Wasserstein Distributionally Robust Look-Ahead Economic Dispatch
We consider the problem of look-ahead economic dispatch (LAED) with uncertain renewable energy generation. The goal of this problem is to minimize the cost of conventional energy generation subject to uncertain operational constraints. The risk of violating these constraints must be below a given th...
Saved in:
Published in | IEEE transactions on power systems Vol. 36; no. 3; pp. 2010 - 2022 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider the problem of look-ahead economic dispatch (LAED) with uncertain renewable energy generation. The goal of this problem is to minimize the cost of conventional energy generation subject to uncertain operational constraints. The risk of violating these constraints must be below a given threshold for a family of probability distributions with characteristics similar to observed past data or predictions. We present two data-driven approaches based on two novel mathematical reformulations of this distributionally robust decision problem. The first one is a tractable convex program in which the uncertain constraints are defined via the distributionally robust conditional-value-at-risk. The second one is a scalable robust optimization program that yields an approximate distributionally robust chance-constrained LAED. Numerical experiments on the IEEE 39-bus system with real solar production data and forecasts illustrate the effectiveness of these approaches. We discuss how system operators should tune these techniques in order to seek the desired robustness-performance trade-off and we compare their computational scalability. |
---|---|
AbstractList | We consider the problem of look-ahead economic dispatch (LAED) with uncertain renewable energy generation. The goal of this problem is to minimize the cost of conventional energy generation subject to uncertain operational constraints. The risk of violating these constraints must be below a given threshold for a family of probability distributions with characteristics similar to observed past data or predictions. We present two data-driven approaches based on two novel mathematical reformulations of this distributionally robust decision problem. The first one is a tractable convex program in which the uncertain constraints are defined via the distributionally robust conditional-value-at-risk. The second one is a scalable robust optimization program that yields an approximate distributionally robust chance-constrained LAED. Numerical experiments on the IEEE 39-bus system with real solar production data and forecasts illustrate the effectiveness of these approaches. We discuss how system operators should tune these techniques in order to seek the desired robustness-performance trade-off and we compare their computational scalability. |
Author | Hota, Ashish R. Callaway, Duncan S. Cherukuri, Ashish Bolognani, Saverio Poolla, Bala Kameshwar |
Author_xml | – sequence: 1 givenname: Bala Kameshwar orcidid: 0000-0001-6081-6747 surname: Poolla fullname: Poolla, Bala Kameshwar email: pbkamesh@gmail.com organization: Energy and Resources Group, University of California Berkeley, Berkeley, CA, U.S – sequence: 2 givenname: Ashish R. orcidid: 0000-0003-0562-0594 surname: Hota fullname: Hota, Ashish R. email: ahota@ee.iitkgp.ac.in organization: Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India – sequence: 3 givenname: Saverio orcidid: 0000-0002-7935-1385 surname: Bolognani fullname: Bolognani, Saverio email: bsaverio@ethz.ch organization: Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland – sequence: 4 givenname: Duncan S. orcidid: 0000-0003-3316-9008 surname: Callaway fullname: Callaway, Duncan S. email: dcal@berkeley.edu organization: Energy and Resources Group, University of California Berkeley, Berkeley, CA, U.S – sequence: 5 givenname: Ashish orcidid: 0000-0002-7609-5080 surname: Cherukuri fullname: Cherukuri, Ashish email: a.k.cherukuri@rug.nl organization: University of Groningen, Groningen, CP, The Netherlands |
BookMark | eNp9kD1PwzAURS1UJNrCH4AlEnOKP-LE3qhK-ZAqgUpRR8t2HNUljYvtDP33JLRiYGB6w7vnvqczAoPGNQaAawQnCEF-t3pbL98nGGI4IZBkGWNnYIgoZSnMCz4AQ8gYTRmn8AKMQthCCPNuMQT3axmC8SEa2yQPNkRvVRuta2RdH5KlU22IycK5z3S6MbJM5to1bmd1n93LqDeX4LySdTBXpzkGH4_z1ew5Xbw-vcymi1QTwmOqMEN5VTDDKCFZqbUsqcKVyZkpKc6V5BXCGS8IgVKSslCyyBXkChcFkhQZMga3x969d1-tCVFsXeu7N4PAFFFGEcpJl8LHlPYuBG8qsfd2J_1BICh6U-LHlOhNiZOpDmJ_IG2j7CVEL239P3pzRK0x5vcWxxnGjJNvqyp44Q |
CODEN | ITPSEG |
CitedBy_id | crossref_primary_10_3390_designs8060135 crossref_primary_10_1016_j_ijepes_2022_108118 crossref_primary_10_1109_TPWRS_2021_3056390 crossref_primary_10_1109_TPWRS_2022_3195127 crossref_primary_10_3390_su15032835 crossref_primary_10_3390_math11112557 crossref_primary_10_1109_TSTE_2024_3431616 crossref_primary_10_1109_TPWRS_2024_3432159 crossref_primary_10_1109_TSTE_2022_3203669 crossref_primary_10_1109_TPWRS_2023_3242468 crossref_primary_10_1016_j_ejor_2021_04_015 crossref_primary_10_3389_fenrg_2022_992966 crossref_primary_10_1016_j_epsr_2025_111573 crossref_primary_10_1109_TSG_2021_3138099 crossref_primary_10_1109_TSG_2022_3210232 crossref_primary_10_1016_j_apenergy_2023_121890 crossref_primary_10_1109_TSG_2023_3304135 crossref_primary_10_2139_ssrn_3978441 crossref_primary_10_3390_en17153846 crossref_primary_10_1016_j_apenergy_2025_125715 crossref_primary_10_1109_TPWRS_2022_3180111 crossref_primary_10_1109_TAC_2023_3273815 crossref_primary_10_1109_TNSE_2024_3370167 crossref_primary_10_1109_TPWRS_2024_3419894 crossref_primary_10_1109_TPWRS_2022_3217941 crossref_primary_10_1016_j_ijepes_2023_109120 crossref_primary_10_1109_LCSYS_2020_3043228 crossref_primary_10_1016_j_esd_2023_101340 crossref_primary_10_1109_TPWRS_2023_3244895 crossref_primary_10_1002_eng2_12995 crossref_primary_10_1109_TPWRS_2022_3230320 crossref_primary_10_1016_j_apenergy_2022_119939 crossref_primary_10_1109_ACCESS_2024_3416809 crossref_primary_10_1109_TSTE_2023_3261444 crossref_primary_10_1109_TSTE_2024_3379162 crossref_primary_10_1002_adts_202100639 crossref_primary_10_1016_j_apenergy_2024_123668 crossref_primary_10_1109_LCSYS_2023_3343990 crossref_primary_10_1016_j_epsr_2022_108725 crossref_primary_10_1109_TPWRS_2021_3115521 crossref_primary_10_1109_TPWRS_2023_3349237 crossref_primary_10_1109_TSG_2022_3150412 crossref_primary_10_1109_TPWRS_2022_3227178 |
Cites_doi | 10.1109/TPWRS.2010.2051168 10.1007/978-1-4613-1635-0 10.1109/TPWRS.2011.2141159 10.1109/TPWRS.2005.857013 10.21314/JOR.2000.038 10.1109/TSTE.2015.2498202 10.1515/9781400873173 10.1109/TPWRS.2018.2878380 10.1016/j.rser.2019.109415 10.1109/TSTE.2014.2320193 10.1109/TPWRS.2018.2878385 10.1109/TAC.2014.2303232 10.1109/TPWRS.2017.2741506 10.1080/1055678021000034008 10.1109/TSG.2019.2903767 10.1109/MPE.2016.2637122 10.1016/j.ijepes.2015.02.024 10.1109/TPWRS.2008.922526 10.1109/TPWRS.2018.2874464 10.1109/PES.2011.6039388 10.1137/130910312 10.1109/TPWRS.2018.2889942 10.1049/iet-rpg.2009.0101 10.1109/EURCON.2009.5167681 10.1137/07069821X 10.1109/TPWRS.2013.2272546 10.1109/TPWRS.2015.2502423 10.1007/s00440-014-0583-7 10.1016/j.ijepes.2013.09.003 10.1109/TPWRS.2019.2893296 10.3150/18-BEJ1065 10.1016/j.epsr.2011.04.003 10.1109/TCNS.2019.2921300 10.1109/TPWRS.2018.2807623 10.1109/TPAS.1980.319847 10.1109/TCNS.2019.2930872 10.1137/1.9780898718751 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TPWRS.2020.3034488 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1558-0679 |
EndPage | 2022 |
ExternalDocumentID | 10_1109_TPWRS_2020_3034488 9242289 |
Genre | orig-research |
GrantInformation_xml | – fundername: Indian Institute of Technology Kharagpur funderid: 10.13039/501100008984 – fundername: National Science Foundation grantid: SEES-1539585 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c339t-b2816f78e85334dccad5b2fe68ed526ba9f12497330aa3d7ba76b09b2771a51e3 |
IEDL.DBID | RIE |
ISSN | 0885-8950 |
IngestDate | Fri Jul 25 19:07:50 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Tue Jul 01 01:35:49 EDT 2025 Wed Aug 27 02:30:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-b2816f78e85334dccad5b2fe68ed526ba9f12497330aa3d7ba76b09b2771a51e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6081-6747 0000-0002-7609-5080 0000-0002-7935-1385 0000-0003-3316-9008 0000-0003-0562-0594 |
OpenAccessLink | http://hdl.handle.net/20.500.11850/461429 |
PQID | 2515851163 |
PQPubID | 85441 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9242289 proquest_journals_2515851163 crossref_primary_10_1109_TPWRS_2020_3034488 crossref_citationtrail_10_1109_TPWRS_2020_3034488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-May 2021-5-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on power systems |
PublicationTitleAbbrev | TPWRS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 gao (ref46) 2016 esfahani (ref26) 2018; 171 ref32 ref10 zhang (ref17) 2017; 32 ref2 ref1 ref39 ref19 ref18 chatzivasileiadis (ref38) 0 nemirovski (ref33) 2006; 17 summers (ref16) 2015; 72 hota (ref35) 0 ref24 ref45 ref23 ref47 ref25 ref20 ref42 ref41 ref22 ref21 varaiya (ref3) 2010; 99 andreas (ref44) 2009 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 ref40 halilbaši? (ref28) 2019; 34 (ref43) 2020 |
References_xml | – ident: ref42 doi: 10.1109/TPWRS.2010.2051168 – ident: ref41 doi: 10.1007/978-1-4613-1635-0 – year: 2020 ident: ref43 – ident: ref9 doi: 10.1109/TPWRS.2011.2141159 – ident: ref39 doi: 10.1109/TPWRS.2005.857013 – year: 0 ident: ref38 article-title: Lecture notes on optimal power flow (OPF) publication-title: arXiv 1811 00943 – ident: ref34 doi: 10.21314/JOR.2000.038 – ident: ref13 doi: 10.1109/TSTE.2015.2498202 – ident: ref47 doi: 10.1515/9781400873173 – ident: ref37 doi: 10.1109/TPWRS.2018.2878380 – ident: ref15 doi: 10.1016/j.rser.2019.109415 – ident: ref12 doi: 10.1109/TSTE.2014.2320193 – volume: 34 start-page: 1459?1470 year: 2019 ident: ref28 article-title: Convex relaxations and approximations of chance-constrained AC-OPF problems publication-title: IEEE Trans Power Syst – ident: ref21 doi: 10.1109/TPWRS.2018.2878385 – ident: ref36 doi: 10.1109/TAC.2014.2303232 – volume: 99 start-page: 40?57 year: 2010 ident: ref3 article-title: Smart operation of smart grid: Risk-limiting dispatch publication-title: Proc IEEE – ident: ref19 doi: 10.1109/TPWRS.2017.2741506 – ident: ref45 doi: 10.1080/1055678021000034008 – year: 2009 ident: ref44 article-title: Sacramento municipal utility district (SMUD): Rotating shadowband radiometer (RSR); anatolia-rancho cordova, california (Data) – ident: ref27 doi: 10.1109/TSG.2019.2903767 – ident: ref1 doi: 10.1109/MPE.2016.2637122 – start-page: 1501 year: 0 ident: ref35 publication-title: Amer Control Conf – volume: 72 start-page: 116?125 year: 2015 ident: ref16 article-title: Stochastic optimal power flow based on conditional value at risk and distributional robustness publication-title: Int J Elect Power Energy Syst doi: 10.1016/j.ijepes.2015.02.024 – ident: ref8 doi: 10.1109/TPWRS.2008.922526 – volume: 17 start-page: 969?996 year: 2006 ident: ref33 article-title: Convex approximations of chance constrained programs publication-title: SIAM J Optim – ident: ref31 doi: 10.1109/TPWRS.2018.2874464 – ident: ref11 doi: 10.1109/PES.2011.6039388 – ident: ref2 doi: 10.1137/130910312 – ident: ref22 doi: 10.1109/TPWRS.2018.2889942 – volume: 32 start-page: 1378?1388 year: 2017 ident: ref17 article-title: Distributionally robust chance-constrained optimal power flow with uncertain renewables and uncertain reserves provided by loads publication-title: IEEE Trans Power Syst – ident: ref7 doi: 10.1049/iet-rpg.2009.0101 – ident: ref40 doi: 10.1109/EURCON.2009.5167681 – ident: ref29 doi: 10.1137/07069821X – ident: ref30 doi: 10.1109/TPWRS.2013.2272546 – ident: ref14 doi: 10.1109/TPWRS.2015.2502423 – year: 2016 ident: ref46 – ident: ref24 doi: 10.1007/s00440-014-0583-7 – ident: ref10 doi: 10.1016/j.ijepes.2013.09.003 – volume: 171 start-page: 115?166 year: 2018 ident: ref26 article-title: Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations publication-title: Math Program – ident: ref20 doi: 10.1109/TPWRS.2019.2893296 – ident: ref25 doi: 10.3150/18-BEJ1065 – ident: ref5 doi: 10.1016/j.epsr.2011.04.003 – ident: ref32 doi: 10.1109/TCNS.2019.2921300 – ident: ref23 doi: 10.1109/TPWRS.2018.2807623 – ident: ref4 doi: 10.1109/TPAS.1980.319847 – ident: ref18 doi: 10.1109/TCNS.2019.2930872 – ident: ref6 doi: 10.1137/1.9780898718751 |
SSID | ssj0006679 |
Score | 2.5602283 |
Snippet | We consider the problem of look-ahead economic dispatch (LAED) with uncertain renewable energy generation. The goal of this problem is to minimize the cost of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2010 |
SubjectTerms | Chance-constrained optimization conditional-value-at-risk Constraints data-driven approaches distributionally robust optimization Economics Generators Operators (mathematics) optimal power flow Optimization Power generation Renewable energy sources Robustness (mathematics) Transmission line matrix methods Uncertainty |
Title | Wasserstein Distributionally Robust Look-Ahead Economic Dispatch |
URI | https://ieeexplore.ieee.org/document/9242289 https://www.proquest.com/docview/2515851163 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61XYCBRwuiUFAGNkib2HnYGxUPVYgiVFq1W2THjpCo2oomA_x6bOcBAoTYMpwjy-ec74vvvg_gTIuZYMqoLaiLbM_zQs0BmdghIoGDE-zEiQaKw4dgMPHuZv6sBhdVL4yU0hSfya5-NHf5Yhln-ldZT2EFpABCHeoKuOW9WlXUDYKcV48Q3ybUd8oGGYf2xo_T0ZOCgkghVM1wZ1RWPg8ho6ryIxSb8-V2B4blzPKykpdulvJu_P6NtPG_U9-F7SLRtPr5ztiDmlw0YaPsQ143YesLFWELLqfMNF5q8UvrWrPpFkJYbD5_s0ZLnq1T615l5HZfhW9hlS_StisVzp_3YXJ7M74a2IW6gh1jTFObI-IGSUgk0d24QnlS-BwlMiBS-CjgjCZamDrE2GEMi5CzMOAO5SgMXea7Eh9AY7FcyEOwpMIkSLhCxoKqBEGFfxU6mHQZJsxzeNwGt1zuKC6ox7UCxjwyEMShkXFRpF0UFS5qw3k1ZpUTb_xp3dJrXlkWy92GTunVqPg215HK6PRdqEpEj34fdQybSFeumLLGDjTS10yeqNQj5admz30AcOfTnQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGQoDr4IozwxskDax87A3EFAVaBEqrdotsmNHSFRtRZMBfj22kxQECLFlsCPL59zdF999H8CpFjPBlFFbUBfZnueFmgMysUNEAgcn2IkTDRS7D0F74N2N_NESnC96YaSUpvhMNvSjucsX0zjTv8qaCisgBRCWYUXFfd_Nu7UWfjcIcmY9QnybUN8pW2Qc2uw_DntPCgwihVE1x53RWfkMQ0ZX5YczNhGmtQHdcm15YclLI0t5I37_Rtv438VvwnqRalqX-dnYgiU52YZq2Yk834a1L2SENbgYMtN6qeUvrWvNp1tIYbHx-M3qTXk2T62OysntS-XAhVW-SI-dKYf-vAOD1k3_qm0X-gp2jDFNbY6IGyQhkUT34wplS-FzlMiASOGjgDOaaGnqEGOHMSxCzsKAO5SjMHSZ70q8C5XJdCL3wJIKlSDhChkLqlIEFQCU82DSZZgwz-FxHdxyu6O4IB_XGhjjyIAQh0bGRJE2UVSYqA5nizmznHrjz9E1veeLkcV21-GwtGpUfJ3zSOV0-jZUpaL7v886gWq73-1EnduH-wNYRbqOxRQ5HkIlfc3kkUpEUn5szt8HpUzW5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wasserstein+Distributionally+Robust+Look-Ahead+Economic+Dispatch&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Poolla%2C+Bala+Kameshwar&rft.au=Hota%2C+Ashish+R.&rft.au=Bolognani%2C+Saverio&rft.au=Callaway%2C+Duncan+S.&rft.date=2021-05-01&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=36&rft.issue=3&rft.spage=2010&rft.epage=2022&rft_id=info:doi/10.1109%2FTPWRS.2020.3034488&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPWRS_2020_3034488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |