Multiple Instance Learning for Emotion Recognition Using Physiological Signals
The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting t...
Saved in:
Published in | IEEE transactions on affective computing Vol. 13; no. 1; pp. 389 - 407 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting the affective state over time is not a trivial problem because continuous data labeling is costly and not always feasible. This is a crucial issue in real-life applications, where data labeling is sparse and possibly captures only the most important events rather than the typical continuous subtle affective changes that occur. In this work, we introduce a framework from the machine learning literature called Multiple Instance Learning, which is able to model time intervals by capturing the presence or absence of relevant states, without the need to label the affective responses continuously (as required by standard sequential learning approaches). This choice offers a viable and natural solution for learning in a weakly supervised setting, taking into account the ambiguity of affective responses. We demonstrate the reliability of the proposed approach in a gold-standard scenario and towards real-world usage by employing an existing dataset (DEAP) and a purposely built one (Consumer). We also outline the advantages of this method with respect to standard supervised machine learning algorithms. |
---|---|
AbstractList | The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting the affective state over time is not a trivial problem because continuous data labeling is costly and not always feasible. This is a crucial issue in real-life applications, where data labeling is sparse and possibly captures only the most important events rather than the typical continuous subtle affective changes that occur. In this work, we introduce a framework from the machine learning literature called Multiple Instance Learning, which is able to model time intervals by capturing the presence or absence of relevant states, without the need to label the affective responses continuously (as required by standard sequential learning approaches). This choice offers a viable and natural solution for learning in a weakly supervised setting, taking into account the ambiguity of affective responses. We demonstrate the reliability of the proposed approach in a gold-standard scenario and towards real-world usage by employing an existing dataset (DEAP) and a purposely built one (Consumer). We also outline the advantages of this method with respect to standard supervised machine learning algorithms. |
Author | Cavallo, Andrea Pontil, Massimiliano Romeo, Luca Pepa, Lucia Bianchi-Berthouze, Nadia |
Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0003-1707-0147 surname: Romeo fullname: Romeo, Luca email: l.romeo@univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 2 givenname: Andrea orcidid: 0000-0002-3717-3760 surname: Cavallo fullname: Cavallo, Andrea email: andrea.cavallo@unito.it organization: Dipartimento di Psicologia, Fondazione Istituto Italiano di Tecnologia, Università di Torino, and C'MoN Unit, Genoa, Italy – sequence: 3 givenname: Lucia orcidid: 0000-0003-1471-092X surname: Pepa fullname: Pepa, Lucia email: l.pepa@univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 4 givenname: Nadia orcidid: 0000-0001-8921-0044 surname: Bianchi-Berthouze fullname: Bianchi-Berthouze, Nadia email: n.berthouze@ucl.ac.uk organization: UCL Interaction Centre, University College London, London, United Kingdom – sequence: 5 givenname: Massimiliano surname: Pontil fullname: Pontil, Massimiliano email: m.pontil@cs.ucl.ac.uk organization: Fondazione Istituto Italiano di Tecnologia, Genova, Italy |
BookMark | eNp9UE1PAjEQbQwmIvIH9LKJ58V-7W57JASUBD-icG66pV1Llhbb5cC_dxeIMR6cy5tk3pt5865Bz3mnAbhFcIQQ5A_L8Ww2GWGI-AjzjCLELkAfccpTAmnW-9VfgWGMG9gWISTHRR-8PO_rxu5qncxdbKRTOlloGZx1VWJ8SKZb31jvknetfOXssV_Fbvr2eYjW176yStbJh62crOMNuDQt6OEZB2A1my4nT-ni9XE-GS9SRQhvUimVXEtiKMtLjThSlBlWlEaRkme4MGtYGtk6LAwuoNYaM041NrKkpWSMSzIA96e9u-C_9jo2YuP3oXMgcE4ySCmhecvCJ5YKPsagjdgFu5XhIBAUXXTiGJ3oohPn6FoR-yNStpHd402Qtv5feneS2tbzzy3GYY4ySr4BC_B_Iw |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123474 crossref_primary_10_1016_j_bspc_2025_107594 crossref_primary_10_1109_TCYB_2020_2987575 crossref_primary_10_1016_j_heliyon_2024_e38681 crossref_primary_10_1109_ACCESS_2021_3051281 crossref_primary_10_1109_TAFFC_2022_3158234 crossref_primary_10_1007_s11042_023_15162_x crossref_primary_10_1109_TAFFC_2022_3176135 crossref_primary_10_1109_TMM_2022_3165715 crossref_primary_10_3390_s23031608 crossref_primary_10_32604_csse_2024_052710 crossref_primary_10_1002_widm_1563 crossref_primary_10_3390_s23031598 crossref_primary_10_3390_sci6010010 crossref_primary_10_3390_bioengineering9110688 crossref_primary_10_3390_app13042573 crossref_primary_10_3390_electronics12132795 crossref_primary_10_1109_TMM_2021_3124080 crossref_primary_10_12677_SA_2020_96100 |
Cites_doi | 10.1016/j.trit.2016.10.001 10.1109/TIP.2018.2830189 10.1016/j.jesp.2013.03.013 10.1109/10.959330 10.1109/FG.2011.5771462 10.1016/j.patcog.2017.10.009 10.1016/j.eswa.2011.05.044 10.1145/1291233.1291369 10.1109/T-AFFC.2012.16 10.1177/0956797613475456 10.1145/1007730.1007733 10.1109/ICMLA.2010.101 10.1145/3025453.3025947 10.1109/ACII.2017.8273639 10.1109/TSA.2005.860344 10.1016/j.media.2014.04.006 10.1109/ICIP.2016.7532434 10.1109/CVPR.2016.602 10.1109/TAFFC.2015.2462830 10.1109/TPAMI.2010.226 10.1145/2988257.2988258 10.1037/0033-2909.127.1.3 10.1109/FG.2015.7163116 10.1037/a0038474 10.1109/TAFFC.2014.2327617 10.1016/0005-7916(94)90063-9 10.1109/TAFFC.2018.2808295 10.1016/j.neucom.2014.02.057 10.1080/07370024.2015.1085310 10.1145/3299095 10.1109/ACII.2015.7344578 10.1016/j.artint.2011.10.002 10.1016/S0004-3702(96)00034-3 10.1145/3133944.3133953 10.1007/978-3-540-74889-2_43 10.1109/T-AFFC.2011.15 10.1145/2733373.2806408 10.3115/v1/D14-1052 10.1109/TAFFC.2015.2510625 10.1109/CVPRW.2013.130 10.1109/CW.2013.52 10.1145/2647868.2654904 10.1007/978-3-319-47759-6_6 10.1016/j.ijhcs.2008.06.004 10.1287/mksc.2015.0930 10.5244/c.28.13 10.1109/T-AFFC.2011.25 10.1109/FG.2013.6553762 10.1109/ICASSP.2014.6854465 10.1109/STSIVA.2014.7010181 10.1007/978-3-319-54184-6_11 10.1037/0033-295X.94.1.3 10.1109/TPAMI.2008.26 10.1109/TAFFC.2018.2798576 10.1145/1401890.1402015 10.1007/978-3-642-24571-8_4 10.1109/CVPR.2010.5539998 10.1109/ACII.2013.117 10.1109/FG.2013.6553796 10.1109/TAFFC.2015.2390627 10.1109/34.954607 10.4018/jse.2010101605 10.3389/fict.2017.00001 10.1016/j.imavis.2014.02.008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2019.2954118 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 407 |
ExternalDocumentID | 10_1109_TAFFC_2019_2954118 8906154 |
Genre | orig-research |
GrantInformation_xml | – fundername: EPSRC grantid: EP/P009069/1 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c339t-aacada3f486be191c48f87bfc3b9527fd0bfa3367f270eee2894e2fab4ba889a3 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Mon Jun 30 16:59:07 EDT 2025 Thu Apr 24 22:55:41 EDT 2025 Tue Jul 01 02:57:52 EDT 2025 Wed Aug 27 02:49:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-aacada3f486be191c48f87bfc3b9527fd0bfa3367f270eee2894e2fab4ba889a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1471-092X 0000-0003-1707-0147 0000-0001-8921-0044 0000-0002-3717-3760 |
OpenAccessLink | http://hdl.handle.net/2318/1766129 |
PQID | 2635044346 |
PQPubID | 2040414 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2635044346 crossref_primary_10_1109_TAFFC_2019_2954118 crossref_citationtrail_10_1109_TAFFC_2019_2954118 ieee_primary_8906154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan.-March-1 2022-1-1 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-March-1 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 (ref59) 2018 ref14 ref58 Platt (ref67) 1999; 10 ref11 ref10 ref17 ref16 ref19 ref18 Andrews (ref29) ref51 ref50 ref45 ref48 ref42 ref41 ref44 ref43 Zhang (ref46) Godin (ref65) 2015; 40 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Ray (ref77) ref80 ref35 ref79 ref34 ref37 ref36 Maron (ref49) ref31 ref75 ref30 Cawley (ref55) 2010; 11 ref74 ref33 Maron (ref54) 1998 Velásquez (ref25) ref32 ref76 ref2 ref1 ref39 ref38 Vapnik (ref57) 1999 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref26 ref69 ref20 ref64 ref63 ref22 ref66 ref21 Grtner (ref53) ref28 ref27 Zhang (ref52) (ref60) 2019 Hajimirsadeghi (ref47) Dooly (ref78) 2002; 3 ref62 ref61 |
References_xml | – ident: ref50 doi: 10.1016/j.trit.2016.10.001 – ident: ref42 doi: 10.1109/TIP.2018.2830189 – ident: ref62 doi: 10.1016/j.jesp.2013.03.013 – ident: ref63 doi: 10.1109/10.959330 – ident: ref3 doi: 10.1109/FG.2011.5771462 – ident: ref26 doi: 10.1016/j.patcog.2017.10.009 – ident: ref30 doi: 10.1016/j.eswa.2011.05.044 – ident: ref71 doi: 10.1145/1291233.1291369 – ident: ref79 doi: 10.1109/T-AFFC.2012.16 – ident: ref69 doi: 10.1177/0956797613475456 – ident: ref70 doi: 10.1145/1007730.1007733 – ident: ref73 doi: 10.1109/ICMLA.2010.101 – ident: ref14 doi: 10.1145/3025453.3025947 – ident: ref11 doi: 10.1109/ACII.2017.8273639 – year: 1998 ident: ref54 article-title: Learning from ambiguity – ident: ref72 doi: 10.1109/TSA.2005.860344 – ident: ref28 doi: 10.1016/j.media.2014.04.006 – ident: ref32 doi: 10.1109/ICIP.2016.7532434 – ident: ref40 doi: 10.1109/CVPR.2016.602 – ident: ref7 doi: 10.1109/TAFFC.2015.2462830 – start-page: 570 volume-title: Proc. 1997 Conf. Neural Inf. Process. Syst. ident: ref49 article-title: A framework for multiple-instance learning – start-page: 425 volume-title: Proc. 18th Int. Conf. Mach. Learn. ident: ref77 article-title: Multiple instance regression – ident: ref31 doi: 10.1109/TPAMI.2010.226 – ident: ref9 doi: 10.1145/2988257.2988258 – ident: ref21 doi: 10.1037/0033-2909.127.1.3 – start-page: 262 volume-title: Proc. 29th Conf. Uncertainty Artif. Intell. ident: ref47 article-title: Multiple instance learning by discriminative training of markov networks – ident: ref34 doi: 10.1109/FG.2015.7163116 – ident: ref68 doi: 10.1037/a0038474 – ident: ref16 doi: 10.1109/TAFFC.2014.2327617 – start-page: 1417 volume-title: Proc. 18th Int. Conf. Neural Inf. Process. Syst. ident: ref46 article-title: Multiple instance boosting for object detection – ident: ref58 doi: 10.1016/0005-7916(94)90063-9 – ident: ref12 doi: 10.1109/TAFFC.2018.2808295 – ident: ref56 doi: 10.1016/j.neucom.2014.02.057 – ident: ref74 doi: 10.1080/07370024.2015.1085310 – start-page: 1073 volume-title: Proc. Neural Inf. Process. Syst. ident: ref52 article-title: EM-DD: An improved multiple-instance learning technique – ident: ref18 doi: 10.1145/3299095 – ident: ref80 doi: 10.1109/ACII.2015.7344578 – volume-title: The Nature of Statistical Learning Theory year: 1999 ident: ref57 – ident: ref76 doi: 10.1016/j.artint.2011.10.002 – ident: ref23 doi: 10.1016/S0004-3702(96)00034-3 – ident: ref10 doi: 10.1145/3133944.3133953 – ident: ref1 doi: 10.1007/978-3-540-74889-2_43 – ident: ref4 doi: 10.1109/T-AFFC.2011.15 – volume: 10 start-page: 61 issue: 3 year: 1999 ident: ref67 article-title: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods publication-title: Adv. Large Margin Classifiers – ident: ref8 doi: 10.1145/2733373.2806408 – ident: ref35 doi: 10.3115/v1/D14-1052 – ident: ref44 doi: 10.1109/TAFFC.2015.2510625 – start-page: 577 volume-title: Proc. 15th Int. Conf. Neural Inf. Process. Syst. ident: ref29 article-title: Support vector machines for multiple-instance learning – ident: ref13 doi: 10.1109/CVPRW.2013.130 – ident: ref6 doi: 10.1109/CW.2013.52 – ident: ref43 doi: 10.1145/2647868.2654904 – year: 2019 ident: ref60 article-title: Microsoft band synch application – ident: ref27 doi: 10.1007/978-3-319-47759-6_6 – ident: ref19 doi: 10.1016/j.ijhcs.2008.06.004 – start-page: 10 volume-title: Proc. 14th Nat. Conf. Artif. Intell./9th Conf. Innovative Appl. Artif. Intell. ident: ref25 article-title: Modeling emotions and other motivations in synthetic agents – volume: 40 year: 2015 ident: ref65 article-title: Selection of the most relevant physiological features for classifying emotion publication-title: Emotion – ident: ref75 doi: 10.1287/mksc.2015.0930 – ident: ref33 doi: 10.5244/c.28.13 – ident: ref5 doi: 10.1109/T-AFFC.2011.25 – ident: ref38 doi: 10.1109/FG.2013.6553762 – ident: ref48 doi: 10.1109/ICASSP.2014.6854465 – ident: ref66 doi: 10.1109/STSIVA.2014.7010181 – start-page: 179 volume-title: Proc. 19th Int. Conf. Mach. Learn. ident: ref53 article-title: Multi-instance kernels – ident: ref41 doi: 10.1007/978-3-319-54184-6_11 – volume: 11 start-page: 2079 issue: Jul year: 2010 ident: ref55 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – ident: ref22 doi: 10.1037/0033-295X.94.1.3 – ident: ref2 doi: 10.1109/TPAMI.2008.26 – ident: ref15 doi: 10.1109/TAFFC.2018.2798576 – ident: ref36 doi: 10.1145/1401890.1402015 – ident: ref45 doi: 10.1007/978-3-642-24571-8_4 – ident: ref37 doi: 10.1109/CVPR.2010.5539998 – ident: ref17 doi: 10.1109/ACII.2013.117 – ident: ref51 doi: 10.1109/FG.2013.6553796 – ident: ref20 doi: 10.1109/TAFFC.2015.2390627 – ident: ref64 doi: 10.1109/34.954607 – volume: 3 start-page: 651 issue: Dec year: 2002 ident: ref78 article-title: Multiple-instance learning of real-valued data publication-title: J. Mach. Learn. Res. – year: 2018 ident: ref59 article-title: Microsoft band sdk – ident: ref24 doi: 10.4018/jse.2010101605 – ident: ref61 doi: 10.3389/fict.2017.00001 – ident: ref39 doi: 10.1016/j.imavis.2014.02.008 |
SSID | ssj0000333627 |
Score | 2.4008152 |
Snippet | The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 389 |
SubjectTerms | Affective computing Algorithms Ambiguity Computational modeling diverse density Emotion recognition Emotional factors Emotions Labeling Machine learning multiple instance learning Pain physiological signals Physiology support vector machine Task analysis time ambiguity |
Title | Multiple Instance Learning for Emotion Recognition Using Physiological Signals |
URI | https://ieeexplore.ieee.org/document/8906154 https://www.proquest.com/docview/2635044346 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT8IwFH5BTl5ERSOKpgdvurGtZe2OhEDQBA4KCbel7VpiNGAULv56265bjBrjrYd26d7ra99rv_c9gOuIsxQrY9-0L3lABBOBSGUSJMSSoTNFtaMvns7SyYLcL_vLBtzWuTBKKQc-U6Fturf8YiN39qqsxzJ7AJM92DOBW5mrVd-nRBibvZhWeTFR1psPxuOhBW9loX3Mim1djy9njyum8mMHdsfKuAXTakIlmuQ53G1FKD--cTX-d8aHcOD9SzQoF8QRNNT6GFpV7QbkTbkNs6lHEqI75yBKhTzV6goZPxaNyvI-6KECGJm2gxcghxmttkz0-LSyDMwnsBiP5sNJ4GsrBBLjbBtwLnnBsSYsFcrEbJIwzajQEousn1BdREJzI1GqExqZ3zJxGVGJ5oIIzljG8Sk015u1OgPENaZYUhXHBSVcJlmRCEkKbkO3yHyuA3El9Vx64nFb_-IldwFIlOVOU7nVVO411YGbesxrSbvxZ--2FX3d00u9A91Kubm3zPfcku9EhGCSnv8-6gL2E5vi4K5ZutDcvu3UpXE8tuLKrbhPAtbWfg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTwMhEJ74OOjFt7E-OejJbN0CXdiDB6M2rdoetCbeVmChMZpqtI3R3-Jf8b8JLNsYNd5MvHEANssMzAx88w3Adix4QrTd36yuREQll5FMFI4wdWToXDPj6YvbnaR5SU-u6ldj8DbKhdFae_CZrrqmf8vP79XQXZXt8dQZYBoglKf65dkGaE_7rSMrzR2MG8fdw2YUaghEipB0EAmhRC6IoTyR2sYminLDmTSKyLSOmcljaQQhCTOYxfaDNv6gGhshqRScp4LYecdh0voZdVxkh41ucGJix2FWZuLE6V73oNE4dHCxtOqez2quksgna-fLt3w7870ha8zCe7kEBX7ltjocyKp6_cIO-V_XaA5mggeNDgqVn4cx3V-A2bI6BQqH1SJ02gEriVreBVYaBTLZHrKeOjouChih8xJCZdseQIE8KrY0Cujipuc4ppfg8k_-ahkm-vd9vQJIGMKIYrpWyxkVCqc5lormwgWnsZ2uArVSypkK1Oquwsdd5kOsOM28ZmROM7KgGRXYHY15KIhFfu296EQ96hmkXIH1UpmycPY8ZY5eKKaU0GT151FbMNXsts-ys1bndA2msUvo8JdK6zAxeBzqDetmDeSm13YE13-tOh8KgDfP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Instance+Learning+for+Emotion+Recognition+Using+Physiological+Signals&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Romeo%2C+Luca&rft.au=Cavallo%2C+Andrea&rft.au=Pepa%2C+Lucia&rft.au=Bianchi-Berthouze%2C+Nadia&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1949-3045&rft.volume=13&rft.issue=1&rft.spage=389&rft_id=info:doi/10.1109%2FTAFFC.2019.2954118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |