Template-oriented synthesis of monodispersed SnS2@SnO2 hetero-nanoflowers for Cr(VI) photoreduction
We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction. [Display omitted] •Template-oriented Synthesis of SnS2@SnO2 hetero-nanoflowers.•Nanoflowers showed enhanced photocurrent and photocatalytic performance.•Easy photocatalyst...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 192; pp. 17 - 25 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction.
[Display omitted]
•Template-oriented Synthesis of SnS2@SnO2 hetero-nanoflowers.•Nanoflowers showed enhanced photocurrent and photocatalytic performance.•Easy photocatalyst separation and reuse.
The controlled chemical conversion of nanomaterials represents an important basis for both understanding the nanoscale chemical activity and exploring new desirable materials. In this work, the region selective ion-exchange transformation of one-dimensional (1D) SnO2 nanotubes (SNT) into three-dimensional (3D) SnS2@SnO2 nanoflowers (SNF) were prepared by combining the electrospinning technique and hydrothermal method. The template-oriented synthesized SnS2@SnO2 demonstrated good dispersibility and uniformity, which can be proved by field-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Compared with SNT, SNF showed an improved visible light harvest even to the near-infrared light region through Ultraviolet-Visible Spectroscopy (UV–vis). What's more, SNF showed enhanced water purification performance for oxalic acid-induced photocatalytic reduction of Cr(VI) under visible light irradiation at room temperature, which could be attributed to the staggered band alignment formed between the two semiconductors. Besides, the corresponding mechanism of enhanced photocatalysis regarding the separation of the photogenerated electron-hole pairs for the heterojunction has also been investigated through photoluminescence spectroscopy (PL) and photocurrent analysis. |
---|---|
AbstractList | We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction.
[Display omitted]
•Template-oriented Synthesis of SnS2@SnO2 hetero-nanoflowers.•Nanoflowers showed enhanced photocurrent and photocatalytic performance.•Easy photocatalyst separation and reuse.
The controlled chemical conversion of nanomaterials represents an important basis for both understanding the nanoscale chemical activity and exploring new desirable materials. In this work, the region selective ion-exchange transformation of one-dimensional (1D) SnO2 nanotubes (SNT) into three-dimensional (3D) SnS2@SnO2 nanoflowers (SNF) were prepared by combining the electrospinning technique and hydrothermal method. The template-oriented synthesized SnS2@SnO2 demonstrated good dispersibility and uniformity, which can be proved by field-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Compared with SNT, SNF showed an improved visible light harvest even to the near-infrared light region through Ultraviolet-Visible Spectroscopy (UV–vis). What's more, SNF showed enhanced water purification performance for oxalic acid-induced photocatalytic reduction of Cr(VI) under visible light irradiation at room temperature, which could be attributed to the staggered band alignment formed between the two semiconductors. Besides, the corresponding mechanism of enhanced photocatalysis regarding the separation of the photogenerated electron-hole pairs for the heterojunction has also been investigated through photoluminescence spectroscopy (PL) and photocurrent analysis. |
Author | Liang, Changhao Gao, Hongqing Zhang, Peng Zhao, Jiangtao Hu, Junhua Wang, Lijie Shao, Guosheng Zhang, Xi |
Author_xml | – sequence: 1 givenname: Xi surname: Zhang fullname: Zhang, Xi organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China – sequence: 2 givenname: Peng surname: Zhang fullname: Zhang, Peng email: Zhangp@zzu.edu.cn organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China – sequence: 3 givenname: Lijie surname: Wang fullname: Wang, Lijie organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China – sequence: 4 givenname: Hongqing surname: Gao fullname: Gao, Hongqing organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China – sequence: 5 givenname: Jiangtao surname: Zhao fullname: Zhao, Jiangtao organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China – sequence: 6 givenname: Changhao surname: Liang fullname: Liang, Changhao organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China – sequence: 7 givenname: Junhua surname: Hu fullname: Hu, Junhua email: Hujh@zzu.edu.cn organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China – sequence: 8 givenname: Guosheng surname: Shao fullname: Shao, Guosheng organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China |
BookMark | eNqFkM1LAzEQxYMoWD_-Aw971MOuSWa72fUgSvGjUPDQ6jWkyYSmtMmSRMX_3i315EHhwTA8fo-Zd0IOffBIyAWjFaOsuV5XqtcqLys-bBWFQeMDMmKtgBLaFg7JiHa8KQEEHJOTlNaUUg68HRG9wG2_URnLEB36jKZIXz6vMLlUBFtsgw_GpR5jGqy5n_O7uX_hxQozxlB65YPdhM_BLmyIxSRevk2vin4Vcoho3nV2wZ-RI6s2Cc9_5il5fXxYTJ7L2cvTdHI_KzVAl8uuFqyxSiCnglsBHXbAgQEA42jGrbatsZ21ClTdGEsFNlSYZd0aLnTNBJySep-rY0gpopV9dFsVvySjcleUXMt9UXJXlKQwaDxgN78w7bLaHZ6jcpv_4Ns9jMNjHw6jTHroUaNxEXWWJri_A74B8xSKAA |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2017_07_003 crossref_primary_10_1007_s10854_017_8392_2 crossref_primary_10_1007_s11356_022_19318_4 crossref_primary_10_1016_j_colsurfa_2021_126444 crossref_primary_10_1016_j_jmst_2020_04_032 crossref_primary_10_1002_smll_202310664 crossref_primary_10_1016_j_jallcom_2022_168520 crossref_primary_10_1016_j_solener_2021_04_022 crossref_primary_10_1016_j_jcis_2017_10_047 crossref_primary_10_1016_S1872_2067_19_63524_2 crossref_primary_10_1007_s10854_020_03392_w crossref_primary_10_1016_j_jechem_2020_01_033 crossref_primary_10_1016_j_cej_2021_129213 crossref_primary_10_1016_j_inoche_2024_113548 crossref_primary_10_1039_C9NJ05863J crossref_primary_10_1016_j_jallcom_2022_165825 crossref_primary_10_1007_s11164_017_3044_y crossref_primary_10_1007_s40843_020_1456_x crossref_primary_10_1016_j_cplett_2017_01_052 crossref_primary_10_1016_j_seppur_2020_116835 crossref_primary_10_1007_s00477_022_02188_0 crossref_primary_10_1016_j_electacta_2021_139802 crossref_primary_10_1007_s40843_022_2288_0 crossref_primary_10_1016_j_cej_2017_05_009 crossref_primary_10_1039_D0TA04038J crossref_primary_10_1016_j_renene_2017_04_024 crossref_primary_10_1007_s10854_021_05617_y crossref_primary_10_1016_j_isci_2023_108470 crossref_primary_10_1039_C7QI00513J crossref_primary_10_1039_D0TA12101K crossref_primary_10_1039_D1TA10463B crossref_primary_10_1016_j_apcatb_2016_10_046 crossref_primary_10_1016_j_seppur_2017_08_014 crossref_primary_10_1016_j_apcatb_2017_03_050 crossref_primary_10_1016_j_apsusc_2016_10_048 crossref_primary_10_1016_j_matlet_2019_126783 crossref_primary_10_1016_j_apsusc_2020_148673 crossref_primary_10_1016_j_tsf_2021_138807 crossref_primary_10_1016_j_cej_2017_10_173 crossref_primary_10_1016_j_powtec_2020_01_009 crossref_primary_10_1016_j_chemosphere_2022_135085 crossref_primary_10_1016_j_optmat_2021_111816 crossref_primary_10_1016_j_ceramint_2020_01_270 crossref_primary_10_1021_acsomega_9b01766 crossref_primary_10_1016_j_jcat_2016_10_022 crossref_primary_10_1016_j_materresbull_2019_110524 crossref_primary_10_1039_D0CY00435A crossref_primary_10_1016_j_apsusc_2016_06_170 crossref_primary_10_1016_j_matdes_2017_03_029 crossref_primary_10_1016_j_apsusc_2019_143974 crossref_primary_10_1016_j_apsusc_2018_06_259 crossref_primary_10_1016_S1872_2067_22_64104_4 crossref_primary_10_1016_j_apsusc_2017_05_160 crossref_primary_10_3390_ma12040582 crossref_primary_10_1016_j_ceramint_2017_05_243 crossref_primary_10_1039_C7RA08369F crossref_primary_10_1016_j_mseb_2021_115520 crossref_primary_10_1016_j_ceramint_2020_04_214 crossref_primary_10_1016_j_jallcom_2017_11_134 crossref_primary_10_1134_S0036024419130193 crossref_primary_10_1088_1361_6528_abd8f6 crossref_primary_10_1016_j_seppur_2016_10_011 crossref_primary_10_1016_j_seppur_2024_128187 crossref_primary_10_1039_C8TA10046B crossref_primary_10_1039_C9RA08843A crossref_primary_10_1142_S179329202450070X crossref_primary_10_1016_j_jpowsour_2020_228067 crossref_primary_10_1007_s11356_018_2114_z crossref_primary_10_1016_j_seppur_2022_120502 crossref_primary_10_1007_s10934_019_00815_w crossref_primary_10_1021_acsami_7b00433 crossref_primary_10_1016_j_cej_2023_142741 crossref_primary_10_1016_j_apsusc_2018_10_118 crossref_primary_10_1016_j_jallcom_2022_164372 crossref_primary_10_1016_j_jhazmat_2020_124705 crossref_primary_10_1016_j_jhazmat_2021_126946 crossref_primary_10_1021_acsomega_9b00379 crossref_primary_10_1039_D4NJ04604H crossref_primary_10_1016_j_cej_2020_127180 crossref_primary_10_1007_s10008_017_3771_4 crossref_primary_10_1016_j_jhazmat_2017_11_027 crossref_primary_10_1016_j_nanoen_2022_107138 crossref_primary_10_1016_j_jece_2021_107118 crossref_primary_10_1016_j_cej_2024_149794 crossref_primary_10_1016_j_catcom_2018_04_003 crossref_primary_10_1016_j_jphotochem_2018_06_043 crossref_primary_10_1016_j_compositesb_2019_05_097 crossref_primary_10_1016_j_ceramint_2018_08_160 crossref_primary_10_1016_j_jpowsour_2016_08_001 crossref_primary_10_1002_smtd_202000214 crossref_primary_10_1016_j_scitotenv_2020_138963 crossref_primary_10_1016_j_apsusc_2019_06_108 crossref_primary_10_1016_j_materresbull_2018_12_017 crossref_primary_10_1021_acsami_8b21222 crossref_primary_10_1016_j_jcis_2018_02_045 crossref_primary_10_1016_j_optmat_2023_114357 crossref_primary_10_1021_acs_nanolett_2c05010 crossref_primary_10_1016_j_jphotochem_2017_01_010 crossref_primary_10_1039_C8TA06869K crossref_primary_10_1016_j_apcatb_2018_05_002 crossref_primary_10_1007_s11164_019_03805_4 crossref_primary_10_1016_j_jece_2022_107793 crossref_primary_10_1021_acs_inorgchem_9b02676 crossref_primary_10_1039_C6RA28346B crossref_primary_10_1007_s10854_018_9872_8 crossref_primary_10_1016_j_cej_2018_07_115 |
Cites_doi | 10.1039/c1jm12965a 10.1021/ic9005983 10.1016/j.jiec.2015.06.036 10.1007/s40820-014-0022-4 10.1016/j.electacta.2015.05.079 10.1016/j.apcatb.2009.12.022 10.1016/j.matlet.2015.09.012 10.1016/j.matlet.2011.06.049 10.1016/j.matlet.2010.10.057 10.1021/am100605a 10.1021/jp1049588 10.1016/j.actamat.2014.08.053 10.1039/c2ce25309g 10.1021/am200102y 10.1016/j.apsusc.2015.07.091 10.1016/j.jhazmat.2009.08.093 10.1039/b810388g 10.1016/j.mseb.2015.12.002 10.1021/jp1074797 10.1103/PhysRevB.53.8442 10.1039/c1nr10269a 10.1016/j.jpcs.2015.12.005 10.1016/j.jpowsour.2014.09.176 10.1016/j.apcatb.2012.04.009 10.1002/asia.201402114 10.1021/es101323w 10.1002/ejic.200500975 10.1016/j.ceramint.2015.12.020 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2016.03.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 25 |
ExternalDocumentID | 10_1016_j_apcatb_2016_03_035 S092633731630217X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c339t-94716fa7e2072f739e9323133312ed58cf8df9ffa3a46df07e607db48d27c4173 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Thu Apr 24 23:01:00 EDT 2025 Tue Jul 01 03:10:32 EDT 2025 Sat Mar 02 16:00:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrospinning Photoreduction SnO2 nanotubes Photocurrent |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-94716fa7e2072f739e9323133312ed58cf8df9ffa3a46df07e607db48d27c4173 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2016_03_035 crossref_citationtrail_10_1016_j_apcatb_2016_03_035 elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_03_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-05 |
PublicationDateYYYYMMDD | 2016-09-05 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Wang, Zhang, Hu, Shao (bib0075) 2015; 7 Tak, Kim, Lee, Yong (bib0035) 2008; 38 Zyoud, Zaatar, Saadeddin, Ali, Park, Campet, Hilal (bib0030) 2010; 173 Ma, Xu, Xu, Zhang, Zhou (bib0140) 2016; 42 Tang, Qi, Han, Ren, Liu, Wang, Zhong (bib0100) 2015; 355 Li, Zhu, Li (bib0050) 2012; 123–124 Zhang, Du, Li, Zhang, Dionysiou (bib0070) 2011; 3 Chen, Yokoshima, Nara, Momm, Osaka (bib0115) 2015; 183 He, Huang, Cao, Wu, He, Luo (bib0060) 2007; 9 Zhang, Wang, Zhang, Shao, Hu (bib0080) 2015; 166 Zhang, Shao, Zhang, Zhang, Mu, Guo, Liu (bib0130) 2011; 21 Ramasamy, Lee (bib0055) 2010; 114 Park, Park, Selvaraj, Kim (bib0150) 2015; 31 Liu, Zhao, Kulka, Trenczek-Zajc, Xie, Chen (bib0145) 2015; 82 Zhang, Du, Li, Zhang (bib0090) 2010; 95 Zhao, Gao, Bai, Wu, Xie (bib0095) 2006; 8 Xiong, Xi, Qian (bib0040) 2010; 114 Basu, Sinha, Pradhan, Sarkar, Negishi, Pal (bib0025) 2010; 44 Zhang, Shao, Zhang, Zhang, Mu, Guo, Liu (bib0125) 2011; 3 Guo, Wang, Yang, Zhang, Jiang, Ma (bib0045) 2011; 65 Zhou, Zhou, Hu, Li (bib0010) 2012; 14 Liu, Yang, Qu, Zhu, Li (bib0110) 2015; 273 Liu, Huang, Huang, Miao, Zhou (bib0065) 2015; 161 Wang, Shao, Zhang, Liu (bib0135) 2009; 48 Wang, Fan, Cao, Zheng, Yao, Shao, Hu (bib0015) 2014; 9 Li, Chu, Wang, Pan (bib0120) 2016; 205 Xie, Ali, Yoo, Cho (bib0020) 2010; 2 Hirata, Ishioka, Kitajima, Doi (bib0105) 1996; 53 Alexandrov (bib0085) 2016; 91 Zhang, Du, Zhang (bib0005) 2011; 65 He (10.1016/j.apcatb.2016.03.035_bib0060) 2007; 9 Zhang (10.1016/j.apcatb.2016.03.035_bib0090) 2010; 95 Zhang (10.1016/j.apcatb.2016.03.035_bib0130) 2011; 21 Zhang (10.1016/j.apcatb.2016.03.035_bib0005) 2011; 65 Hirata (10.1016/j.apcatb.2016.03.035_bib0105) 1996; 53 Zyoud (10.1016/j.apcatb.2016.03.035_bib0030) 2010; 173 Zhang (10.1016/j.apcatb.2016.03.035_bib0070) 2011; 3 Liu (10.1016/j.apcatb.2016.03.035_bib0065) 2015; 161 Zhang (10.1016/j.apcatb.2016.03.035_bib0075) 2015; 7 Ma (10.1016/j.apcatb.2016.03.035_bib0140) 2016; 42 Liu (10.1016/j.apcatb.2016.03.035_bib0145) 2015; 82 Ramasamy (10.1016/j.apcatb.2016.03.035_bib0055) 2010; 114 Park (10.1016/j.apcatb.2016.03.035_bib0150) 2015; 31 Xie (10.1016/j.apcatb.2016.03.035_bib0020) 2010; 2 Zhang (10.1016/j.apcatb.2016.03.035_bib0080) 2015; 166 Wang (10.1016/j.apcatb.2016.03.035_bib0135) 2009; 48 Basu (10.1016/j.apcatb.2016.03.035_bib0025) 2010; 44 Wang (10.1016/j.apcatb.2016.03.035_bib0015) 2014; 9 Guo (10.1016/j.apcatb.2016.03.035_bib0045) 2011; 65 Liu (10.1016/j.apcatb.2016.03.035_bib0110) 2015; 273 Li (10.1016/j.apcatb.2016.03.035_bib0120) 2016; 205 Zhang (10.1016/j.apcatb.2016.03.035_bib0125) 2011; 3 Chen (10.1016/j.apcatb.2016.03.035_bib0115) 2015; 183 Li (10.1016/j.apcatb.2016.03.035_bib0050) 2012; 123–124 Alexandrov (10.1016/j.apcatb.2016.03.035_bib0085) 2016; 91 Tak (10.1016/j.apcatb.2016.03.035_bib0035) 2008; 38 Xiong (10.1016/j.apcatb.2016.03.035_bib0040) 2010; 114 Zhao (10.1016/j.apcatb.2016.03.035_bib0095) 2006; 8 Zhou (10.1016/j.apcatb.2016.03.035_bib0010) 2012; 14 Tang (10.1016/j.apcatb.2016.03.035_bib0100) 2015; 355 |
References_xml | – volume: 9 start-page: 3781 year: 2007 end-page: 3784 ident: bib0060 publication-title: Adv. Mater. – volume: 44 start-page: 6313 year: 2010 end-page: 6318 ident: bib0025 publication-title: Environ. Sci. Technol. – volume: 114 start-page: 14029 year: 2010 end-page: 14035 ident: bib0040 publication-title: Phys. Chem. C – volume: 7 start-page: 86 year: 2015 end-page: 95 ident: bib0075 publication-title: Nano-Micro Lett. – volume: 273 start-page: 848 year: 2015 end-page: 856 ident: bib0110 publication-title: J. Power Sources – volume: 38 start-page: 4585 year: 2008 end-page: 4587 ident: bib0035 publication-title: Chem. Commun. – volume: 3 start-page: 1528 year: 2011 end-page: 1537 ident: bib0070 publication-title: ACS Appl. Mater. Interfaces – volume: 166 start-page: 193 year: 2015 end-page: 201 ident: bib0080 publication-title: Guosheng Shao Appl. Catal. B: Environ. – volume: 48 start-page: 7261 year: 2009 end-page: 7268 ident: bib0135 publication-title: Inorg. Chem. – volume: 82 start-page: 212 year: 2015 end-page: 223 ident: bib0145 article-title: Konrad Świerczek publication-title: Acta Mater. – volume: 65 start-page: 486 year: 2011 end-page: 489 ident: bib0045 publication-title: Mater. Lett. – volume: 53 start-page: 844 year: 1996 ident: bib0105 publication-title: Phys. Rev. B – volume: 3 start-page: 2943 year: 2011 end-page: 2949 ident: bib0125 publication-title: Nanoscale – volume: 8 start-page: 1643 year: 2006 end-page: 1648 ident: bib0095 publication-title: Eur. J. Inorg. Chem. – volume: 123–124 start-page: 174 year: 2012 end-page: 181 ident: bib0050 publication-title: Appl. Catal. B – volume: 2 start-page: 2910 year: 2010 end-page: 2914 ident: bib0020 publication-title: ACS Appl. Mater. Interfaces – volume: 183 start-page: 78 year: 2015 end-page: 84 ident: bib0115 publication-title: Electrochim. Acta – volume: 355 start-page: 7 year: 2015 end-page: 13 ident: bib0100 publication-title: Appl. Surf. Sci. – volume: 205 start-page: 46 year: 2016 end-page: 54 ident: bib0120 publication-title: Mater. Sci. Eng. B – volume: 21 start-page: 17746 year: 2011 end-page: 17753 ident: bib0130 publication-title: J. Mater. Chem. – volume: 42 start-page: 5068 year: 2016 end-page: 5074 ident: bib0140 publication-title: Ceram. Int. – volume: 65 start-page: 2891 year: 2011 end-page: 2894 ident: bib0005 publication-title: Mater. Lett. – volume: 31 start-page: 269 year: 2015 end-page: 275 ident: bib0150 publication-title: J. Ind. Eng. Chem. – volume: 173 start-page: 318 year: 2010 end-page: 325 ident: bib0030 publication-title: J Hazard. Mater. – volume: 114 start-page: 22032 year: 2010 end-page: 22037 ident: bib0055 publication-title: J. Phys. Chem. C – volume: 9 start-page: 1904 year: 2014 end-page: 1912 ident: bib0015 publication-title: Chem. Asian J. – volume: 91 start-page: 48 year: 2016 end-page: 54 ident: bib0085 publication-title: J. Phys. Chem. Solids – volume: 14 start-page: 5627 year: 2012 end-page: 5633 ident: bib0010 publication-title: Cryst. Eng. Commun. – volume: 95 start-page: 153 year: 2010 end-page: 159 ident: bib0090 publication-title: Appl. Catal. B – volume: 161 start-page: 480 year: 2015 end-page: 483 ident: bib0065 publication-title: Mater. Lett. – volume: 21 start-page: 17746 year: 2011 ident: 10.1016/j.apcatb.2016.03.035_bib0130 publication-title: J. Mater. Chem. doi: 10.1039/c1jm12965a – volume: 48 start-page: 7261 year: 2009 ident: 10.1016/j.apcatb.2016.03.035_bib0135 publication-title: Inorg. Chem. doi: 10.1021/ic9005983 – volume: 166 start-page: 193 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0080 publication-title: Guosheng Shao Appl. Catal. B: Environ. – volume: 31 start-page: 269 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0150 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.06.036 – volume: 9 start-page: 3781 year: 2007 ident: 10.1016/j.apcatb.2016.03.035_bib0060 publication-title: Adv. Mater. – volume: 7 start-page: 86 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0075 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-014-0022-4 – volume: 183 start-page: 78 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0115 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.05.079 – volume: 95 start-page: 153 year: 2010 ident: 10.1016/j.apcatb.2016.03.035_bib0090 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.12.022 – volume: 161 start-page: 480 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0065 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.09.012 – volume: 65 start-page: 2891 year: 2011 ident: 10.1016/j.apcatb.2016.03.035_bib0005 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.06.049 – volume: 65 start-page: 486 year: 2011 ident: 10.1016/j.apcatb.2016.03.035_bib0045 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2010.10.057 – volume: 2 start-page: 2910 year: 2010 ident: 10.1016/j.apcatb.2016.03.035_bib0020 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100605a – volume: 114 start-page: 14029 year: 2010 ident: 10.1016/j.apcatb.2016.03.035_bib0040 publication-title: Phys. Chem. C doi: 10.1021/jp1049588 – volume: 82 start-page: 212 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0145 article-title: Konrad Świerczek publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.053 – volume: 14 start-page: 5627 year: 2012 ident: 10.1016/j.apcatb.2016.03.035_bib0010 publication-title: Cryst. Eng. Commun. doi: 10.1039/c2ce25309g – volume: 3 start-page: 1528 year: 2011 ident: 10.1016/j.apcatb.2016.03.035_bib0070 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200102y – volume: 355 start-page: 7 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0100 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.07.091 – volume: 173 start-page: 318 year: 2010 ident: 10.1016/j.apcatb.2016.03.035_bib0030 publication-title: J Hazard. Mater. doi: 10.1016/j.jhazmat.2009.08.093 – volume: 38 start-page: 4585 year: 2008 ident: 10.1016/j.apcatb.2016.03.035_bib0035 publication-title: Chem. Commun. doi: 10.1039/b810388g – volume: 205 start-page: 46 year: 2016 ident: 10.1016/j.apcatb.2016.03.035_bib0120 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2015.12.002 – volume: 114 start-page: 22032 year: 2010 ident: 10.1016/j.apcatb.2016.03.035_bib0055 publication-title: J. Phys. Chem. C doi: 10.1021/jp1074797 – volume: 53 start-page: 844 year: 1996 ident: 10.1016/j.apcatb.2016.03.035_bib0105 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.8442 – volume: 3 start-page: 2943 year: 2011 ident: 10.1016/j.apcatb.2016.03.035_bib0125 publication-title: Nanoscale doi: 10.1039/c1nr10269a – volume: 91 start-page: 48 year: 2016 ident: 10.1016/j.apcatb.2016.03.035_bib0085 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2015.12.005 – volume: 273 start-page: 848 year: 2015 ident: 10.1016/j.apcatb.2016.03.035_bib0110 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.176 – volume: 123–124 start-page: 174 year: 2012 ident: 10.1016/j.apcatb.2016.03.035_bib0050 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.04.009 – volume: 9 start-page: 1904 year: 2014 ident: 10.1016/j.apcatb.2016.03.035_bib0015 publication-title: Chem. Asian J. doi: 10.1002/asia.201402114 – volume: 44 start-page: 6313 year: 2010 ident: 10.1016/j.apcatb.2016.03.035_bib0025 publication-title: Environ. Sci. Technol. doi: 10.1021/es101323w – volume: 8 start-page: 1643 year: 2006 ident: 10.1016/j.apcatb.2016.03.035_bib0095 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200500975 – volume: 42 start-page: 5068 year: 2016 ident: 10.1016/j.apcatb.2016.03.035_bib0140 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.12.020 |
SSID | ssj0002328 |
Score | 2.5234478 |
Snippet | We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction.
[Display omitted]... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | Electrospinning Photocurrent Photoreduction SnO2 nanotubes |
Title | Template-oriented synthesis of monodispersed SnS2@SnO2 hetero-nanoflowers for Cr(VI) photoreduction |
URI | https://dx.doi.org/10.1016/j.apcatb.2016.03.035 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1Cckh7KM22oWmboEMO7UFdr2RL9i1hSdi0ND1sUvZmtPogW7a2ibeHXvrbM6O18wElgYAvtjVgNOOZJ5h5D-DQzG3wmvRdcu15KoLCX6oI3IqRCs66kY4Hxe_nanKZfp1lsw0Y97Mw1FbZ5f51To_Zunsy7HZz2CwWw2lSCCUlKS9JAtYzmmBPNUX5l393bR6IGGI2xsWcVvfjc7HHyzTWrObU4KUi1WkUfftPebpXck5fw6sOK7Lj9efswIavBrA97iXaBvDyHpvgAHZP7obW0Kz7a9s3YC_872aJoJLXxGqMGJO1fytEfu2iZXVgGIm1WxBleIuvptVUHE2rH4JdUatMzStT1WEZ1dQYQlw2vv708-wza65qPK8T8yv59i1cnp5cjCe8E1fgVspixQusSioY7UWiRdCy8IjkJJ5Y5Uh4l-U25C4UIRhpUuVCor1KtJunuRPapujCXdis6sq_A5aHNCdqtJB4mWbFKM9NJpxRNGcvrLR7IPs9LW3HPE4CGMuybzH7Va49UZInykTile0Bv7Vq1swbT6zXvbvKBxFUYnF41PL9sy0_wAu6iz1n2UfYXF3_8fsIUlbzgxiFB7B1fPZtcn4Dn33nPw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcKlioKE8fQIKD2ayd2MkBCbS02qUPDrtFewteP9Sttkm0SYV64U_xBxl7E1okBBJSpZziTGR7xuPP0udvAF6quXZW-vouqbQ0Zk7gksoc1WwgnNFmIMNB8ehYjE7iT7NktgE_urswnlbZ5v51Tg_Zun3Tb2ezXy0W_UmUMcG5r7zEPbCetczKA3v5Dc9t9bvxR3TyK8b296bDEW1LC1DNedbQDHOycEpaFknmJM8s4hiO5zU-YNYkqXapcZlziqtYGBdJKyJp5nFqmNQxDgD_ewtux5gufNmEt9-veCUIUUL6x95R373uvl4glalKq2buGWUiaKuGKnN_2A-v7XH792C7Bafkw3r892HDFj3YGnY14Xpw95p8YQ929q5uyaFZmybqB6Cn9rxaIoqlpZdRRlBL6ssCoWa9qEnpCIZ-aRZeo7zGpkkxYe8nxWdGTj03p6SFKkq3DOXbCGJqMly9_jJ-Q6rTsilXXmrWB9NDOLmRKd-BzaIs7CMgqYtTr8XmIsvjJBukqUqYUcJf7Gea613g3ZzmupU69xU3lnnHaTvL157IvSfyiOOT7AL9ZVWtpT7-8b3s3JX_FrI57kZ_tXz835YvYGs0PTrMD8fHB0_gjm8JhLfkKWw2qwv7DBFSM38eIpLA15teAj8Boi4iJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template-oriented+synthesis+of+monodispersed+SnS2%40SnO2+hetero-nanoflowers+for+Cr%28VI%29+photoreduction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhang%2C+Xi&rft.au=Zhang%2C+Peng&rft.au=Wang%2C+Lijie&rft.au=Gao%2C+Hongqing&rft.date=2016-09-05&rft.issn=0926-3373&rft.volume=192&rft.spage=17&rft.epage=25&rft_id=info:doi/10.1016%2Fj.apcatb.2016.03.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2016_03_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |