Research progress of ammonia combustion toward low carbon energy
Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy stor...
Saved in:
Published in | Fuel processing technology Vol. 248; p. 107821 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3820 |
DOI | 10.1016/j.fuproc.2023.107821 |
Cover
Loading…
Abstract | Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy storage and transportation. Therefore, it is necessary to conduct a comprehensive review study on the fundamentals of ammonia combustion characteristics. The main drawbacks of ammonia combustion are long ignition delay time, low laminar flame speed and noticeable NOx emissions. Some technologies including fuel blending, process intensification and combustion auxiliary technology, are introduced to remedy these drawbacks. Fuel blending system including ammonia‑hydrogen and ammonia-coal is regarded as the promising practical approach. Process intensification like preheating, pressurization, and oxygen enrichment approach is widely used to enhance the combustion via intensifying its heat and mass transfer. In addition, other combustion auxiliary technologies such as porous media and plasma-assisted are expected to bring new research opportunities for ammonia combustion application. Finally, the difficulties and challenges faced by these technologies are summarized aiming to realize the commercialization of ammonia combustion.
•Ammonia combustion and emission characteristic are comprehensively reviewed.•The development and recent achievements of ammonia kinetic models are summarized.•Fuel blending and process intensification are critical in ammonia combustion.•Systemically summary of auxiliary enhanced ammonia combustion technology•The latest research on ammonia as a combustion device fuel is discussed. |
---|---|
AbstractList | Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy storage and transportation. Therefore, it is necessary to conduct a comprehensive review study on the fundamentals of ammonia combustion characteristics. The main drawbacks of ammonia combustion are long ignition delay time, low laminar flame speed and noticeable NOx emissions. Some technologies including fuel blending, process intensification and combustion auxiliary technology, are introduced to remedy these drawbacks. Fuel blending system including ammonia‑hydrogen and ammonia-coal is regarded as the promising practical approach. Process intensification like preheating, pressurization, and oxygen enrichment approach is widely used to enhance the combustion via intensifying its heat and mass transfer. In addition, other combustion auxiliary technologies such as porous media and plasma-assisted are expected to bring new research opportunities for ammonia combustion application. Finally, the difficulties and challenges faced by these technologies are summarized aiming to realize the commercialization of ammonia combustion.
•Ammonia combustion and emission characteristic are comprehensively reviewed.•The development and recent achievements of ammonia kinetic models are summarized.•Fuel blending and process intensification are critical in ammonia combustion.•Systemically summary of auxiliary enhanced ammonia combustion technology•The latest research on ammonia as a combustion device fuel is discussed. Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy storage and transportation. Therefore, it is necessary to conduct a comprehensive review study on the fundamentals of ammonia combustion characteristics. The main drawbacks of ammonia combustion are long ignition delay time, low laminar flame speed and noticeable NOₓ emissions. Some technologies including fuel blending, process intensification and combustion auxiliary technology, are introduced to remedy these drawbacks. Fuel blending system including ammonia‑hydrogen and ammonia-coal is regarded as the promising practical approach. Process intensification like preheating, pressurization, and oxygen enrichment approach is widely used to enhance the combustion via intensifying its heat and mass transfer. In addition, other combustion auxiliary technologies such as porous media and plasma-assisted are expected to bring new research opportunities for ammonia combustion application. Finally, the difficulties and challenges faced by these technologies are summarized aiming to realize the commercialization of ammonia combustion. |
ArticleNumber | 107821 |
Author | Duan, Lunbo Li, Tianxin Wang, Yueming Duan, Yuanqiang Zhou, Minmin |
Author_xml | – sequence: 1 givenname: Tianxin surname: Li fullname: Li, Tianxin – sequence: 2 givenname: Yuanqiang surname: Duan fullname: Duan, Yuanqiang – sequence: 3 givenname: Yueming surname: Wang fullname: Wang, Yueming – sequence: 4 givenname: Minmin surname: Zhou fullname: Zhou, Minmin – sequence: 5 givenname: Lunbo surname: Duan fullname: Duan, Lunbo email: duanlunbo@seu.edu.cn |
BookMark | eNqFkD1PwzAQhj0UibbwDxg8sqTYsVMnDAhU8SVVQkIwW_44F1dJXOyEqv-eVGFigOmkV_e8untmaNKGFhC6oGRBCV1ebReu38VgFjnJ2RCJMqcTNCVMlBkrc3KKZiltCSFFUYkpun2FBCqaDzxAmwgp4eCwaprQeoVNaHSfOh9a3IW9ihbXYY-NinpIoIW4OZyhE6fqBOc_c47eH-7fVk_Z-uXxeXW3zgxjVZdpxhxUpVa2NI476yyhRBPKK5oX1rFCCApcaQIV45qDKIUy1hnCFVtWFNgcXY69w52fPaRONj4ZqGvVQuiTzEvG86VgnA-r1-OqiSGlCE4a36njF11UvpaUyKMquZWjKnlUJUdVA8x_wbvoGxUP_2E3IwaDgy8PUSbjoTVgfQTTSRv83wXfvRKKVQ |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_11_346 crossref_primary_10_1016_j_ijhydene_2024_07_163 crossref_primary_10_1021_acs_energyfuels_3c03984 crossref_primary_10_1016_j_proci_2024_105232 crossref_primary_10_3390_jmse13020196 crossref_primary_10_1016_j_energy_2023_130014 crossref_primary_10_1016_j_fuel_2024_132535 crossref_primary_10_1016_j_ijhydene_2024_08_202 crossref_primary_10_1016_j_energy_2024_131860 crossref_primary_10_1016_j_energy_2024_133848 crossref_primary_10_1080_15567036_2024_2434202 crossref_primary_10_1016_j_enconman_2024_119306 crossref_primary_10_1016_j_renene_2025_122347 crossref_primary_10_1016_j_renene_2024_121379 crossref_primary_10_1016_j_enconman_2024_118776 crossref_primary_10_1016_j_fuel_2024_130908 crossref_primary_10_1021_acs_energyfuels_4c02942 crossref_primary_10_1080_15567036_2025_2451082 crossref_primary_10_1016_j_ijhydene_2024_09_248 crossref_primary_10_1016_j_rineng_2024_102596 crossref_primary_10_1177_14680874241242904 crossref_primary_10_1016_j_energy_2025_135591 crossref_primary_10_1080_15567036_2024_2440057 crossref_primary_10_1615_InterJEnerCleanEnv_2024051495 crossref_primary_10_1016_j_energy_2024_131334 crossref_primary_10_1016_j_enconman_2024_118745 crossref_primary_10_1080_15567036_2024_2422569 crossref_primary_10_1007_s11708_024_0949_1 crossref_primary_10_1016_j_ijhydene_2024_06_396 crossref_primary_10_1016_j_comptc_2024_114893 crossref_primary_10_1177_14680874251317792 crossref_primary_10_1016_j_jhazmat_2025_137108 crossref_primary_10_1016_j_joei_2024_101549 crossref_primary_10_1039_D4CP02187H crossref_primary_10_1016_j_fuel_2024_131850 crossref_primary_10_3390_jmse11122388 crossref_primary_10_1016_j_fuel_2025_134385 crossref_primary_10_1016_j_combustflame_2025_114061 crossref_primary_10_1016_j_psep_2024_06_016 crossref_primary_10_1016_j_fuel_2023_130539 crossref_primary_10_1016_j_ijhydene_2024_01_365 crossref_primary_10_1016_j_tsep_2025_103356 crossref_primary_10_1016_j_fuel_2024_131427 crossref_primary_10_1016_j_est_2024_114110 crossref_primary_10_1016_j_fuel_2024_131228 crossref_primary_10_1016_j_joei_2024_101653 crossref_primary_10_1016_j_fuel_2025_134377 crossref_primary_10_1016_j_csite_2024_105107 crossref_primary_10_1016_j_ijmecsci_2023_108793 crossref_primary_10_1016_j_ijhydene_2024_11_137 crossref_primary_10_1016_j_applthermaleng_2024_122942 crossref_primary_10_3390_en17235882 crossref_primary_10_1016_j_combustflame_2024_113735 crossref_primary_10_1016_j_energy_2024_131913 crossref_primary_10_1016_j_ijhydene_2024_06_407 crossref_primary_10_1016_j_rser_2024_114699 crossref_primary_10_3390_en17123046 crossref_primary_10_1088_2631_8695_ad299b crossref_primary_10_1039_D4RE00274A crossref_primary_10_1016_j_fuel_2024_130983 crossref_primary_10_1016_j_fuproc_2023_107991 crossref_primary_10_1016_j_fuproc_2023_107953 crossref_primary_10_1016_j_ijhydene_2024_06_171 |
Cites_doi | 10.1016/j.combustflame.2019.08.033 10.1016/j.energy.2017.08.077 10.1016/j.energy.2015.03.061 10.1016/j.fuel.2020.117902 10.1016/j.fuel.2019.116653 10.1016/j.jfueco.2022.100049 10.1016/j.proci.2018.07.091 10.1016/j.ijhydene.2021.07.063 10.1016/j.ijhydene.2019.02.041 10.1021/acs.energyfuels.0c02777 10.1115/IMECE2006-13048 10.1016/j.fuel.2022.123818 10.1016/j.apenergy.2019.113334 10.1016/j.proci.2020.08.033 10.1016/j.ijhydene.2017.08.028 10.1016/j.proci.2016.07.088 10.1016/j.ijhydene.2022.07.254 10.1016/j.fuel.2020.119563 10.1016/j.catcom.2017.11.009 10.1016/j.pecs.2014.12.002 10.1016/j.combustflame.2019.11.032 10.1016/j.ijhydene.2011.12.137 10.1016/j.ijhydene.2017.09.089 10.1016/S0010-2180(00)00152-8 10.1016/j.fuel.2020.117383 10.1021/acs.jpcc.6b07157 10.1016/j.ijhydene.2021.10.269 10.1016/j.ijhydene.2017.12.066 10.1016/j.proci.2010.06.148 10.1016/j.fuproc.2020.106682 10.1016/j.combustflame.2021.111819 10.1016/j.fuel.2020.118761 10.1016/j.jfueco.2022.100052 10.1016/j.apenergy.2013.11.067 10.1007/s11090-015-9657-2 10.1016/j.fuel.2022.123832 10.1016/j.fuel.2014.12.070 10.1016/j.combustflame.2021.02.016 10.1016/j.combustflame.2009.03.005 10.4271/2013-01-1133 10.1016/j.combustflame.2019.05.003 10.1016/j.combustflame.2020.07.011 10.1016/j.energy.2019.02.065 10.1016/j.proci.2020.07.133 10.1080/00102208308923691 10.1016/j.fuel.2019.02.102 10.1016/j.proci.2018.09.012 10.1016/j.combustflame.2004.08.003 10.1016/j.combustflame.2020.04.020 10.1016/j.egypro.2017.12.111 10.1021/acs.energyfuels.0c03685 10.1016/j.proci.2018.07.083 10.1016/j.renene.2021.09.117 10.1016/j.fuel.2019.115693 10.1016/j.combustflame.2021.111472 10.1016/j.combustflame.2019.03.008 10.1016/j.fuel.2020.118425 10.1016/j.fuel.2010.09.042 10.1016/j.proci.2020.06.358 10.1016/j.combustflame.2018.04.011 10.1016/j.ijhydene.2017.01.046 10.1016/j.cej.2022.134680 10.1016/j.combustflame.2019.04.050 10.1016/j.proci.2006.07.126 10.1021/j100820a027 10.1016/j.combustflame.2003.12.008 10.1016/j.energy.2015.10.060 10.1016/j.fuel.2012.08.026 10.1016/j.rser.2021.111254 10.1016/j.apenergy.2019.113676 10.1016/j.energy.2017.03.085 10.1080/00102209408935436 10.1016/j.proci.2020.06.197 10.1016/j.fuel.2022.125496 10.4271/2012-32-0019 10.1016/j.fuel.2020.120003 10.1002/er.5460 10.1021/ef800140f 10.1016/j.ijhydene.2015.04.024 10.1080/00102207208952518 10.1016/j.combustflame.2020.12.048 10.1080/00102200008952125 10.1016/j.proci.2020.06.102 10.1016/j.combustflame.2017.09.002 10.1016/j.pecs.2012.03.004 10.4271/660769 10.1016/j.jhazmat.2007.11.089 10.1016/j.fuel.2015.06.070 10.1016/j.enconman.2022.115328 10.1016/j.ijhydene.2021.08.089 10.1080/00102208808947092 10.1246/cl.200843 10.1016/j.fuel.2021.122017 10.1016/j.fuel.2018.11.121 10.1016/j.rser.2021.112003 10.1016/j.fuel.2010.07.055 10.1016/j.energy.2022.125613 10.1016/j.ijhydene.2020.05.236 10.1016/j.fuel.2019.02.110 10.1016/j.fuel.2021.122674 10.1016/j.fuel.2022.124227 10.1016/j.joei.2021.10.001 10.1039/C9RE00429G 10.1016/j.fuproc.2009.02.004 10.1021/acs.energyfuels.7b00709 10.1016/j.proci.2018.07.074 10.1016/j.pecs.2012.05.003 10.1016/j.ijhydene.2019.12.209 10.1016/j.catcom.2019.02.005 10.1016/j.combustflame.2021.111508 10.1016/j.fuel.2010.06.008 10.1016/j.ijhydene.2017.03.234 10.1016/j.combustflame.2020.08.004 10.1016/j.combustflame.2014.08.022 10.1021/acs.energyfuels.2c01766 10.1016/j.proci.2018.09.029 10.1016/j.ijhydene.2014.10.059 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fuproc.2023.107821 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_fuproc_2023_107821 S0378382023001698 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD ADVLN AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS EFLBG L.6 |
ID | FETCH-LOGICAL-c339t-b33fe98bad8cf4fdfd010b0149125df35771e4ab0e934b4e787acdfc04a3691e3 |
IEDL.DBID | .~1 |
ISSN | 0378-3820 |
IngestDate | Fri Sep 05 00:15:45 EDT 2025 Tue Jul 01 03:04:44 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Tue Dec 03 03:45:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Combustion characteristic Carbon-free fuel Ammonia combustion Combustion auxiliary technology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-b33fe98bad8cf4fdfd010b0149125df35771e4ab0e934b4e787acdfc04a3691e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2834267344 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2834267344 crossref_citationtrail_10_1016_j_fuproc_2023_107821 crossref_primary_10_1016_j_fuproc_2023_107821 elsevier_sciencedirect_doi_10_1016_j_fuproc_2023_107821 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Fuel processing technology |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Fan, Chen, Feng, Zhang (bb0420) 2022; 329 Nozari, Tuncer, Karabeyoglu (bb0505) 2017; 142 Ronan, Pierre, Christine, Guillaume, Fabien (bb0280) 2022; 10 Somarathne, Hayakawa, Kobayashi (bb0290) 2016; 11 Duynslaegher, Jeanmart, Vandooren (bb0455) 2010; 89 Berwal, Kumar, Khandelwal (bb0040) 2021; 99 Meng, Zhang, Zhao, Tian, Tian, Long, Bi (bb0380) 2022; 319 Lou, Bao, Nishihara, Keshav, Utkin, Rich, Lempert, Adamovich (bb0525) 2007; 31 Hinokuma, Sato (bb0080) 2021; 50 Li, Wang, Shi, Liu (bb0495) 2015; 145 Lin, Jiang, Liu, Chen, Zhang, Ding, Li (bb0075) 2022; 319 Xia, Hadi, Hashimoto, Hashimoto, Fujita (bb0410) 2021; 38 Fenimore, Jones (bb0220) 1961; 65 Hinokuma, Matsuki, Kawabata, Shimanoe, Kiritoshi, Machida (bb0570) 2016; 120 Han, Wang, He, Zhu, Cen (bb0245) 2020; 213 Ju, Lefkowitz, Reuter, Won, Yang, Yang, Sun, Jiang, Chen (bb0515) 2016; 36 Chen, Jiang, Qin, Huang (bb0395) 2021; 287 Mørch, Bjerre, Gøttrup, Sorenson, Schramm (bb0435) 2011; 90 Xiao, Lai, Valera-Medina, Li, Liu, Fu (bb0195) 2020; 44 . Xia, Hashimoto, Hadi, Hashimoto, Hayakawa, Kobayashi, Fujita (bb0175) 2020; 268 Choi, Lee, Kwon (bb0060) 2015; 85 Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bb0260) 2019; 204 Frost, Tall, Sheriff, Schönborn, Hellier (bb0645) 2021; 46 Hinokuma, Shimanoe, Kawabata, Kiritoshi, Araki, Machida (bb0565) 2018; 105 Sorrentino, Sabia, Bozza, Ragucci, de Joannon (bb0590) 2019; 254 He, Shu, Nascimento, Moshammer, Costa, Fernandes (bb0035) 2019; 206 Grannell, Assanis, Bohac, Gillespie (bb0005) 2006 Corporation (bb0025) 2021 Reiter, Kong (bb0445) 2011; 90 Khateeb, Guiberti, Zhu, Younes, Jamal, Roberts (bb0315) 2020; 45 Wang, Ji, Wang, Wang, Yang, Zhao (bb0485) 2020; 34 Ronney (bb0115) 1988; 59 Ju, Sun (bb0535) 2015; 48 Faingold, Lefkowitz (bb0555) 2021; 38 Tian, Li, Zhang, Glarborg, Qi (bb0240) 2009; 156 Konnov, Ruyck (bb0265) 2000; 152 Normann, Wismer, Müller, Leion (bb0575) 2019; 240 Li, Huang, Kobayashi, He, Osaka, Zeng (bb0465) 2015; 93 Starikovskiy, Aleksandrov (bb0520) 2013; 39 Dai, Gersen, Glarborg, Mokhov, Levinsky (bb0200) 2020; 218 Valera-Medina, Pugh, Marsh, Bulat, Bowen (bb0600) 2017; 42 Tang, Xie, Shi, Wang, Li (bb0540) 2022; 313 Hayakawa, Arakawa, Mimoto, Somarathne, Kudo, Kobayashi (bb0295) 2017; 42 Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bb0150) 2018; 187 Xiao, Lai, Valera-Medina, Li, Liu, Fu (bb0325) 2020; 275 Zhang, Mei, Li, Fang, Zhang, Cao, Li (bb0140) 2022; 36 Zamfirescu, Dincer (bb0615) 2009; 90 Shrestha, Lhuillier, Barbosa, Brequigny, Contino, Mounaïm-Rousselle, Seidel, Mauss (bb0460) 2021; 38 Filipe Ramos, Rocha, Oliveira, Costa, Bai (bb0330) 2019; 254 Gao, Tu, Li, Duan (bb0030) 2022; 28 Ryu, Zacharakis-Jutz, Kong (bb0630) 2013 Zhu, Khateeb, Roberts, Guiberti (bb0095) 2021; 231 Xiao, Valera-Medina, Bowen (bb0310) 2017; 31 Pugh, Bowen, Valera-Medina, Giles, Runyon, Marsh (bb0475) 2019; 37 Sun, Uddi, Ombrello, Won, Carter, Ju (bb0530) 2011; 33 Dai, Hashemi, Glarborg, Gersen, Marshall, Mokhov, Levinsky (bb0375) 2021; 227 Xiao, Valera-Medina, Bowen (bb0320) 2017; 140 Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (bb0120) 2000; 123 Choe, Sun, Ombrello, Carter (bb0545) 2021; 228 Issayev, Giri, Elbaz, Shrestha, Mauss, Roberts, Farooq (bb0210) 2022; 181 Gross, Kong (bb0335) 2013; 103 Mei, Ma, Zhang, Zhang, Li, Li (bb0365) 2020; 220 S.M. Grannell, D.N. Assanis, S.V. Bohac, D.E. Gillespie, The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine, ASME 2006 International Mechanical Engineering Congress and Exposition, Energy Conver. Resourc. (2006) 15–27.doi Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (bb0090) 2015; 159 Chai, Bao, Jin, Tang, Zhou (bb0045) 2021; 147 Frigo, Gentili, Doveri (bb0625) 2012 Hadi, Ichimura, Hashimoto, Xia, Hashimoto, Fujita (bb0405) 2021; 38 Koch (bb0610) 1945; 31 Kim, Park, Chung, Yoo (bb0550) 2022; 323 Wang, Ji, Wang, Wang, Zhang, Yang (bb0155) 2020; 279 Stagni, Cavallotti, Arunthanayothin, Song, Herbinet, Battin-Leclerc, Faravelli (bb0250) 2020; 5 Hinokuma, Araki, Iwasa, Kiritoshi, Kawabata, Taketsugu, Machida (bb0560) 2019; 123 Xu, Wang, Liu, Zhu, Xu, Xu (bb0400) 2022; 256 Li, Huang, Kobayashi, Wang, Yuan (bb0350) 2017; 126 Reiter, Kong (bb0430) 2008; 22 Dimitriou, Javaid (bb0010) 2020; 45 Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (bb0110) 2008; 155 Jabbour, Clodic (bb0125) 2004; 110 Han, Wang, Costa, Sun, He, Cen (bb0135) 2019; 206 Hardalupas, Orain (bb0100) 2004; 139 Feng, Zhu, Mao, Raza, Qian, Yu, Lu (bb0205) 2020; 281 Li, Zhang, Zhan, Huang, Lin (bb0370) 2021; 214 Ni, Zhao (bb0510) 2022; 434 Faehn, Bull, Shekleton (bb0340) 1966 Otomo, Koshi, Mitsumori, Iwasaki, Yamada (bb0305) 2018; 43 Mei, Zhang, Ma, Cui, Guo, Cao, Li (bb0255) 2019; 210 Chen, Li, Li, Deng, He, Huang, Kobayashi (bb0065) 2023; 263 Wang, Wang, Elbaz, Han, He, Costa, Konnov, Roberts (bb0360) 2020; 221 Kobayashi, Hayakawa, Kunkuma, Somarathne, Okafor (bb0285) 2019; 37 Newhall, Starkman (bb0580) 1967; 75 Nozari, Karaca, Tuncer, Karabeyoglu (bb0500) 2017; 42 Skreiberg, Kilpinen, Glarborg (bb0235) 2004; 136 Deng, Ying, Liu (bb0275) 2022; 47 Glarborg, Hashemi, Marshall (bb0270) 2022; 10 Somarathne, Hatakeyama, Hayakawa, Kobayashi (bb0480) 2017; 42 Yamamoto, Kimoto, Ozawa, Hara (bb0020) 2018 da Rocha, Costa, Bai (bb0300) 2019; 246 Chen, Zhang, Su, Sui, Zhang (bb0085) 2022; 308 Kurata, Iki, Matsunuma, Inoue, Tsujimura, Furutani, Kobayashi, Hayakawa (bb0015) 2017; 36 Su, Hwang, Lai (bb0490) 2014; 39 Ranzi, Frassoldati, Grana, Cuoci, Faravelli, Kelley, Law (bb0165) 2012; 38 Kurata, Iki, Inoue, Matsunuma, Tsujimura, Furutani, Kawano, Arai, Okafor, Hayakawa, Kobayashi (bb0585) 2019; 37 Mathieu, Petersen (bb0185) 2015; 162 Cai, Zhao (bb0385) 2022; 156 Ryu, Zacharakis-Jutz, Kong (bb0640) 2014; 116 Ichimura, Hadi, Hashimoto, Hayakawa, Kobayashi, Fujita (bb0180) 2019; 246 Shu, Vallabhuni, He, Issayev, Moshammer, Farooq, Fernandes (bb0190) 2019; 37 Mei, Zhang, Shi, Xi, Li (bb0390) 2021; 231 Valera-Medina, Gutesa, Xiao, Pugh, Giles, Goktepe, Marsh, Bowen (bb0440) 2019; 44 Wang, Huang, Zhang, Li, Yi, Wu, Chen (bb0130) 2021; 46 Okafor, Somarathne, Hayakawa, Kudo, Kurata, Iki, Kobayashi (bb0470) 2019; 37 Fan, Wu, Guo, Zhu, Liu, Chen, Wang (bb0415) 2019; 173 Niki, Yoo, Hirata, Sekiguchi (bb0635) 2016 Hayakawa, Goto, Mimoto, Kudo, Kobayashi (bb0105) 2015 Thurston (bb0605) 1878 Alekseev, Konnov (bb0170) 2018; 194 Gill, Chatha, Tsolakis, Golunski, York (bb0620) 2012; 37 Miller, Smooke, Green, Kee (bb0225) 1983; 34 Lhuillier, Brequigny, Lamoureux, Contino, Mounaïm-Rousselle (bb0450) 2020; 263 Valera-Medina, Amer-Hatem, Azad, Dedoussi, de Joannon, Fernandes, Glarborg, Hashemi, He, Mashruk, McGowan, Mounaim-Rouselle, Ortiz-Prado, Ortiz-Valera, Rossetti, Shu, Yehia, Xiao, Costa (bb0050) 2021; 35 Karan, Dayma, Chauveau, Halter (bb0070) 2022; 236 Drummond (bb0215) 1972; 5 Ichikawa, Hayakawa, Kitagawa, Somarathne, Kudo, Kobayashi (bb0345) 2015; 40 Shu, Xue, Zhou, Ren (bb0355) 2021; 290 Guteša Božo, Vigueras-Zuniga, Buffi, Seljak, Valera-Medina (bb0595) 2019; 251 Ji, Wang, Wang, Hou, Zhang, Wang (bb0160) 2022; 47 Lindstedt, Lockwood, Selim (bb0230) 1994; 99 Mei, Ma, Zhang, Li (bb0145) 2021; 38 Okafor, Kurata, Yamashita, Inoue, Tsujimura, Iki, Hayakawa, Ito, Uchida, Kobayashi (bb0055) 2021; 7 Ju (10.1016/j.fuproc.2023.107821_bb0535) 2015; 48 Shrestha (10.1016/j.fuproc.2023.107821_bb0460) 2021; 38 Dimitriou (10.1016/j.fuproc.2023.107821_bb0010) 2020; 45 Ju (10.1016/j.fuproc.2023.107821_bb0515) 2016; 36 Ronney (10.1016/j.fuproc.2023.107821_bb0115) 1988; 59 Frigo (10.1016/j.fuproc.2023.107821_bb0625) 2012 Ryu (10.1016/j.fuproc.2023.107821_bb0630) 2013 Li (10.1016/j.fuproc.2023.107821_bb0370) 2021; 214 Nozari (10.1016/j.fuproc.2023.107821_bb0505) 2017; 142 da Rocha (10.1016/j.fuproc.2023.107821_bb0300) 2019; 246 Otomo (10.1016/j.fuproc.2023.107821_bb0305) 2018; 43 Meng (10.1016/j.fuproc.2023.107821_bb0380) 2022; 319 Thurston (10.1016/j.fuproc.2023.107821_bb0605) 1878 Ichikawa (10.1016/j.fuproc.2023.107821_bb0345) 2015; 40 Nozari (10.1016/j.fuproc.2023.107821_bb0500) 2017; 42 Chen (10.1016/j.fuproc.2023.107821_bb0395) 2021; 287 Ranzi (10.1016/j.fuproc.2023.107821_bb0165) 2012; 38 Xiao (10.1016/j.fuproc.2023.107821_bb0310) 2017; 31 Hayakawa (10.1016/j.fuproc.2023.107821_bb0295) 2017; 42 Wang (10.1016/j.fuproc.2023.107821_bb0360) 2020; 221 Xiao (10.1016/j.fuproc.2023.107821_bb0325) 2020; 275 Jabbour (10.1016/j.fuproc.2023.107821_bb0125) 2004; 110 Ni (10.1016/j.fuproc.2023.107821_bb0510) 2022; 434 Valera-Medina (10.1016/j.fuproc.2023.107821_bb0600) 2017; 42 Berwal (10.1016/j.fuproc.2023.107821_bb0040) 2021; 99 Newhall (10.1016/j.fuproc.2023.107821_bb0580) 1967; 75 Guteša Božo (10.1016/j.fuproc.2023.107821_bb0595) 2019; 251 Drummond (10.1016/j.fuproc.2023.107821_bb0215) 1972; 5 Mei (10.1016/j.fuproc.2023.107821_bb0365) 2020; 220 Li (10.1016/j.fuproc.2023.107821_bb0495) 2015; 145 Fan (10.1016/j.fuproc.2023.107821_bb0415) 2019; 173 Lou (10.1016/j.fuproc.2023.107821_bb0525) 2007; 31 Skreiberg (10.1016/j.fuproc.2023.107821_bb0235) 2004; 136 Choe (10.1016/j.fuproc.2023.107821_bb0545) 2021; 228 Miller (10.1016/j.fuproc.2023.107821_bb0225) 1983; 34 Hinokuma (10.1016/j.fuproc.2023.107821_bb0570) 2016; 120 Issayev (10.1016/j.fuproc.2023.107821_bb0210) 2022; 181 Tian (10.1016/j.fuproc.2023.107821_bb0240) 2009; 156 Mørch (10.1016/j.fuproc.2023.107821_bb0435) 2011; 90 Hadi (10.1016/j.fuproc.2023.107821_bb0405) 2021; 38 Zamfirescu (10.1016/j.fuproc.2023.107821_bb0615) 2009; 90 Karan (10.1016/j.fuproc.2023.107821_bb0070) 2022; 236 Hardalupas (10.1016/j.fuproc.2023.107821_bb0100) 2004; 139 Han (10.1016/j.fuproc.2023.107821_bb0135) 2019; 206 Faehn (10.1016/j.fuproc.2023.107821_bb0340) 1966 Alekseev (10.1016/j.fuproc.2023.107821_bb0170) 2018; 194 Mei (10.1016/j.fuproc.2023.107821_bb0145) 2021; 38 Niki (10.1016/j.fuproc.2023.107821_bb0635) 2016 Khateeb (10.1016/j.fuproc.2023.107821_bb0315) 2020; 45 Zhang (10.1016/j.fuproc.2023.107821_bb0140) 2022; 36 Gao (10.1016/j.fuproc.2023.107821_bb0030) 2022; 28 Reiter (10.1016/j.fuproc.2023.107821_bb0445) 2011; 90 Chai (10.1016/j.fuproc.2023.107821_bb0045) 2021; 147 Lindstedt (10.1016/j.fuproc.2023.107821_bb0230) 1994; 99 Okafor (10.1016/j.fuproc.2023.107821_bb0055) 2021; 7 Sun (10.1016/j.fuproc.2023.107821_bb0530) 2011; 33 Xiao (10.1016/j.fuproc.2023.107821_bb0320) 2017; 140 Shu (10.1016/j.fuproc.2023.107821_bb0355) 2021; 290 Kim (10.1016/j.fuproc.2023.107821_bb0550) 2022; 323 Ichimura (10.1016/j.fuproc.2023.107821_bb0180) 2019; 246 Xia (10.1016/j.fuproc.2023.107821_bb0410) 2021; 38 Starikovskiy (10.1016/j.fuproc.2023.107821_bb0520) 2013; 39 Zhu (10.1016/j.fuproc.2023.107821_bb0095) 2021; 231 Ronan (10.1016/j.fuproc.2023.107821_bb0280) 2022; 10 Okafor (10.1016/j.fuproc.2023.107821_bb0470) 2019; 37 Corporation (10.1016/j.fuproc.2023.107821_bb0025) Lhuillier (10.1016/j.fuproc.2023.107821_bb0450) 2020; 263 Yamamoto (10.1016/j.fuproc.2023.107821_bb0020) 2018 Chen (10.1016/j.fuproc.2023.107821_bb0085) 2022; 308 Grannell (10.1016/j.fuproc.2023.107821_bb0005) 2006 Duynslaegher (10.1016/j.fuproc.2023.107821_bb0455) 2010; 89 Frost (10.1016/j.fuproc.2023.107821_bb0645) 2021; 46 Li (10.1016/j.fuproc.2023.107821_bb0350) 2017; 126 Xia (10.1016/j.fuproc.2023.107821_bb0175) 2020; 268 Fenimore (10.1016/j.fuproc.2023.107821_bb0220) 1961; 65 Faingold (10.1016/j.fuproc.2023.107821_bb0555) 2021; 38 Kurata (10.1016/j.fuproc.2023.107821_bb0585) 2019; 37 Shu (10.1016/j.fuproc.2023.107821_bb0190) 2019; 37 Lin (10.1016/j.fuproc.2023.107821_bb0075) 2022; 319 Dai (10.1016/j.fuproc.2023.107821_bb0375) 2021; 227 Li (10.1016/j.fuproc.2023.107821_bb0465) 2015; 93 Wang (10.1016/j.fuproc.2023.107821_bb0155) 2020; 279 Xiao (10.1016/j.fuproc.2023.107821_bb0195) 2020; 44 Su (10.1016/j.fuproc.2023.107821_bb0490) 2014; 39 Deng (10.1016/j.fuproc.2023.107821_bb0275) 2022; 47 Ryu (10.1016/j.fuproc.2023.107821_bb0640) 2014; 116 Okafor (10.1016/j.fuproc.2023.107821_bb0260) 2019; 204 Pugh (10.1016/j.fuproc.2023.107821_bb0475) 2019; 37 Wang (10.1016/j.fuproc.2023.107821_bb0485) 2020; 34 10.1016/j.fuproc.2023.107821_bb0425 Wang (10.1016/j.fuproc.2023.107821_bb0130) 2021; 46 Hayakawa (10.1016/j.fuproc.2023.107821_bb0105) 2015 Koch (10.1016/j.fuproc.2023.107821_bb0610) 1945; 31 Valera-Medina (10.1016/j.fuproc.2023.107821_bb0050) 2021; 35 Hinokuma (10.1016/j.fuproc.2023.107821_bb0560) 2019; 123 Choi (10.1016/j.fuproc.2023.107821_bb0060) 2015; 85 Xu (10.1016/j.fuproc.2023.107821_bb0400) 2022; 256 Somarathne (10.1016/j.fuproc.2023.107821_bb0290) 2016; 11 Gill (10.1016/j.fuproc.2023.107821_bb0620) 2012; 37 Glarborg (10.1016/j.fuproc.2023.107821_bb0270) 2022; 10 Wang (10.1016/j.fuproc.2023.107821_bb0420) 2022; 329 Dai (10.1016/j.fuproc.2023.107821_bb0200) 2020; 218 Kobayashi (10.1016/j.fuproc.2023.107821_bb0285) 2019; 37 Han (10.1016/j.fuproc.2023.107821_bb0245) 2020; 213 Tang (10.1016/j.fuproc.2023.107821_bb0540) 2022; 313 Sorrentino (10.1016/j.fuproc.2023.107821_bb0590) 2019; 254 Feng (10.1016/j.fuproc.2023.107821_bb0205) 2020; 281 Cai (10.1016/j.fuproc.2023.107821_bb0385) 2022; 156 Hayakawa (10.1016/j.fuproc.2023.107821_bb0090) 2015; 159 Gross (10.1016/j.fuproc.2023.107821_bb0335) 2013; 103 Mei (10.1016/j.fuproc.2023.107821_bb0255) 2019; 210 Konnov (10.1016/j.fuproc.2023.107821_bb0265) 2000; 152 Mei (10.1016/j.fuproc.2023.107821_bb0390) 2021; 231 Okafor (10.1016/j.fuproc.2023.107821_bb0150) 2018; 187 Pfahl (10.1016/j.fuproc.2023.107821_bb0120) 2000; 123 Normann (10.1016/j.fuproc.2023.107821_bb0575) 2019; 240 Somarathne (10.1016/j.fuproc.2023.107821_bb0480) 2017; 42 Chen (10.1016/j.fuproc.2023.107821_bb0065) 2023; 263 Ji (10.1016/j.fuproc.2023.107821_bb0160) 2022; 47 Mathieu (10.1016/j.fuproc.2023.107821_bb0185) 2015; 162 Takizawa (10.1016/j.fuproc.2023.107821_bb0110) 2008; 155 Reiter (10.1016/j.fuproc.2023.107821_bb0430) 2008; 22 Valera-Medina (10.1016/j.fuproc.2023.107821_bb0440) 2019; 44 Kurata (10.1016/j.fuproc.2023.107821_bb0015) 2017; 36 Hinokuma (10.1016/j.fuproc.2023.107821_bb0080) 2021; 50 Hinokuma (10.1016/j.fuproc.2023.107821_bb0565) 2018; 105 Filipe Ramos (10.1016/j.fuproc.2023.107821_bb0330) 2019; 254 He (10.1016/j.fuproc.2023.107821_bb0035) 2019; 206 Stagni (10.1016/j.fuproc.2023.107821_bb0250) 2020; 5 |
References_xml | – volume: 89 start-page: 3540 year: 2010 end-page: 3545 ident: bb0455 article-title: Ammonia combustion at elevated pressure and temperature conditions publication-title: Fuel – year: 2021 ident: bb0025 article-title: JERA and IHI Start Small-Volume Utilization of Fuel Ammonia at Hekinan Thermal Power Station Unit 5 – year: 2013 ident: bb0630 article-title: Effects of fuel compositions on diesel engine performance using ammonia-DME mixtures publication-title: SAE Techn. Paper – year: 1966 ident: bb0340 article-title: Experimental investigation of ammonia as a gas turbine engine fuel publication-title: SAE Techn. Paper – volume: 46 start-page: 31879 year: 2021 end-page: 31893 ident: bb0130 article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition publication-title: Int. J. Hydrog. Energy – volume: 38 start-page: 2477 year: 2021 end-page: 2485 ident: bb0145 article-title: Characterizing ammonia and nitric oxide interaction with outwardly propagating spherical flame method publication-title: Proc. Combust. Inst. – volume: 206 start-page: 214 year: 2019 end-page: 226 ident: bb0135 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames publication-title: Combust. Flame – volume: 45 start-page: 22008 year: 2020 end-page: 22018 ident: bb0315 article-title: Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames publication-title: Int. J. Hydrog. Energy – year: 2012 ident: bb0625 article-title: Ammonia plus hydrogen as fuel in a SI engine: experimental results publication-title: SAE Techn. Paper – volume: 36 start-page: 8528 year: 2022 end-page: 8537 ident: bb0140 article-title: Unraveling pressure Effects in Laminar Flame Propagation of Ammonia: a Comparative Study with Hydrogen, methane, and Ammonia/Hydrogen publication-title: Energy Fuel – volume: 99 start-page: 273 year: 2021 end-page: 298 ident: bb0040 article-title: A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion publication-title: J. Energy Inst. – volume: 236 year: 2022 ident: bb0070 article-title: Experimental study and numerical validation of oxy-ammonia combustion at elevated temperatures and pressures publication-title: Combust. Flame – volume: 31 start-page: 8631 year: 2017 end-page: 8642 ident: bb0310 article-title: Modeling Combustion of Ammonia/Hydrogen fuel Blends under Gas Turbine Conditions publication-title: Energy Fuel – volume: 28 start-page: 173 year: 2022 end-page: 184 ident: bb0030 article-title: Recent advances on ammonia combustion technology for zero-carbon power publication-title: Clean Coal Technol. – volume: 43 start-page: 3004 year: 2018 end-page: 3014 ident: bb0305 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int. J. Hydrog. Energy – volume: 181 start-page: 1353 year: 2022 end-page: 1370 ident: bb0210 article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend publication-title: Renew. Energy – volume: 147 year: 2021 ident: bb0045 article-title: A review on ammonia, ammonia-hydrogen and ammonia-methane fuels publication-title: Renew. Sust. Energ. Rev. – volume: 44 start-page: 6939 year: 2020 end-page: 6949 ident: bb0195 article-title: Experimental and modeling study on ignition delay of ammonia/methane fuels publication-title: Int. J. Energy Res. – volume: 46 start-page: 35495 year: 2021 end-page: 35510 ident: bb0645 article-title: An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine publication-title: Int. J. Hydrog. Energy – volume: 206 start-page: 189 year: 2019 end-page: 200 ident: bb0035 article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures publication-title: Combust. Flame – volume: 220 start-page: 368 year: 2020 end-page: 377 ident: bb0365 article-title: Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm publication-title: Combust. Flame – volume: 319 year: 2022 ident: bb0380 article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME publication-title: Fuel – volume: 45 start-page: 7098 year: 2020 end-page: 7118 ident: bb0010 article-title: A review of ammonia as a compression ignition engine fuel publication-title: Int. J. Hydrog. Energy – volume: 156 year: 2022 ident: bb0385 article-title: Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether publication-title: Renew. Sust. Energ. Rev. – volume: 37 start-page: 4587 year: 2019 end-page: 4595 ident: bb0585 article-title: Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation publication-title: Proc. Combust. Inst. – volume: 319 year: 2022 ident: bb0075 article-title: Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma publication-title: Fuel – reference: S.M. Grannell, D.N. Assanis, S.V. Bohac, D.E. Gillespie, The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine, ASME 2006 International Mechanical Engineering Congress and Exposition, Energy Conver. Resourc. (2006) 15–27.doi: – volume: 37 start-page: 109 year: 2019 end-page: 133 ident: bb0285 article-title: Science and technology of ammonia combustion publication-title: Proc. Combust. Inst. – volume: 44 start-page: 8615 year: 2019 end-page: 8626 ident: bb0440 article-title: Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation publication-title: Int. J. Hydrog. Energy – volume: 228 start-page: 430 year: 2021 end-page: 432 ident: bb0545 article-title: Plasma assisted ammonia combustion: s+imultaneous NOx reduction and flame enhancement publication-title: Combust. Flame – volume: 93 start-page: 2053 year: 2015 end-page: 2068 ident: bb0465 article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion publication-title: Energy – volume: 35 start-page: 6964 year: 2021 end-page: 7029 ident: bb0050 article-title: Review on Ammonia as a potential fuel: from Synthesis to Economics publication-title: Energy Fuel – volume: 213 start-page: 1 year: 2020 end-page: 13 ident: bb0245 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames publication-title: Combust. Flame – volume: 329 year: 2022 ident: bb0420 article-title: Experimental study and kinetic analysis of the impact of ammonia co-firing ratio on products formation characteristics in ammonia/coal co-firing process publication-title: Fuel – volume: 254 year: 2019 ident: bb0590 article-title: Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions publication-title: Appl. Energy – volume: 99 start-page: 253 year: 1994 end-page: 276 ident: bb0230 article-title: Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation publication-title: Combust. Sci. Technol. – year: 1878 ident: bb0605 article-title: A History of the Growth of the Steam-Engine – volume: 136 start-page: 501 year: 2004 end-page: 518 ident: bb0235 article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor publication-title: Combust. Flame – volume: 36 start-page: 3351 year: 2017 end-page: 3359 ident: bb0015 article-title: Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations publication-title: Proc. Combust. Inst. – year: 2015 ident: bb0105 article-title: NO Formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures publication-title: Mech. Eng. J. – volume: 140 start-page: 125 year: 2017 end-page: 135 ident: bb0320 article-title: Study on premixed combustion characteristics of co-firing ammonia/methane fuels publication-title: Energy – volume: 103 start-page: 1069 year: 2013 end-page: 1079 ident: bb0335 article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures publication-title: Fuel – volume: 116 start-page: 206 year: 2014 end-page: 215 ident: bb0640 article-title: Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine publication-title: Appl. Energy – volume: 5 start-page: 175 year: 1972 end-page: 182 ident: bb0215 article-title: High Temperature Oxidation of Ammonia publication-title: Combust. Sci. Technol. – volume: 38 start-page: 2163 year: 2021 end-page: 2174 ident: bb0460 article-title: An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature publication-title: Proc. Combust. Inst. – volume: 11 year: 2016 ident: bb0290 article-title: Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner, Journal of Fluid publication-title: Sci. Technol. – volume: 254 year: 2019 ident: bb0330 article-title: Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames publication-title: Fuel – volume: 240 start-page: 57 year: 2019 end-page: 63 ident: bb0575 article-title: Oxidation of ammonia by iron, manganese and nickel oxides – Implications on NOx formation in chemical-looping combustion publication-title: Fuel – volume: 90 start-page: 854 year: 2011 end-page: 864 ident: bb0435 article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system publication-title: Fuel – volume: 194 start-page: 28 year: 2018 end-page: 36 ident: bb0170 article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames publication-title: Combust. Flame – volume: 31 start-page: 3327 year: 2007 end-page: 3334 ident: bb0525 article-title: Ignition of premixed hydrocarbon–air flows by repetitively pulsed, nanosecond pulse duration plasma publication-title: Proc. Combust. Inst. – volume: 85 start-page: 503 year: 2015 end-page: 510 ident: bb0060 article-title: Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures publication-title: Energy – volume: 39 start-page: 21307 year: 2014 end-page: 21316 ident: bb0490 article-title: On a porous medium combustor for hydrogen flame stabilization and operation publication-title: Int. J. Hydrog. Energy – volume: 7 year: 2021 ident: bb0055 article-title: Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control publication-title: Appl. Energy Combust. Sci. – volume: 90 start-page: 87 year: 2011 end-page: 97 ident: bb0445 article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel publication-title: Fuel – volume: 156 start-page: 1413 year: 2009 end-page: 1426 ident: bb0240 article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure publication-title: Combust. Flame – volume: 210 start-page: 236 year: 2019 end-page: 246 ident: bb0255 article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions publication-title: Combust. Flame – volume: 246 start-page: 24 year: 2019 end-page: 33 ident: bb0300 article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission publication-title: Fuel – volume: 204 start-page: 162 year: 2019 end-page: 175 ident: bb0260 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust. Flame – volume: 256 year: 2022 ident: bb0400 article-title: Mitigating CO2 emission in pulverized coal-fired power plant via CO-firing ammonia: a simulation study of flue gas streams and exergy efficiency publication-title: Energy Convers. Manag. – volume: 90 start-page: 729 year: 2009 end-page: 737 ident: bb0615 article-title: Ammonia as a green fuel and hydrogen source for vehicular applications publication-title: Fuel Process. Technol. – volume: 34 start-page: 149 year: 1983 end-page: 176 ident: bb0225 article-title: Kinetic Modeling of the Oxidation of Ammonia in Flames publication-title: Combust. Sci. Technol. – volume: 120 start-page: 24734 year: 2016 end-page: 24742 ident: bb0570 article-title: Copper oxides supported on aluminum oxide borates for catalytic ammonia combustion publication-title: J. Phys. Chem. C – volume: 126 start-page: 796 year: 2017 end-page: 809 ident: bb0350 article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition publication-title: Energy – volume: 251 year: 2019 ident: bb0595 article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines publication-title: Appl. Energy – volume: 42 start-page: 27388 year: 2017 end-page: 27399 ident: bb0480 article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure publication-title: Int. J. Hydrog. Energy – start-page: 15 year: 2006 end-page: 27 ident: bb0005 article-title: The Operating Features of a Stoichiometric, Ammonia and Gasoline Dual Fueled Spark Ignition Engine publication-title: ASME 2006 International Mechanical Engineering Congress and Exposition – volume: 110 start-page: 522 year: 2004 ident: bb0125 article-title: Burning Velocity and Refrigerant Flammability Classification/Discussion publication-title: ASHRAE Trans. – volume: 123 start-page: 64 year: 2019 end-page: 68 ident: bb0560 article-title: Ammonia-rich combustion and ammonia combustive decomposition properties of various supported catalysts publication-title: Catal. Commun. – volume: 39 start-page: 61 year: 2013 end-page: 110 ident: bb0520 article-title: Plasma-assisted ignition and combustion publication-title: Prog. Energy Combust. Sci. – volume: 22 start-page: 2963 year: 2008 end-page: 2971 ident: bb0430 article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions publication-title: Energy Fuel – volume: 313 year: 2022 ident: bb0540 article-title: Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges publication-title: Fuel – volume: 246 start-page: 178 year: 2019 end-page: 186 ident: bb0180 article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field publication-title: Fuel – volume: 47 start-page: 4171 year: 2022 end-page: 4184 ident: bb0160 article-title: Experimental and numerical study on premixed partially dissociated ammonia mixtures. Part I: Laminar burning velocity of NH3/H2/N2/air mixtures publication-title: Int. J. Hydrog. Energy – volume: 75 start-page: 772 year: 1967 end-page: 784 ident: bb0580 article-title: Theoretical performance of ammonia as a gas turbine fuel publication-title: SAE Trans. – volume: 31 start-page: 213 year: 1945 ident: bb0610 article-title: Ammonia–a fuel for motor buses publication-title: J. Inst. Pet. – volume: 142 start-page: 674 year: 2017 end-page: 679 ident: bb0505 article-title: Evaluation of ammonia-hydrogen-air combustion in SiC porous medium based burner publication-title: Energy Procedia – volume: 40 start-page: 9570 year: 2015 end-page: 9578 ident: bb0345 article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures publication-title: Int. J. Hydrog. Energy – volume: 50 start-page: 752 year: 2021 end-page: 759 ident: bb0080 article-title: Ammonia Combustion Catalysts publication-title: Chem. Lett. – volume: 59 start-page: 123 year: 1988 end-page: 141 ident: bb0115 article-title: Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity publication-title: Combust. Sci. Technol. – volume: 162 start-page: 554 year: 2015 end-page: 570 ident: bb0185 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry publication-title: Combust. Flame – volume: 42 start-page: 14010 year: 2017 end-page: 14018 ident: bb0295 article-title: Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor publication-title: Int. J. Hydrog. Energy – volume: 38 start-page: 6661 year: 2021 end-page: 6669 ident: bb0555 article-title: A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma publication-title: Proc. Combust. Inst. – volume: 173 start-page: 109 year: 2019 end-page: 120 ident: bb0415 article-title: Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature publication-title: Energy – volume: 37 start-page: 5401 year: 2019 end-page: 5409 ident: bb0475 article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame publication-title: Proc. Combust. Inst. – volume: 38 start-page: 468 year: 2012 end-page: 501 ident: bb0165 article-title: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels publication-title: Prog. Energy Combust. Sci. – volume: 105 start-page: 48 year: 2018 end-page: 51 ident: bb0565 article-title: Supported and unsupported manganese oxides for catalytic ammonia combustion publication-title: Catal. Commun. – volume: 231 year: 2021 ident: bb0095 article-title: Chemiluminescence signature of premixed ammonia-methane-air flames publication-title: Combust. Flame – volume: 48 start-page: 21 year: 2015 end-page: 83 ident: bb0535 article-title: Plasma assisted combustion: dynamics and chemistry publication-title: Prog. Energy Combust. Sci. – volume: 139 start-page: 188 year: 2004 end-page: 207 ident: bb0100 article-title: Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame publication-title: Combust. Flame – volume: 38 start-page: 4131 year: 2021 end-page: 4139 ident: bb0405 article-title: Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure publication-title: Proc. Combust. Inst. – volume: 145 start-page: 70 year: 2015 end-page: 78 ident: bb0495 article-title: Dynamic behaviors of premixed hydrogen–air flames in a planar micro-combustor filled with porous medium publication-title: Fuel – volume: 268 year: 2020 ident: bb0175 article-title: Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition publication-title: Fuel – volume: 5 start-page: 696 year: 2020 end-page: 711 ident: bb0250 article-title: An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia publication-title: React. Chem. Eng. – volume: 42 start-page: 14775 year: 2017 end-page: 14785 ident: bb0500 article-title: Porous medium based burner for efficient and clean combustion of ammonia–hydrogen–air systems publication-title: Int. J. Hydrog. Energy – volume: 42 start-page: 24495 year: 2017 end-page: 24503 ident: bb0600 article-title: Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors publication-title: Int. J. Hydrog. Energy – volume: 214 year: 2021 ident: bb0370 article-title: Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames publication-title: Fuel Process. Technol. – volume: 187 start-page: 185 year: 2018 end-page: 198 ident: bb0150 article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames publication-title: Combust. Flame – volume: 10 year: 2022 ident: bb0270 article-title: Challenges in Kinetic modeling of ammonia pyrolysis publication-title: Fuel Commun. – volume: 155 start-page: 144 year: 2008 end-page: 152 ident: bb0110 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J. Hazard. Mater. – volume: 37 start-page: 4597 year: 2019 end-page: 4606 ident: bb0470 article-title: Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine publication-title: Proc. Combust. Inst. – volume: 36 start-page: 85 year: 2016 end-page: 105 ident: bb0515 article-title: Plasma assisted low temperature combustion publication-title: Plasma Chem. Plasma Process. – volume: 123 start-page: 140 year: 2000 end-page: 158 ident: bb0120 article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures publication-title: Combust. Flame – volume: 287 year: 2021 ident: bb0395 article-title: Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure publication-title: Fuel – volume: 275 year: 2020 ident: bb0325 article-title: Study on counterflow premixed flames using high concentration ammonia mixed with methane publication-title: Fuel – volume: 263 year: 2020 ident: bb0450 article-title: Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures publication-title: Fuel – volume: 218 start-page: 19 year: 2020 end-page: 26 ident: bb0200 article-title: Autoignition studies of NH3/CH4 mixtures at high pressure publication-title: Combust. Flame – volume: 263 year: 2023 ident: bb0065 article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner publication-title: Energy – year: 2018 ident: bb0020 article-title: Basic Co-Firing Characteristics of ammonia with Pulverized Coal in a Single Burner Test Furnace, 2018 AIChE Annual Meeting – volume: 323 year: 2022 ident: bb0550 article-title: Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor publication-title: Fuel – volume: 159 start-page: 98 year: 2015 end-page: 106 ident: bb0090 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel – volume: 434 year: 2022 ident: bb0510 article-title: NOx emission reduction in ammonia-powered micro-combustors by partially inserting porous medium under fuel-rich condition publication-title: Chem. Eng. J. – volume: 281 year: 2020 ident: bb0205 article-title: Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: ignition delay time measurement and kinetic analysis publication-title: Fuel – volume: 33 start-page: 3211 year: 2011 end-page: 3218 ident: bb0530 article-title: Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction publication-title: Proc. Combust. Inst. – volume: 290 year: 2021 ident: bb0355 article-title: An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames publication-title: Fuel – volume: 231 year: 2021 ident: bb0390 article-title: Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm publication-title: Combust. Flame – volume: 279 year: 2020 ident: bb0155 article-title: Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures publication-title: Fuel – reference: . – year: 2016 ident: bb0635 article-title: Effects of Ammonia Gas Mixed into Intake Air on Combustion and Emissions Characteristics in Diesel Engine, ASME 2016 Internal Combustion Engine Division Fall Technical Conference – volume: 65 start-page: 298 year: 1961 end-page: 303 ident: bb0220 article-title: Oxidation of ammonia in flames publication-title: J. Phys. Chem. – volume: 37 start-page: 205 year: 2019 end-page: 211 ident: bb0190 article-title: A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures publication-title: Proc. Combust. Inst. – volume: 47 start-page: 33498 year: 2022 end-page: 33516 ident: bb0275 article-title: Detailed chemical effects of ammonia as fuel additive in ethylene counterflow diffusion flames publication-title: Int. J. Hydrog. Energy – volume: 38 start-page: 4043 year: 2021 end-page: 4052 ident: bb0410 article-title: Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion publication-title: Proc. Combust. Inst. – volume: 227 start-page: 120 year: 2021 end-page: 134 ident: bb0375 article-title: Ignition delay times of NH3 /DME blends at high pressure and low DME fraction: RCM experiments and simulations publication-title: Combust. Flame – volume: 152 start-page: 23 year: 2000 end-page: 37 ident: bb0265 article-title: Kinetic Modeling of the thermal Decomposition of Ammonia publication-title: Combust. Sci. Technol. – volume: 221 start-page: 270 year: 2020 end-page: 287 ident: bb0360 article-title: Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures publication-title: Combust. Flame – volume: 308 year: 2022 ident: bb0085 article-title: Effect and mechanism of combustion enhancement and emission reduction for non-premixed pure ammonia combustion based on fuel preheating publication-title: Fuel – volume: 10 year: 2022 ident: bb0280 article-title: Laminar flame speed of ethanol/ammonia blends–an experimental and kinetic study publication-title: Fuel Commun. – volume: 34 start-page: 16903 year: 2020 end-page: 16917 ident: bb0485 article-title: Numerical study on the premixed oxygen-enriched ammonia combustion publication-title: Energy Fuel – volume: 37 start-page: 6074 year: 2012 end-page: 6083 ident: bb0620 article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia publication-title: Int. J. Hydrog. Energy – volume: 210 start-page: 236 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0255 article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.08.033 – volume: 140 start-page: 125 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0320 article-title: Study on premixed combustion characteristics of co-firing ammonia/methane fuels publication-title: Energy doi: 10.1016/j.energy.2017.08.077 – volume: 85 start-page: 503 year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0060 article-title: Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures publication-title: Energy doi: 10.1016/j.energy.2015.03.061 – volume: 7 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0055 article-title: Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control publication-title: Appl. Energy Combust. Sci. – volume: 275 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0325 article-title: Study on counterflow premixed flames using high concentration ammonia mixed with methane publication-title: Fuel doi: 10.1016/j.fuel.2020.117902 – volume: 263 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0450 article-title: Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures publication-title: Fuel doi: 10.1016/j.fuel.2019.116653 – volume: 10 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0270 article-title: Challenges in Kinetic modeling of ammonia pyrolysis publication-title: Fuel Commun. doi: 10.1016/j.jfueco.2022.100049 – volume: 37 start-page: 5401 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0475 article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.07.091 – volume: 46 start-page: 31879 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0130 article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.07.063 – volume: 44 start-page: 8615 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0440 article-title: Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.02.041 – volume: 34 start-page: 16903 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0485 article-title: Numerical study on the premixed oxygen-enriched ammonia combustion publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c02777 – ident: 10.1016/j.fuproc.2023.107821_bb0425 doi: 10.1115/IMECE2006-13048 – volume: 319 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0075 article-title: Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma publication-title: Fuel doi: 10.1016/j.fuel.2022.123818 – volume: 251 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0595 article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113334 – volume: 38 start-page: 6661 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0555 article-title: A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.08.033 – volume: 42 start-page: 24495 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0600 article-title: Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.08.028 – volume: 36 start-page: 3351 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0015 article-title: Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.07.088 – volume: 47 start-page: 33498 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0275 article-title: Detailed chemical effects of ammonia as fuel additive in ethylene counterflow diffusion flames publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2022.07.254 – volume: 287 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0395 article-title: Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure publication-title: Fuel doi: 10.1016/j.fuel.2020.119563 – volume: 105 start-page: 48 year: 2018 ident: 10.1016/j.fuproc.2023.107821_bb0565 article-title: Supported and unsupported manganese oxides for catalytic ammonia combustion publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.11.009 – volume: 48 start-page: 21 year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0535 article-title: Plasma assisted combustion: dynamics and chemistry publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2014.12.002 – volume: 213 start-page: 1 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0245 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.11.032 – volume: 37 start-page: 6074 year: 2012 ident: 10.1016/j.fuproc.2023.107821_bb0620 article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.12.137 – volume: 42 start-page: 27388 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0480 article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.09.089 – volume: 123 start-page: 140 year: 2000 ident: 10.1016/j.fuproc.2023.107821_bb0120 article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures publication-title: Combust. Flame doi: 10.1016/S0010-2180(00)00152-8 – volume: 268 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0175 article-title: Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition publication-title: Fuel doi: 10.1016/j.fuel.2020.117383 – volume: 120 start-page: 24734 year: 2016 ident: 10.1016/j.fuproc.2023.107821_bb0570 article-title: Copper oxides supported on aluminum oxide borates for catalytic ammonia combustion publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b07157 – volume: 75 start-page: 772 year: 1967 ident: 10.1016/j.fuproc.2023.107821_bb0580 article-title: Theoretical performance of ammonia as a gas turbine fuel publication-title: SAE Trans. – volume: 47 start-page: 4171 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0160 article-title: Experimental and numerical study on premixed partially dissociated ammonia mixtures. Part I: Laminar burning velocity of NH3/H2/N2/air mixtures publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.10.269 – volume: 43 start-page: 3004 year: 2018 ident: 10.1016/j.fuproc.2023.107821_bb0305 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.12.066 – volume: 33 start-page: 3211 year: 2011 ident: 10.1016/j.fuproc.2023.107821_bb0530 article-title: Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.06.148 – volume: 214 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0370 article-title: Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2020.106682 – volume: 236 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0070 article-title: Experimental study and numerical validation of oxy-ammonia combustion at elevated temperatures and pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111819 – volume: 281 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0205 article-title: Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: ignition delay time measurement and kinetic analysis publication-title: Fuel doi: 10.1016/j.fuel.2020.118761 – volume: 10 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0280 article-title: Laminar flame speed of ethanol/ammonia blends–an experimental and kinetic study publication-title: Fuel Commun. doi: 10.1016/j.jfueco.2022.100052 – volume: 116 start-page: 206 year: 2014 ident: 10.1016/j.fuproc.2023.107821_bb0640 article-title: Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.11.067 – volume: 36 start-page: 85 year: 2016 ident: 10.1016/j.fuproc.2023.107821_bb0515 article-title: Plasma assisted low temperature combustion publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-015-9657-2 – year: 1878 ident: 10.1016/j.fuproc.2023.107821_bb0605 – volume: 319 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0380 article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME publication-title: Fuel doi: 10.1016/j.fuel.2022.123832 – volume: 145 start-page: 70 year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0495 article-title: Dynamic behaviors of premixed hydrogen–air flames in a planar micro-combustor filled with porous medium publication-title: Fuel doi: 10.1016/j.fuel.2014.12.070 – volume: 228 start-page: 430 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0545 article-title: Plasma assisted ammonia combustion: s+imultaneous NOx reduction and flame enhancement publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.02.016 – volume: 156 start-page: 1413 year: 2009 ident: 10.1016/j.fuproc.2023.107821_bb0240 article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.03.005 – year: 2013 ident: 10.1016/j.fuproc.2023.107821_bb0630 article-title: Effects of fuel compositions on diesel engine performance using ammonia-DME mixtures publication-title: SAE Techn. Paper doi: 10.4271/2013-01-1133 – volume: 206 start-page: 214 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0135 article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.05.003 – volume: 220 start-page: 368 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0365 article-title: Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.07.011 – volume: 173 start-page: 109 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0415 article-title: Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature publication-title: Energy doi: 10.1016/j.energy.2019.02.065 – volume: 38 start-page: 2477 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0145 article-title: Characterizing ammonia and nitric oxide interaction with outwardly propagating spherical flame method publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.07.133 – volume: 34 start-page: 149 year: 1983 ident: 10.1016/j.fuproc.2023.107821_bb0225 article-title: Kinetic Modeling of the Oxidation of Ammonia in Flames publication-title: Combust. Sci. Technol. doi: 10.1080/00102208308923691 – volume: 246 start-page: 24 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0300 article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission publication-title: Fuel doi: 10.1016/j.fuel.2019.02.102 – volume: 37 start-page: 4587 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0585 article-title: Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.09.012 – volume: 139 start-page: 188 year: 2004 ident: 10.1016/j.fuproc.2023.107821_bb0100 article-title: Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame publication-title: Combust. Flame doi: 10.1016/j.combustflame.2004.08.003 – volume: 218 start-page: 19 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0200 article-title: Autoignition studies of NH3/CH4 mixtures at high pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.04.020 – volume: 142 start-page: 674 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0505 article-title: Evaluation of ammonia-hydrogen-air combustion in SiC porous medium based burner publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.12.111 – volume: 35 start-page: 6964 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0050 article-title: Review on Ammonia as a potential fuel: from Synthesis to Economics publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c03685 – volume: 37 start-page: 4597 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0470 article-title: Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.07.083 – volume: 181 start-page: 1353 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0210 article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend publication-title: Renew. Energy doi: 10.1016/j.renene.2021.09.117 – volume: 254 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0330 article-title: Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames publication-title: Fuel doi: 10.1016/j.fuel.2019.115693 – volume: 231 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0390 article-title: Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111472 – volume: 204 start-page: 162 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0260 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.03.008 – volume: 279 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0155 article-title: Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures publication-title: Fuel doi: 10.1016/j.fuel.2020.118425 – volume: 90 start-page: 854 year: 2011 ident: 10.1016/j.fuproc.2023.107821_bb0435 article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system publication-title: Fuel doi: 10.1016/j.fuel.2010.09.042 – volume: 38 start-page: 4131 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0405 article-title: Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.358 – volume: 194 start-page: 28 year: 2018 ident: 10.1016/j.fuproc.2023.107821_bb0170 article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2018.04.011 – volume: 42 start-page: 14010 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0295 article-title: Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.01.046 – volume: 434 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0510 article-title: NOx emission reduction in ammonia-powered micro-combustors by partially inserting porous medium under fuel-rich condition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134680 – volume: 206 start-page: 189 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0035 article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.04.050 – volume: 31 start-page: 3327 year: 2007 ident: 10.1016/j.fuproc.2023.107821_bb0525 article-title: Ignition of premixed hydrocarbon–air flows by repetitively pulsed, nanosecond pulse duration plasma publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.07.126 – volume: 65 start-page: 298 year: 1961 ident: 10.1016/j.fuproc.2023.107821_bb0220 article-title: Oxidation of ammonia in flames publication-title: J. Phys. Chem. doi: 10.1021/j100820a027 – volume: 136 start-page: 501 year: 2004 ident: 10.1016/j.fuproc.2023.107821_bb0235 article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor publication-title: Combust. Flame doi: 10.1016/j.combustflame.2003.12.008 – volume: 11 year: 2016 ident: 10.1016/j.fuproc.2023.107821_bb0290 article-title: Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner, Journal of Fluid publication-title: Sci. Technol. – volume: 93 start-page: 2053 year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0465 article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion publication-title: Energy doi: 10.1016/j.energy.2015.10.060 – volume: 103 start-page: 1069 year: 2013 ident: 10.1016/j.fuproc.2023.107821_bb0335 article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures publication-title: Fuel doi: 10.1016/j.fuel.2012.08.026 – year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0105 article-title: NO Formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures publication-title: Mech. Eng. J. – year: 2016 ident: 10.1016/j.fuproc.2023.107821_bb0635 – volume: 147 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0045 article-title: A review on ammonia, ammonia-hydrogen and ammonia-methane fuels publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2021.111254 – volume: 254 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0590 article-title: Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113676 – start-page: 15 year: 2006 ident: 10.1016/j.fuproc.2023.107821_bb0005 article-title: The Operating Features of a Stoichiometric, Ammonia and Gasoline Dual Fueled Spark Ignition Engine – year: 2018 ident: 10.1016/j.fuproc.2023.107821_bb0020 – volume: 126 start-page: 796 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0350 article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition publication-title: Energy doi: 10.1016/j.energy.2017.03.085 – volume: 99 start-page: 253 year: 1994 ident: 10.1016/j.fuproc.2023.107821_bb0230 article-title: Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation publication-title: Combust. Sci. Technol. doi: 10.1080/00102209408935436 – volume: 38 start-page: 2163 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0460 article-title: An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.197 – volume: 329 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0420 article-title: Experimental study and kinetic analysis of the impact of ammonia co-firing ratio on products formation characteristics in ammonia/coal co-firing process publication-title: Fuel doi: 10.1016/j.fuel.2022.125496 – year: 2012 ident: 10.1016/j.fuproc.2023.107821_bb0625 article-title: Ammonia plus hydrogen as fuel in a SI engine: experimental results publication-title: SAE Techn. Paper doi: 10.4271/2012-32-0019 – volume: 290 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0355 article-title: An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames publication-title: Fuel doi: 10.1016/j.fuel.2020.120003 – volume: 44 start-page: 6939 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0195 article-title: Experimental and modeling study on ignition delay of ammonia/methane fuels publication-title: Int. J. Energy Res. doi: 10.1002/er.5460 – volume: 22 start-page: 2963 year: 2008 ident: 10.1016/j.fuproc.2023.107821_bb0430 article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions publication-title: Energy Fuel doi: 10.1021/ef800140f – volume: 40 start-page: 9570 year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0345 article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.04.024 – volume: 5 start-page: 175 year: 1972 ident: 10.1016/j.fuproc.2023.107821_bb0215 article-title: High Temperature Oxidation of Ammonia publication-title: Combust. Sci. Technol. doi: 10.1080/00102207208952518 – volume: 227 start-page: 120 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0375 article-title: Ignition delay times of NH3 /DME blends at high pressure and low DME fraction: RCM experiments and simulations publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.12.048 – volume: 152 start-page: 23 year: 2000 ident: 10.1016/j.fuproc.2023.107821_bb0265 article-title: Kinetic Modeling of the thermal Decomposition of Ammonia publication-title: Combust. Sci. Technol. doi: 10.1080/00102200008952125 – volume: 38 start-page: 4043 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0410 article-title: Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.102 – volume: 28 start-page: 173 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0030 article-title: Recent advances on ammonia combustion technology for zero-carbon power publication-title: Clean Coal Technol. – volume: 187 start-page: 185 year: 2018 ident: 10.1016/j.fuproc.2023.107821_bb0150 article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.09.002 – volume: 38 start-page: 468 year: 2012 ident: 10.1016/j.fuproc.2023.107821_bb0165 article-title: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2012.03.004 – year: 1966 ident: 10.1016/j.fuproc.2023.107821_bb0340 article-title: Experimental investigation of ammonia as a gas turbine engine fuel publication-title: SAE Techn. Paper doi: 10.4271/660769 – volume: 155 start-page: 144 year: 2008 ident: 10.1016/j.fuproc.2023.107821_bb0110 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.11.089 – volume: 159 start-page: 98 year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0090 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel doi: 10.1016/j.fuel.2015.06.070 – volume: 256 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0400 article-title: Mitigating CO2 emission in pulverized coal-fired power plant via CO-firing ammonia: a simulation study of flue gas streams and exergy efficiency publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115328 – volume: 46 start-page: 35495 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0645 article-title: An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.08.089 – volume: 59 start-page: 123 year: 1988 ident: 10.1016/j.fuproc.2023.107821_bb0115 article-title: Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity publication-title: Combust. Sci. Technol. doi: 10.1080/00102208808947092 – volume: 50 start-page: 752 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0080 article-title: Ammonia Combustion Catalysts publication-title: Chem. Lett. doi: 10.1246/cl.200843 – volume: 308 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0085 article-title: Effect and mechanism of combustion enhancement and emission reduction for non-premixed pure ammonia combustion based on fuel preheating publication-title: Fuel doi: 10.1016/j.fuel.2021.122017 – volume: 240 start-page: 57 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0575 article-title: Oxidation of ammonia by iron, manganese and nickel oxides – Implications on NOx formation in chemical-looping combustion publication-title: Fuel doi: 10.1016/j.fuel.2018.11.121 – volume: 156 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0385 article-title: Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2021.112003 – volume: 90 start-page: 87 year: 2011 ident: 10.1016/j.fuproc.2023.107821_bb0445 article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel publication-title: Fuel doi: 10.1016/j.fuel.2010.07.055 – volume: 263 year: 2023 ident: 10.1016/j.fuproc.2023.107821_bb0065 article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner publication-title: Energy doi: 10.1016/j.energy.2022.125613 – volume: 45 start-page: 22008 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0315 article-title: Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.05.236 – volume: 246 start-page: 178 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0180 article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field publication-title: Fuel doi: 10.1016/j.fuel.2019.02.110 – volume: 313 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0540 article-title: Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges publication-title: Fuel doi: 10.1016/j.fuel.2021.122674 – volume: 323 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0550 article-title: Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor publication-title: Fuel doi: 10.1016/j.fuel.2022.124227 – volume: 99 start-page: 273 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0040 article-title: A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion publication-title: J. Energy Inst. doi: 10.1016/j.joei.2021.10.001 – volume: 5 start-page: 696 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0250 article-title: An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia publication-title: React. Chem. Eng. doi: 10.1039/C9RE00429G – volume: 90 start-page: 729 year: 2009 ident: 10.1016/j.fuproc.2023.107821_bb0615 article-title: Ammonia as a green fuel and hydrogen source for vehicular applications publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2009.02.004 – volume: 31 start-page: 8631 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0310 article-title: Modeling Combustion of Ammonia/Hydrogen fuel Blends under Gas Turbine Conditions publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.7b00709 – volume: 37 start-page: 205 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0190 article-title: A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.07.074 – ident: 10.1016/j.fuproc.2023.107821_bb0025 – volume: 110 start-page: 522 year: 2004 ident: 10.1016/j.fuproc.2023.107821_bb0125 article-title: Burning Velocity and Refrigerant Flammability Classification/Discussion publication-title: ASHRAE Trans. – volume: 31 start-page: 213 year: 1945 ident: 10.1016/j.fuproc.2023.107821_bb0610 article-title: Ammonia–a fuel for motor buses publication-title: J. Inst. Pet. – volume: 39 start-page: 61 year: 2013 ident: 10.1016/j.fuproc.2023.107821_bb0520 article-title: Plasma-assisted ignition and combustion publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2012.05.003 – volume: 45 start-page: 7098 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0010 article-title: A review of ammonia as a compression ignition engine fuel publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.12.209 – volume: 123 start-page: 64 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0560 article-title: Ammonia-rich combustion and ammonia combustive decomposition properties of various supported catalysts publication-title: Catal. Commun. doi: 10.1016/j.catcom.2019.02.005 – volume: 231 year: 2021 ident: 10.1016/j.fuproc.2023.107821_bb0095 article-title: Chemiluminescence signature of premixed ammonia-methane-air flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111508 – volume: 89 start-page: 3540 year: 2010 ident: 10.1016/j.fuproc.2023.107821_bb0455 article-title: Ammonia combustion at elevated pressure and temperature conditions publication-title: Fuel doi: 10.1016/j.fuel.2010.06.008 – volume: 42 start-page: 14775 year: 2017 ident: 10.1016/j.fuproc.2023.107821_bb0500 article-title: Porous medium based burner for efficient and clean combustion of ammonia–hydrogen–air systems publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.03.234 – volume: 221 start-page: 270 year: 2020 ident: 10.1016/j.fuproc.2023.107821_bb0360 article-title: Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.08.004 – volume: 162 start-page: 554 year: 2015 ident: 10.1016/j.fuproc.2023.107821_bb0185 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.08.022 – volume: 36 start-page: 8528 year: 2022 ident: 10.1016/j.fuproc.2023.107821_bb0140 article-title: Unraveling pressure Effects in Laminar Flame Propagation of Ammonia: a Comparative Study with Hydrogen, methane, and Ammonia/Hydrogen publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.2c01766 – volume: 37 start-page: 109 year: 2019 ident: 10.1016/j.fuproc.2023.107821_bb0285 article-title: Science and technology of ammonia combustion publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.09.029 – volume: 39 start-page: 21307 year: 2014 ident: 10.1016/j.fuproc.2023.107821_bb0490 article-title: On a porous medium combustor for hydrogen flame stabilization and operation publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2014.10.059 |
SSID | ssj0005597 |
Score | 2.6227622 |
SecondaryResourceType | review_article |
Snippet | Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107821 |
SubjectTerms | ammonia Ammonia combustion carbon Carbon-free fuel combustion Combustion auxiliary technology Combustion characteristic commercialization energy fuels heat hydrogen mass transfer oxygen production technology transportation |
Title | Research progress of ammonia combustion toward low carbon energy |
URI | https://dx.doi.org/10.1016/j.fuproc.2023.107821 https://www.proquest.com/docview/2834267344 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-SgSv6cPJPnKzFEtV7EULvYVkk0Cl7Ja6xZu_3cw-pApS8LhDEnZnk5kvyTczhNy420QpEwKD2ALjShimQhEy7Z2DUYGKhcGjgedJOJ7yx1kwa5BhHQuDtMrK9pc2vbDWlaRbabO7nM-7Lz2IYoix_DfiFoEBv5xHmD-_87lB8wiKAivYmGHrOnyu4Hi5NbqJDo7hRd5Z9v9yT78MdeF9Rgdkv4KNdFC-2SFp2PSI7G0kEzwmdzWJjhacK2_BaOaownk2V9R_n8bCXVlK84IpSxfZB03USnuJLQIAT8h0dP86HLOqPgJLAETONICzItbKxInjzjjjN1ca9zwetRgHQRT1LVe6ZwVwza1fmyoxLulxBaHoWzglzTRL7RmhNu4lOkB0BY5rY2OBN9PGRKFf4BHoFoFaLTKpkodjDYuFrFlib7JUpkRlylKZLcK-ey3L5Blb2ke1xuWPSSC9fd_S87r-QdKvD7z0UKnN1u_SwycPQiLg_Pzfo1-QXXwqqWWXpJmv1vbKY5Fct4vJ1iY7g4en8eQLTubfDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7jeFAP4oq7EbxmFl_aJjdlUMZtLip4C0mTwMjQDtrBm7_dvC4yCiJ4fU1C-_qWL8mXPEJO_VmqtY2BgXDAuJaW6VjGzITkYHWkhbS4NHA_iodP_OY5em6RQXMWBmmVdeyvYnoZrWtJt9Zmdzoedx96kAgQWP4bcYsUC2SRR5CgaXc-5ngeUVlhBVszbN6cnytJXn6GeaKDgwRRyJb93_LTj0hdpp-rNbJa40Z6Ub3aOmm5bIOszN0muEnOGxYdLUlXIYTR3FONhjbWNHygwcpdeUaLkipLJ_k7TfWrCRJXngDcIk9Xl4-DIasLJLAUQBbMAHgnhdFWpJ57622YXRmc9ATYYj1ESdJ3XJuek8ANd8E5dWp92uMaYtl3sE3aWZ65HUKd6KUmQngFnhvrhMStaWuTOHh4AmaXQKMWlda3h2MRi4lqaGIvqlKmQmWqSpm7hH31mla3Z_zRPmk0rr5ZgQoB_o-eJ80PUsFBcNdDZy6fvamAnwIKSYDzvX-PfkyWho_3d-ruenS7T5bxScUzOyDt4nXmDgMwKcxRaXiflhPgpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+of+ammonia+combustion+toward+low+carbon+energy&rft.jtitle=Fuel+processing+technology&rft.au=Li%2C+Tianxin&rft.au=Duan%2C+Yuanqiang&rft.au=Wang%2C+Yueming&rft.au=Zhou%2C+Minmin&rft.date=2023-09-01&rft.issn=0378-3820&rft.volume=248&rft.spage=107821&rft_id=info:doi/10.1016%2Fj.fuproc.2023.107821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuproc_2023_107821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |