Strength and biaxial formability of cryo-rolled 2024 aluminium subject to concurrent recovery and precipitation
The precipitate-hardenable aluminium alloy 2024 has been processed by rolling to develop a fine microstructure. Four alloy conditions were tested; these included two rolling temperatures and two different ageing sequences. For all four conditions there was an ideal heat-treatment time at which there...
Saved in:
Published in | Acta materialia Vol. 61; no. 14; pp. 5278 - 5289 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The precipitate-hardenable aluminium alloy 2024 has been processed by rolling to develop a fine microstructure. Four alloy conditions were tested; these included two rolling temperatures and two different ageing sequences. For all four conditions there was an ideal heat-treatment time at which there was a concurrent improvement in both strength and formability. Microstructural modeling has shown that this is the result of a small processing window in which the hardening due to precipitation is larger than the softening due to recovery, while the detrimental effects of particle coarsening on ductility have not yet developed. Cryo-rolling and room-temperature rolling produced materials with similar strengths, but cryo-rolling showed inferior formability. Natural ageing before rolling significantly decreased the formability compared to rolling in the supersaturated condition, and it is proposed that the solute clusters that develop during natural aging inhibit dynamic recovery and consequently increase the dislocation density that develops during rolling. |
---|---|
AbstractList | The precipitate-hardenable aluminium alloy 2024 has been processed by rolling to develop a fine microstructure. Four alloy conditions were tested; these included two rolling temperatures and two different ageing sequences. For all four conditions there was an ideal heat-treatment time at which there was a concurrent improvement in both strength and formability. Microstructural modeling has shown that this is the result of a small processing window in which the hardening due to precipitation is larger than the softening due to recovery, while the detrimental effects of particle coarsening on ductility have not yet developed. Cryo-rolling and room-temperature rolling produced materials with similar strengths, but cryo-rolling showed inferior formability. Natural ageing before rolling significantly decreased the formability compared to rolling in the supersaturated condition, and it is proposed that the solute clusters that develop during natural aging inhibit dynamic recovery and consequently increase the dislocation density that develops during rolling. |
Author | Taylor, A.S. Hodgson, P.D. Stanford, N. Weiss, M. |
Author_xml | – sequence: 1 givenname: M. surname: Weiss fullname: Weiss, M. email: matthias.weiss@deakin.edu.au – sequence: 2 givenname: A.S. surname: Taylor fullname: Taylor, A.S. – sequence: 3 givenname: P.D. surname: Hodgson fullname: Hodgson, P.D. – sequence: 4 givenname: N. surname: Stanford fullname: Stanford, N. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27540538$$DView record in Pascal Francis |
BookMark | eNqFkEtrGzEURkVJoI6Tn1DQpsuZaPSYB12UEpoHGLposxZ3rjStzIxkJDnU_75ybbLIJnejK_jOB_dckQsfvCXkU8PqhjXt7bYGzLBArjlrRM1UzZrhA1k1fScqLpW4KLtQQ9VKJT-Sq5S2jDW8k2xFws8crf-d_1Dwho4O_jqY6RTiAqObXT7QMFGMh1DFMM_WUM64pDDvF-fdfqFpP24tZpoDxeBxH0tbptFieLHx8L90V35u5zJkF_w1uZxgTvbm_K7J8_33X3eP1ebHw9Pdt02FQgy5GqzpetFKBsLgOIoOuwmMaXscRjn03IIqAa64QGwBlLRsaFGZMkPHAcSafD717iAhzFMEjy7pXXQLxIPmnZJMib7k1CmHMaQU7fQaaZg-2tVbfbarj3Y1U7rYLdyXNxyeL8wR3Pwu_fVE26LgxdmoEzrr0RpXZGVtgnun4R_3aJ5w |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2025_179463 crossref_primary_10_1016_j_msea_2019_138608 crossref_primary_10_1016_j_jmst_2021_03_016 crossref_primary_10_1007_s12666_018_1526_2 crossref_primary_10_1016_j_jallcom_2016_11_136 crossref_primary_10_1016_j_scriptamat_2022_114738 crossref_primary_10_3390_met10030398 crossref_primary_10_1016_j_msea_2019_138106 crossref_primary_10_1016_j_jallcom_2022_165172 crossref_primary_10_1016_j_msea_2014_12_081 crossref_primary_10_1002_adem_202001533 crossref_primary_10_1007_s40195_014_0200_x crossref_primary_10_1016_j_intermet_2015_10_005 crossref_primary_10_1016_j_msea_2018_12_103 crossref_primary_10_1080_10426914_2017_1317352 crossref_primary_10_1016_j_msea_2021_141722 crossref_primary_10_1007_s11661_016_3807_x crossref_primary_10_1108_ACMM_05_2021_2481 crossref_primary_10_1016_j_matdes_2014_11_022 crossref_primary_10_1016_j_msea_2015_10_051 crossref_primary_10_1088_2053_1591_aabbd1 crossref_primary_10_1016_j_msea_2016_08_054 crossref_primary_10_1016_j_rineng_2024_103488 crossref_primary_10_1002_srin_201800318 crossref_primary_10_1016_j_matdes_2015_07_009 crossref_primary_10_1007_s40195_020_01093_1 crossref_primary_10_3390_ma12101656 crossref_primary_10_1016_j_msea_2016_08_072 crossref_primary_10_1016_j_pmatsci_2017_10_004 crossref_primary_10_1007_s13632_015_0205_5 crossref_primary_10_1016_j_jallcom_2024_176665 crossref_primary_10_1007_s11837_022_05616_2 crossref_primary_10_1016_j_msea_2014_07_014 |
Cites_doi | 10.1016/j.pmatsci.2008.03.002 10.1016/j.actamat.2007.06.043 10.1016/0025-5416(69)90051-2 10.1016/j.pmatsci.2006.02.003 10.1016/j.msea.2005.03.026 10.1179/174328005X14357 10.1023/A:1006584211768 10.1016/j.scriptamat.2005.09.010 10.1016/j.actamat.2010.11.033 10.1016/j.msea.2010.09.069 10.1016/j.actamat.2010.05.056 10.1016/j.msea.2012.06.044 10.1016/S1359-6462(02)00282-8 10.1007/s12666-010-0005-1 10.1016/j.scriptamat.2011.02.002 10.1179/imr.1994.39.6.217 10.1016/j.msea.2007.07.024 10.1016/j.matdes.2009.12.048 10.1016/j.actamat.2006.07.029 10.1016/0378-3804(88)90055-1 10.1016/j.msea.2011.01.010 10.1007/BF02652342 10.1016/S1359-6454(97)00039-6 |
ContentType | Journal Article |
Copyright | 2013 Acta Materialia Inc. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Acta Materialia Inc. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.actamat.2013.05.019 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2453 |
EndPage | 5289 |
ExternalDocumentID | 27540538 10_1016_j_actamat_2013_05_019 S135964541300387X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K T9H TN5 XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW |
ID | FETCH-LOGICAL-c339t-9ed783640a3dcbb37c7fadd68c9b4982ea5d782523cc6aa54e096c5dddd972aa3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Wed Apr 02 07:25:23 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 Tue Jul 01 01:20:26 EDT 2025 Fri Feb 23 02:29:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Precipitation Aluminium Formability Fine grained Cluster hardening Hardening Aluminium base alloys Cluster Forming Recovery Strength |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-9ed783640a3dcbb37c7fadd68c9b4982ea5d782523cc6aa54e096c5dddd972aa3 |
PageCount | 12 |
ParticipantIDs | pascalfrancis_primary_27540538 crossref_primary_10_1016_j_actamat_2013_05_019 crossref_citationtrail_10_1016_j_actamat_2013_05_019 elsevier_sciencedirect_doi_10_1016_j_actamat_2013_05_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Acta materialia |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ringer, Sakurai, Polmear (b0065) 1997; 45 Tsuji, Ito, Saito, Minamino (b0035) 2002; 47 Polmear (b0100) 1995 Strain Analysis System AutoGrid, Operator’s Manual; 2009. Robinson (b0125) 1994; 39 Valiev, Langdon (b0020) 2006; 51 Sha, Marceau, Gao, Muddle, Ringer (b0060) 2011; 59 Taylor, Weiss, Hilditch, Stanford, Hodgson (b0055) 2012; 555 Wang, Starink (b0115) 2005; 50 Doppalapudi, Venkatachalam, Ramesh Kumar, Ravisankar, Jayashankar (b0090) 2010; 63 Panigrahi S, Jayaganthan (b0010) 2011; 528 Panigrahi, Jayaganthan (b0050) 2008; 480 Konkova, Mironov, Korznikov, Semiatin (b0040) 2010; 58 Mabuchi, Higashi (b0015) 1998; 17 Cheng, Zhao, Zhu (b0095) 2007; 55 Wilson (b0130) 1988; 16 Shih, Ho, Huang (b0080) 1996; 27 Xu, Horita, Langdon (b0025) 2007; 55 Yoda, Shibata, Morimitsu, Terada, Tsuji (b0045) 2011; 65 Feng, Yang, Huang, Han, Luo, Ru (b0085) 2010; 528 Rosen, Bodner (b0120) 1969; 4 Parel, Wang, Starink (b0075) 2010; 31 Zhilyaev, Langdon (b0030) 2008; 53 Rangaraju, Raghuram, Krishna, Rao, Venugopal (b0005) 2005; 398 ISO 20482: Metallic materials—Sheet and strip—Erichsen cupping test; 2003. Wang, Starink, Gao (b0070) 2006; 54 10.1016/j.actamat.2013.05.019_b0105 Parel (10.1016/j.actamat.2013.05.019_b0075) 2010; 31 Doppalapudi (10.1016/j.actamat.2013.05.019_b0090) 2010; 63 Wilson (10.1016/j.actamat.2013.05.019_b0130) 1988; 16 Cheng (10.1016/j.actamat.2013.05.019_b0095) 2007; 55 Shih (10.1016/j.actamat.2013.05.019_b0080) 1996; 27 Tsuji (10.1016/j.actamat.2013.05.019_b0035) 2002; 47 Robinson (10.1016/j.actamat.2013.05.019_b0125) 1994; 39 Mabuchi (10.1016/j.actamat.2013.05.019_b0015) 1998; 17 Ringer (10.1016/j.actamat.2013.05.019_b0065) 1997; 45 Valiev (10.1016/j.actamat.2013.05.019_b0020) 2006; 51 Rangaraju (10.1016/j.actamat.2013.05.019_b0005) 2005; 398 Polmear (10.1016/j.actamat.2013.05.019_b0100) 1995 Taylor (10.1016/j.actamat.2013.05.019_b0055) 2012; 555 Wang (10.1016/j.actamat.2013.05.019_b0070) 2006; 54 Yoda (10.1016/j.actamat.2013.05.019_b0045) 2011; 65 Panigrahi (10.1016/j.actamat.2013.05.019_b0050) 2008; 480 10.1016/j.actamat.2013.05.019_b0110 Sha (10.1016/j.actamat.2013.05.019_b0060) 2011; 59 Wang (10.1016/j.actamat.2013.05.019_b0115) 2005; 50 Rosen (10.1016/j.actamat.2013.05.019_b0120) 1969; 4 Feng (10.1016/j.actamat.2013.05.019_b0085) 2010; 528 Panigrahi S (10.1016/j.actamat.2013.05.019_b0010) 2011; 528 Xu (10.1016/j.actamat.2013.05.019_b0025) 2007; 55 Zhilyaev (10.1016/j.actamat.2013.05.019_b0030) 2008; 53 Konkova (10.1016/j.actamat.2013.05.019_b0040) 2010; 58 |
References_xml | – volume: 17 start-page: 215 year: 1998 ident: b0015 publication-title: J Mater Sci Lett – volume: 55 start-page: 5822 year: 2007 ident: b0095 publication-title: Ma E. Acta Mater – volume: 27 start-page: 2479 year: 1996 ident: b0080 publication-title: Metall Mater Trans A – volume: 528 start-page: 3147 year: 2011 ident: b0010 publication-title: Mater Sci Eng A-Struct – reference: Strain Analysis System AutoGrid, Operator’s Manual; 2009. – volume: 528 start-page: 706 year: 2010 ident: b0085 publication-title: Mater Sci Eng A-Struct – volume: 4 start-page: 115 year: 1969 ident: b0120 publication-title: Mater Sci Eng – volume: 55 start-page: 203 year: 2007 ident: b0025 publication-title: Acta Mater – volume: 31 start-page: 2 year: 2010 ident: b0075 publication-title: Mater Des – volume: 53 start-page: 893 year: 2008 ident: b0030 publication-title: Prog Mater Sci – volume: 59 start-page: 1659 year: 2011 ident: b0060 publication-title: Acta Mater – volume: 58 start-page: 5262 year: 2010 ident: b0040 publication-title: Acta Mater – volume: 39 start-page: 217 year: 1994 ident: b0125 publication-title: Int Mater Rev – volume: 555 start-page: 148 year: 2012 ident: b0055 publication-title: Mater Sci Eng A-Struct – volume: 47 start-page: 893 year: 2002 ident: b0035 publication-title: Scripta Mater – volume: 480 start-page: 299 year: 2008 ident: b0050 publication-title: Mater Sci Eng A-Struct – volume: 16 start-page: 257 year: 1988 ident: b0130 publication-title: J Mech Work Technol – reference: ISO 20482: Metallic materials—Sheet and strip—Erichsen cupping test; 2003. – volume: 65 start-page: 175 year: 2011 ident: b0045 publication-title: Scripta Mater – volume: 50 start-page: 193 year: 2005 ident: b0115 publication-title: Int Mater Rev – volume: 45 start-page: 3731 year: 1997 ident: b0065 publication-title: Acta Mater – volume: 398 start-page: 246 year: 2005 ident: b0005 publication-title: Mater Sci Eng A-Struct – volume: 54 start-page: 287 year: 2006 ident: b0070 publication-title: Scripta Mater – volume: 63 start-page: 31 year: 2010 ident: b0090 publication-title: T Indian I Metals – volume: 51 start-page: 881 year: 2006 ident: b0020 publication-title: Prog. Mater Sci – year: 1995 ident: b0100 article-title: Light alloys: metallurgy of the light alloys – year: 1995 ident: 10.1016/j.actamat.2013.05.019_b0100 – volume: 53 start-page: 893 year: 2008 ident: 10.1016/j.actamat.2013.05.019_b0030 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2008.03.002 – volume: 55 start-page: 5822 year: 2007 ident: 10.1016/j.actamat.2013.05.019_b0095 publication-title: Ma E. Acta Mater doi: 10.1016/j.actamat.2007.06.043 – volume: 4 start-page: 115 year: 1969 ident: 10.1016/j.actamat.2013.05.019_b0120 publication-title: Mater Sci Eng doi: 10.1016/0025-5416(69)90051-2 – volume: 51 start-page: 881 year: 2006 ident: 10.1016/j.actamat.2013.05.019_b0020 publication-title: Prog. Mater Sci doi: 10.1016/j.pmatsci.2006.02.003 – volume: 398 start-page: 246 year: 2005 ident: 10.1016/j.actamat.2013.05.019_b0005 publication-title: Mater Sci Eng A-Struct doi: 10.1016/j.msea.2005.03.026 – volume: 50 start-page: 193 year: 2005 ident: 10.1016/j.actamat.2013.05.019_b0115 publication-title: Int Mater Rev doi: 10.1179/174328005X14357 – volume: 17 start-page: 215 year: 1998 ident: 10.1016/j.actamat.2013.05.019_b0015 publication-title: J Mater Sci Lett doi: 10.1023/A:1006584211768 – ident: 10.1016/j.actamat.2013.05.019_b0105 – volume: 54 start-page: 287 year: 2006 ident: 10.1016/j.actamat.2013.05.019_b0070 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2005.09.010 – volume: 59 start-page: 1659 year: 2011 ident: 10.1016/j.actamat.2013.05.019_b0060 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.11.033 – volume: 528 start-page: 706 year: 2010 ident: 10.1016/j.actamat.2013.05.019_b0085 publication-title: Mater Sci Eng A-Struct doi: 10.1016/j.msea.2010.09.069 – ident: 10.1016/j.actamat.2013.05.019_b0110 – volume: 58 start-page: 5262 year: 2010 ident: 10.1016/j.actamat.2013.05.019_b0040 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.05.056 – volume: 555 start-page: 148 year: 2012 ident: 10.1016/j.actamat.2013.05.019_b0055 publication-title: Mater Sci Eng A-Struct doi: 10.1016/j.msea.2012.06.044 – volume: 47 start-page: 893 year: 2002 ident: 10.1016/j.actamat.2013.05.019_b0035 publication-title: Scripta Mater doi: 10.1016/S1359-6462(02)00282-8 – volume: 63 start-page: 31 year: 2010 ident: 10.1016/j.actamat.2013.05.019_b0090 publication-title: T Indian I Metals doi: 10.1007/s12666-010-0005-1 – volume: 65 start-page: 175 year: 2011 ident: 10.1016/j.actamat.2013.05.019_b0045 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2011.02.002 – volume: 39 start-page: 217 year: 1994 ident: 10.1016/j.actamat.2013.05.019_b0125 publication-title: Int Mater Rev doi: 10.1179/imr.1994.39.6.217 – volume: 480 start-page: 299 year: 2008 ident: 10.1016/j.actamat.2013.05.019_b0050 publication-title: Mater Sci Eng A-Struct doi: 10.1016/j.msea.2007.07.024 – volume: 31 start-page: 2 year: 2010 ident: 10.1016/j.actamat.2013.05.019_b0075 publication-title: Mater Des doi: 10.1016/j.matdes.2009.12.048 – volume: 55 start-page: 203 year: 2007 ident: 10.1016/j.actamat.2013.05.019_b0025 publication-title: Acta Mater doi: 10.1016/j.actamat.2006.07.029 – volume: 16 start-page: 257 year: 1988 ident: 10.1016/j.actamat.2013.05.019_b0130 publication-title: J Mech Work Technol doi: 10.1016/0378-3804(88)90055-1 – volume: 528 start-page: 3147 year: 2011 ident: 10.1016/j.actamat.2013.05.019_b0010 publication-title: Mater Sci Eng A-Struct doi: 10.1016/j.msea.2011.01.010 – volume: 27 start-page: 2479 year: 1996 ident: 10.1016/j.actamat.2013.05.019_b0080 publication-title: Metall Mater Trans A doi: 10.1007/BF02652342 – volume: 45 start-page: 3731 year: 1997 ident: 10.1016/j.actamat.2013.05.019_b0065 publication-title: Acta Mater doi: 10.1016/S1359-6454(97)00039-6 |
SSID | ssj0012740 |
Score | 2.283877 |
Snippet | The precipitate-hardenable aluminium alloy 2024 has been processed by rolling to develop a fine microstructure. Four alloy conditions were tested; these... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 5278 |
SubjectTerms | Aluminium Applied sciences Cluster hardening Exact sciences and technology Fine grained Formability Metals. Metallurgy Precipitation |
Title | Strength and biaxial formability of cryo-rolled 2024 aluminium subject to concurrent recovery and precipitation |
URI | https://dx.doi.org/10.1016/j.actamat.2013.05.019 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QuIAQ4imeUw5cw7okfeSIEGiA4AJIu1VJmkInaKvRSezCb8duu8EOaBI9VkkaxZbtr7E_E3JmPJ6oUHMWOKWYdMYy0w9S5sB1SsN14KUIFO8fgsGzvB36wxVyOauFwbTK1vY3Nr221u2bXnuavTLLeo994Svko8ILGRGFQ6xglyFq-fnXPM2jD6irqRT2FcPRP1U8vRFsudIQGGKGl2gIPNVf_mmj1B9wamnT7uKXD7reIptt8Egvmv1tkxWX75D1X5SCu6TAa-b8pXqlOk-oyfQnKBitI9M6DXZKi5Ta8bRgY_xlkFAO7pNqMFFZnk3e6cfE4J8ZWhUUkLJt2JsowmbQ-Wm9aImEGGXL7b1Hnq-vni4HrG2qwKwQqmLKJVi4IT0tEmuMCG2Ygo0LIquMVBF32ocBHPCptYHWvnQAcqyfwKNCrrXYJ528yN0BoYE2IgmF6jvpSSe1gmDGD6yxWgIsc-aQyNlRxrbdFTa-eItnqWWjuJVAjBKIPT8GCRyS8_m0sqHcWDYhmskpXtCdGNzCsqndBbnOP8hDDGVFdPT_tY_JGq97Z2C24AnpVOOJO4UIpjLdWkW7ZPXi5m7w8A0wrfPh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dBWFaK0VekDfODqbtaPJD4iVLS89gJIe7Nsx2mD2iRaslL333eceLdwQEjNMco4lmc0D8_MNwBHNmGFygyjqVeKCm8dtZO0pB5Np7DMpEkZAsWrWTq9FedzOd-Ck3UvTCirjLp_0Om9to5vxvE0x21Vja8nXKqARxUSMjzP5i9gO6BTyRFsH59dTGebZAIGXkOzsFQ0EPxr5Bnf4a47g75hKPLiA4anespEvWnNPR5cOUy8eGCGTndhJ_qP5HjY4lvY8vUevH6AKvgOmpBprn90P4mpC2Ir8wdljPTOaV8JuyJNSdxi1dBFuDUoCEMLSgxqqaqulr_J_dKGyxnSNQSDZTcAOJEQOaPYr_pF24CJ0UZ47_dwe_r95mRK41wF6jhXHVW-CL0bIjG8cNbyzGUlqrk0d8oKlTNvJH7AMER1LjVGCo9xjpMFPipjxvAPMKqb2n8EkhrLi4yriReJ8MIo9Gdk6qwzAiMzb_dBrI9Su7irMPvil15Xl93pyAEdOKATqZED-_BtQ9YOqBvPEeRrPulH4qPRMjxHevCIr5sfsix4szz_9P9rH8LL6c3Vpb48m118hlesH6URige_wKhbLP1XdGg6exAF9i-E7_aS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strength+and+biaxial+formability+of+cryo-rolled+2024+aluminium+subject+to+concurrent+recovery+and+precipitation&rft.jtitle=Acta+materialia&rft.au=Weiss%2C+M.&rft.au=Taylor%2C+A.S.&rft.au=Hodgson%2C+P.D.&rft.au=Stanford%2C+N.&rft.date=2013-08-01&rft.issn=1359-6454&rft.volume=61&rft.issue=14&rft.spage=5278&rft.epage=5289&rft_id=info:doi/10.1016%2Fj.actamat.2013.05.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2013_05_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |