Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy
•Hot tensile deformation and fracture behavior of a typical Al–Zn–Mg–Cu alloy were studied.•The elongation to fracture is affected by the coupled effects of deformation temperature and strain rate.•The main deformation mechanism is the lattice diffusion controlled dislocation climbing.•Microvoids co...
Saved in:
Published in | Materials in engineering Vol. 59; pp. 141 - 150 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Hot tensile deformation and fracture behavior of a typical Al–Zn–Mg–Cu alloy were studied.•The elongation to fracture is affected by the coupled effects of deformation temperature and strain rate.•The main deformation mechanism is the lattice diffusion controlled dislocation climbing.•Microvoids coalescence is the main fracture mechanism under relatively low temperatures.•The established Arrhenius-type constitutive model can accurately predict the peak stress.
The hot tensile deformation behaviors of an Al–Zn–Mg–Cu alloy are studied by uniaxial tensile tests under the deformation temperature of 340–460°C and strain rate of 0.01–0.001s−1. The effects of deformation temperature and strain rate on the hot tensile deformation behaviors and fracture characteristics are discussed in detail. The Arrhenius-type constitutive model is developed to predict the peak stress under the tested deformation condition. The results show that: (1) The true stress–true strain curves under all the tested deformation conditions are composed of four distinct stages, i.e., elastic stage, uniform deformation stage, diffusion necking stage and localized necking stage. The flow stress decreases with the increase of deformation temperature or the decrease of strain rate. (2) The elongation to fracture increases with the increase of deformation temperature. Under the tested conditions, the strain rate sensitivity coefficient varies between 0.1248 and 0.2059, which indicates that the main deformation mechanism is the lattice diffusion-controlled dislocation climb. (3) The localized necking causes the final fracture of specimens under all the deformation conditions. Microvoids coalescence is the main fracture mechanism under relatively low deformation temperatures. With the increase of deformation temperature, the intergranular fracture occurs. (4) The peak stresses predicted by the developed model well agree with the experimental results, which indicate the validity of the developed model. |
---|---|
AbstractList | The hot tensile deformation behaviors of an Al-Zn-Mg-Cu alloy are studied by uniaxial tensile tests under the deformation temperature of 340-460 degree C and strain rate of 0.01-0.001s-1. The effects of deformation temperature and strain rate on the hot tensile deformation behaviors and fracture characteristics are discussed in detail. The Arrhenius-type constitutive model is developed to predict the peak stress under the tested deformation condition. The results show that: (1) The true stress-true strain curves under all the tested deformation conditions are composed of four distinct stages, i.e., elastic stage, uniform deformation stage, diffusion necking stage and localized necking stage. The flow stress decreases with the increase of deformation temperature or the decrease of strain rate. (2) The elongation to fracture increases with the increase of deformation temperature. Under the tested conditions, the strain rate sensitivity coefficient varies between 0.1248 and 0.2059, which indicates that the main deformation mechanism is the lattice diffusion-controlled dislocation climb. (3) The localized necking causes the final fracture of specimens under all the deformation conditions. Microvoids coalescence is the main fracture mechanism under relatively low deformation temperatures. With the increase of deformation temperature, the intergranular fracture occurs. (4) The peak stresses predicted by the developed model well agree with the experimental results, which indicate the validity of the developed model. •Hot tensile deformation and fracture behavior of a typical Al–Zn–Mg–Cu alloy were studied.•The elongation to fracture is affected by the coupled effects of deformation temperature and strain rate.•The main deformation mechanism is the lattice diffusion controlled dislocation climbing.•Microvoids coalescence is the main fracture mechanism under relatively low temperatures.•The established Arrhenius-type constitutive model can accurately predict the peak stress. The hot tensile deformation behaviors of an Al–Zn–Mg–Cu alloy are studied by uniaxial tensile tests under the deformation temperature of 340–460°C and strain rate of 0.01–0.001s−1. The effects of deformation temperature and strain rate on the hot tensile deformation behaviors and fracture characteristics are discussed in detail. The Arrhenius-type constitutive model is developed to predict the peak stress under the tested deformation condition. The results show that: (1) The true stress–true strain curves under all the tested deformation conditions are composed of four distinct stages, i.e., elastic stage, uniform deformation stage, diffusion necking stage and localized necking stage. The flow stress decreases with the increase of deformation temperature or the decrease of strain rate. (2) The elongation to fracture increases with the increase of deformation temperature. Under the tested conditions, the strain rate sensitivity coefficient varies between 0.1248 and 0.2059, which indicates that the main deformation mechanism is the lattice diffusion-controlled dislocation climb. (3) The localized necking causes the final fracture of specimens under all the deformation conditions. Microvoids coalescence is the main fracture mechanism under relatively low deformation temperatures. With the increase of deformation temperature, the intergranular fracture occurs. (4) The peak stresses predicted by the developed model well agree with the experimental results, which indicate the validity of the developed model. |
Author | Jiang, Yu-Qiang Deng, Jiao Zhou, Mi Lin, Y.C. |
Author_xml | – sequence: 1 givenname: Mi surname: Zhou fullname: Zhou, Mi – sequence: 2 givenname: Y.C. surname: Lin fullname: Lin, Y.C. email: yclin@csu.edu.cn, linyongcheng@163.com – sequence: 3 givenname: Jiao surname: Deng fullname: Deng, Jiao – sequence: 4 givenname: Yu-Qiang surname: Jiang fullname: Jiang, Yu-Qiang |
BookMark | eNqFkLtOAzEQRV0EifD4AwqXNFnGXmc3S4GEIl4SiAYoaCzHOwZHjg22Eykd_8Af8iUYQkUBzUwx91xpzg4Z-OCRkAMGFQPWHM2rhco9pooDExXwCsZ8QIbAGzaqoem2yU5KcwDWMsaH5OEyZJrRJ-uQ9mhCLLgNns7wWa1siIkq31MdfMo2L7NdIV2EHh0Nplzoqft4e3_0Zdw8lTFdUuVcWO-RLaNcwv2fvUvuz8_uppej69uLq-np9UjXdZdHStQa-xpQc0ABbNYJIwwKM570INoWNUMcQ8k2LWJr1ETVzUT3HdamnTVdvUsON70vMbwuMWW5sEmjc8pjWCbJGsG5AOjGJXq8ieoYUopopLb5-9cclXWSgfwSKOdyI1B-CZTAZRFYYPELfol2oeL6P-xkg2FxsLIYZdIWffnZRtRZ9sH-XfAJT4yUjg |
CitedBy_id | crossref_primary_10_1007_s11661_019_05207_y crossref_primary_10_3390_ma11071233 crossref_primary_10_1016_j_jmrt_2022_05_060 crossref_primary_10_3390_met12030393 crossref_primary_10_1016_j_matchar_2017_03_005 crossref_primary_10_1088_1742_6596_2873_1_012036 crossref_primary_10_1002_eng2_12803 crossref_primary_10_1007_s11771_024_5568_9 crossref_primary_10_1016_j_cirpj_2021_04_008 crossref_primary_10_1007_s11665_019_04406_3 crossref_primary_10_1007_s11665_020_05381_w crossref_primary_10_1520_JTE20160507 crossref_primary_10_1007_s11837_015_1354_3 crossref_primary_10_1007_s40195_014_0200_x crossref_primary_10_1016_j_msea_2016_10_095 crossref_primary_10_1016_j_jallcom_2022_163748 crossref_primary_10_1088_2053_1591_ab9b14 crossref_primary_10_1016_j_msea_2016_05_113 crossref_primary_10_1016_j_jmrt_2023_08_203 crossref_primary_10_1007_s11665_017_2504_2 crossref_primary_10_1007_s12540_021_00967_y crossref_primary_10_1007_s11661_018_4822_x crossref_primary_10_1155_2016_3803472 crossref_primary_10_1557_jmr_2017_259 crossref_primary_10_1016_j_matchar_2020_110715 crossref_primary_10_1016_j_matdes_2015_04_004 crossref_primary_10_1016_j_jallcom_2015_10_114 crossref_primary_10_1016_S1003_6326_19_65022_3 crossref_primary_10_2320_matertrans_M2015221 crossref_primary_10_1016_j_jallcom_2018_02_039 crossref_primary_10_1016_j_matdes_2015_09_044 crossref_primary_10_1016_j_matdes_2016_07_111 crossref_primary_10_1007_s11665_020_05290_y crossref_primary_10_1016_j_mtcomm_2022_105209 crossref_primary_10_1016_j_triboint_2019_105872 crossref_primary_10_1557_jmr_2016_144 crossref_primary_10_1016_j_jallcom_2016_05_161 crossref_primary_10_1557_jmr_2017_466 crossref_primary_10_1016_j_tafmec_2019_04_001 crossref_primary_10_1016_j_msea_2014_12_081 crossref_primary_10_1088_2051_672X_ac0a3a crossref_primary_10_1007_s11837_019_03846_5 crossref_primary_10_1016_j_jallcom_2016_10_228 crossref_primary_10_1016_j_matdes_2015_06_029 crossref_primary_10_1007_s11665_023_08686_8 crossref_primary_10_1155_2018_5124524 crossref_primary_10_1115_1_4047747 crossref_primary_10_1016_j_msea_2018_01_109 crossref_primary_10_3390_cryst13020269 crossref_primary_10_1016_j_jmatprotec_2017_04_030 crossref_primary_10_3390_met10091239 crossref_primary_10_3139_146_111514 crossref_primary_10_1007_s11665_015_1395_3 crossref_primary_10_1007_s11665_015_1676_x crossref_primary_10_1016_j_jmrt_2024_07_201 crossref_primary_10_1007_s11665_022_06955_6 crossref_primary_10_1088_2053_1591_aac35d crossref_primary_10_1007_s11665_021_05564_z crossref_primary_10_1007_s11665_020_04648_6 crossref_primary_10_1016_j_msea_2024_146106 crossref_primary_10_1016_j_msea_2020_140362 crossref_primary_10_3390_met6090210 crossref_primary_10_3390_met9121277 crossref_primary_10_1016_j_mechmat_2020_103599 crossref_primary_10_1016_j_msea_2022_143158 crossref_primary_10_1016_j_ijmecsci_2019_105178 crossref_primary_10_1016_S1003_6326_16_64223_1 crossref_primary_10_1016_j_matchar_2018_08_029 crossref_primary_10_1007_s11595_020_2341_2 crossref_primary_10_1016_S1875_5372_17_30187_X crossref_primary_10_1007_s11665_018_3352_4 crossref_primary_10_1088_2053_1591_ad8104 crossref_primary_10_1016_j_jmrt_2023_12_050 crossref_primary_10_3390_ma13051202 crossref_primary_10_1016_j_msea_2018_06_077 crossref_primary_10_1080_09603409_2018_1513675 crossref_primary_10_1515_htmp_2016_0006 crossref_primary_10_1007_s11595_021_2424_8 crossref_primary_10_1016_j_vacuum_2018_07_034 crossref_primary_10_1115_1_4051436 crossref_primary_10_3390_met5031717 crossref_primary_10_1155_2017_7679219 crossref_primary_10_3390_app10217776 crossref_primary_10_1007_s40962_018_0231_6 crossref_primary_10_1016_j_matdes_2015_07_027 crossref_primary_10_1115_1_4037660 crossref_primary_10_1007_s11665_019_04231_8 crossref_primary_10_1016_j_pnsc_2020_01_007 crossref_primary_10_3390_met11050681 crossref_primary_10_1016_j_jmapro_2023_02_017 crossref_primary_10_1016_j_msea_2015_11_030 crossref_primary_10_1515_htmp_2016_0014 crossref_primary_10_1088_2399_6528_aa9d38 crossref_primary_10_3390_ma16196412 crossref_primary_10_3390_met10060817 crossref_primary_10_3139_146_111733 crossref_primary_10_3390_met9050576 crossref_primary_10_1016_j_vacuum_2020_109185 crossref_primary_10_1515_htmp_2014_0231 crossref_primary_10_1016_j_msea_2017_07_035 crossref_primary_10_3390_met9030305 crossref_primary_10_1016_j_jmrt_2020_06_042 crossref_primary_10_1016_j_msea_2019_138325 crossref_primary_10_1007_s10853_021_06095_7 crossref_primary_10_1590_1980_5373_mr_2016_0448 crossref_primary_10_3390_ma15196769 crossref_primary_10_3390_met10070884 crossref_primary_10_3390_met12020259 crossref_primary_10_1016_j_jallcom_2020_154988 crossref_primary_10_3390_met7080299 crossref_primary_10_1007_s11665_024_09739_2 crossref_primary_10_1016_j_msea_2021_141025 crossref_primary_10_1016_j_jallcom_2019_152264 crossref_primary_10_1007_s11661_018_5084_3 crossref_primary_10_1016_j_msea_2015_03_038 crossref_primary_10_29137_umagd_718364 crossref_primary_10_1007_s13369_023_08633_8 crossref_primary_10_1016_j_matdes_2014_04_054 crossref_primary_10_1016_j_engfracmech_2023_109246 crossref_primary_10_3390_ma17112628 crossref_primary_10_1115_1_4067131 crossref_primary_10_1016_j_jmrt_2015_12_002 crossref_primary_10_3390_ma16237446 crossref_primary_10_1007_s40033_021_00326_6 crossref_primary_10_1557_jmr_2016_232 crossref_primary_10_1007_s12008_025_02262_1 crossref_primary_10_1007_s11831_020_09451_z crossref_primary_10_2320_matertrans_MT_M2019279 crossref_primary_10_1016_j_jmatprotec_2022_117854 crossref_primary_10_1080_02670836_2017_1421735 crossref_primary_10_1007_s11665_024_10340_w crossref_primary_10_1016_j_jmrt_2023_09_212 crossref_primary_10_1007_s12666_024_03382_0 crossref_primary_10_1016_j_matdes_2016_02_011 crossref_primary_10_1016_j_jallcom_2014_08_187 crossref_primary_10_1088_1742_6596_1063_1_012034 crossref_primary_10_1016_j_ijmecsci_2020_106241 crossref_primary_10_1016_S1003_6326_18_64891_5 |
Cites_doi | 10.1016/S1003-6326(13)62629-1 10.1007/s11661-013-1841-5 10.1080/14786430801989799 10.1007/s10853-011-5904-y 10.1590/S1516-14392013005000070 10.1016/j.matdes.2013.04.003 10.1016/j.matdes.2013.10.071 10.1016/j.msea.2010.07.061 10.1016/j.msea.2012.06.084 10.1016/j.jallcom.2013.03.209 10.1016/j.commatsci.2010.06.004 10.1007/s11665-013-0496-0 10.1016/j.actamat.2011.07.008 10.1590/S1516-14392013005000091 10.1016/j.matdes.2012.07.009 10.1007/s11665-013-0779-5 10.1016/j.matdes.2013.06.070 10.1016/j.jmatprotec.2007.11.113 10.1016/j.commatsci.2007.08.011 10.1016/j.msea.2013.09.036 10.1016/j.commatsci.2013.11.056 10.1016/j.matdes.2013.09.013 10.1007/s11661-011-1012-5 10.1016/j.matdes.2013.10.080 10.1155/2013/514945 10.1007/s12540-013-1002-9 10.1016/j.matdes.2013.08.095 10.1016/j.matdes.2010.12.047 10.1016/j.matdes.2013.08.006 10.1016/j.scriptamat.2009.12.001 10.1016/j.msea.2011.12.076 10.1016/j.matdes.2010.11.048 10.1016/j.ijplas.2013.05.007 10.1016/j.commatsci.2013.11.003 10.1016/j.matdes.2013.01.023 10.1007/s11661-010-0517-7 10.1007/s00170-011-3828-y 10.1016/j.commatsci.2011.11.031 10.1016/j.commatsci.2008.03.027 10.1016/j.commatsci.2011.09.026 10.1016/j.matdes.2013.10.089 10.1016/S1003-6326(13)62656-4 10.1016/j.matdes.2013.11.053 10.1016/j.msea.2012.05.036 10.1016/S1003-6326(13)62878-2 10.1016/j.matdes.2013.12.047 10.1016/j.matdes.2013.10.008 10.1016/j.matchar.2014.01.019 10.1016/S1003-6326(11)61167-9 10.1016/j.matdes.2013.06.010 10.1590/S1516-14392012005000156 10.1016/j.matdes.2013.06.053 10.1016/j.msea.2012.04.010 10.1016/j.msea.2013.01.055 10.1016/j.msea.2013.04.041 10.1016/j.msea.2013.01.080 10.1016/j.matdes.2012.12.083 10.1016/j.jallcom.2012.10.114 10.1007/s12613-013-0820-6 10.1016/j.msea.2013.11.030 10.1016/j.matdes.2013.05.036 10.1016/j.pnsc.2013.11.004 10.1016/j.msea.2014.01.029 10.1016/j.commatsci.2012.06.039 10.1016/j.jmatprotec.2008.05.047 10.1007/s11340-011-9546-4 10.1016/j.matdes.2013.07.057 10.1016/j.jallcom.2010.09.139 10.1016/j.msea.2013.10.096 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7QF 7SR 8BQ 8FD H8G JG9 |
DOI | 10.1016/j.matdes.2014.02.052 |
DatabaseName | CrossRef Aluminium Industry Abstracts Engineered Materials Abstracts METADEX Technology Research Database Copper Technical Reference Library Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Copper Technical Reference Library Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 150 |
ExternalDocumentID | 10_1016_j_matdes_2014_02_052 S0261306914001708 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH 7QF 7SR 8BQ 8FD AFXIZ EFKBS H8G JG9 |
ID | FETCH-LOGICAL-c339t-a43ced30ec20e401b94f4fe4f58d0477ec1ee5033967ee7fa8a368cd9e3f7b693 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Mon Jul 21 11:21:02 EDT 2025 Tue Jul 01 04:23:12 EDT 2025 Thu Apr 24 23:44:07 EDT 2025 Fri Feb 23 02:25:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fracture morphology Constitutive equation Plastic deformation Al–Zn–Mg–Cu alloy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-a43ced30ec20e401b94f4fe4f58d0477ec1ee5033967ee7fa8a368cd9e3f7b693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1642240095 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1642240095 crossref_citationtrail_10_1016_j_matdes_2014_02_052 crossref_primary_10_1016_j_matdes_2014_02_052 elsevier_sciencedirect_doi_10_1016_j_matdes_2014_02_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Seyed Salehi, Serajzadeh (b0010) 2012; 53 Paul, Raj, Biswas, Manikandan, Verma (b0150) 2014; 57 He, Pan, Chen, Zhang, Liu, Li (b0020) 2012; 22 Nguyen, Yang, Jung, Banh, Kim (b0160) 2012; 62 Liu, Liu, Li, Lin (b0030) 2014; 84 Mandal, Bhaduri, Sarma (b0065) 2011; 42 Spigarelli, El Mehtedi (b0240) 2014; 23 Mirzadeh, Cabrera, Najafizadeh (b0355) 2011; 59 Kotkunde, Deole, Gupta, Singh (b0255) 2014; 55 Lin, Chen (b0300) 2010; 49 Quan, Li, Wang, Lv, Yu, Zhou (b0330) 2013; 16 Sajadifar, Yapici (b0235) 2014; 53 Quan, Wang, Liu, Zhou (b0075) 2013; 16 Momeni, Dehghani, Ebrahimi, Kazemi (b0070) 2013; 44 He, Xie, Zhang, Wang (b0275) 2013; 52 Etaati, Dehghani, Ebrahimi, Wang (b0195) 2013; 19 Sun, Zheng, Yang (b0340) 2014; 90 Chen, Lin, Ma (b0080) 2012; 556 Haghdadi, Zarei-Hanzaki, Abedi (b0220) 2012; 535 Mirzaei, Zarei-Hanzaki, Haghdadi, Marandi (b0190) 2014; 589 Tian, Huang, Ma, Li (b0245) 2014; 54 Momeni, Kazemi, Bahrani (b0045) 2013; 20 . Yin, Hua, Mao, Han (b0185) 2013; 43 Samantaray, Patel, Borah, Albert, Bhaduri (b0285) 2014; 56 Krishnamurthy, Singh, Gupta, Singh (b0290) 2013; 3 Lin, Chen, Liu (b0270) 2010; 527 Lin, Chen, Wen, Chen (b0025) 2014; 83 Puchi-Cabrera, Staia, Guérin, Lesage, Dubar, Chicot (b0015) 2013; 51 Mandal, Mishra, Kumar, Samajdar, Sivaprasad, Jayakumar (b0095) 2008; 88 Lin, Deng, Jiang, Wen, Liu (b0130) 2014; 55 Peng, Zhou, Dai, He (b0105) 2013; 50 Yoon, Park (b0110) 2014; 55 Lin, Li, Fu, Jiang (b0315) 2012; 47 He, Xie, Zhang, Wang (b0280) 2014; 56 Li, Zhao, Fan, Yan (b0225) 2013; 571 Senthilkumar, Balaji, Arulkirubakaran (b0260) 2013; 23 Zhang, Zhang, Cheng, Xu, Bai (b0350) 2010; 62 Gao, Jiang, Wei, Li, Jiao, Xu (b0180) 2014; 595 ISO 6892–2. Metallic materials – tensile testing–part 2: method of test at elevated temperature; 2011. Marchattiwar, Sarkar, Chakravartty, Kashyap (b0085) 2013; 22 Quan, Shi, Yu, Zhou (b0215) 2013; 16 Li, Li, Wang, Liu, Wu (b0295) 2013; 49 Lin, Li, Jiang (b0310) 2012; 52 Xu, Peng, Liang, Li, Yin (b0205) 2013; 23 Rokni, Zarei-Hanzaki, Roostaei, Abedi (b0305) 2011; 32 Zhang, Yang, Li, Ren, Wang (b0145) 2013; 569 Li, Liu, Wang, Liu, Lu, Liang (b0200) 2013; 23 Paul (b0165) 2012; 65 Lin, Chen, Zhong (b0040) 2009; 209 Kotkunde, Krishnamurthy, Puranik, Gupta, Singh (b0250) 2014; 54 Rajamuthamilselvan, Ramanathan (b0320) 2011; 509 Shi, Mao, Chen (b0345) 2013; 571 Samantaray, Mandal, Kumar, Albert, Bhaduri, Jayakumar (b0055) 2012; 552 Mandal, Bhaduri, Sarma (b0090) 2012; 43 Alexandrov S, Mustafa Y, Yahya Y. An efficient approach for identifying constitutive parameters of the modified Oyane ductile fracture criterion at high temperature. Math Prob Eng vol. 2013, p. 4. Article ID 514945 EI Mehtedi, Musharavati, Spigarelli (b0155) 2014; 54 Lin, Li, Xia, Jiang (b0325) 2012; 550 Lin, Chen, Zhong (b0035) 2008; 44 Lin, Deng, Jiang, Wen, Liu (b0125) 2014; 598 Nguyen, Banh, Jung, Yang, Kim (b0135) 2012; 31 Cao, Di, Misra, Yi, Zhang, Ma (b0175) 2014; 593 Lin, Chen (b0005) 2011; 32 Lin, Chen, Zhong (b0060) 2008; 205 Lin, Chen, Zhong (b0170) 2008; 42 Haghdadi, Zarei-Hanzaki, Abedi, Sabokpa (b0050) 2012; 549 Huang, Lin, Deng, Liu, Chen (b0120) 2014; 53 Li, Wang, Duan, Liu (b0265) 2013; 577 Balasundar, Raghu, Kashyap (b0230) 2013; 23 Lin, Ding, Deng, Chen (b0140) 2013; 52 Jia, Cao, Guo, Ma, Liu, Sun (b0210) 2014; 53 Quan, Mao, Li, Lv, Wang, Zhou (b0360) 2012; 55 Deng, Lin, Li, Chen, Ding (b0115) 2013; 49 Haghdadi (10.1016/j.matdes.2014.02.052_b0050) 2012; 549 Puchi-Cabrera (10.1016/j.matdes.2014.02.052_b0015) 2013; 51 Cao (10.1016/j.matdes.2014.02.052_b0175) 2014; 593 Quan (10.1016/j.matdes.2014.02.052_b0330) 2013; 16 Shi (10.1016/j.matdes.2014.02.052_b0345) 2013; 571 Mandal (10.1016/j.matdes.2014.02.052_b0065) 2011; 42 EI Mehtedi (10.1016/j.matdes.2014.02.052_b0155) 2014; 54 Lin (10.1016/j.matdes.2014.02.052_b0005) 2011; 32 Deng (10.1016/j.matdes.2014.02.052_b0115) 2013; 49 Li (10.1016/j.matdes.2014.02.052_b0295) 2013; 49 Quan (10.1016/j.matdes.2014.02.052_b0215) 2013; 16 Sajadifar (10.1016/j.matdes.2014.02.052_b0235) 2014; 53 Momeni (10.1016/j.matdes.2014.02.052_b0045) 2013; 20 Gao (10.1016/j.matdes.2014.02.052_b0180) 2014; 595 Kotkunde (10.1016/j.matdes.2014.02.052_b0255) 2014; 55 Nguyen (10.1016/j.matdes.2014.02.052_b0160) 2012; 62 Yin (10.1016/j.matdes.2014.02.052_b0185) 2013; 43 Momeni (10.1016/j.matdes.2014.02.052_b0070) 2013; 44 Peng (10.1016/j.matdes.2014.02.052_b0105) 2013; 50 Haghdadi (10.1016/j.matdes.2014.02.052_b0220) 2012; 535 Zhang (10.1016/j.matdes.2014.02.052_b0145) 2013; 569 Balasundar (10.1016/j.matdes.2014.02.052_b0230) 2013; 23 Lin (10.1016/j.matdes.2014.02.052_b0300) 2010; 49 Li (10.1016/j.matdes.2014.02.052_b0265) 2013; 577 Mirzaei (10.1016/j.matdes.2014.02.052_b0190) 2014; 589 Rokni (10.1016/j.matdes.2014.02.052_b0305) 2011; 32 Liu (10.1016/j.matdes.2014.02.052_b0030) 2014; 84 Lin (10.1016/j.matdes.2014.02.052_b0040) 2009; 209 Lin (10.1016/j.matdes.2014.02.052_b0170) 2008; 42 Chen (10.1016/j.matdes.2014.02.052_b0080) 2012; 556 Tian (10.1016/j.matdes.2014.02.052_b0245) 2014; 54 Lin (10.1016/j.matdes.2014.02.052_b0140) 2013; 52 Quan (10.1016/j.matdes.2014.02.052_b0360) 2012; 55 Yoon (10.1016/j.matdes.2014.02.052_b0110) 2014; 55 Lin (10.1016/j.matdes.2014.02.052_b0130) 2014; 55 Lin (10.1016/j.matdes.2014.02.052_b0035) 2008; 44 Lin (10.1016/j.matdes.2014.02.052_b0325) 2012; 550 Lin (10.1016/j.matdes.2014.02.052_b0025) 2014; 83 Senthilkumar (10.1016/j.matdes.2014.02.052_b0260) 2013; 23 Li (10.1016/j.matdes.2014.02.052_b0225) 2013; 571 10.1016/j.matdes.2014.02.052_b0335 Mandal (10.1016/j.matdes.2014.02.052_b0095) 2008; 88 Paul (10.1016/j.matdes.2014.02.052_b0165) 2012; 65 Seyed Salehi (10.1016/j.matdes.2014.02.052_b0010) 2012; 53 Samantaray (10.1016/j.matdes.2014.02.052_b0285) 2014; 56 Huang (10.1016/j.matdes.2014.02.052_b0120) 2014; 53 Mirzadeh (10.1016/j.matdes.2014.02.052_b0355) 2011; 59 Etaati (10.1016/j.matdes.2014.02.052_b0195) 2013; 19 10.1016/j.matdes.2014.02.052_b0100 Samantaray (10.1016/j.matdes.2014.02.052_b0055) 2012; 552 Mandal (10.1016/j.matdes.2014.02.052_b0090) 2012; 43 Kotkunde (10.1016/j.matdes.2014.02.052_b0250) 2014; 54 Lin (10.1016/j.matdes.2014.02.052_b0315) 2012; 47 Lin (10.1016/j.matdes.2014.02.052_b0060) 2008; 205 Zhang (10.1016/j.matdes.2014.02.052_b0350) 2010; 62 Li (10.1016/j.matdes.2014.02.052_b0200) 2013; 23 He (10.1016/j.matdes.2014.02.052_b0020) 2012; 22 Paul (10.1016/j.matdes.2014.02.052_b0150) 2014; 57 He (10.1016/j.matdes.2014.02.052_b0275) 2013; 52 Nguyen (10.1016/j.matdes.2014.02.052_b0135) 2012; 31 Xu (10.1016/j.matdes.2014.02.052_b0205) 2013; 23 Lin (10.1016/j.matdes.2014.02.052_b0125) 2014; 598 Quan (10.1016/j.matdes.2014.02.052_b0075) 2013; 16 Marchattiwar (10.1016/j.matdes.2014.02.052_b0085) 2013; 22 Krishnamurthy (10.1016/j.matdes.2014.02.052_b0290) 2013; 3 Jia (10.1016/j.matdes.2014.02.052_b0210) 2014; 53 Lin (10.1016/j.matdes.2014.02.052_b0270) 2010; 527 He (10.1016/j.matdes.2014.02.052_b0280) 2014; 56 Sun (10.1016/j.matdes.2014.02.052_b0340) 2014; 90 Spigarelli (10.1016/j.matdes.2014.02.052_b0240) 2014; 23 Lin (10.1016/j.matdes.2014.02.052_b0310) 2012; 52 Rajamuthamilselvan (10.1016/j.matdes.2014.02.052_b0320) 2011; 509 |
References_xml | – volume: 571 start-page: 12 year: 2013 end-page: 20 ident: b0225 article-title: Study on the material characteristic and process parameters of the open-die warm extrusion process of spline shaft with 42CrMo steel publication-title: J Alloys Compd – volume: 556 start-page: 260 year: 2012 end-page: 266 ident: b0080 article-title: The kinetics of dynamic recrystallization of 42CrMo steel publication-title: Mater Sci Eng A – volume: 53 start-page: 145 year: 2012 end-page: 152 ident: b0010 article-title: Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model publication-title: Comput Mater Sci – volume: 53 start-page: 79 year: 2014 end-page: 85 ident: b0210 article-title: Hot deformation behavior of spray-deposited Al–Zn–Mg–Cu alloy publication-title: Mater Des – volume: 62 start-page: 551 year: 2012 end-page: 562 ident: b0160 article-title: A study on material modeling to predict spring – back in V-bending of AZ31 magnesium alloy sheet at various temperatures publication-title: Int J Adv Manuf Technol – volume: 55 start-page: 999 year: 2014 end-page: 1005 ident: b0255 article-title: Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures publication-title: Mater Des – volume: 54 start-page: 869 year: 2014 end-page: 873 ident: b0155 article-title: Modelling of the flow behaviour of wrought aluminium alloys at elevated temperatures by a new constitutive equation publication-title: Mater Des – volume: 65 start-page: 91 year: 2012 end-page: 99 ident: b0165 article-title: Predicting the flow behavior of metals under different strain rate and temperature through phenomenological modeling publication-title: Comput Mater Sci – volume: 23 start-page: 1549 year: 2013 end-page: 1555 ident: b0205 article-title: Constitutive relationship for high temperature deformation of Al–3Cu–0.5Sc alloy publication-title: Trans Nonferrous Metal Soc China – volume: 22 start-page: 2168 year: 2013 end-page: 2175 ident: b0085 article-title: Dynamic recrystallization during hot deformation of 304 austenitic stainless steel publication-title: J Mater Eng Perform – volume: 50 start-page: 968 year: 2013 end-page: 976 ident: b0105 article-title: An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures publication-title: Mater Des – volume: 19 start-page: 5 year: 2013 end-page: 9 ident: b0195 article-title: Predicting the flow stress behavior of Ni–42.5Ti–3Cu during hot deformation using constitutive equations publication-title: Metal Mater Int – volume: 55 start-page: 300 year: 2014 end-page: 308 ident: b0110 article-title: Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions publication-title: Mater Des – volume: 32 start-page: 1733 year: 2011 end-page: 1759 ident: b0005 article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working publication-title: Mater Des – volume: 205 start-page: 308 year: 2008 end-page: 315 ident: b0060 article-title: Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel publication-title: J Mater Process Technol – volume: 32 start-page: 2339 year: 2011 end-page: 2344 ident: b0305 article-title: An investigation into the hot deformation characteristics of 7075 aluminum alloy publication-title: Mater Des – volume: 509 start-page: 948 year: 2011 end-page: 952 ident: b0320 article-title: Hot deformation behaviour of 7075 alloy publication-title: J Alloys Compd – volume: 16 start-page: 19 year: 2013 end-page: 27 ident: b0330 article-title: A characterization for the flow behavior of as-extruded 7075 aluminum alloy by the improved Arrhenius model with variable parameters publication-title: Mater Res – volume: 55 start-page: 65 year: 2012 end-page: 72 ident: b0360 article-title: A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves publication-title: Comput Mater Sci – volume: 49 start-page: 628 year: 2010 end-page: 633 ident: b0300 article-title: A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel publication-title: Comput Mater Sci – volume: 54 start-page: 96 year: 2014 end-page: 103 ident: b0250 article-title: Microstructure study and constitutive modeling of Ti–6Al–4V alloy at elevated temperatures publication-title: Mater Des – volume: 57 start-page: 211 year: 2014 end-page: 217 ident: b0150 article-title: Tensile flow behavior of ultra low carbon, low carbon and micro alloyed steel sheets for auto application under low to intermediate strain rate publication-title: Mater Des – volume: 22 start-page: 246 year: 2012 end-page: 254 ident: b0020 article-title: Modeling of strain hardening and dynamic recrystallization ZK60 magnesium alloy during hot deformation publication-title: Trans Nonferrous Metal Soc China – volume: 598 start-page: 251 year: 2014 end-page: 262 ident: b0125 article-title: Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy publication-title: Mater Sci Eng A – volume: 23 start-page: 3383 year: 2013 end-page: 3391 ident: b0200 article-title: Constitutive equation and processing map for hot compressed as-cast Ti–43Al–4Nb–1.4W–0.6B alloy publication-title: Trans Nonferrous Metal Soc China – volume: 52 start-page: 118 year: 2013 end-page: 127 ident: b0140 article-title: A new phenomenological constitutive model for hot tensile deformation behaviors of a typical Al–Cu–Mg alloy publication-title: Mater Des – volume: 47 start-page: 1306 year: 2012 end-page: 1318 ident: b0315 article-title: Hot compressive deformation behavior of 7075 Al alloy under elevated temperature publication-title: J Mater Sci – volume: 88 start-page: 883 year: 2008 end-page: 897 ident: b0095 article-title: Evolution and characterization of dynamically recrystallized microstructure in a titanium-modified austenitic stainless steel using ultrasonic and EBSD techniques publication-title: Philos Mag – volume: 31 start-page: 37 year: 2012 end-page: 45 ident: b0135 article-title: A modified Johnson–Cook model to predict stress–strain curves of boron steel sheets at elevated and cooling temperatures publication-title: High Temp Mater Process – reference: Alexandrov S, Mustafa Y, Yahya Y. An efficient approach for identifying constitutive parameters of the modified Oyane ductile fracture criterion at high temperature. Math Prob Eng vol. 2013, p. 4. Article ID 514945 – volume: 56 start-page: 565 year: 2014 end-page: 571 ident: b0285 article-title: Constitutive flow behavior of IFAC-1 austenitic stainless steel depicting strain saturation over a wide range of strain rates and temperatures publication-title: Mater Des – volume: 90 start-page: 71 year: 2014 end-page: 80 ident: b0340 article-title: Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation publication-title: Mater Charact – volume: 571 start-page: 83 year: 2013 end-page: 91 ident: b0345 article-title: Evolution of activation energy during hot deformation of AA7150 aluminum alloy publication-title: Mater Sci Eng A – volume: 56 start-page: 122 year: 2014 end-page: 127 ident: b0280 article-title: A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel publication-title: Mater Des – volume: 549 start-page: 93 year: 2012 end-page: 99 ident: b0050 article-title: The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy publication-title: Mater Sci Eng A – volume: 527 start-page: 6980 year: 2010 end-page: 6986 ident: b0270 article-title: A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel publication-title: Mater Sci Eng A – volume: 84 start-page: 115 year: 2014 end-page: 121 ident: b0030 article-title: The study on kinetics of static recrystallization in the two-stage isothermal compression of 300M steel publication-title: Comput Mater Sci – volume: 209 start-page: 2477 year: 2009 end-page: 2482 ident: b0040 article-title: Study of metadynamic recrystallization behaviors in a low alloy steel publication-title: J Mater Process Technol – volume: 589 start-page: 76 year: 2014 end-page: 82 ident: b0190 article-title: Constitutive description of high temperature flow behavior of Sanicro-28 super-austenitic stainless steel publication-title: Mater Sci Eng A – volume: 16 start-page: 785 year: 2013 end-page: 791 ident: b0215 article-title: The improved Arrhenius model with variable parameters of flow behavior characterizing for the as-cast AZ80 magnesium alloy publication-title: Mater Res – volume: 23 start-page: 598 year: 2013 end-page: 607 ident: b0230 article-title: Modeling the hot working behavior of near-α titanium alloy IMI834 publication-title: Prog Nat Sci: Mater Int – volume: 42 start-page: 470 year: 2008 end-page: 477 ident: b0170 article-title: Constitutive modeling for elevated temperature flow behavior of 42CrMo steel publication-title: Comput Mater Sci – volume: 49 start-page: 493 year: 2013 end-page: 501 ident: b0295 article-title: A comparative study on modified Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel publication-title: Mater Des – volume: 44 start-page: 316 year: 2008 end-page: 321 ident: b0035 article-title: Study of static recrystallization kinetics in a low alloy steel publication-title: Comput Mater Sci – volume: 55 start-page: 949 year: 2014 end-page: 957 ident: b0130 article-title: Hot tensile deformation and fracture characteristics of a typical Ni-based superalloy at elevated temperature publication-title: Mater Des – volume: 53 start-page: 749 year: 2014 end-page: 757 ident: b0235 article-title: Workability characteristics and mechanical behavior modeling of severely deformed pure titanium at high temperatures publication-title: Mater Des – volume: 59 start-page: 6441 year: 2011 end-page: 6448 ident: b0355 article-title: Constitutive relationships for hot deformation of austenite publication-title: Acta Mater – volume: 595 start-page: 1 year: 2014 end-page: 9 ident: b0180 article-title: Constitutive analysis for hot deformation behaviour of novel bimetal consisting of pearlitic steel and low carbon steel publication-title: Mater Sci Eng A – volume: 16 start-page: 1092 year: 2013 end-page: 1105 ident: b0075 article-title: Effect of temperatures and strain rates on the average size of grains refined by dynamic recrystallization for as-extruded 42CrMo steel publication-title: Mater Res – volume: 23 start-page: 658 year: 2014 end-page: 665 ident: b0240 article-title: A new constitutive model for the plastic flow of metals at elevated temperatures publication-title: J Mater Eng Perform – volume: 54 start-page: 587 year: 2014 end-page: 597 ident: b0245 article-title: Establishment and comparison of four constitutive models of 5A02 aluminium alloy in high-velocity forming process publication-title: Mater Des – volume: 535 start-page: 252 year: 2012 end-page: 257 ident: b0220 article-title: The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain publication-title: Mater Sci Eng A – volume: 52 start-page: 677 year: 2013 end-page: 685 ident: b0275 article-title: A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel publication-title: Mater Des – volume: 3 start-page: 143 year: 2013 end-page: 147 ident: b0290 article-title: Prediction of deformation behavior of austenitic stainless steel 304 in dynamic strain aging regime publication-title: Int J Adv Mater Manuf Charact – volume: 23 start-page: 1737 year: 2013 end-page: 1750 ident: b0260 article-title: Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite publication-title: Trans Nonferrous Metal Soc China – volume: 42 start-page: 1062 year: 2011 end-page: 1072 ident: b0065 article-title: A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel publication-title: Metall Mater Trans A – volume: 53 start-page: 349 year: 2014 end-page: 356 ident: b0120 article-title: Hot tensile deformation behaviors and constitutive model of 42CrMo steel publication-title: Mater Des – volume: 593 start-page: 111 year: 2014 end-page: 119 ident: b0175 article-title: On the hot deformation behavior of AISI 420 stainless steel based on constitutive analysis and CSL model publication-title: Mater Sci Eng A – volume: 44 start-page: 5567 year: 2013 end-page: 5576 ident: b0070 article-title: Developing the processing maps using the hyperbolic sine constitutive equation publication-title: Metall Mater Trans A – volume: 52 start-page: 993 year: 2012 end-page: 1002 ident: b0310 article-title: A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al–Zn–Mg–Cu alloy under hot working condition publication-title: Exp Mech – volume: 43 start-page: 2056 year: 2012 end-page: 2068 ident: b0090 article-title: Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel publication-title: Metall Mater Trans A – volume: 43 start-page: 393 year: 2013 end-page: 401 ident: b0185 article-title: Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments publication-title: Mater Des – volume: 62 start-page: 798 year: 2010 end-page: 801 ident: b0350 article-title: Superplastic behavior during warm deformation of martensite in medium carbon steel publication-title: Scripta Mater – volume: 550 start-page: 438 year: 2012 end-page: 445 ident: b0325 article-title: Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy publication-title: J Alloys Compd – volume: 20 start-page: 953 year: 2013 end-page: 960 ident: b0045 article-title: Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining publication-title: Int J Min Metal Mater – volume: 83 start-page: 282 year: 2014 end-page: 289 ident: b0025 article-title: A physically-based constitutive model for a typical nickel-based superalloy publication-title: Comput Mater Sci – volume: 51 start-page: 145 year: 2013 end-page: 160 ident: b0015 article-title: Analysis of the work-hardening behavior of C–Mn steels deformed under hot-working conditions publication-title: Int J Plast – volume: 577 start-page: 138 year: 2013 end-page: 146 ident: b0265 article-title: A modified Johnson Cook model for elevated temperature flow behavior of T24 steel publication-title: Mater Sci Eng A – reference: . – reference: ISO 6892–2. Metallic materials – tensile testing–part 2: method of test at elevated temperature; 2011. – volume: 49 start-page: 209 year: 2013 end-page: 219 ident: b0115 article-title: Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy publication-title: Mater Des – volume: 569 start-page: 96 year: 2013 end-page: 105 ident: b0145 article-title: Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube publication-title: Mater Sci Eng A – volume: 552 start-page: 236 year: 2012 end-page: 244 ident: b0055 article-title: Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel publication-title: Mater Sci Eng A – volume: 23 start-page: 1549 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0205 article-title: Constitutive relationship for high temperature deformation of Al–3Cu–0.5Sc alloy publication-title: Trans Nonferrous Metal Soc China doi: 10.1016/S1003-6326(13)62629-1 – volume: 44 start-page: 5567 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0070 article-title: Developing the processing maps using the hyperbolic sine constitutive equation publication-title: Metall Mater Trans A doi: 10.1007/s11661-013-1841-5 – volume: 88 start-page: 883 year: 2008 ident: 10.1016/j.matdes.2014.02.052_b0095 article-title: Evolution and characterization of dynamically recrystallized microstructure in a titanium-modified austenitic stainless steel using ultrasonic and EBSD techniques publication-title: Philos Mag doi: 10.1080/14786430801989799 – volume: 47 start-page: 1306 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0315 article-title: Hot compressive deformation behavior of 7075 Al alloy under elevated temperature publication-title: J Mater Sci doi: 10.1007/s10853-011-5904-y – volume: 16 start-page: 785 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0215 article-title: The improved Arrhenius model with variable parameters of flow behavior characterizing for the as-cast AZ80 magnesium alloy publication-title: Mater Res doi: 10.1590/S1516-14392013005000070 – volume: 50 start-page: 968 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0105 article-title: An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures publication-title: Mater Des doi: 10.1016/j.matdes.2013.04.003 – volume: 55 start-page: 949 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0130 article-title: Hot tensile deformation and fracture characteristics of a typical Ni-based superalloy at elevated temperature publication-title: Mater Des doi: 10.1016/j.matdes.2013.10.071 – volume: 527 start-page: 6980 year: 2010 ident: 10.1016/j.matdes.2014.02.052_b0270 article-title: A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2010.07.061 – volume: 556 start-page: 260 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0080 article-title: The kinetics of dynamic recrystallization of 42CrMo steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.06.084 – volume: 571 start-page: 12 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0225 article-title: Study on the material characteristic and process parameters of the open-die warm extrusion process of spline shaft with 42CrMo steel publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.03.209 – volume: 49 start-page: 628 year: 2010 ident: 10.1016/j.matdes.2014.02.052_b0300 article-title: A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2010.06.004 – volume: 22 start-page: 2168 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0085 article-title: Dynamic recrystallization during hot deformation of 304 austenitic stainless steel publication-title: J Mater Eng Perform doi: 10.1007/s11665-013-0496-0 – volume: 59 start-page: 6441 year: 2011 ident: 10.1016/j.matdes.2014.02.052_b0355 article-title: Constitutive relationships for hot deformation of austenite publication-title: Acta Mater doi: 10.1016/j.actamat.2011.07.008 – volume: 16 start-page: 1092 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0075 article-title: Effect of temperatures and strain rates on the average size of grains refined by dynamic recrystallization for as-extruded 42CrMo steel publication-title: Mater Res doi: 10.1590/S1516-14392013005000091 – volume: 43 start-page: 393 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0185 article-title: Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments publication-title: Mater Des doi: 10.1016/j.matdes.2012.07.009 – volume: 23 start-page: 658 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0240 article-title: A new constitutive model for the plastic flow of metals at elevated temperatures publication-title: J Mater Eng Perform doi: 10.1007/s11665-013-0779-5 – volume: 53 start-page: 349 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0120 article-title: Hot tensile deformation behaviors and constitutive model of 42CrMo steel publication-title: Mater Des doi: 10.1016/j.matdes.2013.06.070 – volume: 205 start-page: 308 year: 2008 ident: 10.1016/j.matdes.2014.02.052_b0060 article-title: Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.11.113 – volume: 42 start-page: 470 year: 2008 ident: 10.1016/j.matdes.2014.02.052_b0170 article-title: Constitutive modeling for elevated temperature flow behavior of 42CrMo steel publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2007.08.011 – volume: 589 start-page: 76 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0190 article-title: Constitutive description of high temperature flow behavior of Sanicro-28 super-austenitic stainless steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.09.036 – volume: 84 start-page: 115 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0030 article-title: The study on kinetics of static recrystallization in the two-stage isothermal compression of 300M steel publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2013.11.056 – volume: 54 start-page: 869 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0155 article-title: Modelling of the flow behaviour of wrought aluminium alloys at elevated temperatures by a new constitutive equation publication-title: Mater Des doi: 10.1016/j.matdes.2013.09.013 – volume: 43 start-page: 2056 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0090 article-title: Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel publication-title: Metall Mater Trans A doi: 10.1007/s11661-011-1012-5 – volume: 56 start-page: 122 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0280 article-title: A modified Zerilli–Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel publication-title: Mater Des doi: 10.1016/j.matdes.2013.10.080 – ident: 10.1016/j.matdes.2014.02.052_b0100 doi: 10.1155/2013/514945 – volume: 19 start-page: 5 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0195 article-title: Predicting the flow stress behavior of Ni–42.5Ti–3Cu during hot deformation using constitutive equations publication-title: Metal Mater Int doi: 10.1007/s12540-013-1002-9 – volume: 54 start-page: 587 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0245 article-title: Establishment and comparison of four constitutive models of 5A02 aluminium alloy in high-velocity forming process publication-title: Mater Des doi: 10.1016/j.matdes.2013.08.095 – volume: 32 start-page: 2339 year: 2011 ident: 10.1016/j.matdes.2014.02.052_b0305 article-title: An investigation into the hot deformation characteristics of 7075 aluminum alloy publication-title: Mater Des doi: 10.1016/j.matdes.2010.12.047 – volume: 54 start-page: 96 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0250 article-title: Microstructure study and constitutive modeling of Ti–6Al–4V alloy at elevated temperatures publication-title: Mater Des doi: 10.1016/j.matdes.2013.08.006 – volume: 62 start-page: 798 year: 2010 ident: 10.1016/j.matdes.2014.02.052_b0350 article-title: Superplastic behavior during warm deformation of martensite in medium carbon steel publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2009.12.001 – volume: 31 start-page: 37 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0135 article-title: A modified Johnson–Cook model to predict stress–strain curves of boron steel sheets at elevated and cooling temperatures publication-title: High Temp Mater Process – volume: 535 start-page: 252 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0220 article-title: The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.12.076 – volume: 32 start-page: 1733 year: 2011 ident: 10.1016/j.matdes.2014.02.052_b0005 article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working publication-title: Mater Des doi: 10.1016/j.matdes.2010.11.048 – volume: 51 start-page: 145 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0015 article-title: Analysis of the work-hardening behavior of C–Mn steels deformed under hot-working conditions publication-title: Int J Plast doi: 10.1016/j.ijplas.2013.05.007 – ident: 10.1016/j.matdes.2014.02.052_b0335 – volume: 83 start-page: 282 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0025 article-title: A physically-based constitutive model for a typical nickel-based superalloy publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2013.11.003 – volume: 49 start-page: 209 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0115 article-title: Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy publication-title: Mater Des doi: 10.1016/j.matdes.2013.01.023 – volume: 42 start-page: 1062 year: 2011 ident: 10.1016/j.matdes.2014.02.052_b0065 article-title: A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel publication-title: Metall Mater Trans A doi: 10.1007/s11661-010-0517-7 – volume: 62 start-page: 551 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0160 article-title: A study on material modeling to predict spring – back in V-bending of AZ31 magnesium alloy sheet at various temperatures publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-011-3828-y – volume: 55 start-page: 65 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0360 article-title: A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2011.11.031 – volume: 44 start-page: 316 year: 2008 ident: 10.1016/j.matdes.2014.02.052_b0035 article-title: Study of static recrystallization kinetics in a low alloy steel publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2008.03.027 – volume: 53 start-page: 145 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0010 article-title: Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2011.09.026 – volume: 55 start-page: 999 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0255 article-title: Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures publication-title: Mater Des doi: 10.1016/j.matdes.2013.10.089 – volume: 23 start-page: 1737 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0260 article-title: Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite publication-title: Trans Nonferrous Metal Soc China doi: 10.1016/S1003-6326(13)62656-4 – volume: 56 start-page: 565 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0285 article-title: Constitutive flow behavior of IFAC-1 austenitic stainless steel depicting strain saturation over a wide range of strain rates and temperatures publication-title: Mater Des doi: 10.1016/j.matdes.2013.11.053 – volume: 552 start-page: 236 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0055 article-title: Optimization of processing parameters based on high temperature flow behavior and microstructural evolution of a nitrogen enhanced 316L(N) stainless steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.05.036 – volume: 23 start-page: 3383 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0200 article-title: Constitutive equation and processing map for hot compressed as-cast Ti–43Al–4Nb–1.4W–0.6B alloy publication-title: Trans Nonferrous Metal Soc China doi: 10.1016/S1003-6326(13)62878-2 – volume: 57 start-page: 211 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0150 article-title: Tensile flow behavior of ultra low carbon, low carbon and micro alloyed steel sheets for auto application under low to intermediate strain rate publication-title: Mater Des doi: 10.1016/j.matdes.2013.12.047 – volume: 55 start-page: 300 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0110 article-title: Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions publication-title: Mater Des doi: 10.1016/j.matdes.2013.10.008 – volume: 90 start-page: 71 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0340 article-title: Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation publication-title: Mater Charact doi: 10.1016/j.matchar.2014.01.019 – volume: 22 start-page: 246 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0020 article-title: Modeling of strain hardening and dynamic recrystallization ZK60 magnesium alloy during hot deformation publication-title: Trans Nonferrous Metal Soc China doi: 10.1016/S1003-6326(11)61167-9 – volume: 52 start-page: 677 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0275 article-title: A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel publication-title: Mater Des doi: 10.1016/j.matdes.2013.06.010 – volume: 16 start-page: 19 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0330 article-title: A characterization for the flow behavior of as-extruded 7075 aluminum alloy by the improved Arrhenius model with variable parameters publication-title: Mater Res doi: 10.1590/S1516-14392012005000156 – volume: 53 start-page: 79 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0210 article-title: Hot deformation behavior of spray-deposited Al–Zn–Mg–Cu alloy publication-title: Mater Des doi: 10.1016/j.matdes.2013.06.053 – volume: 549 start-page: 93 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0050 article-title: The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.04.010 – volume: 569 start-page: 96 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0145 article-title: Quasi-static tensile behavior and constitutive modeling of large diameter thin-walled commercial pure titanium tube publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.01.055 – volume: 577 start-page: 138 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0265 article-title: A modified Johnson Cook model for elevated temperature flow behavior of T24 steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.04.041 – volume: 571 start-page: 83 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0345 article-title: Evolution of activation energy during hot deformation of AA7150 aluminum alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.01.080 – volume: 49 start-page: 493 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0295 article-title: A comparative study on modified Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel publication-title: Mater Des doi: 10.1016/j.matdes.2012.12.083 – volume: 550 start-page: 438 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0325 article-title: Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2012.10.114 – volume: 20 start-page: 953 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0045 article-title: Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining publication-title: Int J Min Metal Mater doi: 10.1007/s12613-013-0820-6 – volume: 593 start-page: 111 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0175 article-title: On the hot deformation behavior of AISI 420 stainless steel based on constitutive analysis and CSL model publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.11.030 – volume: 52 start-page: 118 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0140 article-title: A new phenomenological constitutive model for hot tensile deformation behaviors of a typical Al–Cu–Mg alloy publication-title: Mater Des doi: 10.1016/j.matdes.2013.05.036 – volume: 23 start-page: 598 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0230 article-title: Modeling the hot working behavior of near-α titanium alloy IMI834 publication-title: Prog Nat Sci: Mater Int doi: 10.1016/j.pnsc.2013.11.004 – volume: 598 start-page: 251 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0125 article-title: Effects of initial δ phase on hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2014.01.029 – volume: 65 start-page: 91 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0165 article-title: Predicting the flow behavior of metals under different strain rate and temperature through phenomenological modeling publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2012.06.039 – volume: 209 start-page: 2477 year: 2009 ident: 10.1016/j.matdes.2014.02.052_b0040 article-title: Study of metadynamic recrystallization behaviors in a low alloy steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.05.047 – volume: 52 start-page: 993 year: 2012 ident: 10.1016/j.matdes.2014.02.052_b0310 article-title: A phenomenological constitutive model for describing thermo-viscoplastic behavior of Al–Zn–Mg–Cu alloy under hot working condition publication-title: Exp Mech doi: 10.1007/s11340-011-9546-4 – volume: 53 start-page: 749 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0235 article-title: Workability characteristics and mechanical behavior modeling of severely deformed pure titanium at high temperatures publication-title: Mater Des doi: 10.1016/j.matdes.2013.07.057 – volume: 509 start-page: 948 year: 2011 ident: 10.1016/j.matdes.2014.02.052_b0320 article-title: Hot deformation behaviour of 7075 alloy publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2010.09.139 – volume: 595 start-page: 1 year: 2014 ident: 10.1016/j.matdes.2014.02.052_b0180 article-title: Constitutive analysis for hot deformation behaviour of novel bimetal consisting of pearlitic steel and low carbon steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.10.096 – volume: 3 start-page: 143 year: 2013 ident: 10.1016/j.matdes.2014.02.052_b0290 article-title: Prediction of deformation behavior of austenitic stainless steel 304 in dynamic strain aging regime publication-title: Int J Adv Mater Manuf Charact |
SSID | ssj0017112 |
Score | 2.4741466 |
Snippet | •Hot tensile deformation and fracture behavior of a typical Al–Zn–Mg–Cu alloy were studied.•The elongation to fracture is affected by the coupled effects of... The hot tensile deformation behaviors of an Al-Zn-Mg-Cu alloy are studied by uniaxial tensile tests under the deformation temperature of 340-460 degree C and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 141 |
SubjectTerms | ALUMINUM ALLOYS (50 TO 99 AL) Aluminum base alloys Al–Zn–Mg–Cu alloy Constitutive equation Constitutive relationships DEFORMATION DISLOCATIONS Fracture mechanics Fracture morphology MATHEMATICAL ANALYSIS Mathematical models Necking Plastic deformation Strain rate Tensile deformation |
Title | Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy |
URI | https://dx.doi.org/10.1016/j.matdes.2014.02.052 https://www.proquest.com/docview/1642240095 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA46XtbD4pP1SQSvzXR3kk5yHAZlVPTiA_ES0t2VxWXoFp05eNv_sP9wf4mVdHpwhUXwEuhHmqYq_VVV11cVQo6dlE4xZxOQoBK0eJCUhWBJrVKQLtegQqHw5VUxueXn9-J-iYz7WhhPq4zY32F6QOt4ZhilOXx6fBxe--gBHV6NIYJvAqOWyUqO1jUdkJXR2cXkapFMkFlIesZfLYXuK-gCzQv9whp83-6Mh-adIv-fhfqA1cEAna6R79FzpKPu5dbJEjQbZPVdP8FNcjdpZzRQ0qdAa1gUJtK-GP-F2qamVRsZAoh0NGyFQ1uHV-ho-vf3n4cGh8ufOIzn1KflX7fI7enJzXiSxI0TkooxPUssZyg-lkKVp4ABVKm54w64E6pOuZRQZQA-f6kLCagSqywrVFVrYE6WhWbbZNC0DfwgVEDJhVC6VJnlZcGsyEXNXO3S1GUW2A5hvbBMFbuK-80tpqanj_0ynYiNF7FJc4Mi3iHJYtZT11Xjk_tlrwfzz-owCPyfzDzq1Wbww_HZENtAO38xGCcGAq0Wu19--h755o86-u4-Gcye53CATsqsPIyL8A3PiOl3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYoHGgPqD9UUFpwJa7RJrEd28fVqigUdi8FhLhYTjKuFq0SVHYPvfUd-oY8CWPHWdFKFVIvPsRxFI2d-cl88w0hx05Kp5izCUhQCVo8SKpCsKRRKUiXa1ChUHg6K8pL_vVaXG-QyVAL42GVUff3Oj1o63hlFKU5upvPR9989IAOr8YQwZPAqBdky7NT4THfGp-elbN1MkFmIekZf7UUeqigCzAv9Asb8LzdGQ_knSL_l4X6S1cHA3TymuxEz5GO-5d7QzagfUtePeETfEeuym5JAyR9AbSBdWEiHYrx76ltG1p3ESGAmo6GVji0czhDx4uHX79vWhym33GYrKhPy__cJZcnXy4mZRIbJyQ1Y3qZWM5QfCyFOk8BA6hKc8cdcCdUk3Ipoc4AfP5SFxJwS6yyrFB1o4E5WRWavSebbdfCHqECKi6E0pXKLK8KZkUuGuYal6Yus8D2CRuEZerIKu6bWyzMAB-7Nb2IjRexSXODIt4nyXrVXc-q8cz9ctgH88fpMKj4n1n5edg2gx-Oz4bYFrrVvcE4MQBotfjw308_ItvlxfTcnJ_Ozg7ISz_TQ3k_ks3ljxV8QodlWR3GA_kI7q3sZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hot+tensile+deformation+behaviors+and+constitutive+model+of+an+Al%E2%80%93Zn%E2%80%93Mg%E2%80%93Cu+alloy&rft.jtitle=Materials+in+engineering&rft.au=Zhou%2C+Mi&rft.au=Lin%2C+Y.C.&rft.au=Deng%2C+Jiao&rft.au=Jiang%2C+Yu-Qiang&rft.date=2014-07-01&rft.issn=0261-3069&rft.volume=59&rft.spage=141&rft.epage=150&rft_id=info:doi/10.1016%2Fj.matdes.2014.02.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2014_02_052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |