 3 year: 2020 ident: 10.1016/j.ecolmodel.2023.110562_b33 article-title: Model evaluation: An adequacy-for-purpose view publication-title: Philos. Sci. doi: 10.1086/708691 – volume: 113 issue: D6 year: 2008 ident: 10.1016/j.ecolmodel.2023.110562_b9 article-title: Performance metrics for climate models publication-title: J. Geophys. Res.: Atmos. – volume: 91 year: 2020 ident: 10.1016/j.ecolmodel.2023.110562_b3 article-title: Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change publication-title: Harmful Algae doi: 10.1016/j.hal.2019.04.004 – volume: 396 start-page: 23 year: 2019 ident: 10.1016/j.ecolmodel.2023.110562_b20 article-title: PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.01.006 – start-page: 1 year: 2023 ident: 10.1016/j.ecolmodel.2023.110562_b45 article-title: Austinian model evaluation publication-title: Philos. Sci. – volume: 54 start-page: 174 year: 2016 ident: 10.1016/j.ecolmodel.2023.110562_b11 article-title: Toxic cyanobacteria and drinking water: Impacts, detection, and treatment publication-title: Harmful Algae doi: 10.1016/j.hal.2016.01.001 – volume: 15 start-page: 5481 issue: 14 year: 2022 ident: 10.1016/j.ecolmodel.2023.110562_b12 article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not publication-title: Geosci. Model Dev. doi: 10.5194/gmd-15-5481-2022 – volume: 119 start-page: 32 year: 2019 ident: 10.1016/j.ecolmodel.2023.110562_b16 article-title: Introductory overview: Error metrics for hydrologic modelling – a review of common practices and an open source library to facilitate use and adoption publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.05.001 – volume: 12 start-page: 107 issue: 1 year: 2022 ident: 10.1016/j.ecolmodel.2023.110562_b4 article-title: Advancing lake and reservoir water quality management with near-term, iterative ecological forecasting publication-title: Inland Waters doi: 10.1080/20442041.2020.1816421 – volume: 27 start-page: 2048 issue: 7 year: 2017 ident: 10.1016/j.ecolmodel.2023.110562_b7 article-title: Prediction in ecology: a first-principles framework publication-title: Ecol. Appl. doi: 10.1002/eap.1589 – volume: 16 start-page: 471 issue: 8 year: 2018 ident: 10.1016/j.ecolmodel.2023.110562_b13 article-title: Cyanobacterial blooms publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0040-1 – volume: 179 start-page: 1069 issue: 4 year: 2016 ident: 10.1016/j.ecolmodel.2023.110562_b43 article-title: Using auto-regressive logit models to forecast the exceedance probability for financial risk management publication-title: J. R. Stat. Soc. A (Stat. Soc.) doi: 10.1111/rssa.12176 – volume: 2 start-page: 241 issue: 2 year: 2012 ident: 10.1016/j.ecolmodel.2023.110562_b35 article-title: Computational ecology as an emerging science publication-title: Interface Focus doi: 10.1098/rsfs.2011.0083 – year: 2011 ident: 10.1016/j.ecolmodel.2023.110562_b47 – volume: 14 start-page: 746 issue: 3 year: 2023 ident: 10.1016/j.ecolmodel.2023.110562_b23 article-title: The power of forecasts to advance ecological theory publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13955 – volume: 61 start-page: 371 year: 2014 ident: 10.1016/j.ecolmodel.2023.110562_b44 article-title: Advancing projections of phytoplankton responses to climate change through ensemble modelling publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2014.01.032 – year: 2020 ident: 10.1016/j.ecolmodel.2023.110562_b39 – volume: 320 start-page: 57 issue: 5872 year: 2008 ident: 10.1016/j.ecolmodel.2023.110562_b30 article-title: Blooms like it hot publication-title: Science doi: 10.1126/science.1155398 – volume: 73 start-page: 937 issue: 5 year: 2022 ident: 10.1016/j.ecolmodel.2023.110562_b22 article-title: On the selection of forecasting accuracy measures publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2021.1892464 – volume: 21 start-page: 961 issue: 3 year: 2021 ident: 10.1016/j.ecolmodel.2023.110562_b46 article-title: The impact of hydrological model structure on the simulation of extreme runoff events publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-21-961-2021 – volume: 134 start-page: 74 year: 2018 ident: 10.1016/j.ecolmodel.2023.110562_b32 article-title: Adaptive forecasting of phytoplankton communities publication-title: Water Res. doi: 10.1016/j.watres.2018.01.046 – volume: 13 start-page: 1456 issue: 5 year: 2003 ident: 10.1016/j.ecolmodel.2023.110562_b15 article-title: Fuzzy modeling of cyanobacterial surface waterblooms: Validation with noaa-avhrr satellite images publication-title: Ecol. Appl. doi: 10.1890/01-5345 – volume: 115 start-page: 1424 issue: 7 year: 2018 ident: 10.1016/j.ecolmodel.2023.110562_b8 article-title: Iterative near-term ecological forecasting: Needs, opportunities, and challenges publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1710231115 – volume: 40 start-page: 1 year: 2013 ident: 10.1016/j.ecolmodel.2023.110562_b1 article-title: Characterising performance of environmental models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.09.011 – volume: 36 start-page: 1 year: 2019 ident: 10.1016/j.ecolmodel.2023.110562_b19 article-title: How to model algal blooms in any lake on earth publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2018.09.001 – volume: 32 issue: 7 year: 2022 ident: 10.1016/j.ecolmodel.2023.110562_b48 article-title: Near-term phytoplankton forecasts reveal the effects of model time step and forecast horizon on predictability publication-title: Ecol. Appl. doi: 10.1002/eap.2642 – volume: 21 start-page: 1429 issue: 5 year: 2011 ident: 10.1016/j.ecolmodel.2023.110562_b25 article-title: Ecological forecasting and data assimilation in a data-rich era publication-title: Ecol. Appl. doi: 10.1890/09-1275.1 – volume: 65 start-page: 995 issue: 4 year: 2013 ident: 10.1016/j.ecolmodel.2023.110562_b31 article-title: Harmful cyanobacterial blooms: Causes, consequences, and controls publication-title: Microb. Ecol. doi: 10.1007/s00248-012-0159-y – volume: 4 start-page: 289 year: 2017 ident: 10.1016/j.ecolmodel.2023.110562_b34 article-title: Lessons from the first generation of marine ecological forecast products publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2017.00289 – volume: 62 start-page: 77 issue: 1 year: 1997 ident: 10.1016/j.ecolmodel.2023.110562_b42 article-title: Selecting and interpreting measures of thematic classification accuracy publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00083-7 – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.ecolmodel.2023.110562_b14 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – volume: 58 issue: 2 year: 2022 ident: 10.1016/j.ecolmodel.2023.110562_b28 article-title: It takes a village to run a model — The social practices of hydrological modeling publication-title: Water Resour. Res. doi: 10.1029/2021WR030600 – volume: 549 start-page: 363 year: 2017 ident: 10.1016/j.ecolmodel.2023.110562_b21 article-title: Simulation of bioavailable phosphorus and nitrogen loading in an agricultural river basin in Finland using VEMALA v.3 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.03.050 – volume: 21 start-page: 602 issue: 5 year: 2006 ident: 10.1016/j.ecolmodel.2023.110562_b17 article-title: Ten iterative steps in development and evaluation of environmental models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2006.01.004 – volume: 95 start-page: 264 year: 2016 ident: 10.1016/j.ecolmodel.2023.110562_b27 article-title: Evaluating forecasting methods by considering different accuracy measures publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.332 – volume: 16 start-page: 69 issue: 1 year: 2018 ident: 10.1016/j.ecolmodel.2023.110562_b29 article-title: Measures of model performance based on the log accuracy ratio publication-title: Space Weather doi: 10.1002/2017SW001669 – volume: 31 start-page: 371 issue: 8 year: 1995 ident: 10.1016/j.ecolmodel.2023.110562_b18 article-title: PCLake: A modelling tool for the evaluation of lake restoration scenarios publication-title: Water Sci. Technol. doi: 10.2166/wst.1995.0332 – volume: 3 start-page: 170 issue: 2 year: 2008 ident: 10.1016/j.ecolmodel.2023.110562_b36 article-title: Process-based simulation library SALMO-OO for lake ecosystems. Part 1: Object-oriented implementation and validation publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2008.04.002 – volume: 207 start-page: 45 issue: 1 year: 2007 ident: 10.1016/j.ecolmodel.2023.110562_b38 article-title: MyLake—A multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2007.03.018 – volume: 148 year: 2022 ident: 10.1016/j.ecolmodel.2023.110562_b10 article-title: Fit-for-purpose environmental modeling: Targeting the intersection of usability, reliability and feasibility publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105278 |
SSID | ssj0001282 |
Score | 2.4369338 |
Snippet | Models for forecasting various ecosystem properties have great potential that comes with a need for model validation. Before we can perform such validation, we... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 110562 |
SubjectTerms | ecosystems model validation |
Title | Linking error measures to model questions |
URI | https://www.proquest.com/docview/3154176601 |
Volume | 487 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddR2GX0XUr67oND3YZwUGRbDk-jpKujNBeHMhNyPITrGRxcdzBeujf3qcP2w0E2u1ijJES8X7ivZ_ehx4hX4FWJuHMxBkazzjJ1CRWJuWxqCqdGKVs8abNtrgUF4vk5zJdDt09XXVJW4713c66kv9BFb8hrrZK9h-Q7X8UP-A74otPRBifz8J47hsfjKBp6mb027v73JUNrsHNyOn83iHX-d91r-_cqFVnvHzFfV1ufByiJ9tFXfrW1r9W1bANbDbsn9De-gdAg9w7eFaDD4Elj3wIoXbKxkemlD7Wi3iUGd3YMgGkSPFObesP_tdjPCiv3IrHthl7mDIYmC6ofnklzxfzuSxmy-IFecmQ2NueE-P7ISkHrWWI-_j1bGXk7fybbT6xbU4dRygOyetA7qPvHqk3ZA_WR-TAC_zvETmeDVWFOCyo1c1b8i0AGTkgow7IqK0jt5KoB_IdWZzPirOLOPSwiDXneRuXAnKlKTcCj27aNg8Ao8p0SpkyePQDw4ClVSXSLDc5T8U0Bw1ZhnxiUiobpj0m--t6De9JRDOjDGpYRoVOgDOV6gqU4GwCLC-z5ISIThJShwvebZ-Rlewy-a5lL0JpRSi9CE8I7Sfe-DtOnp7ypRO1RH1kg0xqDfXtRnLk5PbSUTr58Iwxp-TVsB8_kv22uYVPyPLa8rPbGA9rbFKc |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+error+measures+to+model+questions&rft.jtitle=Ecological+modelling&rft.au=Jacobs%2C+Bas&rft.au=Tobi%2C+Hilde&rft.au=Hengeveld%2C+Geerten+M&rft.date=2024-01-01&rft.issn=0304-3800&rft.volume=487+p.110562-&rft_id=info:doi/10.1016%2Fj.ecolmodel.2023.110562&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |