Research progress of ammonia combustion toward low carbon energy

Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy stor...

Full description

Saved in:
Bibliographic Details
Published inFuel processing technology Vol. 248; p. 107821
Main Authors Li, Tianxin, Duan, Yuanqiang, Wang, Yueming, Zhou, Minmin, Duan, Lunbo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text
ISSN0378-3820
DOI10.1016/j.fuproc.2023.107821

Cover

Loading…
Abstract Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy storage and transportation. Therefore, it is necessary to conduct a comprehensive review study on the fundamentals of ammonia combustion characteristics. The main drawbacks of ammonia combustion are long ignition delay time, low laminar flame speed and noticeable NOx emissions. Some technologies including fuel blending, process intensification and combustion auxiliary technology, are introduced to remedy these drawbacks. Fuel blending system including ammonia‑hydrogen and ammonia-coal is regarded as the promising practical approach. Process intensification like preheating, pressurization, and oxygen enrichment approach is widely used to enhance the combustion via intensifying its heat and mass transfer. In addition, other combustion auxiliary technologies such as porous media and plasma-assisted are expected to bring new research opportunities for ammonia combustion application. Finally, the difficulties and challenges faced by these technologies are summarized aiming to realize the commercialization of ammonia combustion. •Ammonia combustion and emission characteristic are comprehensively reviewed.•The development and recent achievements of ammonia kinetic models are summarized.•Fuel blending and process intensification are critical in ammonia combustion.•Systemically summary of auxiliary enhanced ammonia combustion technology•The latest research on ammonia as a combustion device fuel is discussed.
AbstractList Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy storage and transportation. Therefore, it is necessary to conduct a comprehensive review study on the fundamentals of ammonia combustion characteristics. The main drawbacks of ammonia combustion are long ignition delay time, low laminar flame speed and noticeable NOx emissions. Some technologies including fuel blending, process intensification and combustion auxiliary technology, are introduced to remedy these drawbacks. Fuel blending system including ammonia‑hydrogen and ammonia-coal is regarded as the promising practical approach. Process intensification like preheating, pressurization, and oxygen enrichment approach is widely used to enhance the combustion via intensifying its heat and mass transfer. In addition, other combustion auxiliary technologies such as porous media and plasma-assisted are expected to bring new research opportunities for ammonia combustion application. Finally, the difficulties and challenges faced by these technologies are summarized aiming to realize the commercialization of ammonia combustion. •Ammonia combustion and emission characteristic are comprehensively reviewed.•The development and recent achievements of ammonia kinetic models are summarized.•Fuel blending and process intensification are critical in ammonia combustion.•Systemically summary of auxiliary enhanced ammonia combustion technology•The latest research on ammonia as a combustion device fuel is discussed.
Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared with the popular hydrogen as the fuel, ammonia still holds other significant advantages such as well-adopted production technology, energy storage and transportation. Therefore, it is necessary to conduct a comprehensive review study on the fundamentals of ammonia combustion characteristics. The main drawbacks of ammonia combustion are long ignition delay time, low laminar flame speed and noticeable NOₓ emissions. Some technologies including fuel blending, process intensification and combustion auxiliary technology, are introduced to remedy these drawbacks. Fuel blending system including ammonia‑hydrogen and ammonia-coal is regarded as the promising practical approach. Process intensification like preheating, pressurization, and oxygen enrichment approach is widely used to enhance the combustion via intensifying its heat and mass transfer. In addition, other combustion auxiliary technologies such as porous media and plasma-assisted are expected to bring new research opportunities for ammonia combustion application. Finally, the difficulties and challenges faced by these technologies are summarized aiming to realize the commercialization of ammonia combustion.
ArticleNumber 107821
Author Duan, Lunbo
Li, Tianxin
Wang, Yueming
Duan, Yuanqiang
Zhou, Minmin
Author_xml – sequence: 1
  givenname: Tianxin
  surname: Li
  fullname: Li, Tianxin
– sequence: 2
  givenname: Yuanqiang
  surname: Duan
  fullname: Duan, Yuanqiang
– sequence: 3
  givenname: Yueming
  surname: Wang
  fullname: Wang, Yueming
– sequence: 4
  givenname: Minmin
  surname: Zhou
  fullname: Zhou, Minmin
– sequence: 5
  givenname: Lunbo
  surname: Duan
  fullname: Duan, Lunbo
  email: duanlunbo@seu.edu.cn
BookMark eNqFkD1PwzAQhj0UibbwDxg8sqTYsVMnDAhU8SVVQkIwW_44F1dJXOyEqv-eVGFigOmkV_e8untmaNKGFhC6oGRBCV1ebReu38VgFjnJ2RCJMqcTNCVMlBkrc3KKZiltCSFFUYkpun2FBCqaDzxAmwgp4eCwaprQeoVNaHSfOh9a3IW9ihbXYY-NinpIoIW4OZyhE6fqBOc_c47eH-7fVk_Z-uXxeXW3zgxjVZdpxhxUpVa2NI476yyhRBPKK5oX1rFCCApcaQIV45qDKIUy1hnCFVtWFNgcXY69w52fPaRONj4ZqGvVQuiTzEvG86VgnA-r1-OqiSGlCE4a36njF11UvpaUyKMquZWjKnlUJUdVA8x_wbvoGxUP_2E3IwaDgy8PUSbjoTVgfQTTSRv83wXfvRKKVQ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_11_346
crossref_primary_10_1016_j_ijhydene_2024_07_163
crossref_primary_10_1021_acs_energyfuels_3c03984
crossref_primary_10_1016_j_proci_2024_105232
crossref_primary_10_3390_jmse13020196
crossref_primary_10_1016_j_energy_2023_130014
crossref_primary_10_1016_j_fuel_2024_132535
crossref_primary_10_1016_j_ijhydene_2024_08_202
crossref_primary_10_1016_j_energy_2024_131860
crossref_primary_10_1016_j_energy_2024_133848
crossref_primary_10_1080_15567036_2024_2434202
crossref_primary_10_1016_j_enconman_2024_119306
crossref_primary_10_1016_j_renene_2025_122347
crossref_primary_10_1016_j_renene_2024_121379
crossref_primary_10_1016_j_enconman_2024_118776
crossref_primary_10_1016_j_fuel_2024_130908
crossref_primary_10_1021_acs_energyfuels_4c02942
crossref_primary_10_1080_15567036_2025_2451082
crossref_primary_10_1016_j_ijhydene_2024_09_248
crossref_primary_10_1016_j_rineng_2024_102596
crossref_primary_10_1177_14680874241242904
crossref_primary_10_1016_j_energy_2025_135591
crossref_primary_10_1080_15567036_2024_2440057
crossref_primary_10_1615_InterJEnerCleanEnv_2024051495
crossref_primary_10_1016_j_energy_2024_131334
crossref_primary_10_1016_j_enconman_2024_118745
crossref_primary_10_1080_15567036_2024_2422569
crossref_primary_10_1007_s11708_024_0949_1
crossref_primary_10_1016_j_ijhydene_2024_06_396
crossref_primary_10_1016_j_comptc_2024_114893
crossref_primary_10_1177_14680874251317792
crossref_primary_10_1016_j_jhazmat_2025_137108
crossref_primary_10_1016_j_joei_2024_101549
crossref_primary_10_1039_D4CP02187H
crossref_primary_10_1016_j_fuel_2024_131850
crossref_primary_10_3390_jmse11122388
crossref_primary_10_1016_j_fuel_2025_134385
crossref_primary_10_1016_j_combustflame_2025_114061
crossref_primary_10_1016_j_psep_2024_06_016
crossref_primary_10_1016_j_fuel_2023_130539
crossref_primary_10_1016_j_ijhydene_2024_01_365
crossref_primary_10_1016_j_tsep_2025_103356
crossref_primary_10_1016_j_fuel_2024_131427
crossref_primary_10_1016_j_est_2024_114110
crossref_primary_10_1016_j_fuel_2024_131228
crossref_primary_10_1016_j_joei_2024_101653
crossref_primary_10_1016_j_fuel_2025_134377
crossref_primary_10_1016_j_csite_2024_105107
crossref_primary_10_1016_j_ijmecsci_2023_108793
crossref_primary_10_1016_j_ijhydene_2024_11_137
crossref_primary_10_1016_j_applthermaleng_2024_122942
crossref_primary_10_3390_en17235882
crossref_primary_10_1016_j_combustflame_2024_113735
crossref_primary_10_1016_j_energy_2024_131913
crossref_primary_10_1016_j_ijhydene_2024_06_407
crossref_primary_10_1016_j_rser_2024_114699
crossref_primary_10_3390_en17123046
crossref_primary_10_1088_2631_8695_ad299b
crossref_primary_10_1039_D4RE00274A
crossref_primary_10_1016_j_fuel_2024_130983
crossref_primary_10_1016_j_fuproc_2023_107991
crossref_primary_10_1016_j_fuproc_2023_107953
crossref_primary_10_1016_j_ijhydene_2024_06_171
Cites_doi 10.1016/j.combustflame.2019.08.033
10.1016/j.energy.2017.08.077
10.1016/j.energy.2015.03.061
10.1016/j.fuel.2020.117902
10.1016/j.fuel.2019.116653
10.1016/j.jfueco.2022.100049
10.1016/j.proci.2018.07.091
10.1016/j.ijhydene.2021.07.063
10.1016/j.ijhydene.2019.02.041
10.1021/acs.energyfuels.0c02777
10.1115/IMECE2006-13048
10.1016/j.fuel.2022.123818
10.1016/j.apenergy.2019.113334
10.1016/j.proci.2020.08.033
10.1016/j.ijhydene.2017.08.028
10.1016/j.proci.2016.07.088
10.1016/j.ijhydene.2022.07.254
10.1016/j.fuel.2020.119563
10.1016/j.catcom.2017.11.009
10.1016/j.pecs.2014.12.002
10.1016/j.combustflame.2019.11.032
10.1016/j.ijhydene.2011.12.137
10.1016/j.ijhydene.2017.09.089
10.1016/S0010-2180(00)00152-8
10.1016/j.fuel.2020.117383
10.1021/acs.jpcc.6b07157
10.1016/j.ijhydene.2021.10.269
10.1016/j.ijhydene.2017.12.066
10.1016/j.proci.2010.06.148
10.1016/j.fuproc.2020.106682
10.1016/j.combustflame.2021.111819
10.1016/j.fuel.2020.118761
10.1016/j.jfueco.2022.100052
10.1016/j.apenergy.2013.11.067
10.1007/s11090-015-9657-2
10.1016/j.fuel.2022.123832
10.1016/j.fuel.2014.12.070
10.1016/j.combustflame.2021.02.016
10.1016/j.combustflame.2009.03.005
10.4271/2013-01-1133
10.1016/j.combustflame.2019.05.003
10.1016/j.combustflame.2020.07.011
10.1016/j.energy.2019.02.065
10.1016/j.proci.2020.07.133
10.1080/00102208308923691
10.1016/j.fuel.2019.02.102
10.1016/j.proci.2018.09.012
10.1016/j.combustflame.2004.08.003
10.1016/j.combustflame.2020.04.020
10.1016/j.egypro.2017.12.111
10.1021/acs.energyfuels.0c03685
10.1016/j.proci.2018.07.083
10.1016/j.renene.2021.09.117
10.1016/j.fuel.2019.115693
10.1016/j.combustflame.2021.111472
10.1016/j.combustflame.2019.03.008
10.1016/j.fuel.2020.118425
10.1016/j.fuel.2010.09.042
10.1016/j.proci.2020.06.358
10.1016/j.combustflame.2018.04.011
10.1016/j.ijhydene.2017.01.046
10.1016/j.cej.2022.134680
10.1016/j.combustflame.2019.04.050
10.1016/j.proci.2006.07.126
10.1021/j100820a027
10.1016/j.combustflame.2003.12.008
10.1016/j.energy.2015.10.060
10.1016/j.fuel.2012.08.026
10.1016/j.rser.2021.111254
10.1016/j.apenergy.2019.113676
10.1016/j.energy.2017.03.085
10.1080/00102209408935436
10.1016/j.proci.2020.06.197
10.1016/j.fuel.2022.125496
10.4271/2012-32-0019
10.1016/j.fuel.2020.120003
10.1002/er.5460
10.1021/ef800140f
10.1016/j.ijhydene.2015.04.024
10.1080/00102207208952518
10.1016/j.combustflame.2020.12.048
10.1080/00102200008952125
10.1016/j.proci.2020.06.102
10.1016/j.combustflame.2017.09.002
10.1016/j.pecs.2012.03.004
10.4271/660769
10.1016/j.jhazmat.2007.11.089
10.1016/j.fuel.2015.06.070
10.1016/j.enconman.2022.115328
10.1016/j.ijhydene.2021.08.089
10.1080/00102208808947092
10.1246/cl.200843
10.1016/j.fuel.2021.122017
10.1016/j.fuel.2018.11.121
10.1016/j.rser.2021.112003
10.1016/j.fuel.2010.07.055
10.1016/j.energy.2022.125613
10.1016/j.ijhydene.2020.05.236
10.1016/j.fuel.2019.02.110
10.1016/j.fuel.2021.122674
10.1016/j.fuel.2022.124227
10.1016/j.joei.2021.10.001
10.1039/C9RE00429G
10.1016/j.fuproc.2009.02.004
10.1021/acs.energyfuels.7b00709
10.1016/j.proci.2018.07.074
10.1016/j.pecs.2012.05.003
10.1016/j.ijhydene.2019.12.209
10.1016/j.catcom.2019.02.005
10.1016/j.combustflame.2021.111508
10.1016/j.fuel.2010.06.008
10.1016/j.ijhydene.2017.03.234
10.1016/j.combustflame.2020.08.004
10.1016/j.combustflame.2014.08.022
10.1021/acs.energyfuels.2c01766
10.1016/j.proci.2018.09.029
10.1016/j.ijhydene.2014.10.059
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.fuproc.2023.107821
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_fuproc_2023_107821
S0378382023001698
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
TWZ
UHS
WUQ
ZY4
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
EFLBG
L.6
ID FETCH-LOGICAL-c339t-b33fe98bad8cf4fdfd010b0149125df35771e4ab0e934b4e787acdfc04a3691e3
IEDL.DBID .~1
ISSN 0378-3820
IngestDate Fri Sep 05 00:15:45 EDT 2025
Tue Jul 01 03:04:44 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Tue Dec 03 03:45:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Combustion characteristic
Carbon-free fuel
Ammonia combustion
Combustion auxiliary technology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-b33fe98bad8cf4fdfd010b0149125df35771e4ab0e934b4e787acdfc04a3691e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834267344
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834267344
crossref_citationtrail_10_1016_j_fuproc_2023_107821
crossref_primary_10_1016_j_fuproc_2023_107821
elsevier_sciencedirect_doi_10_1016_j_fuproc_2023_107821
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Fuel processing technology
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Fan, Chen, Feng, Zhang (bb0420) 2022; 329
Nozari, Tuncer, Karabeyoglu (bb0505) 2017; 142
Ronan, Pierre, Christine, Guillaume, Fabien (bb0280) 2022; 10
Somarathne, Hayakawa, Kobayashi (bb0290) 2016; 11
Duynslaegher, Jeanmart, Vandooren (bb0455) 2010; 89
Berwal, Kumar, Khandelwal (bb0040) 2021; 99
Meng, Zhang, Zhao, Tian, Tian, Long, Bi (bb0380) 2022; 319
Lou, Bao, Nishihara, Keshav, Utkin, Rich, Lempert, Adamovich (bb0525) 2007; 31
Hinokuma, Sato (bb0080) 2021; 50
Li, Wang, Shi, Liu (bb0495) 2015; 145
Lin, Jiang, Liu, Chen, Zhang, Ding, Li (bb0075) 2022; 319
Xia, Hadi, Hashimoto, Hashimoto, Fujita (bb0410) 2021; 38
Fenimore, Jones (bb0220) 1961; 65
Hinokuma, Matsuki, Kawabata, Shimanoe, Kiritoshi, Machida (bb0570) 2016; 120
Han, Wang, He, Zhu, Cen (bb0245) 2020; 213
Ju, Lefkowitz, Reuter, Won, Yang, Yang, Sun, Jiang, Chen (bb0515) 2016; 36
Chen, Jiang, Qin, Huang (bb0395) 2021; 287
Mørch, Bjerre, Gøttrup, Sorenson, Schramm (bb0435) 2011; 90
Xiao, Lai, Valera-Medina, Li, Liu, Fu (bb0195) 2020; 44
.
Xia, Hashimoto, Hadi, Hashimoto, Hayakawa, Kobayashi, Fujita (bb0175) 2020; 268
Choi, Lee, Kwon (bb0060) 2015; 85
Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bb0260) 2019; 204
Frost, Tall, Sheriff, Schönborn, Hellier (bb0645) 2021; 46
Hinokuma, Shimanoe, Kawabata, Kiritoshi, Araki, Machida (bb0565) 2018; 105
Sorrentino, Sabia, Bozza, Ragucci, de Joannon (bb0590) 2019; 254
He, Shu, Nascimento, Moshammer, Costa, Fernandes (bb0035) 2019; 206
Grannell, Assanis, Bohac, Gillespie (bb0005) 2006
Corporation (bb0025) 2021
Reiter, Kong (bb0445) 2011; 90
Khateeb, Guiberti, Zhu, Younes, Jamal, Roberts (bb0315) 2020; 45
Wang, Ji, Wang, Wang, Yang, Zhao (bb0485) 2020; 34
Ronney (bb0115) 1988; 59
Ju, Sun (bb0535) 2015; 48
Faingold, Lefkowitz (bb0555) 2021; 38
Tian, Li, Zhang, Glarborg, Qi (bb0240) 2009; 156
Konnov, Ruyck (bb0265) 2000; 152
Normann, Wismer, Müller, Leion (bb0575) 2019; 240
Li, Huang, Kobayashi, He, Osaka, Zeng (bb0465) 2015; 93
Starikovskiy, Aleksandrov (bb0520) 2013; 39
Dai, Gersen, Glarborg, Mokhov, Levinsky (bb0200) 2020; 218
Valera-Medina, Pugh, Marsh, Bulat, Bowen (bb0600) 2017; 42
Tang, Xie, Shi, Wang, Li (bb0540) 2022; 313
Hayakawa, Arakawa, Mimoto, Somarathne, Kudo, Kobayashi (bb0295) 2017; 42
Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bb0150) 2018; 187
Xiao, Lai, Valera-Medina, Li, Liu, Fu (bb0325) 2020; 275
Zhang, Mei, Li, Fang, Zhang, Cao, Li (bb0140) 2022; 36
Zamfirescu, Dincer (bb0615) 2009; 90
Shrestha, Lhuillier, Barbosa, Brequigny, Contino, Mounaïm-Rousselle, Seidel, Mauss (bb0460) 2021; 38
Filipe Ramos, Rocha, Oliveira, Costa, Bai (bb0330) 2019; 254
Gao, Tu, Li, Duan (bb0030) 2022; 28
Ryu, Zacharakis-Jutz, Kong (bb0630) 2013
Zhu, Khateeb, Roberts, Guiberti (bb0095) 2021; 231
Xiao, Valera-Medina, Bowen (bb0310) 2017; 31
Pugh, Bowen, Valera-Medina, Giles, Runyon, Marsh (bb0475) 2019; 37
Sun, Uddi, Ombrello, Won, Carter, Ju (bb0530) 2011; 33
Dai, Hashemi, Glarborg, Gersen, Marshall, Mokhov, Levinsky (bb0375) 2021; 227
Xiao, Valera-Medina, Bowen (bb0320) 2017; 140
Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (bb0120) 2000; 123
Choe, Sun, Ombrello, Carter (bb0545) 2021; 228
Issayev, Giri, Elbaz, Shrestha, Mauss, Roberts, Farooq (bb0210) 2022; 181
Gross, Kong (bb0335) 2013; 103
Mei, Ma, Zhang, Zhang, Li, Li (bb0365) 2020; 220
S.M. Grannell, D.N. Assanis, S.V. Bohac, D.E. Gillespie, The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine, ASME 2006 International Mechanical Engineering Congress and Exposition, Energy Conver. Resourc. (2006) 15–27.doi
Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (bb0090) 2015; 159
Chai, Bao, Jin, Tang, Zhou (bb0045) 2021; 147
Frigo, Gentili, Doveri (bb0625) 2012
Hadi, Ichimura, Hashimoto, Xia, Hashimoto, Fujita (bb0405) 2021; 38
Koch (bb0610) 1945; 31
Kim, Park, Chung, Yoo (bb0550) 2022; 323
Wang, Ji, Wang, Wang, Zhang, Yang (bb0155) 2020; 279
Stagni, Cavallotti, Arunthanayothin, Song, Herbinet, Battin-Leclerc, Faravelli (bb0250) 2020; 5
Hinokuma, Araki, Iwasa, Kiritoshi, Kawabata, Taketsugu, Machida (bb0560) 2019; 123
Xu, Wang, Liu, Zhu, Xu, Xu (bb0400) 2022; 256
Li, Huang, Kobayashi, Wang, Yuan (bb0350) 2017; 126
Reiter, Kong (bb0430) 2008; 22
Dimitriou, Javaid (bb0010) 2020; 45
Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (bb0110) 2008; 155
Jabbour, Clodic (bb0125) 2004; 110
Han, Wang, Costa, Sun, He, Cen (bb0135) 2019; 206
Hardalupas, Orain (bb0100) 2004; 139
Feng, Zhu, Mao, Raza, Qian, Yu, Lu (bb0205) 2020; 281
Li, Zhang, Zhan, Huang, Lin (bb0370) 2021; 214
Ni, Zhao (bb0510) 2022; 434
Faehn, Bull, Shekleton (bb0340) 1966
Otomo, Koshi, Mitsumori, Iwasaki, Yamada (bb0305) 2018; 43
Mei, Zhang, Ma, Cui, Guo, Cao, Li (bb0255) 2019; 210
Chen, Li, Li, Deng, He, Huang, Kobayashi (bb0065) 2023; 263
Wang, Wang, Elbaz, Han, He, Costa, Konnov, Roberts (bb0360) 2020; 221
Kobayashi, Hayakawa, Kunkuma, Somarathne, Okafor (bb0285) 2019; 37
Newhall, Starkman (bb0580) 1967; 75
Nozari, Karaca, Tuncer, Karabeyoglu (bb0500) 2017; 42
Skreiberg, Kilpinen, Glarborg (bb0235) 2004; 136
Deng, Ying, Liu (bb0275) 2022; 47
Glarborg, Hashemi, Marshall (bb0270) 2022; 10
Somarathne, Hatakeyama, Hayakawa, Kobayashi (bb0480) 2017; 42
Yamamoto, Kimoto, Ozawa, Hara (bb0020) 2018
da Rocha, Costa, Bai (bb0300) 2019; 246
Chen, Zhang, Su, Sui, Zhang (bb0085) 2022; 308
Kurata, Iki, Matsunuma, Inoue, Tsujimura, Furutani, Kobayashi, Hayakawa (bb0015) 2017; 36
Su, Hwang, Lai (bb0490) 2014; 39
Ranzi, Frassoldati, Grana, Cuoci, Faravelli, Kelley, Law (bb0165) 2012; 38
Kurata, Iki, Inoue, Matsunuma, Tsujimura, Furutani, Kawano, Arai, Okafor, Hayakawa, Kobayashi (bb0585) 2019; 37
Mathieu, Petersen (bb0185) 2015; 162
Cai, Zhao (bb0385) 2022; 156
Ryu, Zacharakis-Jutz, Kong (bb0640) 2014; 116
Ichimura, Hadi, Hashimoto, Hayakawa, Kobayashi, Fujita (bb0180) 2019; 246
Shu, Vallabhuni, He, Issayev, Moshammer, Farooq, Fernandes (bb0190) 2019; 37
Mei, Zhang, Shi, Xi, Li (bb0390) 2021; 231
Valera-Medina, Gutesa, Xiao, Pugh, Giles, Goktepe, Marsh, Bowen (bb0440) 2019; 44
Wang, Huang, Zhang, Li, Yi, Wu, Chen (bb0130) 2021; 46
Okafor, Somarathne, Hayakawa, Kudo, Kurata, Iki, Kobayashi (bb0470) 2019; 37
Fan, Wu, Guo, Zhu, Liu, Chen, Wang (bb0415) 2019; 173
Niki, Yoo, Hirata, Sekiguchi (bb0635) 2016
Hayakawa, Goto, Mimoto, Kudo, Kobayashi (bb0105) 2015
Thurston (bb0605) 1878
Alekseev, Konnov (bb0170) 2018; 194
Gill, Chatha, Tsolakis, Golunski, York (bb0620) 2012; 37
Miller, Smooke, Green, Kee (bb0225) 1983; 34
Lhuillier, Brequigny, Lamoureux, Contino, Mounaïm-Rousselle (bb0450) 2020; 263
Valera-Medina, Amer-Hatem, Azad, Dedoussi, de Joannon, Fernandes, Glarborg, Hashemi, He, Mashruk, McGowan, Mounaim-Rouselle, Ortiz-Prado, Ortiz-Valera, Rossetti, Shu, Yehia, Xiao, Costa (bb0050) 2021; 35
Karan, Dayma, Chauveau, Halter (bb0070) 2022; 236
Drummond (bb0215) 1972; 5
Ichikawa, Hayakawa, Kitagawa, Somarathne, Kudo, Kobayashi (bb0345) 2015; 40
Shu, Xue, Zhou, Ren (bb0355) 2021; 290
Guteša Božo, Vigueras-Zuniga, Buffi, Seljak, Valera-Medina (bb0595) 2019; 251
Ji, Wang, Wang, Hou, Zhang, Wang (bb0160) 2022; 47
Lindstedt, Lockwood, Selim (bb0230) 1994; 99
Mei, Ma, Zhang, Li (bb0145) 2021; 38
Okafor, Kurata, Yamashita, Inoue, Tsujimura, Iki, Hayakawa, Ito, Uchida, Kobayashi (bb0055) 2021; 7
Ju (10.1016/j.fuproc.2023.107821_bb0535) 2015; 48
Shrestha (10.1016/j.fuproc.2023.107821_bb0460) 2021; 38
Dimitriou (10.1016/j.fuproc.2023.107821_bb0010) 2020; 45
Ju (10.1016/j.fuproc.2023.107821_bb0515) 2016; 36
Ronney (10.1016/j.fuproc.2023.107821_bb0115) 1988; 59
Frigo (10.1016/j.fuproc.2023.107821_bb0625) 2012
Ryu (10.1016/j.fuproc.2023.107821_bb0630) 2013
Li (10.1016/j.fuproc.2023.107821_bb0370) 2021; 214
Nozari (10.1016/j.fuproc.2023.107821_bb0505) 2017; 142
da Rocha (10.1016/j.fuproc.2023.107821_bb0300) 2019; 246
Otomo (10.1016/j.fuproc.2023.107821_bb0305) 2018; 43
Meng (10.1016/j.fuproc.2023.107821_bb0380) 2022; 319
Thurston (10.1016/j.fuproc.2023.107821_bb0605) 1878
Ichikawa (10.1016/j.fuproc.2023.107821_bb0345) 2015; 40
Nozari (10.1016/j.fuproc.2023.107821_bb0500) 2017; 42
Chen (10.1016/j.fuproc.2023.107821_bb0395) 2021; 287
Ranzi (10.1016/j.fuproc.2023.107821_bb0165) 2012; 38
Xiao (10.1016/j.fuproc.2023.107821_bb0310) 2017; 31
Hayakawa (10.1016/j.fuproc.2023.107821_bb0295) 2017; 42
Wang (10.1016/j.fuproc.2023.107821_bb0360) 2020; 221
Xiao (10.1016/j.fuproc.2023.107821_bb0325) 2020; 275
Jabbour (10.1016/j.fuproc.2023.107821_bb0125) 2004; 110
Ni (10.1016/j.fuproc.2023.107821_bb0510) 2022; 434
Valera-Medina (10.1016/j.fuproc.2023.107821_bb0600) 2017; 42
Berwal (10.1016/j.fuproc.2023.107821_bb0040) 2021; 99
Newhall (10.1016/j.fuproc.2023.107821_bb0580) 1967; 75
Guteša Božo (10.1016/j.fuproc.2023.107821_bb0595) 2019; 251
Drummond (10.1016/j.fuproc.2023.107821_bb0215) 1972; 5
Mei (10.1016/j.fuproc.2023.107821_bb0365) 2020; 220
Li (10.1016/j.fuproc.2023.107821_bb0495) 2015; 145
Fan (10.1016/j.fuproc.2023.107821_bb0415) 2019; 173
Lou (10.1016/j.fuproc.2023.107821_bb0525) 2007; 31
Skreiberg (10.1016/j.fuproc.2023.107821_bb0235) 2004; 136
Choe (10.1016/j.fuproc.2023.107821_bb0545) 2021; 228
Miller (10.1016/j.fuproc.2023.107821_bb0225) 1983; 34
Hinokuma (10.1016/j.fuproc.2023.107821_bb0570) 2016; 120
Issayev (10.1016/j.fuproc.2023.107821_bb0210) 2022; 181
Tian (10.1016/j.fuproc.2023.107821_bb0240) 2009; 156
Mørch (10.1016/j.fuproc.2023.107821_bb0435) 2011; 90
Hadi (10.1016/j.fuproc.2023.107821_bb0405) 2021; 38
Zamfirescu (10.1016/j.fuproc.2023.107821_bb0615) 2009; 90
Karan (10.1016/j.fuproc.2023.107821_bb0070) 2022; 236
Hardalupas (10.1016/j.fuproc.2023.107821_bb0100) 2004; 139
Han (10.1016/j.fuproc.2023.107821_bb0135) 2019; 206
Faehn (10.1016/j.fuproc.2023.107821_bb0340) 1966
Alekseev (10.1016/j.fuproc.2023.107821_bb0170) 2018; 194
Mei (10.1016/j.fuproc.2023.107821_bb0145) 2021; 38
Niki (10.1016/j.fuproc.2023.107821_bb0635) 2016
Khateeb (10.1016/j.fuproc.2023.107821_bb0315) 2020; 45
Zhang (10.1016/j.fuproc.2023.107821_bb0140) 2022; 36
Gao (10.1016/j.fuproc.2023.107821_bb0030) 2022; 28
Reiter (10.1016/j.fuproc.2023.107821_bb0445) 2011; 90
Chai (10.1016/j.fuproc.2023.107821_bb0045) 2021; 147
Lindstedt (10.1016/j.fuproc.2023.107821_bb0230) 1994; 99
Okafor (10.1016/j.fuproc.2023.107821_bb0055) 2021; 7
Sun (10.1016/j.fuproc.2023.107821_bb0530) 2011; 33
Xiao (10.1016/j.fuproc.2023.107821_bb0320) 2017; 140
Shu (10.1016/j.fuproc.2023.107821_bb0355) 2021; 290
Kim (10.1016/j.fuproc.2023.107821_bb0550) 2022; 323
Ichimura (10.1016/j.fuproc.2023.107821_bb0180) 2019; 246
Xia (10.1016/j.fuproc.2023.107821_bb0410) 2021; 38
Starikovskiy (10.1016/j.fuproc.2023.107821_bb0520) 2013; 39
Zhu (10.1016/j.fuproc.2023.107821_bb0095) 2021; 231
Ronan (10.1016/j.fuproc.2023.107821_bb0280) 2022; 10
Okafor (10.1016/j.fuproc.2023.107821_bb0470) 2019; 37
Corporation (10.1016/j.fuproc.2023.107821_bb0025)
Lhuillier (10.1016/j.fuproc.2023.107821_bb0450) 2020; 263
Yamamoto (10.1016/j.fuproc.2023.107821_bb0020) 2018
Chen (10.1016/j.fuproc.2023.107821_bb0085) 2022; 308
Grannell (10.1016/j.fuproc.2023.107821_bb0005) 2006
Duynslaegher (10.1016/j.fuproc.2023.107821_bb0455) 2010; 89
Frost (10.1016/j.fuproc.2023.107821_bb0645) 2021; 46
Li (10.1016/j.fuproc.2023.107821_bb0350) 2017; 126
Xia (10.1016/j.fuproc.2023.107821_bb0175) 2020; 268
Fenimore (10.1016/j.fuproc.2023.107821_bb0220) 1961; 65
Faingold (10.1016/j.fuproc.2023.107821_bb0555) 2021; 38
Kurata (10.1016/j.fuproc.2023.107821_bb0585) 2019; 37
Shu (10.1016/j.fuproc.2023.107821_bb0190) 2019; 37
Lin (10.1016/j.fuproc.2023.107821_bb0075) 2022; 319
Dai (10.1016/j.fuproc.2023.107821_bb0375) 2021; 227
Li (10.1016/j.fuproc.2023.107821_bb0465) 2015; 93
Wang (10.1016/j.fuproc.2023.107821_bb0155) 2020; 279
Xiao (10.1016/j.fuproc.2023.107821_bb0195) 2020; 44
Su (10.1016/j.fuproc.2023.107821_bb0490) 2014; 39
Deng (10.1016/j.fuproc.2023.107821_bb0275) 2022; 47
Ryu (10.1016/j.fuproc.2023.107821_bb0640) 2014; 116
Okafor (10.1016/j.fuproc.2023.107821_bb0260) 2019; 204
Pugh (10.1016/j.fuproc.2023.107821_bb0475) 2019; 37
Wang (10.1016/j.fuproc.2023.107821_bb0485) 2020; 34
10.1016/j.fuproc.2023.107821_bb0425
Wang (10.1016/j.fuproc.2023.107821_bb0130) 2021; 46
Hayakawa (10.1016/j.fuproc.2023.107821_bb0105) 2015
Koch (10.1016/j.fuproc.2023.107821_bb0610) 1945; 31
Valera-Medina (10.1016/j.fuproc.2023.107821_bb0050) 2021; 35
Hinokuma (10.1016/j.fuproc.2023.107821_bb0560) 2019; 123
Choi (10.1016/j.fuproc.2023.107821_bb0060) 2015; 85
Xu (10.1016/j.fuproc.2023.107821_bb0400) 2022; 256
Somarathne (10.1016/j.fuproc.2023.107821_bb0290) 2016; 11
Gill (10.1016/j.fuproc.2023.107821_bb0620) 2012; 37
Glarborg (10.1016/j.fuproc.2023.107821_bb0270) 2022; 10
Wang (10.1016/j.fuproc.2023.107821_bb0420) 2022; 329
Dai (10.1016/j.fuproc.2023.107821_bb0200) 2020; 218
Kobayashi (10.1016/j.fuproc.2023.107821_bb0285) 2019; 37
Han (10.1016/j.fuproc.2023.107821_bb0245) 2020; 213
Tang (10.1016/j.fuproc.2023.107821_bb0540) 2022; 313
Sorrentino (10.1016/j.fuproc.2023.107821_bb0590) 2019; 254
Feng (10.1016/j.fuproc.2023.107821_bb0205) 2020; 281
Cai (10.1016/j.fuproc.2023.107821_bb0385) 2022; 156
Hayakawa (10.1016/j.fuproc.2023.107821_bb0090) 2015; 159
Gross (10.1016/j.fuproc.2023.107821_bb0335) 2013; 103
Mei (10.1016/j.fuproc.2023.107821_bb0255) 2019; 210
Konnov (10.1016/j.fuproc.2023.107821_bb0265) 2000; 152
Mei (10.1016/j.fuproc.2023.107821_bb0390) 2021; 231
Okafor (10.1016/j.fuproc.2023.107821_bb0150) 2018; 187
Pfahl (10.1016/j.fuproc.2023.107821_bb0120) 2000; 123
Normann (10.1016/j.fuproc.2023.107821_bb0575) 2019; 240
Somarathne (10.1016/j.fuproc.2023.107821_bb0480) 2017; 42
Chen (10.1016/j.fuproc.2023.107821_bb0065) 2023; 263
Ji (10.1016/j.fuproc.2023.107821_bb0160) 2022; 47
Mathieu (10.1016/j.fuproc.2023.107821_bb0185) 2015; 162
Takizawa (10.1016/j.fuproc.2023.107821_bb0110) 2008; 155
Reiter (10.1016/j.fuproc.2023.107821_bb0430) 2008; 22
Valera-Medina (10.1016/j.fuproc.2023.107821_bb0440) 2019; 44
Kurata (10.1016/j.fuproc.2023.107821_bb0015) 2017; 36
Hinokuma (10.1016/j.fuproc.2023.107821_bb0080) 2021; 50
Hinokuma (10.1016/j.fuproc.2023.107821_bb0565) 2018; 105
Filipe Ramos (10.1016/j.fuproc.2023.107821_bb0330) 2019; 254
He (10.1016/j.fuproc.2023.107821_bb0035) 2019; 206
Stagni (10.1016/j.fuproc.2023.107821_bb0250) 2020; 5
References_xml – volume: 89
  start-page: 3540
  year: 2010
  end-page: 3545
  ident: bb0455
  article-title: Ammonia combustion at elevated pressure and temperature conditions
  publication-title: Fuel
– year: 2021
  ident: bb0025
  article-title: JERA and IHI Start Small-Volume Utilization of Fuel Ammonia at Hekinan Thermal Power Station Unit 5
– year: 2013
  ident: bb0630
  article-title: Effects of fuel compositions on diesel engine performance using ammonia-DME mixtures
  publication-title: SAE Techn. Paper
– year: 1966
  ident: bb0340
  article-title: Experimental investigation of ammonia as a gas turbine engine fuel
  publication-title: SAE Techn. Paper
– volume: 46
  start-page: 31879
  year: 2021
  end-page: 31893
  ident: bb0130
  article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition
  publication-title: Int. J. Hydrog. Energy
– volume: 38
  start-page: 2477
  year: 2021
  end-page: 2485
  ident: bb0145
  article-title: Characterizing ammonia and nitric oxide interaction with outwardly propagating spherical flame method
  publication-title: Proc. Combust. Inst.
– volume: 206
  start-page: 214
  year: 2019
  end-page: 226
  ident: bb0135
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames
  publication-title: Combust. Flame
– volume: 45
  start-page: 22008
  year: 2020
  end-page: 22018
  ident: bb0315
  article-title: Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames
  publication-title: Int. J. Hydrog. Energy
– year: 2012
  ident: bb0625
  article-title: Ammonia plus hydrogen as fuel in a SI engine: experimental results
  publication-title: SAE Techn. Paper
– volume: 36
  start-page: 8528
  year: 2022
  end-page: 8537
  ident: bb0140
  article-title: Unraveling pressure Effects in Laminar Flame Propagation of Ammonia: a Comparative Study with Hydrogen, methane, and Ammonia/Hydrogen
  publication-title: Energy Fuel
– volume: 99
  start-page: 273
  year: 2021
  end-page: 298
  ident: bb0040
  article-title: A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion
  publication-title: J. Energy Inst.
– volume: 236
  year: 2022
  ident: bb0070
  article-title: Experimental study and numerical validation of oxy-ammonia combustion at elevated temperatures and pressures
  publication-title: Combust. Flame
– volume: 31
  start-page: 8631
  year: 2017
  end-page: 8642
  ident: bb0310
  article-title: Modeling Combustion of Ammonia/Hydrogen fuel Blends under Gas Turbine Conditions
  publication-title: Energy Fuel
– volume: 28
  start-page: 173
  year: 2022
  end-page: 184
  ident: bb0030
  article-title: Recent advances on ammonia combustion technology for zero-carbon power
  publication-title: Clean Coal Technol.
– volume: 43
  start-page: 3004
  year: 2018
  end-page: 3014
  ident: bb0305
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int. J. Hydrog. Energy
– volume: 181
  start-page: 1353
  year: 2022
  end-page: 1370
  ident: bb0210
  article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend
  publication-title: Renew. Energy
– volume: 147
  year: 2021
  ident: bb0045
  article-title: A review on ammonia, ammonia-hydrogen and ammonia-methane fuels
  publication-title: Renew. Sust. Energ. Rev.
– volume: 44
  start-page: 6939
  year: 2020
  end-page: 6949
  ident: bb0195
  article-title: Experimental and modeling study on ignition delay of ammonia/methane fuels
  publication-title: Int. J. Energy Res.
– volume: 46
  start-page: 35495
  year: 2021
  end-page: 35510
  ident: bb0645
  article-title: An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine
  publication-title: Int. J. Hydrog. Energy
– volume: 206
  start-page: 189
  year: 2019
  end-page: 200
  ident: bb0035
  article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures
  publication-title: Combust. Flame
– volume: 220
  start-page: 368
  year: 2020
  end-page: 377
  ident: bb0365
  article-title: Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm
  publication-title: Combust. Flame
– volume: 319
  year: 2022
  ident: bb0380
  article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME
  publication-title: Fuel
– volume: 45
  start-page: 7098
  year: 2020
  end-page: 7118
  ident: bb0010
  article-title: A review of ammonia as a compression ignition engine fuel
  publication-title: Int. J. Hydrog. Energy
– volume: 156
  year: 2022
  ident: bb0385
  article-title: Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether
  publication-title: Renew. Sust. Energ. Rev.
– volume: 37
  start-page: 4587
  year: 2019
  end-page: 4595
  ident: bb0585
  article-title: Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation
  publication-title: Proc. Combust. Inst.
– volume: 319
  year: 2022
  ident: bb0075
  article-title: Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma
  publication-title: Fuel
– reference: S.M. Grannell, D.N. Assanis, S.V. Bohac, D.E. Gillespie, The operating features of a stoichiometric, ammonia and gasoline dual fueled spark ignition engine, ASME 2006 International Mechanical Engineering Congress and Exposition, Energy Conver. Resourc. (2006) 15–27.doi:
– volume: 37
  start-page: 109
  year: 2019
  end-page: 133
  ident: bb0285
  article-title: Science and technology of ammonia combustion
  publication-title: Proc. Combust. Inst.
– volume: 44
  start-page: 8615
  year: 2019
  end-page: 8626
  ident: bb0440
  article-title: Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation
  publication-title: Int. J. Hydrog. Energy
– volume: 228
  start-page: 430
  year: 2021
  end-page: 432
  ident: bb0545
  article-title: Plasma assisted ammonia combustion: s+imultaneous NOx reduction and flame enhancement
  publication-title: Combust. Flame
– volume: 93
  start-page: 2053
  year: 2015
  end-page: 2068
  ident: bb0465
  article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion
  publication-title: Energy
– volume: 35
  start-page: 6964
  year: 2021
  end-page: 7029
  ident: bb0050
  article-title: Review on Ammonia as a potential fuel: from Synthesis to Economics
  publication-title: Energy Fuel
– volume: 213
  start-page: 1
  year: 2020
  end-page: 13
  ident: bb0245
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames
  publication-title: Combust. Flame
– volume: 329
  year: 2022
  ident: bb0420
  article-title: Experimental study and kinetic analysis of the impact of ammonia co-firing ratio on products formation characteristics in ammonia/coal co-firing process
  publication-title: Fuel
– volume: 254
  year: 2019
  ident: bb0590
  article-title: Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions
  publication-title: Appl. Energy
– volume: 99
  start-page: 253
  year: 1994
  end-page: 276
  ident: bb0230
  article-title: Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation
  publication-title: Combust. Sci. Technol.
– year: 1878
  ident: bb0605
  article-title: A History of the Growth of the Steam-Engine
– volume: 136
  start-page: 501
  year: 2004
  end-page: 518
  ident: bb0235
  article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor
  publication-title: Combust. Flame
– volume: 36
  start-page: 3351
  year: 2017
  end-page: 3359
  ident: bb0015
  article-title: Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations
  publication-title: Proc. Combust. Inst.
– year: 2015
  ident: bb0105
  article-title: NO Formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures
  publication-title: Mech. Eng. J.
– volume: 140
  start-page: 125
  year: 2017
  end-page: 135
  ident: bb0320
  article-title: Study on premixed combustion characteristics of co-firing ammonia/methane fuels
  publication-title: Energy
– volume: 103
  start-page: 1069
  year: 2013
  end-page: 1079
  ident: bb0335
  article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures
  publication-title: Fuel
– volume: 116
  start-page: 206
  year: 2014
  end-page: 215
  ident: bb0640
  article-title: Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine
  publication-title: Appl. Energy
– volume: 5
  start-page: 175
  year: 1972
  end-page: 182
  ident: bb0215
  article-title: High Temperature Oxidation of Ammonia
  publication-title: Combust. Sci. Technol.
– volume: 38
  start-page: 2163
  year: 2021
  end-page: 2174
  ident: bb0460
  article-title: An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature
  publication-title: Proc. Combust. Inst.
– volume: 11
  year: 2016
  ident: bb0290
  article-title: Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner, Journal of Fluid
  publication-title: Sci. Technol.
– volume: 254
  year: 2019
  ident: bb0330
  article-title: Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames
  publication-title: Fuel
– volume: 240
  start-page: 57
  year: 2019
  end-page: 63
  ident: bb0575
  article-title: Oxidation of ammonia by iron, manganese and nickel oxides – Implications on NOx formation in chemical-looping combustion
  publication-title: Fuel
– volume: 90
  start-page: 854
  year: 2011
  end-page: 864
  ident: bb0435
  article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system
  publication-title: Fuel
– volume: 194
  start-page: 28
  year: 2018
  end-page: 36
  ident: bb0170
  article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames
  publication-title: Combust. Flame
– volume: 31
  start-page: 3327
  year: 2007
  end-page: 3334
  ident: bb0525
  article-title: Ignition of premixed hydrocarbon–air flows by repetitively pulsed, nanosecond pulse duration plasma
  publication-title: Proc. Combust. Inst.
– volume: 85
  start-page: 503
  year: 2015
  end-page: 510
  ident: bb0060
  article-title: Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures
  publication-title: Energy
– volume: 39
  start-page: 21307
  year: 2014
  end-page: 21316
  ident: bb0490
  article-title: On a porous medium combustor for hydrogen flame stabilization and operation
  publication-title: Int. J. Hydrog. Energy
– volume: 7
  year: 2021
  ident: bb0055
  article-title: Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control
  publication-title: Appl. Energy Combust. Sci.
– volume: 90
  start-page: 87
  year: 2011
  end-page: 97
  ident: bb0445
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
– volume: 156
  start-page: 1413
  year: 2009
  end-page: 1426
  ident: bb0240
  article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure
  publication-title: Combust. Flame
– volume: 210
  start-page: 236
  year: 2019
  end-page: 246
  ident: bb0255
  article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions
  publication-title: Combust. Flame
– volume: 246
  start-page: 24
  year: 2019
  end-page: 33
  ident: bb0300
  article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission
  publication-title: Fuel
– volume: 204
  start-page: 162
  year: 2019
  end-page: 175
  ident: bb0260
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust. Flame
– volume: 256
  year: 2022
  ident: bb0400
  article-title: Mitigating CO2 emission in pulverized coal-fired power plant via CO-firing ammonia: a simulation study of flue gas streams and exergy efficiency
  publication-title: Energy Convers. Manag.
– volume: 90
  start-page: 729
  year: 2009
  end-page: 737
  ident: bb0615
  article-title: Ammonia as a green fuel and hydrogen source for vehicular applications
  publication-title: Fuel Process. Technol.
– volume: 34
  start-page: 149
  year: 1983
  end-page: 176
  ident: bb0225
  article-title: Kinetic Modeling of the Oxidation of Ammonia in Flames
  publication-title: Combust. Sci. Technol.
– volume: 120
  start-page: 24734
  year: 2016
  end-page: 24742
  ident: bb0570
  article-title: Copper oxides supported on aluminum oxide borates for catalytic ammonia combustion
  publication-title: J. Phys. Chem. C
– volume: 126
  start-page: 796
  year: 2017
  end-page: 809
  ident: bb0350
  article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition
  publication-title: Energy
– volume: 251
  year: 2019
  ident: bb0595
  article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines
  publication-title: Appl. Energy
– volume: 42
  start-page: 27388
  year: 2017
  end-page: 27399
  ident: bb0480
  article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure
  publication-title: Int. J. Hydrog. Energy
– start-page: 15
  year: 2006
  end-page: 27
  ident: bb0005
  article-title: The Operating Features of a Stoichiometric, Ammonia and Gasoline Dual Fueled Spark Ignition Engine
  publication-title: ASME 2006 International Mechanical Engineering Congress and Exposition
– volume: 110
  start-page: 522
  year: 2004
  ident: bb0125
  article-title: Burning Velocity and Refrigerant Flammability Classification/Discussion
  publication-title: ASHRAE Trans.
– volume: 123
  start-page: 64
  year: 2019
  end-page: 68
  ident: bb0560
  article-title: Ammonia-rich combustion and ammonia combustive decomposition properties of various supported catalysts
  publication-title: Catal. Commun.
– volume: 39
  start-page: 61
  year: 2013
  end-page: 110
  ident: bb0520
  article-title: Plasma-assisted ignition and combustion
  publication-title: Prog. Energy Combust. Sci.
– volume: 22
  start-page: 2963
  year: 2008
  end-page: 2971
  ident: bb0430
  article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions
  publication-title: Energy Fuel
– volume: 313
  year: 2022
  ident: bb0540
  article-title: Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges
  publication-title: Fuel
– volume: 246
  start-page: 178
  year: 2019
  end-page: 186
  ident: bb0180
  article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field
  publication-title: Fuel
– volume: 47
  start-page: 4171
  year: 2022
  end-page: 4184
  ident: bb0160
  article-title: Experimental and numerical study on premixed partially dissociated ammonia mixtures. Part I: Laminar burning velocity of NH3/H2/N2/air mixtures
  publication-title: Int. J. Hydrog. Energy
– volume: 75
  start-page: 772
  year: 1967
  end-page: 784
  ident: bb0580
  article-title: Theoretical performance of ammonia as a gas turbine fuel
  publication-title: SAE Trans.
– volume: 31
  start-page: 213
  year: 1945
  ident: bb0610
  article-title: Ammonia–a fuel for motor buses
  publication-title: J. Inst. Pet.
– volume: 142
  start-page: 674
  year: 2017
  end-page: 679
  ident: bb0505
  article-title: Evaluation of ammonia-hydrogen-air combustion in SiC porous medium based burner
  publication-title: Energy Procedia
– volume: 40
  start-page: 9570
  year: 2015
  end-page: 9578
  ident: bb0345
  article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures
  publication-title: Int. J. Hydrog. Energy
– volume: 50
  start-page: 752
  year: 2021
  end-page: 759
  ident: bb0080
  article-title: Ammonia Combustion Catalysts
  publication-title: Chem. Lett.
– volume: 59
  start-page: 123
  year: 1988
  end-page: 141
  ident: bb0115
  article-title: Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity
  publication-title: Combust. Sci. Technol.
– volume: 162
  start-page: 554
  year: 2015
  end-page: 570
  ident: bb0185
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry
  publication-title: Combust. Flame
– volume: 42
  start-page: 14010
  year: 2017
  end-page: 14018
  ident: bb0295
  article-title: Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor
  publication-title: Int. J. Hydrog. Energy
– volume: 38
  start-page: 6661
  year: 2021
  end-page: 6669
  ident: bb0555
  article-title: A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma
  publication-title: Proc. Combust. Inst.
– volume: 173
  start-page: 109
  year: 2019
  end-page: 120
  ident: bb0415
  article-title: Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature
  publication-title: Energy
– volume: 37
  start-page: 5401
  year: 2019
  end-page: 5409
  ident: bb0475
  article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame
  publication-title: Proc. Combust. Inst.
– volume: 38
  start-page: 468
  year: 2012
  end-page: 501
  ident: bb0165
  article-title: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels
  publication-title: Prog. Energy Combust. Sci.
– volume: 105
  start-page: 48
  year: 2018
  end-page: 51
  ident: bb0565
  article-title: Supported and unsupported manganese oxides for catalytic ammonia combustion
  publication-title: Catal. Commun.
– volume: 231
  year: 2021
  ident: bb0095
  article-title: Chemiluminescence signature of premixed ammonia-methane-air flames
  publication-title: Combust. Flame
– volume: 48
  start-page: 21
  year: 2015
  end-page: 83
  ident: bb0535
  article-title: Plasma assisted combustion: dynamics and chemistry
  publication-title: Prog. Energy Combust. Sci.
– volume: 139
  start-page: 188
  year: 2004
  end-page: 207
  ident: bb0100
  article-title: Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame
  publication-title: Combust. Flame
– volume: 38
  start-page: 4131
  year: 2021
  end-page: 4139
  ident: bb0405
  article-title: Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure
  publication-title: Proc. Combust. Inst.
– volume: 145
  start-page: 70
  year: 2015
  end-page: 78
  ident: bb0495
  article-title: Dynamic behaviors of premixed hydrogen–air flames in a planar micro-combustor filled with porous medium
  publication-title: Fuel
– volume: 268
  year: 2020
  ident: bb0175
  article-title: Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition
  publication-title: Fuel
– volume: 5
  start-page: 696
  year: 2020
  end-page: 711
  ident: bb0250
  article-title: An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia
  publication-title: React. Chem. Eng.
– volume: 42
  start-page: 14775
  year: 2017
  end-page: 14785
  ident: bb0500
  article-title: Porous medium based burner for efficient and clean combustion of ammonia–hydrogen–air systems
  publication-title: Int. J. Hydrog. Energy
– volume: 42
  start-page: 24495
  year: 2017
  end-page: 24503
  ident: bb0600
  article-title: Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors
  publication-title: Int. J. Hydrog. Energy
– volume: 214
  year: 2021
  ident: bb0370
  article-title: Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames
  publication-title: Fuel Process. Technol.
– volume: 187
  start-page: 185
  year: 2018
  end-page: 198
  ident: bb0150
  article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames
  publication-title: Combust. Flame
– volume: 10
  year: 2022
  ident: bb0270
  article-title: Challenges in Kinetic modeling of ammonia pyrolysis
  publication-title: Fuel Commun.
– volume: 155
  start-page: 144
  year: 2008
  end-page: 152
  ident: bb0110
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J. Hazard. Mater.
– volume: 37
  start-page: 4597
  year: 2019
  end-page: 4606
  ident: bb0470
  article-title: Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine
  publication-title: Proc. Combust. Inst.
– volume: 36
  start-page: 85
  year: 2016
  end-page: 105
  ident: bb0515
  article-title: Plasma assisted low temperature combustion
  publication-title: Plasma Chem. Plasma Process.
– volume: 123
  start-page: 140
  year: 2000
  end-page: 158
  ident: bb0120
  article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures
  publication-title: Combust. Flame
– volume: 287
  year: 2021
  ident: bb0395
  article-title: Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure
  publication-title: Fuel
– volume: 275
  year: 2020
  ident: bb0325
  article-title: Study on counterflow premixed flames using high concentration ammonia mixed with methane
  publication-title: Fuel
– volume: 263
  year: 2020
  ident: bb0450
  article-title: Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures
  publication-title: Fuel
– volume: 218
  start-page: 19
  year: 2020
  end-page: 26
  ident: bb0200
  article-title: Autoignition studies of NH3/CH4 mixtures at high pressure
  publication-title: Combust. Flame
– volume: 263
  year: 2023
  ident: bb0065
  article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner
  publication-title: Energy
– year: 2018
  ident: bb0020
  article-title: Basic Co-Firing Characteristics of ammonia with Pulverized Coal in a Single Burner Test Furnace, 2018 AIChE Annual Meeting
– volume: 323
  year: 2022
  ident: bb0550
  article-title: Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor
  publication-title: Fuel
– volume: 159
  start-page: 98
  year: 2015
  end-page: 106
  ident: bb0090
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
– volume: 434
  year: 2022
  ident: bb0510
  article-title: NOx emission reduction in ammonia-powered micro-combustors by partially inserting porous medium under fuel-rich condition
  publication-title: Chem. Eng. J.
– volume: 281
  year: 2020
  ident: bb0205
  article-title: Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: ignition delay time measurement and kinetic analysis
  publication-title: Fuel
– volume: 33
  start-page: 3211
  year: 2011
  end-page: 3218
  ident: bb0530
  article-title: Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction
  publication-title: Proc. Combust. Inst.
– volume: 290
  year: 2021
  ident: bb0355
  article-title: An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames
  publication-title: Fuel
– volume: 231
  year: 2021
  ident: bb0390
  article-title: Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm
  publication-title: Combust. Flame
– volume: 279
  year: 2020
  ident: bb0155
  article-title: Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures
  publication-title: Fuel
– reference: .
– year: 2016
  ident: bb0635
  article-title: Effects of Ammonia Gas Mixed into Intake Air on Combustion and Emissions Characteristics in Diesel Engine, ASME 2016 Internal Combustion Engine Division Fall Technical Conference
– volume: 65
  start-page: 298
  year: 1961
  end-page: 303
  ident: bb0220
  article-title: Oxidation of ammonia in flames
  publication-title: J. Phys. Chem.
– volume: 37
  start-page: 205
  year: 2019
  end-page: 211
  ident: bb0190
  article-title: A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures
  publication-title: Proc. Combust. Inst.
– volume: 47
  start-page: 33498
  year: 2022
  end-page: 33516
  ident: bb0275
  article-title: Detailed chemical effects of ammonia as fuel additive in ethylene counterflow diffusion flames
  publication-title: Int. J. Hydrog. Energy
– volume: 38
  start-page: 4043
  year: 2021
  end-page: 4052
  ident: bb0410
  article-title: Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion
  publication-title: Proc. Combust. Inst.
– volume: 227
  start-page: 120
  year: 2021
  end-page: 134
  ident: bb0375
  article-title: Ignition delay times of NH3 /DME blends at high pressure and low DME fraction: RCM experiments and simulations
  publication-title: Combust. Flame
– volume: 152
  start-page: 23
  year: 2000
  end-page: 37
  ident: bb0265
  article-title: Kinetic Modeling of the thermal Decomposition of Ammonia
  publication-title: Combust. Sci. Technol.
– volume: 221
  start-page: 270
  year: 2020
  end-page: 287
  ident: bb0360
  article-title: Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures
  publication-title: Combust. Flame
– volume: 308
  year: 2022
  ident: bb0085
  article-title: Effect and mechanism of combustion enhancement and emission reduction for non-premixed pure ammonia combustion based on fuel preheating
  publication-title: Fuel
– volume: 10
  year: 2022
  ident: bb0280
  article-title: Laminar flame speed of ethanol/ammonia blends–an experimental and kinetic study
  publication-title: Fuel Commun.
– volume: 34
  start-page: 16903
  year: 2020
  end-page: 16917
  ident: bb0485
  article-title: Numerical study on the premixed oxygen-enriched ammonia combustion
  publication-title: Energy Fuel
– volume: 37
  start-page: 6074
  year: 2012
  end-page: 6083
  ident: bb0620
  article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia
  publication-title: Int. J. Hydrog. Energy
– volume: 210
  start-page: 236
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0255
  article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.08.033
– volume: 140
  start-page: 125
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0320
  article-title: Study on premixed combustion characteristics of co-firing ammonia/methane fuels
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.077
– volume: 85
  start-page: 503
  year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0060
  article-title: Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2015.03.061
– volume: 7
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0055
  article-title: Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control
  publication-title: Appl. Energy Combust. Sci.
– volume: 275
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0325
  article-title: Study on counterflow premixed flames using high concentration ammonia mixed with methane
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117902
– volume: 263
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0450
  article-title: Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116653
– volume: 10
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0270
  article-title: Challenges in Kinetic modeling of ammonia pyrolysis
  publication-title: Fuel Commun.
  doi: 10.1016/j.jfueco.2022.100049
– volume: 37
  start-page: 5401
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0475
  article-title: Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.07.091
– volume: 46
  start-page: 31879
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0130
  article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.07.063
– volume: 44
  start-page: 8615
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0440
  article-title: Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.02.041
– volume: 34
  start-page: 16903
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0485
  article-title: Numerical study on the premixed oxygen-enriched ammonia combustion
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.0c02777
– ident: 10.1016/j.fuproc.2023.107821_bb0425
  doi: 10.1115/IMECE2006-13048
– volume: 319
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0075
  article-title: Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123818
– volume: 251
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0595
  article-title: Fuel rich ammonia-hydrogen injection for humidified gas turbines
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113334
– volume: 38
  start-page: 6661
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0555
  article-title: A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.08.033
– volume: 42
  start-page: 24495
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0600
  article-title: Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.08.028
– volume: 36
  start-page: 3351
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0015
  article-title: Performances and emission characteristics of NH3–air and NH3CH4–air combustion gas-turbine power generations
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.07.088
– volume: 47
  start-page: 33498
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0275
  article-title: Detailed chemical effects of ammonia as fuel additive in ethylene counterflow diffusion flames
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2022.07.254
– volume: 287
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0395
  article-title: Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119563
– volume: 105
  start-page: 48
  year: 2018
  ident: 10.1016/j.fuproc.2023.107821_bb0565
  article-title: Supported and unsupported manganese oxides for catalytic ammonia combustion
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.11.009
– volume: 48
  start-page: 21
  year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0535
  article-title: Plasma assisted combustion: dynamics and chemistry
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2014.12.002
– volume: 213
  start-page: 1
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0245
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.11.032
– volume: 37
  start-page: 6074
  year: 2012
  ident: 10.1016/j.fuproc.2023.107821_bb0620
  article-title: Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.12.137
– volume: 42
  start-page: 27388
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0480
  article-title: Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.09.089
– volume: 123
  start-page: 140
  year: 2000
  ident: 10.1016/j.fuproc.2023.107821_bb0120
  article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(00)00152-8
– volume: 268
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0175
  article-title: Turbulent burning velocity of ammonia/oxygen/nitrogen premixed flame in O2-enriched air condition
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117383
– volume: 120
  start-page: 24734
  year: 2016
  ident: 10.1016/j.fuproc.2023.107821_bb0570
  article-title: Copper oxides supported on aluminum oxide borates for catalytic ammonia combustion
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07157
– volume: 75
  start-page: 772
  year: 1967
  ident: 10.1016/j.fuproc.2023.107821_bb0580
  article-title: Theoretical performance of ammonia as a gas turbine fuel
  publication-title: SAE Trans.
– volume: 47
  start-page: 4171
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0160
  article-title: Experimental and numerical study on premixed partially dissociated ammonia mixtures. Part I: Laminar burning velocity of NH3/H2/N2/air mixtures
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.10.269
– volume: 43
  start-page: 3004
  year: 2018
  ident: 10.1016/j.fuproc.2023.107821_bb0305
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.12.066
– volume: 33
  start-page: 3211
  year: 2011
  ident: 10.1016/j.fuproc.2023.107821_bb0530
  article-title: Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.06.148
– volume: 214
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0370
  article-title: Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2020.106682
– volume: 236
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0070
  article-title: Experimental study and numerical validation of oxy-ammonia combustion at elevated temperatures and pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.111819
– volume: 281
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0205
  article-title: Low-temperature auto-ignition characteristics of NH3/diesel binary fuel: ignition delay time measurement and kinetic analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118761
– volume: 10
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0280
  article-title: Laminar flame speed of ethanol/ammonia blends–an experimental and kinetic study
  publication-title: Fuel Commun.
  doi: 10.1016/j.jfueco.2022.100052
– volume: 116
  start-page: 206
  year: 2014
  ident: 10.1016/j.fuproc.2023.107821_bb0640
  article-title: Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.11.067
– volume: 36
  start-page: 85
  year: 2016
  ident: 10.1016/j.fuproc.2023.107821_bb0515
  article-title: Plasma assisted low temperature combustion
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-015-9657-2
– year: 1878
  ident: 10.1016/j.fuproc.2023.107821_bb0605
– volume: 319
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0380
  article-title: Study of combustion and NO chemical reaction mechanism in ammonia blended with DME
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123832
– volume: 145
  start-page: 70
  year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0495
  article-title: Dynamic behaviors of premixed hydrogen–air flames in a planar micro-combustor filled with porous medium
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.12.070
– volume: 228
  start-page: 430
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0545
  article-title: Plasma assisted ammonia combustion: s+imultaneous NOx reduction and flame enhancement
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.02.016
– volume: 156
  start-page: 1413
  year: 2009
  ident: 10.1016/j.fuproc.2023.107821_bb0240
  article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2009.03.005
– year: 2013
  ident: 10.1016/j.fuproc.2023.107821_bb0630
  article-title: Effects of fuel compositions on diesel engine performance using ammonia-DME mixtures
  publication-title: SAE Techn. Paper
  doi: 10.4271/2013-01-1133
– volume: 206
  start-page: 214
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0135
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.05.003
– volume: 220
  start-page: 368
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0365
  article-title: Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10 atm
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.07.011
– volume: 173
  start-page: 109
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0415
  article-title: Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.065
– volume: 38
  start-page: 2477
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0145
  article-title: Characterizing ammonia and nitric oxide interaction with outwardly propagating spherical flame method
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.07.133
– volume: 34
  start-page: 149
  year: 1983
  ident: 10.1016/j.fuproc.2023.107821_bb0225
  article-title: Kinetic Modeling of the Oxidation of Ammonia in Flames
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102208308923691
– volume: 246
  start-page: 24
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0300
  article-title: Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.102
– volume: 37
  start-page: 4587
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0585
  article-title: Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.09.012
– volume: 139
  start-page: 188
  year: 2004
  ident: 10.1016/j.fuproc.2023.107821_bb0100
  article-title: Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2004.08.003
– volume: 218
  start-page: 19
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0200
  article-title: Autoignition studies of NH3/CH4 mixtures at high pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.04.020
– volume: 142
  start-page: 674
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0505
  article-title: Evaluation of ammonia-hydrogen-air combustion in SiC porous medium based burner
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.111
– volume: 35
  start-page: 6964
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0050
  article-title: Review on Ammonia as a potential fuel: from Synthesis to Economics
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.0c03685
– volume: 37
  start-page: 4597
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0470
  article-title: Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.07.083
– volume: 181
  start-page: 1353
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0210
  article-title: Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: a promising low carbon fuel blend
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.09.117
– volume: 254
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0330
  article-title: Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115693
– volume: 231
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0390
  article-title: Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.111472
– volume: 204
  start-page: 162
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0260
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.03.008
– volume: 279
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0155
  article-title: Measurement of oxy-ammonia laminar burning velocity at normal and elevated temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118425
– volume: 90
  start-page: 854
  year: 2011
  ident: 10.1016/j.fuproc.2023.107821_bb0435
  article-title: Ammonia/hydrogen mixtures in an SI-engine: engine performance and analysis of a proposed fuel system
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.09.042
– volume: 38
  start-page: 4131
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0405
  article-title: Effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.06.358
– volume: 194
  start-page: 28
  year: 2018
  ident: 10.1016/j.fuproc.2023.107821_bb0170
  article-title: Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2018.04.011
– volume: 42
  start-page: 14010
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0295
  article-title: Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.01.046
– volume: 434
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0510
  article-title: NOx emission reduction in ammonia-powered micro-combustors by partially inserting porous medium under fuel-rich condition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134680
– volume: 206
  start-page: 189
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0035
  article-title: Auto-ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate temperatures and high pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.04.050
– volume: 31
  start-page: 3327
  year: 2007
  ident: 10.1016/j.fuproc.2023.107821_bb0525
  article-title: Ignition of premixed hydrocarbon–air flows by repetitively pulsed, nanosecond pulse duration plasma
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.07.126
– volume: 65
  start-page: 298
  year: 1961
  ident: 10.1016/j.fuproc.2023.107821_bb0220
  article-title: Oxidation of ammonia in flames
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100820a027
– volume: 136
  start-page: 501
  year: 2004
  ident: 10.1016/j.fuproc.2023.107821_bb0235
  article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2003.12.008
– volume: 11
  year: 2016
  ident: 10.1016/j.fuproc.2023.107821_bb0290
  article-title: Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner, Journal of Fluid
  publication-title: Sci. Technol.
– volume: 93
  start-page: 2053
  year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0465
  article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.060
– volume: 103
  start-page: 1069
  year: 2013
  ident: 10.1016/j.fuproc.2023.107821_bb0335
  article-title: Performance characteristics of a compression-ignition engine using direct-injection ammonia–DME mixtures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.08.026
– year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0105
  article-title: NO Formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures
  publication-title: Mech. Eng. J.
– year: 2016
  ident: 10.1016/j.fuproc.2023.107821_bb0635
– volume: 147
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0045
  article-title: A review on ammonia, ammonia-hydrogen and ammonia-methane fuels
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2021.111254
– volume: 254
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0590
  article-title: Low-NOx conversion of pure ammonia in a cyclonic burner under locally diluted and preheated conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113676
– start-page: 15
  year: 2006
  ident: 10.1016/j.fuproc.2023.107821_bb0005
  article-title: The Operating Features of a Stoichiometric, Ammonia and Gasoline Dual Fueled Spark Ignition Engine
– year: 2018
  ident: 10.1016/j.fuproc.2023.107821_bb0020
– volume: 126
  start-page: 796
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0350
  article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.085
– volume: 99
  start-page: 253
  year: 1994
  ident: 10.1016/j.fuproc.2023.107821_bb0230
  article-title: Detailed Kinetic Modelling of Chemistry and Temperature Effects on Ammonia Oxidation
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209408935436
– volume: 38
  start-page: 2163
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0460
  article-title: An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.06.197
– volume: 329
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0420
  article-title: Experimental study and kinetic analysis of the impact of ammonia co-firing ratio on products formation characteristics in ammonia/coal co-firing process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125496
– year: 2012
  ident: 10.1016/j.fuproc.2023.107821_bb0625
  article-title: Ammonia plus hydrogen as fuel in a SI engine: experimental results
  publication-title: SAE Techn. Paper
  doi: 10.4271/2012-32-0019
– volume: 290
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0355
  article-title: An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.120003
– volume: 44
  start-page: 6939
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0195
  article-title: Experimental and modeling study on ignition delay of ammonia/methane fuels
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5460
– volume: 22
  start-page: 2963
  year: 2008
  ident: 10.1016/j.fuproc.2023.107821_bb0430
  article-title: Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions
  publication-title: Energy Fuel
  doi: 10.1021/ef800140f
– volume: 40
  start-page: 9570
  year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0345
  article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.04.024
– volume: 5
  start-page: 175
  year: 1972
  ident: 10.1016/j.fuproc.2023.107821_bb0215
  article-title: High Temperature Oxidation of Ammonia
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102207208952518
– volume: 227
  start-page: 120
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0375
  article-title: Ignition delay times of NH3 /DME blends at high pressure and low DME fraction: RCM experiments and simulations
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.12.048
– volume: 152
  start-page: 23
  year: 2000
  ident: 10.1016/j.fuproc.2023.107821_bb0265
  article-title: Kinetic Modeling of the thermal Decomposition of Ammonia
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102200008952125
– volume: 38
  start-page: 4043
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0410
  article-title: Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.06.102
– volume: 28
  start-page: 173
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0030
  article-title: Recent advances on ammonia combustion technology for zero-carbon power
  publication-title: Clean Coal Technol.
– volume: 187
  start-page: 185
  year: 2018
  ident: 10.1016/j.fuproc.2023.107821_bb0150
  article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.09.002
– volume: 38
  start-page: 468
  year: 2012
  ident: 10.1016/j.fuproc.2023.107821_bb0165
  article-title: Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2012.03.004
– year: 1966
  ident: 10.1016/j.fuproc.2023.107821_bb0340
  article-title: Experimental investigation of ammonia as a gas turbine engine fuel
  publication-title: SAE Techn. Paper
  doi: 10.4271/660769
– volume: 155
  start-page: 144
  year: 2008
  ident: 10.1016/j.fuproc.2023.107821_bb0110
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.11.089
– volume: 159
  start-page: 98
  year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0090
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.070
– volume: 256
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0400
  article-title: Mitigating CO2 emission in pulverized coal-fired power plant via CO-firing ammonia: a simulation study of flue gas streams and exergy efficiency
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115328
– volume: 46
  start-page: 35495
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0645
  article-title: An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.08.089
– volume: 59
  start-page: 123
  year: 1988
  ident: 10.1016/j.fuproc.2023.107821_bb0115
  article-title: Effect of Chemistry and Transport Properties on Near-Limit Flames at Microgravity
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102208808947092
– volume: 50
  start-page: 752
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0080
  article-title: Ammonia Combustion Catalysts
  publication-title: Chem. Lett.
  doi: 10.1246/cl.200843
– volume: 308
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0085
  article-title: Effect and mechanism of combustion enhancement and emission reduction for non-premixed pure ammonia combustion based on fuel preheating
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122017
– volume: 240
  start-page: 57
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0575
  article-title: Oxidation of ammonia by iron, manganese and nickel oxides – Implications on NOx formation in chemical-looping combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.121
– volume: 156
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0385
  article-title: Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2021.112003
– volume: 90
  start-page: 87
  year: 2011
  ident: 10.1016/j.fuproc.2023.107821_bb0445
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.07.055
– volume: 263
  year: 2023
  ident: 10.1016/j.fuproc.2023.107821_bb0065
  article-title: Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125613
– volume: 45
  start-page: 22008
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0315
  article-title: Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.05.236
– volume: 246
  start-page: 178
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0180
  article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.110
– volume: 313
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0540
  article-title: Flammability enhancement of swirling ammonia/air combustion using AC powered gliding arc discharges
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122674
– volume: 323
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0550
  article-title: Effects of non-thermal plasma on turbulent premixed flames of ammonia/air in a swirl combustor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124227
– volume: 99
  start-page: 273
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0040
  article-title: A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2021.10.001
– volume: 5
  start-page: 696
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0250
  article-title: An experimental, theoretical and kinetic-modeling study of the gas-phase oxidation of ammonia
  publication-title: React. Chem. Eng.
  doi: 10.1039/C9RE00429G
– volume: 90
  start-page: 729
  year: 2009
  ident: 10.1016/j.fuproc.2023.107821_bb0615
  article-title: Ammonia as a green fuel and hydrogen source for vehicular applications
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2009.02.004
– volume: 31
  start-page: 8631
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0310
  article-title: Modeling Combustion of Ammonia/Hydrogen fuel Blends under Gas Turbine Conditions
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.7b00709
– volume: 37
  start-page: 205
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0190
  article-title: A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.07.074
– ident: 10.1016/j.fuproc.2023.107821_bb0025
– volume: 110
  start-page: 522
  year: 2004
  ident: 10.1016/j.fuproc.2023.107821_bb0125
  article-title: Burning Velocity and Refrigerant Flammability Classification/Discussion
  publication-title: ASHRAE Trans.
– volume: 31
  start-page: 213
  year: 1945
  ident: 10.1016/j.fuproc.2023.107821_bb0610
  article-title: Ammonia–a fuel for motor buses
  publication-title: J. Inst. Pet.
– volume: 39
  start-page: 61
  year: 2013
  ident: 10.1016/j.fuproc.2023.107821_bb0520
  article-title: Plasma-assisted ignition and combustion
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2012.05.003
– volume: 45
  start-page: 7098
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0010
  article-title: A review of ammonia as a compression ignition engine fuel
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.12.209
– volume: 123
  start-page: 64
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0560
  article-title: Ammonia-rich combustion and ammonia combustive decomposition properties of various supported catalysts
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2019.02.005
– volume: 231
  year: 2021
  ident: 10.1016/j.fuproc.2023.107821_bb0095
  article-title: Chemiluminescence signature of premixed ammonia-methane-air flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.111508
– volume: 89
  start-page: 3540
  year: 2010
  ident: 10.1016/j.fuproc.2023.107821_bb0455
  article-title: Ammonia combustion at elevated pressure and temperature conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.06.008
– volume: 42
  start-page: 14775
  year: 2017
  ident: 10.1016/j.fuproc.2023.107821_bb0500
  article-title: Porous medium based burner for efficient and clean combustion of ammonia–hydrogen–air systems
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.03.234
– volume: 221
  start-page: 270
  year: 2020
  ident: 10.1016/j.fuproc.2023.107821_bb0360
  article-title: Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.08.004
– volume: 162
  start-page: 554
  year: 2015
  ident: 10.1016/j.fuproc.2023.107821_bb0185
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.08.022
– volume: 36
  start-page: 8528
  year: 2022
  ident: 10.1016/j.fuproc.2023.107821_bb0140
  article-title: Unraveling pressure Effects in Laminar Flame Propagation of Ammonia: a Comparative Study with Hydrogen, methane, and Ammonia/Hydrogen
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.2c01766
– volume: 37
  start-page: 109
  year: 2019
  ident: 10.1016/j.fuproc.2023.107821_bb0285
  article-title: Science and technology of ammonia combustion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.09.029
– volume: 39
  start-page: 21307
  year: 2014
  ident: 10.1016/j.fuproc.2023.107821_bb0490
  article-title: On a porous medium combustor for hydrogen flame stabilization and operation
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2014.10.059
SSID ssj0005597
Score 2.6227622
SecondaryResourceType review_article
Snippet Carbon-free energy carriers like hydrogen and ammonia have drawn increasing interest as the world is committed to building a carbon-neutral future. Compared...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107821
SubjectTerms ammonia
Ammonia combustion
carbon
Carbon-free fuel
combustion
Combustion auxiliary technology
Combustion characteristic
commercialization
energy
fuels
heat
hydrogen
mass transfer
oxygen
production technology
transportation
Title Research progress of ammonia combustion toward low carbon energy
URI https://dx.doi.org/10.1016/j.fuproc.2023.107821
https://www.proquest.com/docview/2834267344
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-SgSv6cPJPnKzFEtV7EULvYVkk0Cl7Ja6xZu_3cw-pApS8LhDEnZnk5kvyTczhNy420QpEwKD2ALjShimQhEy7Z2DUYGKhcGjgedJOJ7yx1kwa5BhHQuDtMrK9pc2vbDWlaRbabO7nM-7Lz2IYoix_DfiFoEBv5xHmD-_87lB8wiKAivYmGHrOnyu4Hi5NbqJDo7hRd5Z9v9yT78MdeF9Rgdkv4KNdFC-2SFp2PSI7G0kEzwmdzWJjhacK2_BaOaownk2V9R_n8bCXVlK84IpSxfZB03USnuJLQIAT8h0dP86HLOqPgJLAETONICzItbKxInjzjjjN1ca9zwetRgHQRT1LVe6ZwVwza1fmyoxLulxBaHoWzglzTRL7RmhNu4lOkB0BY5rY2OBN9PGRKFf4BHoFoFaLTKpkodjDYuFrFlib7JUpkRlylKZLcK-ey3L5Blb2ke1xuWPSSC9fd_S87r-QdKvD7z0UKnN1u_SwycPQiLg_Pzfo1-QXXwqqWWXpJmv1vbKY5Fct4vJ1iY7g4en8eQLTubfDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA7jeFAP4oq7EbxmFl_aJjdlUMZtLip4C0mTwMjQDtrBm7_dvC4yCiJ4fU1C-_qWL8mXPEJO_VmqtY2BgXDAuJaW6VjGzITkYHWkhbS4NHA_iodP_OY5em6RQXMWBmmVdeyvYnoZrWtJt9Zmdzoedx96kAgQWP4bcYsUC2SRR5CgaXc-5ngeUVlhBVszbN6cnytJXn6GeaKDgwRRyJb93_LTj0hdpp-rNbJa40Z6Ub3aOmm5bIOszN0muEnOGxYdLUlXIYTR3FONhjbWNHygwcpdeUaLkipLJ_k7TfWrCRJXngDcIk9Xl4-DIasLJLAUQBbMAHgnhdFWpJ57622YXRmc9ATYYj1ESdJ3XJuek8ANd8E5dWp92uMaYtl3sE3aWZ65HUKd6KUmQngFnhvrhMStaWuTOHh4AmaXQKMWlda3h2MRi4lqaGIvqlKmQmWqSpm7hH31mla3Z_zRPmk0rr5ZgQoB_o-eJ80PUsFBcNdDZy6fvamAnwIKSYDzvX-PfkyWho_3d-ruenS7T5bxScUzOyDt4nXmDgMwKcxRaXiflhPgpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+of+ammonia+combustion+toward+low+carbon+energy&rft.jtitle=Fuel+processing+technology&rft.au=Li%2C+Tianxin&rft.au=Duan%2C+Yuanqiang&rft.au=Wang%2C+Yueming&rft.au=Zhou%2C+Minmin&rft.date=2023-09-01&rft.issn=0378-3820&rft.volume=248&rft.spage=107821&rft_id=info:doi/10.1016%2Fj.fuproc.2023.107821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuproc_2023_107821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon