Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation
Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and...
Saved in:
Published in | Energy (Oxford) Vol. 114; pp. 603 - 612 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and diesel. Experimental results revealed that 20% biodiesel blend is the optimum blend in terms of performance, emission and combustion characteristics. For B20 blend, it was also found experimentally that 15% hot EGR and 20% cold EGR were the optimum EGR ratios. Under the optimum EGR ratios identified, a series of experimental work was done with B20 blend and diesel at various loads to obtain the concentration of wear metals from the lubricating oil. Experimentally, it was found that wear metals were found to be lower for B20 biodiesel compared to diesel. Artificial neural networks (ANN) have become the premier candidate as the modeling tool. Using the experimental data, ANN models based on probabilistic neural networks (PNN) and radial basis function neural networks (RBFN) for predicting the engine wear were developed. The results show that ANN is sufficient enough in predicting the engine wear in terms of mean square error (MSE) and regression coefficient (R). Also among the ANN models tested, RBFN performs significantly better than PNN.
•Optimum blend of Methyl ester of mahua oil is identified.•Optimum hot and cold EGR ratios are identified for the obtained optimum blend.•The concentration of various wear metals are analyzed under suitable EGR ratios.•Predictions of ANN models for wear metals are notably satisfactory.•RBFN performs better in terms of regression coefficient and mean square error. |
---|---|
AbstractList | Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and diesel. Experimental results revealed that 20% biodiesel blend is the optimum blend in terms of performance, emission and combustion characteristics. For B20 blend, it was also found experimentally that 15% hot EGR and 20% cold EGR were the optimum EGR ratios. Under the optimum EGR ratios identified, a series of experimental work was done with B20 blend and diesel at various loads to obtain the concentration of wear metals from the lubricating oil. Experimentally, it was found that wear metals were found to be lower for B20 biodiesel compared to diesel. Artificial neural networks (ANN) have become the premier candidate as the modeling tool. Using the experimental data, ANN models based on probabilistic neural networks (PNN) and radial basis function neural networks (RBFN) for predicting the engine wear were developed. The results show that ANN is sufficient enough in predicting the engine wear in terms of mean square error (MSE) and regression coefficient (R). Also among the ANN models tested, RBFN performs significantly better than PNN.
•Optimum blend of Methyl ester of mahua oil is identified.•Optimum hot and cold EGR ratios are identified for the obtained optimum blend.•The concentration of various wear metals are analyzed under suitable EGR ratios.•Predictions of ANN models for wear metals are notably satisfactory.•RBFN performs better in terms of regression coefficient and mean square error. Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of neural network models for predicting engine performance such as wear of the DI diesel engine using B20 blend of Methyl Ester of Mahua (MEOM) and diesel. Experimental results revealed that 20% biodiesel blend is the optimum blend in terms of performance, emission and combustion characteristics. For B20 blend, it was also found experimentally that 15% hot EGR and 20% cold EGR were the optimum EGR ratios. Under the optimum EGR ratios identified, a series of experimental work was done with B20 blend and diesel at various loads to obtain the concentration of wear metals from the lubricating oil. Experimentally, it was found that wear metals were found to be lower for B20 biodiesel compared to diesel. Artificial neural networks (ANN) have become the premier candidate as the modeling tool. Using the experimental data, ANN models based on probabilistic neural networks (PNN) and radial basis function neural networks (RBFN) for predicting the engine wear were developed. The results show that ANN is sufficient enough in predicting the engine wear in terms of mean square error (MSE) and regression coefficient (R). Also among the ANN models tested, RBFN performs significantly better than PNN. |
Author | Sivaprakasam, S. Manieniyan, V. Vinodhini, G. Senthilkumar, R. |
Author_xml | – sequence: 1 givenname: V. surname: Manieniyan fullname: Manieniyan, V. email: manieniyan78@gmail.com organization: Mechanical Engineering, Directorate of Distance Education, Annamalai University, Tamil Nadu, India – sequence: 2 givenname: G. surname: Vinodhini fullname: Vinodhini, G. organization: Department of Computer Science and Engineering, Annamalai University, Tamil Nadu, India – sequence: 3 givenname: R. surname: Senthilkumar fullname: Senthilkumar, R. organization: Department of Mechanical Engineering, Annamalai University, Tamil Nadu, India – sequence: 4 givenname: S. surname: Sivaprakasam fullname: Sivaprakasam, S. organization: Department of Mechanical Engineering, Annamalai University, Tamil Nadu, India |
BookMark | eNqFkDtPAzEQhF0EiSTwDyhc0uSw75UzBRIKr0iRaECUls-3d3Fw7GD7CPn3OCQVBVSj3Z0Zrb4RGhhrAKELShJKaHm1SsCA63ZJGqeEVAnJyQANSVaSSZHn6Skaeb8ihBQVY0O0eQPhMGhYgwlYGKF3Xnnce2U6bKB3QkcJW-vePbYtFvhujhsFHjQG0ykDR2-t7HG9VWGJ4Wspeh9wJzx2IJWTvRZBWXOGTlqhPZwfdYxeH-5fZk-TxfPjfHa7mMgsY2HCJMsEpHWdkRrSIp82NMubljJKChZPDaNFWUNZQdpUoqgIi8aSFnmb1tMS0myMLg-9G2c_evCBr5WXoLUwYHvPU5rRqmJlLBuj64NVOuu9g5ZLFX6eDU4ozSnhe7R8xQ9o-R4tJxWPaGM4_xXeOLUWbvdf7OYQg8jgU4HjXiowEhoVcQXeWPV3wTfijJsn |
CitedBy_id | crossref_primary_10_1016_j_energy_2018_02_101 crossref_primary_10_1016_j_cscee_2023_100328 crossref_primary_10_1080_15567036_2020_1729901 crossref_primary_10_3390_electronics8091005 crossref_primary_10_1186_s10033_020_00525_4 crossref_primary_10_1088_1742_6596_1515_4_042021 crossref_primary_10_1007_s13369_020_04708_y crossref_primary_10_1088_1742_6596_1889_4_042067 crossref_primary_10_1088_1757_899X_919_6_062004 crossref_primary_10_1177_14750902221096221 crossref_primary_10_1016_j_energy_2021_122286 crossref_primary_10_2355_isijinternational_ISIJINT_2018_076 crossref_primary_10_1016_j_fuel_2019_115792 crossref_primary_10_1080_01430750_2021_2014958 crossref_primary_10_1016_j_enconman_2019_01_078 crossref_primary_10_1007_s11831_021_09596_5 crossref_primary_10_1016_j_matpr_2020_10_148 crossref_primary_10_1016_j_pecs_2021_100904 crossref_primary_10_1088_1757_899X_862_6_062033 crossref_primary_10_1007_s40430_020_02666_y crossref_primary_10_1088_1755_1315_839_5_052057 |
Cites_doi | 10.1016/j.cep.2013.10.008 10.1016/j.apenergy.2013.04.025 10.1016/j.neunet.2013.06.003 10.1016/j.fuel.2010.11.038 10.1016/j.apenergy.2004.03.004 10.1016/j.proeng.2013.09.176 10.1016/j.fuel.2012.04.019 10.1016/j.energy.2009.08.034 10.1002/cjce.20364 10.1016/j.apenergy.2010.12.030 10.1016/j.seppur.2010.09.020 10.1016/j.renene.2008.08.008 10.1016/j.eswa.2010.02.128 10.1016/j.applthermaleng.2006.05.016 10.1016/j.apenergy.2011.08.027 10.1016/j.renene.2012.08.070 10.1109/TEVC.2006.876364 10.1016/j.jbiotec.2010.09.445 10.1016/j.apenergy.2009.10.009 10.1016/j.renene.2006.01.009 10.1016/j.energy.2014.05.033 10.1016/j.apenergy.2013.10.011 10.1016/j.fuel.2013.12.029 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.energy.2016.08.040 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EndPage | 612 |
ExternalDocumentID | 10_1016_j_energy_2016_08_040 S0360544216311537 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-9c93ae2bb30be2547d134df19105993ad9156be68e2d8a580930b6154f2b76e23 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Wed Jul 30 11:28:09 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Tue Jul 01 00:53:02 EDT 2025 Fri Feb 23 02:32:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Modeling Wear Engine Neural |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-9c93ae2bb30be2547d134df19105993ad9156be68e2d8a580930b6154f2b76e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2131889699 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2131889699 crossref_citationtrail_10_1016_j_energy_2016_08_040 crossref_primary_10_1016_j_energy_2016_08_040 elsevier_sciencedirect_doi_10_1016_j_energy_2016_08_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 2016-11-00 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Piloto-Rodriguez, Errasti, Sánchez Borroto, Sierens, Verhelst (bib25) 2013; 57 Yusaf, Buttsworth, Saleh, Yousif (bib31) 2010; 87 Alonso, Alvarruiz, Desantes, Hernandez, Hernandez, Molto (bib1) 2007; 11 Sharon, Jayaprakash, Karthigai Selvan, Soban Kumar, Sundaresan, Karuppasamy (bib28) 2012; 99 Chakraborty, Sahu (bib11) 2013; 114 Baroutian, Aroua, Raman, Sulaiman (bib7) 2008; 8 Kiani Deh Kiani, Ghobadian, Tavakoli, Nikbakht, Najafi (bib18) 2010; 35 Calabro, Curcio, Saraceno, Ricca, De Paola (bib10) 2010; 150 Ghobadian, Rahimi, Nikbakht, Najafi, Yusaf (bib14) 2009; 34 Baroutian, Aroua, Abdul Raman, Nik Sulaiman (bib6) 2010; 76 Moradi, Dehghani, Khosravian, Arjmandzadeh (bib22) 2013; 50 Vinay Kumar, Ravi Kumar, Santosha Kumari (bib29) 2013; 64 Mat Noor, Ahmad, Mat Don, Uzir (bib20) 2010; 88 Baroutian, Aroua, Abdul Raman, Nik Sulaiman (bib5) 2008; 8 Savchenko (bib27) 2013; 46 Pai, Rao (bib24) 2011; 88 Meng, Jia, Wang (bib21) 2014; 121 Oguz, Sarıtas, Baydan (bib23) 2010; 37 Ghobadian, Rahimi, Nikbakht, Najafi, Yusaf (bib15) 2009; 34 Sayin, Ertunc, Hosoz, Kilicaslan, Canakci (bib9) 2007; 27 Cheenkachorn (bib12) 2006; 7 Fauzi, Amin, Mat (bib13) 2014; 114 Guan, Wang, Zhou (bib16) 2014 Manieniyan, Sivaprakasam (bib19) 2013; 3 Arcaklioglu, Celikten (bib2) 2005; 80 Betiku, Omilakin, Ajala, Okeleye, Taiwo, Solomon (bib8) 2014; 72 Badday, Abdullah, Lee (bib3) 2014; 75 Ying, Shao, Jiang, Sun (bib30) 2009; 294 Balabin, Lomakina, Safieva (bib4) 2011; 90 Ramadhas, Jayaraj, Muraleedharan, Padmakumari (bib26) 2006; 31 Ismail, Ng, Queck, Gan (bib17) 2012; 92 Vinay Kumar (10.1016/j.energy.2016.08.040_bib29) 2013; 64 Badday (10.1016/j.energy.2016.08.040_bib3) 2014; 75 Baroutian (10.1016/j.energy.2016.08.040_bib6) 2010; 76 Sayin (10.1016/j.energy.2016.08.040_bib9) 2007; 27 Ghobadian (10.1016/j.energy.2016.08.040_bib14) 2009; 34 Arcaklioglu (10.1016/j.energy.2016.08.040_bib2) 2005; 80 Moradi (10.1016/j.energy.2016.08.040_bib22) 2013; 50 Ramadhas (10.1016/j.energy.2016.08.040_bib26) 2006; 31 Fauzi (10.1016/j.energy.2016.08.040_bib13) 2014; 114 Baroutian (10.1016/j.energy.2016.08.040_bib5) 2008; 8 Cheenkachorn (10.1016/j.energy.2016.08.040_bib12) 2006; 7 Betiku (10.1016/j.energy.2016.08.040_bib8) 2014; 72 Meng (10.1016/j.energy.2016.08.040_bib21) 2014; 121 Ying (10.1016/j.energy.2016.08.040_bib30) 2009; 294 Oguz (10.1016/j.energy.2016.08.040_bib23) 2010; 37 Savchenko (10.1016/j.energy.2016.08.040_bib27) 2013; 46 Balabin (10.1016/j.energy.2016.08.040_bib4) 2011; 90 Alonso (10.1016/j.energy.2016.08.040_bib1) 2007; 11 Piloto-Rodriguez (10.1016/j.energy.2016.08.040_bib25) 2013; 57 Ghobadian (10.1016/j.energy.2016.08.040_bib15) 2009; 34 Manieniyan (10.1016/j.energy.2016.08.040_bib19) 2013; 3 Baroutian (10.1016/j.energy.2016.08.040_bib7) 2008; 8 Ismail (10.1016/j.energy.2016.08.040_bib17) 2012; 92 Sharon (10.1016/j.energy.2016.08.040_bib28) 2012; 99 Mat Noor (10.1016/j.energy.2016.08.040_bib20) 2010; 88 Chakraborty (10.1016/j.energy.2016.08.040_bib11) 2013; 114 Yusaf (10.1016/j.energy.2016.08.040_bib31) 2010; 87 Kiani Deh Kiani (10.1016/j.energy.2016.08.040_bib18) 2010; 35 Guan (10.1016/j.energy.2016.08.040_bib16) 2014 Pai (10.1016/j.energy.2016.08.040_bib24) 2011; 88 Calabro (10.1016/j.energy.2016.08.040_bib10) 2010; 150 |
References_xml | – volume: 80 start-page: 11 year: 2005 end-page: 22 ident: bib2 article-title: A diesel engines performance and exhaust emissions publication-title: Appl Energy – volume: 114 start-page: 809 year: 2014 end-page: 818 ident: bib13 article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study publication-title: Appl Energy – volume: 88 start-page: 1065 year: 2010 end-page: 1084 ident: bib20 article-title: Modeling and control of different types of polymerization processes using neural networks technique: a review publication-title: Can J Chem Eng – volume: 50 start-page: 915 year: 2013 end-page: 920 ident: bib22 article-title: The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield publication-title: J Renew Energy – volume: 87 start-page: 1661 year: 2010 end-page: 1669 ident: bib31 article-title: CNG diesel engine performance and exhaust emission analysis with the aid of artificial neural network publication-title: Appl Energy – volume: 150 start-page: 371 year: 2010 ident: bib10 article-title: Biodiesel production from waste oils by enzymatic transesterification: process optimization with hybrid neural model publication-title: J Biotechnol – volume: 37 start-page: 6579 year: 2010 end-page: 6586 ident: bib23 article-title: Prediction of diesel engine performance using biofuels with artificial neural network publication-title: Expert Syst Appl – volume: 7 start-page: 299 year: 2006 end-page: 306 ident: bib12 article-title: Predicting properties of biodiesels using statistical models and artificial neural networks publication-title: Asian J Energy Environ – volume: 8 start-page: 1938 year: 2008 end-page: 1943 ident: bib5 article-title: Prediction of palm oil-based methyl ester biodiesel density using artificial neural networks publication-title: J Appl Sci – volume: 92 start-page: 769 year: 2012 end-page: 777 ident: bib17 article-title: Artificial neural networks modeling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends publication-title: Appl Energy – volume: 35 start-page: 65 year: 2010 end-page: 69 ident: bib18 article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends publication-title: ,Energy – volume: 121 start-page: 133 year: 2014 end-page: 140 ident: bib21 article-title: Neural network prediction of biodiesel kinematic viscosity at 313 K publication-title: Fuel – volume: 75 start-page: 31 year: 2014 end-page: 37 ident: bib3 article-title: Artificial neural network approach for modeling of ultrasound-assisted transesterification process of crude Jatropha oil catalyzed by heteropolyacid based catalyst publication-title: Chem Eng Process Process Intensif – volume: 99 start-page: 197 year: 2012 end-page: 203 ident: bib28 article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network publication-title: Fuel – volume: 8 start-page: 938 year: 2008 end-page: 943 ident: bib7 article-title: Prediction of palm oil based methyl ester biodiesel density using artificial neural networks publication-title: J Appl Sci – start-page: 260 year: 2014 end-page: 264 ident: bib16 article-title: Research on the prediction model of coal and gas outburst based on principal component analysis and radial basis function neural network publication-title: Instrumentation and measurement, computer, communication and control (IMCCC), 2014 Fourth international conference on – volume: 46 start-page: 227 year: 2013 end-page: 241 ident: bib27 article-title: Probabilistic neural network with homogeneity testing in recognition of discrete patterns set publication-title: Neural Netw – volume: 64 start-page: 993 year: 2013 end-page: 1002 ident: bib29 article-title: Prediction of performance and emissions of a biodiesel fueled Lanthanum Zirconate coated direct injection diesel engine using artificial neural networks publication-title: Procedia Eng – volume: 3 start-page: 634 year: 2013 end-page: 638 ident: bib19 article-title: Artificial neural network based modeling for vibration characteristics of DI diesel engine using bio-diesel publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 11 start-page: 46 year: 2007 end-page: 55 ident: bib1 article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions publication-title: IEEE Trans Evol Comput – volume: 57 start-page: 877 year: 2013 end-page: 885 ident: bib25 article-title: Prediction of cetane number and ignition delay of biodiesel Using artificial neural networks publication-title: Energy Procedia – volume: 76 start-page: 58 year: 2010 end-page: 63 ident: bib6 article-title: Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling publication-title: Purif Technol – volume: 72 start-page: 266 year: 2014 end-page: 273 ident: bib8 article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: a case of non-edible neem seed oil biodiesel synthesis publication-title: Energy – volume: 27 start-page: 46 year: 2007 end-page: 54 ident: bib9 article-title: Performance and exhaust emissions of a gasoline engine using artificial neural network publication-title: Appl Therm Eng – volume: 34 start-page: 976 year: 2009 end-page: 982 ident: bib14 article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network publication-title: J Renew Energy – volume: 34 start-page: 976 year: 2009 end-page: 982 ident: bib15 article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network publication-title: Renew Energy – volume: 88 start-page: 2344 year: 2011 end-page: 2354 ident: bib24 article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings publication-title: Appl Energy – volume: 90 start-page: 2007 year: 2011 end-page: 2015 ident: bib4 article-title: Neural network (ANN) approach to biodiesel analysis: analy sis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy publication-title: Fuel – volume: 31 start-page: 2524 year: 2006 end-page: 2533 ident: bib26 article-title: Artificial neural networks used for the prediction of the cetane number of biodiesel publication-title: J Renew Energy – volume: 294 start-page: 1239 year: 2009 end-page: 1249 ident: bib30 article-title: Artificial neural network analysis of immobilized lipase synthesis of biodiesel from rapeseed soapstock publication-title: Comput Comput Technol Agric II – volume: 114 start-page: 827 year: 2013 end-page: 836 ident: bib11 article-title: Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network publication-title: App Energy – volume: 294 start-page: 1239 year: 2009 ident: 10.1016/j.energy.2016.08.040_bib30 article-title: Artificial neural network analysis of immobilized lipase synthesis of biodiesel from rapeseed soapstock publication-title: Comput Comput Technol Agric II – volume: 75 start-page: 31 year: 2014 ident: 10.1016/j.energy.2016.08.040_bib3 article-title: Artificial neural network approach for modeling of ultrasound-assisted transesterification process of crude Jatropha oil catalyzed by heteropolyacid based catalyst publication-title: Chem Eng Process Process Intensif doi: 10.1016/j.cep.2013.10.008 – volume: 114 start-page: 827 year: 2013 ident: 10.1016/j.energy.2016.08.040_bib11 article-title: Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network publication-title: App Energy doi: 10.1016/j.apenergy.2013.04.025 – volume: 46 start-page: 227 year: 2013 ident: 10.1016/j.energy.2016.08.040_bib27 article-title: Probabilistic neural network with homogeneity testing in recognition of discrete patterns set publication-title: Neural Netw doi: 10.1016/j.neunet.2013.06.003 – volume: 90 start-page: 2007 year: 2011 ident: 10.1016/j.energy.2016.08.040_bib4 article-title: Neural network (ANN) approach to biodiesel analysis: analy sis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy publication-title: Fuel doi: 10.1016/j.fuel.2010.11.038 – volume: 80 start-page: 11 year: 2005 ident: 10.1016/j.energy.2016.08.040_bib2 article-title: A diesel engines performance and exhaust emissions publication-title: Appl Energy doi: 10.1016/j.apenergy.2004.03.004 – volume: 64 start-page: 993 year: 2013 ident: 10.1016/j.energy.2016.08.040_bib29 article-title: Prediction of performance and emissions of a biodiesel fueled Lanthanum Zirconate coated direct injection diesel engine using artificial neural networks publication-title: Procedia Eng doi: 10.1016/j.proeng.2013.09.176 – volume: 99 start-page: 197 year: 2012 ident: 10.1016/j.energy.2016.08.040_bib28 article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network publication-title: Fuel doi: 10.1016/j.fuel.2012.04.019 – volume: 8 start-page: 938 year: 2008 ident: 10.1016/j.energy.2016.08.040_bib7 article-title: Prediction of palm oil based methyl ester biodiesel density using artificial neural networks publication-title: J Appl Sci – volume: 35 start-page: 65 year: 2010 ident: 10.1016/j.energy.2016.08.040_bib18 article-title: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends publication-title: ,Energy doi: 10.1016/j.energy.2009.08.034 – volume: 7 start-page: 299 year: 2006 ident: 10.1016/j.energy.2016.08.040_bib12 article-title: Predicting properties of biodiesels using statistical models and artificial neural networks publication-title: Asian J Energy Environ – volume: 88 start-page: 1065 year: 2010 ident: 10.1016/j.energy.2016.08.040_bib20 article-title: Modeling and control of different types of polymerization processes using neural networks technique: a review publication-title: Can J Chem Eng doi: 10.1002/cjce.20364 – volume: 3 start-page: 634 issue: 8 year: 2013 ident: 10.1016/j.energy.2016.08.040_bib19 article-title: Artificial neural network based modeling for vibration characteristics of DI diesel engine using bio-diesel publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 88 start-page: 2344 year: 2011 ident: 10.1016/j.energy.2016.08.040_bib24 article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.12.030 – volume: 76 start-page: 58 year: 2010 ident: 10.1016/j.energy.2016.08.040_bib6 article-title: Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling publication-title: Purif Technol doi: 10.1016/j.seppur.2010.09.020 – volume: 34 start-page: 976 year: 2009 ident: 10.1016/j.energy.2016.08.040_bib14 article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network publication-title: J Renew Energy doi: 10.1016/j.renene.2008.08.008 – volume: 8 start-page: 1938 year: 2008 ident: 10.1016/j.energy.2016.08.040_bib5 article-title: Prediction of palm oil-based methyl ester biodiesel density using artificial neural networks publication-title: J Appl Sci – volume: 57 start-page: 877 year: 2013 ident: 10.1016/j.energy.2016.08.040_bib25 article-title: Prediction of cetane number and ignition delay of biodiesel Using artificial neural networks publication-title: Energy Procedia – volume: 37 start-page: 6579 year: 2010 ident: 10.1016/j.energy.2016.08.040_bib23 article-title: Prediction of diesel engine performance using biofuels with artificial neural network publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.02.128 – volume: 27 start-page: 46 year: 2007 ident: 10.1016/j.energy.2016.08.040_bib9 article-title: Performance and exhaust emissions of a gasoline engine using artificial neural network publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2006.05.016 – start-page: 260 year: 2014 ident: 10.1016/j.energy.2016.08.040_bib16 article-title: Research on the prediction model of coal and gas outburst based on principal component analysis and radial basis function neural network – volume: 92 start-page: 769 year: 2012 ident: 10.1016/j.energy.2016.08.040_bib17 article-title: Artificial neural networks modeling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.08.027 – volume: 50 start-page: 915 year: 2013 ident: 10.1016/j.energy.2016.08.040_bib22 article-title: The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield publication-title: J Renew Energy doi: 10.1016/j.renene.2012.08.070 – volume: 11 start-page: 46 year: 2007 ident: 10.1016/j.energy.2016.08.040_bib1 article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2006.876364 – volume: 150 start-page: 371 year: 2010 ident: 10.1016/j.energy.2016.08.040_bib10 article-title: Biodiesel production from waste oils by enzymatic transesterification: process optimization with hybrid neural model publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2010.09.445 – volume: 87 start-page: 1661 year: 2010 ident: 10.1016/j.energy.2016.08.040_bib31 article-title: CNG diesel engine performance and exhaust emission analysis with the aid of artificial neural network publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.10.009 – volume: 31 start-page: 2524 year: 2006 ident: 10.1016/j.energy.2016.08.040_bib26 article-title: Artificial neural networks used for the prediction of the cetane number of biodiesel publication-title: J Renew Energy doi: 10.1016/j.renene.2006.01.009 – volume: 72 start-page: 266 year: 2014 ident: 10.1016/j.energy.2016.08.040_bib8 article-title: Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: a case of non-edible neem seed oil biodiesel synthesis publication-title: Energy doi: 10.1016/j.energy.2014.05.033 – volume: 114 start-page: 809 year: 2014 ident: 10.1016/j.energy.2016.08.040_bib13 article-title: Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.10.011 – volume: 34 start-page: 976 year: 2009 ident: 10.1016/j.energy.2016.08.040_bib15 article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network publication-title: Renew Energy doi: 10.1016/j.renene.2008.08.008 – volume: 121 start-page: 133 year: 2014 ident: 10.1016/j.energy.2016.08.040_bib21 article-title: Neural network prediction of biodiesel kinematic viscosity at 313 K publication-title: Fuel doi: 10.1016/j.fuel.2013.12.029 |
SSID | ssj0005899 |
Score | 2.3041341 |
Snippet | Wear is an important characteristic because of its great value in connection with the engine parts. The main focus of this work is to analyze the effect of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 603 |
SubjectTerms | biodiesel combustion diesel engines Engine engine parts lubricants metals Modeling Neural neural networks prediction regression analysis Wear |
Title | Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation |
URI | https://dx.doi.org/10.1016/j.energy.2016.08.040 https://www.proquest.com/docview/2131889699 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iD_oifg2_ieBrXdu0XfMoczId-qCO7S0kaTon0g47wSf_du_S1C-EgU9tw6WU5HK5S3_3O0JOfa6lBGXxYDPIPYi_tKc43IFzrEOVBjq2lPk3t0l_GF2P4_ES6Ta5MAirdLa_tunWWruWthvN9mw6bd-D7QV_IwrBowC3hmFGeRR1UMvP3r_BPFJbQxKFPZRu0ucsxsvY_DoEeCWWyBOPQP7enn4Zarv7XG6Qdec20vP6yzbJkim2yGqTVVxtkVbvK2MNBN2SrbbJbAS6TE2NEqfScZBQxLtPKLJZgnRRY8ErWuZU0osritBC80yNJSt0smpaumY8u6Xm7REpg-hEVhQZMl60KwS2Q4aXvYdu33NlFjzNGJ97XHMmTagU85WBeLGTBSzKcgjkkLuFyYxDjKdMkpowS2Wc-hwEwRGK8lB1EhOyFlkuysLsEppIjOlkzmIZgScYqCT1NcYsfpJnAY_3CGtGV2jHQY6lMJ5FAzZ7EvWcCJwTgRUyI3-PeJ-9ZjUHxwL5TjNx4ocuCdgmFvQ8aeZZwDLDfyeyMOVrJcIAjF_KE873__32A7KGT3Um4yFZnr-8miNwaebq2OrsMVk5vxr0b_E6uBsNPgAK9fhw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HPQiPvFtBK9126btNkfxwfq8qOgtJGmqK0t3sSt48rc7k6a-EARvJZ2WkplMZtJvvgHYC4VRCo0lwM2gDDD_MoEWeIXBsYl1HpnUUeZfXmW92-TsPr2fgMO2FoZgld73Nz7deWs_0vGz2Rn1-51r9L0YbyQxRhQY1vDuJEwnuHypjcH-2xecR-6aSJJ0QOJt_ZwDeVlXYEcIr8wxedIZyO_70w9P7bafk3mY83EjO2g-bQEmbLUIM21Zcb0IK8efJWso6NdsvQSjOzRmZhuYOFOehIQR4P2BEZ0lSlcNGLxmw5IpdnTKCFtoB8w6tkIvq_tDP0yHt8y-PhJnEHtQNSOKjGfjO4Etw-3J8c1hL_B9FgLDuRgHwgiubKw1D7XFhLFbRDwpSszkiLyFq0Jgkqdtltu4yFWahwIFMRJKylh3MxvzFZiqhpVdBZYpSupUyVOVYCgY6SwPDSUtYVYWkUjXgLezK40nIadeGAPZos2eZKMTSTqR1CIzCdcg-Hhq1JBw_CHfbRUnvxmTxH3ijyd3Wz1LXGf080RVdvhSyzhC75eLTIj1f799B2Z6N5cX8uL06nwDZulOU9a4CVPj5xe7hfHNWG87-30H7iP4Ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wear+element+analysis+using+neural+networks+of+a+DI+diesel+engine+using+biodiesel+with+exhaust+gas+recirculation&rft.jtitle=Energy+%28Oxford%29&rft.au=Manieniyan%2C+V.&rft.au=Vinodhini%2C+G.&rft.au=Senthilkumar%2C+R.&rft.au=Sivaprakasam%2C+S.&rft.date=2016-11-01&rft.issn=0360-5442&rft.volume=114&rft.spage=603&rft.epage=612&rft_id=info:doi/10.1016%2Fj.energy.2016.08.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_08_040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |