Multiple Instance Learning for Emotion Recognition Using Physiological Signals

The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 13; no. 1; pp. 389 - 407
Main Authors Romeo, Luca, Cavallo, Andrea, Pepa, Lucia, Bianchi-Berthouze, Nadia, Pontil, Massimiliano
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting the affective state over time is not a trivial problem because continuous data labeling is costly and not always feasible. This is a crucial issue in real-life applications, where data labeling is sparse and possibly captures only the most important events rather than the typical continuous subtle affective changes that occur. In this work, we introduce a framework from the machine learning literature called Multiple Instance Learning, which is able to model time intervals by capturing the presence or absence of relevant states, without the need to label the affective responses continuously (as required by standard sequential learning approaches). This choice offers a viable and natural solution for learning in a weakly supervised setting, taking into account the ambiguity of affective responses. We demonstrate the reliability of the proposed approach in a gold-standard scenario and towards real-world usage by employing an existing dataset (DEAP) and a purposely built one (Consumer). We also outline the advantages of this method with respect to standard supervised machine learning algorithms.
AbstractList The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting the affective state over time is not a trivial problem because continuous data labeling is costly and not always feasible. This is a crucial issue in real-life applications, where data labeling is sparse and possibly captures only the most important events rather than the typical continuous subtle affective changes that occur. In this work, we introduce a framework from the machine learning literature called Multiple Instance Learning, which is able to model time intervals by capturing the presence or absence of relevant states, without the need to label the affective responses continuously (as required by standard sequential learning approaches). This choice offers a viable and natural solution for learning in a weakly supervised setting, taking into account the ambiguity of affective responses. We demonstrate the reliability of the proposed approach in a gold-standard scenario and towards real-world usage by employing an existing dataset (DEAP) and a purposely built one (Consumer). We also outline the advantages of this method with respect to standard supervised machine learning algorithms.
Author Cavallo, Andrea
Pontil, Massimiliano
Romeo, Luca
Pepa, Lucia
Bianchi-Berthouze, Nadia
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0003-1707-0147
  surname: Romeo
  fullname: Romeo, Luca
  email: l.romeo@univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0002-3717-3760
  surname: Cavallo
  fullname: Cavallo, Andrea
  email: andrea.cavallo@unito.it
  organization: Dipartimento di Psicologia, Fondazione Istituto Italiano di Tecnologia, Università di Torino, and C'MoN Unit, Genoa, Italy
– sequence: 3
  givenname: Lucia
  orcidid: 0000-0003-1471-092X
  surname: Pepa
  fullname: Pepa, Lucia
  email: l.pepa@univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 4
  givenname: Nadia
  orcidid: 0000-0001-8921-0044
  surname: Bianchi-Berthouze
  fullname: Bianchi-Berthouze, Nadia
  email: n.berthouze@ucl.ac.uk
  organization: UCL Interaction Centre, University College London, London, United Kingdom
– sequence: 5
  givenname: Massimiliano
  surname: Pontil
  fullname: Pontil, Massimiliano
  email: m.pontil@cs.ucl.ac.uk
  organization: Fondazione Istituto Italiano di Tecnologia, Genova, Italy
BookMark eNp9UE1PAjEQbQwmIvIH9LKJ58V-7W57JASUBD-icG66pV1Llhbb5cC_dxeIMR6cy5tk3pt5865Bz3mnAbhFcIQQ5A_L8Ww2GWGI-AjzjCLELkAfccpTAmnW-9VfgWGMG9gWISTHRR-8PO_rxu5qncxdbKRTOlloGZx1VWJ8SKZb31jvknetfOXssV_Fbvr2eYjW176yStbJh62crOMNuDQt6OEZB2A1my4nT-ni9XE-GS9SRQhvUimVXEtiKMtLjThSlBlWlEaRkme4MGtYGtk6LAwuoNYaM041NrKkpWSMSzIA96e9u-C_9jo2YuP3oXMgcE4ySCmhecvCJ5YKPsagjdgFu5XhIBAUXXTiGJ3oohPn6FoR-yNStpHd402Qtv5feneS2tbzzy3GYY4ySr4BC_B_Iw
CODEN ITACBQ
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123474
crossref_primary_10_1016_j_bspc_2025_107594
crossref_primary_10_1109_TCYB_2020_2987575
crossref_primary_10_1016_j_heliyon_2024_e38681
crossref_primary_10_1109_ACCESS_2021_3051281
crossref_primary_10_1109_TAFFC_2022_3158234
crossref_primary_10_1007_s11042_023_15162_x
crossref_primary_10_1109_TAFFC_2022_3176135
crossref_primary_10_1109_TMM_2022_3165715
crossref_primary_10_3390_s23031608
crossref_primary_10_32604_csse_2024_052710
crossref_primary_10_1002_widm_1563
crossref_primary_10_3390_s23031598
crossref_primary_10_3390_sci6010010
crossref_primary_10_3390_bioengineering9110688
crossref_primary_10_3390_app13042573
crossref_primary_10_3390_electronics12132795
crossref_primary_10_1109_TMM_2021_3124080
crossref_primary_10_12677_SA_2020_96100
Cites_doi 10.1016/j.trit.2016.10.001
10.1109/TIP.2018.2830189
10.1016/j.jesp.2013.03.013
10.1109/10.959330
10.1109/FG.2011.5771462
10.1016/j.patcog.2017.10.009
10.1016/j.eswa.2011.05.044
10.1145/1291233.1291369
10.1109/T-AFFC.2012.16
10.1177/0956797613475456
10.1145/1007730.1007733
10.1109/ICMLA.2010.101
10.1145/3025453.3025947
10.1109/ACII.2017.8273639
10.1109/TSA.2005.860344
10.1016/j.media.2014.04.006
10.1109/ICIP.2016.7532434
10.1109/CVPR.2016.602
10.1109/TAFFC.2015.2462830
10.1109/TPAMI.2010.226
10.1145/2988257.2988258
10.1037/0033-2909.127.1.3
10.1109/FG.2015.7163116
10.1037/a0038474
10.1109/TAFFC.2014.2327617
10.1016/0005-7916(94)90063-9
10.1109/TAFFC.2018.2808295
10.1016/j.neucom.2014.02.057
10.1080/07370024.2015.1085310
10.1145/3299095
10.1109/ACII.2015.7344578
10.1016/j.artint.2011.10.002
10.1016/S0004-3702(96)00034-3
10.1145/3133944.3133953
10.1007/978-3-540-74889-2_43
10.1109/T-AFFC.2011.15
10.1145/2733373.2806408
10.3115/v1/D14-1052
10.1109/TAFFC.2015.2510625
10.1109/CVPRW.2013.130
10.1109/CW.2013.52
10.1145/2647868.2654904
10.1007/978-3-319-47759-6_6
10.1016/j.ijhcs.2008.06.004
10.1287/mksc.2015.0930
10.5244/c.28.13
10.1109/T-AFFC.2011.25
10.1109/FG.2013.6553762
10.1109/ICASSP.2014.6854465
10.1109/STSIVA.2014.7010181
10.1007/978-3-319-54184-6_11
10.1037/0033-295X.94.1.3
10.1109/TPAMI.2008.26
10.1109/TAFFC.2018.2798576
10.1145/1401890.1402015
10.1007/978-3-642-24571-8_4
10.1109/CVPR.2010.5539998
10.1109/ACII.2013.117
10.1109/FG.2013.6553796
10.1109/TAFFC.2015.2390627
10.1109/34.954607
10.4018/jse.2010101605
10.3389/fict.2017.00001
10.1016/j.imavis.2014.02.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2019.2954118
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 407
ExternalDocumentID 10_1109_TAFFC_2019_2954118
8906154
Genre orig-research
GrantInformation_xml – fundername: EPSRC
  grantid: EP/P009069/1
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-aacada3f486be191c48f87bfc3b9527fd0bfa3367f270eee2894e2fab4ba889a3
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Jun 30 16:59:07 EDT 2025
Thu Apr 24 22:55:41 EDT 2025
Tue Jul 01 02:57:52 EDT 2025
Wed Aug 27 02:49:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-aacada3f486be191c48f87bfc3b9527fd0bfa3367f270eee2894e2fab4ba889a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1471-092X
0000-0003-1707-0147
0000-0001-8921-0044
0000-0002-3717-3760
OpenAccessLink http://hdl.handle.net/2318/1766129
PQID 2635044346
PQPubID 2040414
PageCount 19
ParticipantIDs proquest_journals_2635044346
crossref_primary_10_1109_TAFFC_2019_2954118
crossref_citationtrail_10_1109_TAFFC_2019_2954118
ieee_primary_8906154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.-March-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-March-1
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
(ref59) 2018
ref14
ref58
Platt (ref67) 1999; 10
ref11
ref10
ref17
ref16
ref19
ref18
Andrews (ref29)
ref51
ref50
ref45
ref48
ref42
ref41
ref44
ref43
Zhang (ref46)
Godin (ref65) 2015; 40
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Ray (ref77)
ref80
ref35
ref79
ref34
ref37
ref36
Maron (ref49)
ref31
ref75
ref30
Cawley (ref55) 2010; 11
ref74
ref33
Maron (ref54) 1998
Velásquez (ref25)
ref32
ref76
ref2
ref1
ref39
ref38
Vapnik (ref57) 1999
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref26
ref69
ref20
ref64
ref63
ref22
ref66
ref21
Grtner (ref53)
ref28
ref27
Zhang (ref52)
(ref60) 2019
Hajimirsadeghi (ref47)
Dooly (ref78) 2002; 3
ref62
ref61
References_xml – ident: ref50
  doi: 10.1016/j.trit.2016.10.001
– ident: ref42
  doi: 10.1109/TIP.2018.2830189
– ident: ref62
  doi: 10.1016/j.jesp.2013.03.013
– ident: ref63
  doi: 10.1109/10.959330
– ident: ref3
  doi: 10.1109/FG.2011.5771462
– ident: ref26
  doi: 10.1016/j.patcog.2017.10.009
– ident: ref30
  doi: 10.1016/j.eswa.2011.05.044
– ident: ref71
  doi: 10.1145/1291233.1291369
– ident: ref79
  doi: 10.1109/T-AFFC.2012.16
– ident: ref69
  doi: 10.1177/0956797613475456
– ident: ref70
  doi: 10.1145/1007730.1007733
– ident: ref73
  doi: 10.1109/ICMLA.2010.101
– ident: ref14
  doi: 10.1145/3025453.3025947
– ident: ref11
  doi: 10.1109/ACII.2017.8273639
– year: 1998
  ident: ref54
  article-title: Learning from ambiguity
– ident: ref72
  doi: 10.1109/TSA.2005.860344
– ident: ref28
  doi: 10.1016/j.media.2014.04.006
– ident: ref32
  doi: 10.1109/ICIP.2016.7532434
– ident: ref40
  doi: 10.1109/CVPR.2016.602
– ident: ref7
  doi: 10.1109/TAFFC.2015.2462830
– start-page: 570
  volume-title: Proc. 1997 Conf. Neural Inf. Process. Syst.
  ident: ref49
  article-title: A framework for multiple-instance learning
– start-page: 425
  volume-title: Proc. 18th Int. Conf. Mach. Learn.
  ident: ref77
  article-title: Multiple instance regression
– ident: ref31
  doi: 10.1109/TPAMI.2010.226
– ident: ref9
  doi: 10.1145/2988257.2988258
– ident: ref21
  doi: 10.1037/0033-2909.127.1.3
– start-page: 262
  volume-title: Proc. 29th Conf. Uncertainty Artif. Intell.
  ident: ref47
  article-title: Multiple instance learning by discriminative training of markov networks
– ident: ref34
  doi: 10.1109/FG.2015.7163116
– ident: ref68
  doi: 10.1037/a0038474
– ident: ref16
  doi: 10.1109/TAFFC.2014.2327617
– start-page: 1417
  volume-title: Proc. 18th Int. Conf. Neural Inf. Process. Syst.
  ident: ref46
  article-title: Multiple instance boosting for object detection
– ident: ref58
  doi: 10.1016/0005-7916(94)90063-9
– ident: ref12
  doi: 10.1109/TAFFC.2018.2808295
– ident: ref56
  doi: 10.1016/j.neucom.2014.02.057
– ident: ref74
  doi: 10.1080/07370024.2015.1085310
– start-page: 1073
  volume-title: Proc. Neural Inf. Process. Syst.
  ident: ref52
  article-title: EM-DD: An improved multiple-instance learning technique
– ident: ref18
  doi: 10.1145/3299095
– ident: ref80
  doi: 10.1109/ACII.2015.7344578
– volume-title: The Nature of Statistical Learning Theory
  year: 1999
  ident: ref57
– ident: ref76
  doi: 10.1016/j.artint.2011.10.002
– ident: ref23
  doi: 10.1016/S0004-3702(96)00034-3
– ident: ref10
  doi: 10.1145/3133944.3133953
– ident: ref1
  doi: 10.1007/978-3-540-74889-2_43
– ident: ref4
  doi: 10.1109/T-AFFC.2011.15
– volume: 10
  start-page: 61
  issue: 3
  year: 1999
  ident: ref67
  article-title: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
  publication-title: Adv. Large Margin Classifiers
– ident: ref8
  doi: 10.1145/2733373.2806408
– ident: ref35
  doi: 10.3115/v1/D14-1052
– ident: ref44
  doi: 10.1109/TAFFC.2015.2510625
– start-page: 577
  volume-title: Proc. 15th Int. Conf. Neural Inf. Process. Syst.
  ident: ref29
  article-title: Support vector machines for multiple-instance learning
– ident: ref13
  doi: 10.1109/CVPRW.2013.130
– ident: ref6
  doi: 10.1109/CW.2013.52
– ident: ref43
  doi: 10.1145/2647868.2654904
– year: 2019
  ident: ref60
  article-title: Microsoft band synch application
– ident: ref27
  doi: 10.1007/978-3-319-47759-6_6
– ident: ref19
  doi: 10.1016/j.ijhcs.2008.06.004
– start-page: 10
  volume-title: Proc. 14th Nat. Conf. Artif. Intell./9th Conf. Innovative Appl. Artif. Intell.
  ident: ref25
  article-title: Modeling emotions and other motivations in synthetic agents
– volume: 40
  year: 2015
  ident: ref65
  article-title: Selection of the most relevant physiological features for classifying emotion
  publication-title: Emotion
– ident: ref75
  doi: 10.1287/mksc.2015.0930
– ident: ref33
  doi: 10.5244/c.28.13
– ident: ref5
  doi: 10.1109/T-AFFC.2011.25
– ident: ref38
  doi: 10.1109/FG.2013.6553762
– ident: ref48
  doi: 10.1109/ICASSP.2014.6854465
– ident: ref66
  doi: 10.1109/STSIVA.2014.7010181
– start-page: 179
  volume-title: Proc. 19th Int. Conf. Mach. Learn.
  ident: ref53
  article-title: Multi-instance kernels
– ident: ref41
  doi: 10.1007/978-3-319-54184-6_11
– volume: 11
  start-page: 2079
  issue: Jul
  year: 2010
  ident: ref55
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.1037/0033-295X.94.1.3
– ident: ref2
  doi: 10.1109/TPAMI.2008.26
– ident: ref15
  doi: 10.1109/TAFFC.2018.2798576
– ident: ref36
  doi: 10.1145/1401890.1402015
– ident: ref45
  doi: 10.1007/978-3-642-24571-8_4
– ident: ref37
  doi: 10.1109/CVPR.2010.5539998
– ident: ref17
  doi: 10.1109/ACII.2013.117
– ident: ref51
  doi: 10.1109/FG.2013.6553796
– ident: ref20
  doi: 10.1109/TAFFC.2015.2390627
– ident: ref64
  doi: 10.1109/34.954607
– volume: 3
  start-page: 651
  issue: Dec
  year: 2002
  ident: ref78
  article-title: Multiple-instance learning of real-valued data
  publication-title: J. Mach. Learn. Res.
– year: 2018
  ident: ref59
  article-title: Microsoft band sdk
– ident: ref24
  doi: 10.4018/jse.2010101605
– ident: ref61
  doi: 10.3389/fict.2017.00001
– ident: ref39
  doi: 10.1016/j.imavis.2014.02.008
SSID ssj0000333627
Score 2.4008152
Snippet The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 389
SubjectTerms Affective computing
Algorithms
Ambiguity
Computational modeling
diverse density
Emotion recognition
Emotional factors
Emotions
Labeling
Machine learning
multiple instance learning
Pain
physiological signals
Physiology
support vector machine
Task analysis
time ambiguity
Title Multiple Instance Learning for Emotion Recognition Using Physiological Signals
URI https://ieeexplore.ieee.org/document/8906154
https://www.proquest.com/docview/2635044346
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT8IwFH5BTl5ERSOKpgdvurGtZe2OhEDQBA4KCbel7VpiNGAULv56265bjBrjrYd26d7ra99rv_c9gOuIsxQrY9-0L3lABBOBSGUSJMSSoTNFtaMvns7SyYLcL_vLBtzWuTBKKQc-U6Fturf8YiN39qqsxzJ7AJM92DOBW5mrVd-nRBibvZhWeTFR1psPxuOhBW9loX3Mim1djy9njyum8mMHdsfKuAXTakIlmuQ53G1FKD--cTX-d8aHcOD9SzQoF8QRNNT6GFpV7QbkTbkNs6lHEqI75yBKhTzV6goZPxaNyvI-6KECGJm2gxcghxmttkz0-LSyDMwnsBiP5sNJ4GsrBBLjbBtwLnnBsSYsFcrEbJIwzajQEousn1BdREJzI1GqExqZ3zJxGVGJ5oIIzljG8Sk015u1OgPENaZYUhXHBSVcJlmRCEkKbkO3yHyuA3El9Vx64nFb_-IldwFIlOVOU7nVVO411YGbesxrSbvxZ--2FX3d00u9A91Kubm3zPfcku9EhGCSnv8-6gL2E5vi4K5ZutDcvu3UpXE8tuLKrbhPAtbWfg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LTwMhEJ74OOjFt7E-OejJbN0CXdiDB6M2rdoetCbeVmChMZpqtI3R3-Jf8b8JLNsYNd5MvHEANssMzAx88w3Adix4QrTd36yuREQll5FMFI4wdWToXDPj6YvbnaR5SU-u6ldj8DbKhdFae_CZrrqmf8vP79XQXZXt8dQZYBoglKf65dkGaE_7rSMrzR2MG8fdw2YUaghEipB0EAmhRC6IoTyR2sYminLDmTSKyLSOmcljaQQhCTOYxfaDNv6gGhshqRScp4LYecdh0voZdVxkh41ucGJix2FWZuLE6V73oNE4dHCxtOqez2quksgna-fLt3w7870ha8zCe7kEBX7ltjocyKp6_cIO-V_XaA5mggeNDgqVn4cx3V-A2bI6BQqH1SJ02gEriVreBVYaBTLZHrKeOjouChih8xJCZdseQIE8KrY0Cujipuc4ppfg8k_-ahkm-vd9vQJIGMKIYrpWyxkVCqc5lormwgWnsZ2uArVSypkK1Oquwsdd5kOsOM28ZmROM7KgGRXYHY15KIhFfu296EQ96hmkXIH1UpmycPY8ZY5eKKaU0GT151FbMNXsts-ys1bndA2msUvo8JdK6zAxeBzqDetmDeSm13YE13-tOh8KgDfP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Instance+Learning+for+Emotion+Recognition+Using+Physiological+Signals&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Romeo%2C+Luca&rft.au=Cavallo%2C+Andrea&rft.au=Pepa%2C+Lucia&rft.au=Bianchi-Berthouze%2C+Nadia&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=1949-3045&rft.volume=13&rft.issue=1&rft.spage=389&rft_id=info:doi/10.1109%2FTAFFC.2019.2954118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon