Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation

Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 114; pp. 603 - 612
Main Authors Manieniyan, V., Vinodhini, G., Senthilkumar, R., Sivaprakasam, S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and diesel. Experimental results revealed that 20% biodiesel blend is the optimum blend in terms of performance, emission and combustion characteristics. For B20 blend, it was also found experimentally that 15% hot EGR and 20% cold EGR were the optimum EGR ratios. Under the optimum EGR ratios identified, a series of experimental work was done with B20 blend and diesel at various loads to obtain the concentration of wear metals from the lubricating oil. Experimentally, it was found that wear metals were found to be lower for B20 biodiesel compared to diesel. Artificial neural networks (ANN) have become the premier candidate as the modeling tool. Using the experimental data, ANN models based on probabilistic neural networks (PNN) and radial basis function neural networks (RBFN) for predicting the engine wear were developed. The results show that ANN is sufficient enough in predicting the engine wear in terms of mean square error (MSE) and regression coefficient (R). Also among the ANN models tested, RBFN performs significantly better than PNN. •Optimum blend of Methyl ester of mahua oil is identified.•Optimum hot and cold EGR ratios are identified for the obtained optimum blend.•The concentration of various wear metals are analyzed under suitable EGR ratios.•Predictions of ANN models for wear metals are notably satisfactory.•RBFN performs better in terms of regression coefficient and mean square error.
AbstractList Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and diesel. Experimental results revealed that 20% biodiesel blend is the optimum blend in terms of performance, emission and combustion characteristics. For B20 blend, it was also found experimentally that 15% hot EGR and 20% cold EGR were the optimum EGR ratios. Under the optimum EGR ratios identified, a series of experimental work was done with B20 blend and diesel at various loads to obtain the concentration of wear metals from the lubricating oil. Experimentally, it was found that wear metals were found to be lower for B20 biodiesel compared to diesel. Artificial neural networks (ANN) have become the premier candidate as the modeling tool. Using the experimental data, ANN models based on probabilistic neural networks (PNN) and radial basis function neural networks (RBFN) for predicting the engine wear were developed. The results show that ANN is sufficient enough in predicting the engine wear in terms of mean square error (MSE) and regression coefficient (R). Also among the ANN models tested, RBFN performs significantly better than PNN. •Optimum blend of Methyl ester of mahua oil is identified.•Optimum hot and cold EGR ratios are identified for the obtained optimum blend.•The concentration of various wear metals are analyzed under suitable EGR ratios.•Predictions of ANN models for wear metals are notably satisfactory.•RBFN performs better in terms of regression coefficient and mean square error.
Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and diesel. Experimental results revealed that 20% biodiesel blend is the optimum blend in terms of performance, emission and combustion characteristics. For B20 blend, it was also found experimentally that 15% hot EGR and 20% cold EGR were the optimum EGR ratios. Under the optimum EGR ratios identified, a series of experimental work was done with B20 blend and diesel at various loads to obtain the concentration of wear metals from the lubricating oil. Experimentally, it was found that wear metals were found to be lower for B20 biodiesel compared to diesel. Artificial neural networks (ANN) have become the premier candidate as the modeling tool. Using the experimental data, ANN models based on probabilistic neural networks (PNN) and radial basis function neural networks (RBFN) for predicting the engine wear were developed. The results show that ANN is sufficient enough in predicting the engine wear in terms of mean square error (MSE) and regression coefficient (R). Also among the ANN models tested, RBFN performs significantly better than PNN.
Author Sivaprakasam, S.
Manieniyan, V.
Vinodhini, G.
Senthilkumar, R.
Author_xml – sequence: 1
  givenname: V.
  surname: Manieniyan
  fullname: Manieniyan, V.
  email: manieniyan78@gmail.com
  organization: Mechanical Engineering, Directorate of Distance Education, Annamalai University, Tamil Nadu, India
– sequence: 2
  givenname: G.
  surname: Vinodhini
  fullname: Vinodhini, G.
  organization: Department of Computer Science and Engineering, Annamalai University, Tamil Nadu, India
– sequence: 3
  givenname: R.
  surname: Senthilkumar
  fullname: Senthilkumar, R.
  organization: Department of Mechanical Engineering, Annamalai University, Tamil Nadu, India
– sequence: 4
  givenname: S.
  surname: Sivaprakasam
  fullname: Sivaprakasam, S.
  organization: Department of Mechanical Engineering, Annamalai University, Tamil Nadu, India
BookMark eNqFkDtPAzEQhF0EiSTwDyhc0uSw75UzBRIKr0iRaECUls-3d3Fw7GD7CPn3OCQVBVSj3Z0Zrb4RGhhrAKELShJKaHm1SsCA63ZJGqeEVAnJyQANSVaSSZHn6Skaeb8ihBQVY0O0eQPhMGhYgwlYGKF3Xnnce2U6bKB3QkcJW-vePbYtFvhujhsFHjQG0ykDR2-t7HG9VWGJ4Wspeh9wJzx2IJWTvRZBWXOGTlqhPZwfdYxeH-5fZk-TxfPjfHa7mMgsY2HCJMsEpHWdkRrSIp82NMubljJKChZPDaNFWUNZQdpUoqgIi8aSFnmb1tMS0myMLg-9G2c_evCBr5WXoLUwYHvPU5rRqmJlLBuj64NVOuu9g5ZLFX6eDU4ozSnhe7R8xQ9o-R4tJxWPaGM4_xXeOLUWbvdf7OYQg8jgU4HjXiowEhoVcQXeWPV3wTfijJsn
CitedBy_id crossref_primary_10_1016_j_energy_2018_02_101
crossref_primary_10_1016_j_cscee_2023_100328
crossref_primary_10_1080_15567036_2020_1729901
crossref_primary_10_3390_electronics8091005
crossref_primary_10_1186_s10033_020_00525_4
crossref_primary_10_1088_1742_6596_1515_4_042021
crossref_primary_10_1007_s13369_020_04708_y
crossref_primary_10_1088_1742_6596_1889_4_042067
crossref_primary_10_1088_1757_899X_919_6_062004
crossref_primary_10_1177_14750902221096221
crossref_primary_10_1016_j_energy_2021_122286
crossref_primary_10_2355_isijinternational_ISIJINT_2018_076
crossref_primary_10_1016_j_fuel_2019_115792
crossref_primary_10_1080_01430750_2021_2014958
crossref_primary_10_1016_j_enconman_2019_01_078
crossref_primary_10_1007_s11831_021_09596_5
crossref_primary_10_1016_j_matpr_2020_10_148
crossref_primary_10_1016_j_pecs_2021_100904
crossref_primary_10_1088_1757_899X_862_6_062033
crossref_primary_10_1007_s40430_020_02666_y
crossref_primary_10_1088_1755_1315_839_5_052057
Cites_doi 10.1016/j.cep.2013.10.008
10.1016/j.apenergy.2013.04.025
10.1016/j.neunet.2013.06.003
10.1016/j.fuel.2010.11.038
10.1016/j.apenergy.2004.03.004
10.1016/j.proeng.2013.09.176
10.1016/j.fuel.2012.04.019
10.1016/j.energy.2009.08.034
10.1002/cjce.20364
10.1016/j.apenergy.2010.12.030
10.1016/j.seppur.2010.09.020
10.1016/j.renene.2008.08.008
10.1016/j.eswa.2010.02.128
10.1016/j.applthermaleng.2006.05.016
10.1016/j.apenergy.2011.08.027
10.1016/j.renene.2012.08.070
10.1109/TEVC.2006.876364
10.1016/j.jbiotec.2010.09.445
10.1016/j.apenergy.2009.10.009
10.1016/j.renene.2006.01.009
10.1016/j.energy.2014.05.033
10.1016/j.apenergy.2013.10.011
10.1016/j.fuel.2013.12.029
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2016.08.040
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 612
ExternalDocumentID 10_1016_j_energy_2016_08_040
S0360544216311537
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-9c93ae2bb30be2547d134df19105993ad9156be68e2d8a580930b6154f2b76e23
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Jul 30 11:28:09 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Tue Jul 01 00:53:02 EDT 2025
Fri Feb 23 02:32:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Modeling
Wear
Engine
Neural
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-9c93ae2bb30be2547d134df19105993ad9156be68e2d8a580930b6154f2b76e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2131889699
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2131889699
crossref_citationtrail_10_1016_j_energy_2016_08_040
crossref_primary_10_1016_j_energy_2016_08_040
elsevier_sciencedirect_doi_10_1016_j_energy_2016_08_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Piloto-Rodriguez, Errasti, Sánchez Borroto, Sierens, Verhelst (bib25) 2013; 57
Yusaf, Buttsworth, Saleh, Yousif (bib31) 2010; 87
Alonso, Alvarruiz, Desantes, Hernandez, Hernandez, Molto (bib1) 2007; 11
Sharon, Jayaprakash, Karthigai Selvan, Soban Kumar, Sundaresan, Karuppasamy (bib28) 2012; 99
Chakraborty, Sahu (bib11) 2013; 114
Baroutian, Aroua, Raman, Sulaiman (bib7) 2008; 8
Kiani Deh Kiani, Ghobadian, Tavakoli, Nikbakht, Najafi (bib18) 2010; 35
Calabro, Curcio, Saraceno, Ricca, De Paola (bib10) 2010; 150
Ghobadian, Rahimi, Nikbakht, Najafi, Yusaf (bib14) 2009; 34
Baroutian, Aroua, Abdul Raman, Nik Sulaiman (bib6) 2010; 76
Moradi, Dehghani, Khosravian, Arjmandzadeh (bib22) 2013; 50
Vinay Kumar, Ravi Kumar, Santosha Kumari (bib29) 2013; 64
Mat Noor, Ahmad, Mat Don, Uzir (bib20) 2010; 88
Baroutian, Aroua, Abdul Raman, Nik Sulaiman (bib5) 2008; 8
Savchenko (bib27) 2013; 46
Pai, Rao (bib24) 2011; 88
Meng, Jia, Wang (bib21) 2014; 121
Oguz, Sarıtas, Baydan (bib23) 2010; 37
Ghobadian, Rahimi, Nikbakht, Najafi, Yusaf (bib15) 2009; 34
Sayin, Ertunc, Hosoz, Kilicaslan, Canakci (bib9) 2007; 27
Cheenkachorn (bib12) 2006; 7
Fauzi, Amin, Mat (bib13) 2014; 114
Guan, Wang, Zhou (bib16) 2014
Manieniyan, Sivaprakasam (bib19) 2013; 3
Arcaklioglu, Celikten (bib2) 2005; 80
Betiku, Omilakin, Ajala, Okeleye, Taiwo, Solomon (bib8) 2014; 72
Badday, Abdullah, Lee (bib3) 2014; 75
Ying, Shao, Jiang, Sun (bib30) 2009; 294
Balabin, Lomakina, Safieva (bib4) 2011; 90
Ramadhas, Jayaraj, Muraleedharan, Padmakumari (bib26) 2006; 31
Ismail, Ng, Queck, Gan (bib17) 2012; 92
Vinay Kumar (10.1016/j.energy.2016.08.040_bib29) 2013; 64
Badday (10.1016/j.energy.2016.08.040_bib3) 2014; 75
Baroutian (10.1016/j.energy.2016.08.040_bib6) 2010; 76
Sayin (10.1016/j.energy.2016.08.040_bib9) 2007; 27
Ghobadian (10.1016/j.energy.2016.08.040_bib14) 2009; 34
Arcaklioglu (10.1016/j.energy.2016.08.040_bib2) 2005; 80
Moradi (10.1016/j.energy.2016.08.040_bib22) 2013; 50
Ramadhas (10.1016/j.energy.2016.08.040_bib26) 2006; 31
Fauzi (10.1016/j.energy.2016.08.040_bib13) 2014; 114
Baroutian (10.1016/j.energy.2016.08.040_bib5) 2008; 8
Cheenkachorn (10.1016/j.energy.2016.08.040_bib12) 2006; 7
Betiku (10.1016/j.energy.2016.08.040_bib8) 2014; 72
Meng (10.1016/j.energy.2016.08.040_bib21) 2014; 121
Ying (10.1016/j.energy.2016.08.040_bib30) 2009; 294
Oguz (10.1016/j.energy.2016.08.040_bib23) 2010; 37
Savchenko (10.1016/j.energy.2016.08.040_bib27) 2013; 46
Balabin (10.1016/j.energy.2016.08.040_bib4) 2011; 90
Alonso (10.1016/j.energy.2016.08.040_bib1) 2007; 11
Piloto-Rodriguez (10.1016/j.energy.2016.08.040_bib25) 2013; 57
Ghobadian (10.1016/j.energy.2016.08.040_bib15) 2009; 34
Manieniyan (10.1016/j.energy.2016.08.040_bib19) 2013; 3
Baroutian (10.1016/j.energy.2016.08.040_bib7) 2008; 8
Ismail (10.1016/j.energy.2016.08.040_bib17) 2012; 92
Sharon (10.1016/j.energy.2016.08.040_bib28) 2012; 99
Mat Noor (10.1016/j.energy.2016.08.040_bib20) 2010; 88
Chakraborty (10.1016/j.energy.2016.08.040_bib11) 2013; 114
Yusaf (10.1016/j.energy.2016.08.040_bib31) 2010; 87
Kiani Deh Kiani (10.1016/j.energy.2016.08.040_bib18) 2010; 35
Guan (10.1016/j.energy.2016.08.040_bib16) 2014
Pai (10.1016/j.energy.2016.08.040_bib24) 2011; 88
Calabro (10.1016/j.energy.2016.08.040_bib10) 2010; 150
References_xml – volume: 80
  start-page: 11
  year: 2005
  end-page: 22
  ident: bib2
  article-title: A diesel engines performance and exhaust emissions
  publication-title: Appl Energy
– volume: 114
  start-page: 809
  year: 2014
  end-page: 818
  ident: bib13
  article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study
  publication-title: Appl Energy
– volume: 88
  start-page: 1065
  year: 2010
  end-page: 1084
  ident: bib20
  article-title: Modeling and control of different types of polymerization processes using neural networks technique: a review
  publication-title: Can J Chem Eng
– volume: 50
  start-page: 915
  year: 2013
  end-page: 920
  ident: bib22
  article-title: The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield
  publication-title: J Renew Energy
– volume: 87
  start-page: 1661
  year: 2010
  end-page: 1669
  ident: bib31
  article-title: CNG diesel engine performance and exhaust emission analysis with the aid of artificial neural network
  publication-title: Appl Energy
– volume: 150
  start-page: 371
  year: 2010
  ident: bib10
  article-title: Biodiesel production from waste oils by enzymatic transesterification: process optimization with hybrid neural model
  publication-title: J Biotechnol
– volume: 37
  start-page: 6579
  year: 2010
  end-page: 6586
  ident: bib23
  article-title: Prediction of diesel engine performance using biofuels with artificial neural network
  publication-title: Expert Syst Appl
– volume: 7
  start-page: 299
  year: 2006
  end-page: 306
  ident: bib12
  article-title: Predicting properties of biodiesels using statistical models and artificial neural networks
  publication-title: Asian J Energy Environ
– volume: 8
  start-page: 1938
  year: 2008
  end-page: 1943
  ident: bib5
  article-title: Prediction of palm oil-based methyl ester biodiesel density using artificial neural networks
  publication-title: J Appl Sci
– volume: 92
  start-page: 769
  year: 2012
  end-page: 777
  ident: bib17
  article-title: Artificial neural networks modeling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
  publication-title: Appl Energy
– volume: 35
  start-page: 65
  year: 2010
  end-page: 69
  ident: bib18
  article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends
  publication-title: ,Energy
– volume: 121
  start-page: 133
  year: 2014
  end-page: 140
  ident: bib21
  article-title: Neural network prediction of biodiesel kinematic viscosity at 313 K
  publication-title: Fuel
– volume: 75
  start-page: 31
  year: 2014
  end-page: 37
  ident: bib3
  article-title: Artificial neural network approach for modeling of ultrasound-assisted transesterification process of crude Jatropha oil catalyzed by heteropolyacid based catalyst
  publication-title: Chem Eng Process Process Intensif
– volume: 99
  start-page: 197
  year: 2012
  end-page: 203
  ident: bib28
  article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network
  publication-title: Fuel
– volume: 8
  start-page: 938
  year: 2008
  end-page: 943
  ident: bib7
  article-title: Prediction of palm oil based methyl ester biodiesel density using artificial neural networks
  publication-title: J Appl Sci
– start-page: 260
  year: 2014
  end-page: 264
  ident: bib16
  article-title: Research on the prediction model of coal and gas outburst based on principal component analysis and radial basis function neural network
  publication-title: Instrumentation and measurement, computer, communication and control (IMCCC), 2014 Fourth international conference on
– volume: 46
  start-page: 227
  year: 2013
  end-page: 241
  ident: bib27
  article-title: Probabilistic neural network with homogeneity testing in recognition of discrete patterns set
  publication-title: Neural Netw
– volume: 64
  start-page: 993
  year: 2013
  end-page: 1002
  ident: bib29
  article-title: Prediction of performance and emissions of a biodiesel fueled Lanthanum Zirconate coated direct injection diesel engine using artificial neural networks
  publication-title: Procedia Eng
– volume: 3
  start-page: 634
  year: 2013
  end-page: 638
  ident: bib19
  article-title: Artificial neural network based modeling for vibration characteristics of DI diesel engine using bio-diesel
  publication-title: Int J Adv Res Comput Sci Softw Eng
– volume: 11
  start-page: 46
  year: 2007
  end-page: 55
  ident: bib1
  article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions
  publication-title: IEEE Trans Evol Comput
– volume: 57
  start-page: 877
  year: 2013
  end-page: 885
  ident: bib25
  article-title: Prediction of cetane number and ignition delay of biodiesel Using artificial neural networks
  publication-title: Energy Procedia
– volume: 76
  start-page: 58
  year: 2010
  end-page: 63
  ident: bib6
  article-title: Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling
  publication-title: Purif Technol
– volume: 72
  start-page: 266
  year: 2014
  end-page: 273
  ident: bib8
  article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: a case of non-edible neem seed oil biodiesel synthesis
  publication-title: Energy
– volume: 27
  start-page: 46
  year: 2007
  end-page: 54
  ident: bib9
  article-title: Performance and exhaust emissions of a gasoline engine using artificial neural network
  publication-title: Appl Therm Eng
– volume: 34
  start-page: 976
  year: 2009
  end-page: 982
  ident: bib14
  article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
  publication-title: J Renew Energy
– volume: 34
  start-page: 976
  year: 2009
  end-page: 982
  ident: bib15
  article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
  publication-title: Renew Energy
– volume: 88
  start-page: 2344
  year: 2011
  end-page: 2354
  ident: bib24
  article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings
  publication-title: Appl Energy
– volume: 90
  start-page: 2007
  year: 2011
  end-page: 2015
  ident: bib4
  article-title: Neural network (ANN) approach to biodiesel analysis: analy sis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy
  publication-title: Fuel
– volume: 31
  start-page: 2524
  year: 2006
  end-page: 2533
  ident: bib26
  article-title: Artificial neural networks used for the prediction of the cetane number of biodiesel
  publication-title: J Renew Energy
– volume: 294
  start-page: 1239
  year: 2009
  end-page: 1249
  ident: bib30
  article-title: Artificial neural network analysis of immobilized lipase synthesis of biodiesel from rapeseed soapstock
  publication-title: Comput Comput Technol Agric II
– volume: 114
  start-page: 827
  year: 2013
  end-page: 836
  ident: bib11
  article-title: Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network
  publication-title: App Energy
– volume: 294
  start-page: 1239
  year: 2009
  ident: 10.1016/j.energy.2016.08.040_bib30
  article-title: Artificial neural network analysis of immobilized lipase synthesis of biodiesel from rapeseed soapstock
  publication-title: Comput Comput Technol Agric II
– volume: 75
  start-page: 31
  year: 2014
  ident: 10.1016/j.energy.2016.08.040_bib3
  article-title: Artificial neural network approach for modeling of ultrasound-assisted transesterification process of crude Jatropha oil catalyzed by heteropolyacid based catalyst
  publication-title: Chem Eng Process Process Intensif
  doi: 10.1016/j.cep.2013.10.008
– volume: 114
  start-page: 827
  year: 2013
  ident: 10.1016/j.energy.2016.08.040_bib11
  article-title: Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network
  publication-title: App Energy
  doi: 10.1016/j.apenergy.2013.04.025
– volume: 46
  start-page: 227
  year: 2013
  ident: 10.1016/j.energy.2016.08.040_bib27
  article-title: Probabilistic neural network with homogeneity testing in recognition of discrete patterns set
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2013.06.003
– volume: 90
  start-page: 2007
  year: 2011
  ident: 10.1016/j.energy.2016.08.040_bib4
  article-title: Neural network (ANN) approach to biodiesel analysis: analy sis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.11.038
– volume: 80
  start-page: 11
  year: 2005
  ident: 10.1016/j.energy.2016.08.040_bib2
  article-title: A diesel engines performance and exhaust emissions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.03.004
– volume: 64
  start-page: 993
  year: 2013
  ident: 10.1016/j.energy.2016.08.040_bib29
  article-title: Prediction of performance and emissions of a biodiesel fueled Lanthanum Zirconate coated direct injection diesel engine using artificial neural networks
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2013.09.176
– volume: 99
  start-page: 197
  year: 2012
  ident: 10.1016/j.energy.2016.08.040_bib28
  article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.04.019
– volume: 8
  start-page: 938
  year: 2008
  ident: 10.1016/j.energy.2016.08.040_bib7
  article-title: Prediction of palm oil based methyl ester biodiesel density using artificial neural networks
  publication-title: J Appl Sci
– volume: 35
  start-page: 65
  year: 2010
  ident: 10.1016/j.energy.2016.08.040_bib18
  article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends
  publication-title: ,Energy
  doi: 10.1016/j.energy.2009.08.034
– volume: 7
  start-page: 299
  year: 2006
  ident: 10.1016/j.energy.2016.08.040_bib12
  article-title: Predicting properties of biodiesels using statistical models and artificial neural networks
  publication-title: Asian J Energy Environ
– volume: 88
  start-page: 1065
  year: 2010
  ident: 10.1016/j.energy.2016.08.040_bib20
  article-title: Modeling and control of different types of polymerization processes using neural networks technique: a review
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.20364
– volume: 3
  start-page: 634
  issue: 8
  year: 2013
  ident: 10.1016/j.energy.2016.08.040_bib19
  article-title: Artificial neural network based modeling for vibration characteristics of DI diesel engine using bio-diesel
  publication-title: Int J Adv Res Comput Sci Softw Eng
– volume: 88
  start-page: 2344
  year: 2011
  ident: 10.1016/j.energy.2016.08.040_bib24
  article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.12.030
– volume: 76
  start-page: 58
  year: 2010
  ident: 10.1016/j.energy.2016.08.040_bib6
  article-title: Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling
  publication-title: Purif Technol
  doi: 10.1016/j.seppur.2010.09.020
– volume: 34
  start-page: 976
  year: 2009
  ident: 10.1016/j.energy.2016.08.040_bib14
  article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
  publication-title: J Renew Energy
  doi: 10.1016/j.renene.2008.08.008
– volume: 8
  start-page: 1938
  year: 2008
  ident: 10.1016/j.energy.2016.08.040_bib5
  article-title: Prediction of palm oil-based methyl ester biodiesel density using artificial neural networks
  publication-title: J Appl Sci
– volume: 57
  start-page: 877
  year: 2013
  ident: 10.1016/j.energy.2016.08.040_bib25
  article-title: Prediction of cetane number and ignition delay of biodiesel Using artificial neural networks
  publication-title: Energy Procedia
– volume: 37
  start-page: 6579
  year: 2010
  ident: 10.1016/j.energy.2016.08.040_bib23
  article-title: Prediction of diesel engine performance using biofuels with artificial neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.02.128
– volume: 27
  start-page: 46
  year: 2007
  ident: 10.1016/j.energy.2016.08.040_bib9
  article-title: Performance and exhaust emissions of a gasoline engine using artificial neural network
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2006.05.016
– start-page: 260
  year: 2014
  ident: 10.1016/j.energy.2016.08.040_bib16
  article-title: Research on the prediction model of coal and gas outburst based on principal component analysis and radial basis function neural network
– volume: 92
  start-page: 769
  year: 2012
  ident: 10.1016/j.energy.2016.08.040_bib17
  article-title: Artificial neural networks modeling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.027
– volume: 50
  start-page: 915
  year: 2013
  ident: 10.1016/j.energy.2016.08.040_bib22
  article-title: The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield
  publication-title: J Renew Energy
  doi: 10.1016/j.renene.2012.08.070
– volume: 11
  start-page: 46
  year: 2007
  ident: 10.1016/j.energy.2016.08.040_bib1
  article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2006.876364
– volume: 150
  start-page: 371
  year: 2010
  ident: 10.1016/j.energy.2016.08.040_bib10
  article-title: Biodiesel production from waste oils by enzymatic transesterification: process optimization with hybrid neural model
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2010.09.445
– volume: 87
  start-page: 1661
  year: 2010
  ident: 10.1016/j.energy.2016.08.040_bib31
  article-title: CNG diesel engine performance and exhaust emission analysis with the aid of artificial neural network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.10.009
– volume: 31
  start-page: 2524
  year: 2006
  ident: 10.1016/j.energy.2016.08.040_bib26
  article-title: Artificial neural networks used for the prediction of the cetane number of biodiesel
  publication-title: J Renew Energy
  doi: 10.1016/j.renene.2006.01.009
– volume: 72
  start-page: 266
  year: 2014
  ident: 10.1016/j.energy.2016.08.040_bib8
  article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: a case of non-edible neem seed oil biodiesel synthesis
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.033
– volume: 114
  start-page: 809
  year: 2014
  ident: 10.1016/j.energy.2016.08.040_bib13
  article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.10.011
– volume: 34
  start-page: 976
  year: 2009
  ident: 10.1016/j.energy.2016.08.040_bib15
  article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.08.008
– volume: 121
  start-page: 133
  year: 2014
  ident: 10.1016/j.energy.2016.08.040_bib21
  article-title: Neural network prediction of biodiesel kinematic viscosity at 313 K
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.12.029
SSID ssj0005899
Score 2.3041341
Snippet Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 603
SubjectTerms biodiesel
combustion
diesel engines
Engine
engine parts
lubricants
metals
Modeling
Neural
neural networks
prediction
regression analysis
Wear
Title Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation
URI https://dx.doi.org/10.1016/j.energy.2016.08.040
https://www.proquest.com/docview/2131889699
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iD_oifg2_ieBrXdu0XfMoczId-qCO7S0kaTon0g47wSf_du_S1C-EgU9tw6WU5HK5S3_3O0JOfa6lBGXxYDPIPYi_tKc43IFzrEOVBjq2lPk3t0l_GF2P4_ES6Ta5MAirdLa_tunWWruWthvN9mw6bd-D7QV_IwrBowC3hmFGeRR1UMvP3r_BPFJbQxKFPZRu0ucsxsvY_DoEeCWWyBOPQP7enn4Zarv7XG6Qdec20vP6yzbJkim2yGqTVVxtkVbvK2MNBN2SrbbJbAS6TE2NEqfScZBQxLtPKLJZgnRRY8ErWuZU0osritBC80yNJSt0smpaumY8u6Xm7REpg-hEVhQZMl60KwS2Q4aXvYdu33NlFjzNGJ97XHMmTagU85WBeLGTBSzKcgjkkLuFyYxDjKdMkpowS2Wc-hwEwRGK8lB1EhOyFlkuysLsEppIjOlkzmIZgScYqCT1NcYsfpJnAY_3CGtGV2jHQY6lMJ5FAzZ7EvWcCJwTgRUyI3-PeJ-9ZjUHxwL5TjNx4ocuCdgmFvQ8aeZZwDLDfyeyMOVrJcIAjF_KE873__32A7KGT3Um4yFZnr-8miNwaebq2OrsMVk5vxr0b_E6uBsNPgAK9fhw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HPQiPvFtBK9126btNkfxwfq8qOgtJGmqK0t3sSt48rc7k6a-EARvJZ2WkplMZtJvvgHYC4VRCo0lwM2gDDD_MoEWeIXBsYl1HpnUUeZfXmW92-TsPr2fgMO2FoZgld73Nz7deWs_0vGz2Rn1-51r9L0YbyQxRhQY1vDuJEwnuHypjcH-2xecR-6aSJJ0QOJt_ZwDeVlXYEcIr8wxedIZyO_70w9P7bafk3mY83EjO2g-bQEmbLUIM21Zcb0IK8efJWso6NdsvQSjOzRmZhuYOFOehIQR4P2BEZ0lSlcNGLxmw5IpdnTKCFtoB8w6tkIvq_tDP0yHt8y-PhJnEHtQNSOKjGfjO4Etw-3J8c1hL_B9FgLDuRgHwgiubKw1D7XFhLFbRDwpSszkiLyFq0Jgkqdtltu4yFWahwIFMRJKylh3MxvzFZiqhpVdBZYpSupUyVOVYCgY6SwPDSUtYVYWkUjXgLezK40nIadeGAPZos2eZKMTSTqR1CIzCdcg-Hhq1JBw_CHfbRUnvxmTxH3ijyd3Wz1LXGf080RVdvhSyzhC75eLTIj1f799B2Z6N5cX8uL06nwDZulOU9a4CVPj5xe7hfHNWG87-30H7iP4Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wear+element+analysis+using+neural+networks+of+a+DI+diesel+engine+using+biodiesel+with+exhaust+gas+recirculation&rft.jtitle=Energy+%28Oxford%29&rft.au=Manieniyan%2C+V.&rft.au=Vinodhini%2C+G.&rft.au=Senthilkumar%2C+R.&rft.au=Sivaprakasam%2C+S.&rft.date=2016-11-01&rft.issn=0360-5442&rft.volume=114&rft.spage=603&rft.epage=612&rft_id=info:doi/10.1016%2Fj.energy.2016.08.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_08_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon