Template-oriented synthesis of monodispersed SnS2@SnO2 hetero-nanoflowers for Cr(VI) photoreduction

We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction. [Display omitted] •Template-oriented Synthesis of SnS2@SnO2 hetero-nanoflowers.•Nanoflowers showed enhanced photocurrent and photocatalytic performance.•Easy photocatalyst...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 192; pp. 17 - 25
Main Authors Zhang, Xi, Zhang, Peng, Wang, Lijie, Gao, Hongqing, Zhao, Jiangtao, Liang, Changhao, Hu, Junhua, Shao, Guosheng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction. [Display omitted] •Template-oriented Synthesis of SnS2@SnO2 hetero-nanoflowers.•Nanoflowers showed enhanced photocurrent and photocatalytic performance.•Easy photocatalyst separation and reuse. The controlled chemical conversion of nanomaterials represents an important basis for both understanding the nanoscale chemical activity and exploring new desirable materials. In this work, the region selective ion-exchange transformation of one-dimensional (1D) SnO2 nanotubes (SNT) into three-dimensional (3D) SnS2@SnO2 nanoflowers (SNF) were prepared by combining the electrospinning technique and hydrothermal method. The template-oriented synthesized SnS2@SnO2 demonstrated good dispersibility and uniformity, which can be proved by field-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Compared with SNT, SNF showed an improved visible light harvest even to the near-infrared light region through Ultraviolet-Visible Spectroscopy (UV–vis). What's more, SNF showed enhanced water purification performance for oxalic acid-induced photocatalytic reduction of Cr(VI) under visible light irradiation at room temperature, which could be attributed to the staggered band alignment formed between the two semiconductors. Besides, the corresponding mechanism of enhanced photocatalysis regarding the separation of the photogenerated electron-hole pairs for the heterojunction has also been investigated through photoluminescence spectroscopy (PL) and photocurrent analysis.
AbstractList We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction. [Display omitted] •Template-oriented Synthesis of SnS2@SnO2 hetero-nanoflowers.•Nanoflowers showed enhanced photocurrent and photocatalytic performance.•Easy photocatalyst separation and reuse. The controlled chemical conversion of nanomaterials represents an important basis for both understanding the nanoscale chemical activity and exploring new desirable materials. In this work, the region selective ion-exchange transformation of one-dimensional (1D) SnO2 nanotubes (SNT) into three-dimensional (3D) SnS2@SnO2 nanoflowers (SNF) were prepared by combining the electrospinning technique and hydrothermal method. The template-oriented synthesized SnS2@SnO2 demonstrated good dispersibility and uniformity, which can be proved by field-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). Compared with SNT, SNF showed an improved visible light harvest even to the near-infrared light region through Ultraviolet-Visible Spectroscopy (UV–vis). What's more, SNF showed enhanced water purification performance for oxalic acid-induced photocatalytic reduction of Cr(VI) under visible light irradiation at room temperature, which could be attributed to the staggered band alignment formed between the two semiconductors. Besides, the corresponding mechanism of enhanced photocatalysis regarding the separation of the photogenerated electron-hole pairs for the heterojunction has also been investigated through photoluminescence spectroscopy (PL) and photocurrent analysis.
Author Liang, Changhao
Gao, Hongqing
Zhang, Peng
Zhao, Jiangtao
Hu, Junhua
Wang, Lijie
Shao, Guosheng
Zhang, Xi
Author_xml – sequence: 1
  givenname: Xi
  surname: Zhang
  fullname: Zhang, Xi
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
– sequence: 2
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  email: Zhangp@zzu.edu.cn
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
– sequence: 3
  givenname: Lijie
  surname: Wang
  fullname: Wang, Lijie
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
– sequence: 4
  givenname: Hongqing
  surname: Gao
  fullname: Gao, Hongqing
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
– sequence: 5
  givenname: Jiangtao
  surname: Zhao
  fullname: Zhao, Jiangtao
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
– sequence: 6
  givenname: Changhao
  surname: Liang
  fullname: Liang, Changhao
  organization: Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
– sequence: 7
  givenname: Junhua
  surname: Hu
  fullname: Hu, Junhua
  email: Hujh@zzu.edu.cn
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
– sequence: 8
  givenname: Guosheng
  surname: Shao
  fullname: Shao, Guosheng
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
BookMark eNqFkM1LAzEQxYMoWD_-Aw971MOuSWa72fUgSvGjUPDQ6jWkyYSmtMmSRMX_3i315EHhwTA8fo-Zd0IOffBIyAWjFaOsuV5XqtcqLys-bBWFQeMDMmKtgBLaFg7JiHa8KQEEHJOTlNaUUg68HRG9wG2_URnLEB36jKZIXz6vMLlUBFtsgw_GpR5jGqy5n_O7uX_hxQozxlB65YPdhM_BLmyIxSRevk2vin4Vcoho3nV2wZ-RI6s2Cc9_5il5fXxYTJ7L2cvTdHI_KzVAl8uuFqyxSiCnglsBHXbAgQEA42jGrbatsZ21ClTdGEsFNlSYZd0aLnTNBJySep-rY0gpopV9dFsVvySjcleUXMt9UXJXlKQwaDxgN78w7bLaHZ6jcpv_4Ns9jMNjHw6jTHroUaNxEXWWJri_A74B8xSKAA
CitedBy_id crossref_primary_10_1016_j_apcatb_2017_07_003
crossref_primary_10_1007_s10854_017_8392_2
crossref_primary_10_1007_s11356_022_19318_4
crossref_primary_10_1016_j_colsurfa_2021_126444
crossref_primary_10_1016_j_jmst_2020_04_032
crossref_primary_10_1002_smll_202310664
crossref_primary_10_1016_j_jallcom_2022_168520
crossref_primary_10_1016_j_solener_2021_04_022
crossref_primary_10_1016_j_jcis_2017_10_047
crossref_primary_10_1016_S1872_2067_19_63524_2
crossref_primary_10_1007_s10854_020_03392_w
crossref_primary_10_1016_j_jechem_2020_01_033
crossref_primary_10_1016_j_cej_2021_129213
crossref_primary_10_1016_j_inoche_2024_113548
crossref_primary_10_1039_C9NJ05863J
crossref_primary_10_1016_j_jallcom_2022_165825
crossref_primary_10_1007_s11164_017_3044_y
crossref_primary_10_1007_s40843_020_1456_x
crossref_primary_10_1016_j_cplett_2017_01_052
crossref_primary_10_1016_j_seppur_2020_116835
crossref_primary_10_1007_s00477_022_02188_0
crossref_primary_10_1016_j_electacta_2021_139802
crossref_primary_10_1007_s40843_022_2288_0
crossref_primary_10_1016_j_cej_2017_05_009
crossref_primary_10_1039_D0TA04038J
crossref_primary_10_1016_j_renene_2017_04_024
crossref_primary_10_1007_s10854_021_05617_y
crossref_primary_10_1016_j_isci_2023_108470
crossref_primary_10_1039_C7QI00513J
crossref_primary_10_1039_D0TA12101K
crossref_primary_10_1039_D1TA10463B
crossref_primary_10_1016_j_apcatb_2016_10_046
crossref_primary_10_1016_j_seppur_2017_08_014
crossref_primary_10_1016_j_apcatb_2017_03_050
crossref_primary_10_1016_j_apsusc_2016_10_048
crossref_primary_10_1016_j_matlet_2019_126783
crossref_primary_10_1016_j_apsusc_2020_148673
crossref_primary_10_1016_j_tsf_2021_138807
crossref_primary_10_1016_j_cej_2017_10_173
crossref_primary_10_1016_j_powtec_2020_01_009
crossref_primary_10_1016_j_chemosphere_2022_135085
crossref_primary_10_1016_j_optmat_2021_111816
crossref_primary_10_1016_j_ceramint_2020_01_270
crossref_primary_10_1021_acsomega_9b01766
crossref_primary_10_1016_j_jcat_2016_10_022
crossref_primary_10_1016_j_materresbull_2019_110524
crossref_primary_10_1039_D0CY00435A
crossref_primary_10_1016_j_apsusc_2016_06_170
crossref_primary_10_1016_j_matdes_2017_03_029
crossref_primary_10_1016_j_apsusc_2019_143974
crossref_primary_10_1016_j_apsusc_2018_06_259
crossref_primary_10_1016_S1872_2067_22_64104_4
crossref_primary_10_1016_j_apsusc_2017_05_160
crossref_primary_10_3390_ma12040582
crossref_primary_10_1016_j_ceramint_2017_05_243
crossref_primary_10_1039_C7RA08369F
crossref_primary_10_1016_j_mseb_2021_115520
crossref_primary_10_1016_j_ceramint_2020_04_214
crossref_primary_10_1016_j_jallcom_2017_11_134
crossref_primary_10_1134_S0036024419130193
crossref_primary_10_1088_1361_6528_abd8f6
crossref_primary_10_1016_j_seppur_2016_10_011
crossref_primary_10_1016_j_seppur_2024_128187
crossref_primary_10_1039_C8TA10046B
crossref_primary_10_1039_C9RA08843A
crossref_primary_10_1142_S179329202450070X
crossref_primary_10_1016_j_jpowsour_2020_228067
crossref_primary_10_1007_s11356_018_2114_z
crossref_primary_10_1016_j_seppur_2022_120502
crossref_primary_10_1007_s10934_019_00815_w
crossref_primary_10_1021_acsami_7b00433
crossref_primary_10_1016_j_cej_2023_142741
crossref_primary_10_1016_j_apsusc_2018_10_118
crossref_primary_10_1016_j_jallcom_2022_164372
crossref_primary_10_1016_j_jhazmat_2020_124705
crossref_primary_10_1016_j_jhazmat_2021_126946
crossref_primary_10_1021_acsomega_9b00379
crossref_primary_10_1039_D4NJ04604H
crossref_primary_10_1016_j_cej_2020_127180
crossref_primary_10_1007_s10008_017_3771_4
crossref_primary_10_1016_j_jhazmat_2017_11_027
crossref_primary_10_1016_j_nanoen_2022_107138
crossref_primary_10_1016_j_jece_2021_107118
crossref_primary_10_1016_j_cej_2024_149794
crossref_primary_10_1016_j_catcom_2018_04_003
crossref_primary_10_1016_j_jphotochem_2018_06_043
crossref_primary_10_1016_j_compositesb_2019_05_097
crossref_primary_10_1016_j_ceramint_2018_08_160
crossref_primary_10_1016_j_jpowsour_2016_08_001
crossref_primary_10_1002_smtd_202000214
crossref_primary_10_1016_j_scitotenv_2020_138963
crossref_primary_10_1016_j_apsusc_2019_06_108
crossref_primary_10_1016_j_materresbull_2018_12_017
crossref_primary_10_1021_acsami_8b21222
crossref_primary_10_1016_j_jcis_2018_02_045
crossref_primary_10_1016_j_optmat_2023_114357
crossref_primary_10_1021_acs_nanolett_2c05010
crossref_primary_10_1016_j_jphotochem_2017_01_010
crossref_primary_10_1039_C8TA06869K
crossref_primary_10_1016_j_apcatb_2018_05_002
crossref_primary_10_1007_s11164_019_03805_4
crossref_primary_10_1016_j_jece_2022_107793
crossref_primary_10_1021_acs_inorgchem_9b02676
crossref_primary_10_1039_C6RA28346B
crossref_primary_10_1007_s10854_018_9872_8
crossref_primary_10_1016_j_cej_2018_07_115
Cites_doi 10.1039/c1jm12965a
10.1021/ic9005983
10.1016/j.jiec.2015.06.036
10.1007/s40820-014-0022-4
10.1016/j.electacta.2015.05.079
10.1016/j.apcatb.2009.12.022
10.1016/j.matlet.2015.09.012
10.1016/j.matlet.2011.06.049
10.1016/j.matlet.2010.10.057
10.1021/am100605a
10.1021/jp1049588
10.1016/j.actamat.2014.08.053
10.1039/c2ce25309g
10.1021/am200102y
10.1016/j.apsusc.2015.07.091
10.1016/j.jhazmat.2009.08.093
10.1039/b810388g
10.1016/j.mseb.2015.12.002
10.1021/jp1074797
10.1103/PhysRevB.53.8442
10.1039/c1nr10269a
10.1016/j.jpcs.2015.12.005
10.1016/j.jpowsour.2014.09.176
10.1016/j.apcatb.2012.04.009
10.1002/asia.201402114
10.1021/es101323w
10.1002/ejic.200500975
10.1016/j.ceramint.2015.12.020
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2016.03.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 25
ExternalDocumentID 10_1016_j_apcatb_2016_03_035
S092633731630217X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c339t-94716fa7e2072f739e9323133312ed58cf8df9ffa3a46df07e607db48d27c4173
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Thu Apr 24 23:01:00 EDT 2025
Tue Jul 01 03:10:32 EDT 2025
Sat Mar 02 16:00:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrospinning
Photoreduction
SnO2 nanotubes
Photocurrent
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-94716fa7e2072f739e9323133312ed58cf8df9ffa3a46df07e607db48d27c4173
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_apcatb_2016_03_035
crossref_citationtrail_10_1016_j_apcatb_2016_03_035
elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_03_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-05
PublicationDateYYYYMMDD 2016-09-05
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-05
  day: 05
PublicationDecade 2010
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Wang, Zhang, Hu, Shao (bib0075) 2015; 7
Tak, Kim, Lee, Yong (bib0035) 2008; 38
Zyoud, Zaatar, Saadeddin, Ali, Park, Campet, Hilal (bib0030) 2010; 173
Ma, Xu, Xu, Zhang, Zhou (bib0140) 2016; 42
Tang, Qi, Han, Ren, Liu, Wang, Zhong (bib0100) 2015; 355
Li, Zhu, Li (bib0050) 2012; 123–124
Zhang, Du, Li, Zhang, Dionysiou (bib0070) 2011; 3
Chen, Yokoshima, Nara, Momm, Osaka (bib0115) 2015; 183
He, Huang, Cao, Wu, He, Luo (bib0060) 2007; 9
Zhang, Wang, Zhang, Shao, Hu (bib0080) 2015; 166
Zhang, Shao, Zhang, Zhang, Mu, Guo, Liu (bib0130) 2011; 21
Ramasamy, Lee (bib0055) 2010; 114
Park, Park, Selvaraj, Kim (bib0150) 2015; 31
Liu, Zhao, Kulka, Trenczek-Zajc, Xie, Chen (bib0145) 2015; 82
Zhang, Du, Li, Zhang (bib0090) 2010; 95
Zhao, Gao, Bai, Wu, Xie (bib0095) 2006; 8
Xiong, Xi, Qian (bib0040) 2010; 114
Basu, Sinha, Pradhan, Sarkar, Negishi, Pal (bib0025) 2010; 44
Zhang, Shao, Zhang, Zhang, Mu, Guo, Liu (bib0125) 2011; 3
Guo, Wang, Yang, Zhang, Jiang, Ma (bib0045) 2011; 65
Zhou, Zhou, Hu, Li (bib0010) 2012; 14
Liu, Yang, Qu, Zhu, Li (bib0110) 2015; 273
Liu, Huang, Huang, Miao, Zhou (bib0065) 2015; 161
Wang, Shao, Zhang, Liu (bib0135) 2009; 48
Wang, Fan, Cao, Zheng, Yao, Shao, Hu (bib0015) 2014; 9
Li, Chu, Wang, Pan (bib0120) 2016; 205
Xie, Ali, Yoo, Cho (bib0020) 2010; 2
Hirata, Ishioka, Kitajima, Doi (bib0105) 1996; 53
Alexandrov (bib0085) 2016; 91
Zhang, Du, Zhang (bib0005) 2011; 65
He (10.1016/j.apcatb.2016.03.035_bib0060) 2007; 9
Zhang (10.1016/j.apcatb.2016.03.035_bib0090) 2010; 95
Zhang (10.1016/j.apcatb.2016.03.035_bib0130) 2011; 21
Zhang (10.1016/j.apcatb.2016.03.035_bib0005) 2011; 65
Hirata (10.1016/j.apcatb.2016.03.035_bib0105) 1996; 53
Zyoud (10.1016/j.apcatb.2016.03.035_bib0030) 2010; 173
Zhang (10.1016/j.apcatb.2016.03.035_bib0070) 2011; 3
Liu (10.1016/j.apcatb.2016.03.035_bib0065) 2015; 161
Zhang (10.1016/j.apcatb.2016.03.035_bib0075) 2015; 7
Ma (10.1016/j.apcatb.2016.03.035_bib0140) 2016; 42
Liu (10.1016/j.apcatb.2016.03.035_bib0145) 2015; 82
Ramasamy (10.1016/j.apcatb.2016.03.035_bib0055) 2010; 114
Park (10.1016/j.apcatb.2016.03.035_bib0150) 2015; 31
Xie (10.1016/j.apcatb.2016.03.035_bib0020) 2010; 2
Zhang (10.1016/j.apcatb.2016.03.035_bib0080) 2015; 166
Wang (10.1016/j.apcatb.2016.03.035_bib0135) 2009; 48
Basu (10.1016/j.apcatb.2016.03.035_bib0025) 2010; 44
Wang (10.1016/j.apcatb.2016.03.035_bib0015) 2014; 9
Guo (10.1016/j.apcatb.2016.03.035_bib0045) 2011; 65
Liu (10.1016/j.apcatb.2016.03.035_bib0110) 2015; 273
Li (10.1016/j.apcatb.2016.03.035_bib0120) 2016; 205
Zhang (10.1016/j.apcatb.2016.03.035_bib0125) 2011; 3
Chen (10.1016/j.apcatb.2016.03.035_bib0115) 2015; 183
Li (10.1016/j.apcatb.2016.03.035_bib0050) 2012; 123–124
Alexandrov (10.1016/j.apcatb.2016.03.035_bib0085) 2016; 91
Tak (10.1016/j.apcatb.2016.03.035_bib0035) 2008; 38
Xiong (10.1016/j.apcatb.2016.03.035_bib0040) 2010; 114
Zhao (10.1016/j.apcatb.2016.03.035_bib0095) 2006; 8
Zhou (10.1016/j.apcatb.2016.03.035_bib0010) 2012; 14
Tang (10.1016/j.apcatb.2016.03.035_bib0100) 2015; 355
References_xml – volume: 9
  start-page: 3781
  year: 2007
  end-page: 3784
  ident: bib0060
  publication-title: Adv. Mater.
– volume: 44
  start-page: 6313
  year: 2010
  end-page: 6318
  ident: bib0025
  publication-title: Environ. Sci. Technol.
– volume: 114
  start-page: 14029
  year: 2010
  end-page: 14035
  ident: bib0040
  publication-title: Phys. Chem. C
– volume: 7
  start-page: 86
  year: 2015
  end-page: 95
  ident: bib0075
  publication-title: Nano-Micro Lett.
– volume: 273
  start-page: 848
  year: 2015
  end-page: 856
  ident: bib0110
  publication-title: J. Power Sources
– volume: 38
  start-page: 4585
  year: 2008
  end-page: 4587
  ident: bib0035
  publication-title: Chem. Commun.
– volume: 3
  start-page: 1528
  year: 2011
  end-page: 1537
  ident: bib0070
  publication-title: ACS Appl. Mater. Interfaces
– volume: 166
  start-page: 193
  year: 2015
  end-page: 201
  ident: bib0080
  publication-title: Guosheng Shao Appl. Catal. B: Environ.
– volume: 48
  start-page: 7261
  year: 2009
  end-page: 7268
  ident: bib0135
  publication-title: Inorg. Chem.
– volume: 82
  start-page: 212
  year: 2015
  end-page: 223
  ident: bib0145
  article-title: Konrad Świerczek
  publication-title: Acta Mater.
– volume: 65
  start-page: 486
  year: 2011
  end-page: 489
  ident: bib0045
  publication-title: Mater. Lett.
– volume: 53
  start-page: 844
  year: 1996
  ident: bib0105
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 2943
  year: 2011
  end-page: 2949
  ident: bib0125
  publication-title: Nanoscale
– volume: 8
  start-page: 1643
  year: 2006
  end-page: 1648
  ident: bib0095
  publication-title: Eur. J. Inorg. Chem.
– volume: 123–124
  start-page: 174
  year: 2012
  end-page: 181
  ident: bib0050
  publication-title: Appl. Catal. B
– volume: 2
  start-page: 2910
  year: 2010
  end-page: 2914
  ident: bib0020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 183
  start-page: 78
  year: 2015
  end-page: 84
  ident: bib0115
  publication-title: Electrochim. Acta
– volume: 355
  start-page: 7
  year: 2015
  end-page: 13
  ident: bib0100
  publication-title: Appl. Surf. Sci.
– volume: 205
  start-page: 46
  year: 2016
  end-page: 54
  ident: bib0120
  publication-title: Mater. Sci. Eng. B
– volume: 21
  start-page: 17746
  year: 2011
  end-page: 17753
  ident: bib0130
  publication-title: J. Mater. Chem.
– volume: 42
  start-page: 5068
  year: 2016
  end-page: 5074
  ident: bib0140
  publication-title: Ceram. Int.
– volume: 65
  start-page: 2891
  year: 2011
  end-page: 2894
  ident: bib0005
  publication-title: Mater. Lett.
– volume: 31
  start-page: 269
  year: 2015
  end-page: 275
  ident: bib0150
  publication-title: J. Ind. Eng. Chem.
– volume: 173
  start-page: 318
  year: 2010
  end-page: 325
  ident: bib0030
  publication-title: J Hazard. Mater.
– volume: 114
  start-page: 22032
  year: 2010
  end-page: 22037
  ident: bib0055
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 1904
  year: 2014
  end-page: 1912
  ident: bib0015
  publication-title: Chem. Asian J.
– volume: 91
  start-page: 48
  year: 2016
  end-page: 54
  ident: bib0085
  publication-title: J. Phys. Chem. Solids
– volume: 14
  start-page: 5627
  year: 2012
  end-page: 5633
  ident: bib0010
  publication-title: Cryst. Eng. Commun.
– volume: 95
  start-page: 153
  year: 2010
  end-page: 159
  ident: bib0090
  publication-title: Appl. Catal. B
– volume: 161
  start-page: 480
  year: 2015
  end-page: 483
  ident: bib0065
  publication-title: Mater. Lett.
– volume: 21
  start-page: 17746
  year: 2011
  ident: 10.1016/j.apcatb.2016.03.035_bib0130
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12965a
– volume: 48
  start-page: 7261
  year: 2009
  ident: 10.1016/j.apcatb.2016.03.035_bib0135
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9005983
– volume: 166
  start-page: 193
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0080
  publication-title: Guosheng Shao Appl. Catal. B: Environ.
– volume: 31
  start-page: 269
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0150
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.06.036
– volume: 9
  start-page: 3781
  year: 2007
  ident: 10.1016/j.apcatb.2016.03.035_bib0060
  publication-title: Adv. Mater.
– volume: 7
  start-page: 86
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0075
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-014-0022-4
– volume: 183
  start-page: 78
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0115
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.05.079
– volume: 95
  start-page: 153
  year: 2010
  ident: 10.1016/j.apcatb.2016.03.035_bib0090
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2009.12.022
– volume: 161
  start-page: 480
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0065
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.09.012
– volume: 65
  start-page: 2891
  year: 2011
  ident: 10.1016/j.apcatb.2016.03.035_bib0005
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.06.049
– volume: 65
  start-page: 486
  year: 2011
  ident: 10.1016/j.apcatb.2016.03.035_bib0045
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2010.10.057
– volume: 2
  start-page: 2910
  year: 2010
  ident: 10.1016/j.apcatb.2016.03.035_bib0020
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100605a
– volume: 114
  start-page: 14029
  year: 2010
  ident: 10.1016/j.apcatb.2016.03.035_bib0040
  publication-title: Phys. Chem. C
  doi: 10.1021/jp1049588
– volume: 82
  start-page: 212
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0145
  article-title: Konrad Świerczek
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.053
– volume: 14
  start-page: 5627
  year: 2012
  ident: 10.1016/j.apcatb.2016.03.035_bib0010
  publication-title: Cryst. Eng. Commun.
  doi: 10.1039/c2ce25309g
– volume: 3
  start-page: 1528
  year: 2011
  ident: 10.1016/j.apcatb.2016.03.035_bib0070
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200102y
– volume: 355
  start-page: 7
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0100
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.07.091
– volume: 173
  start-page: 318
  year: 2010
  ident: 10.1016/j.apcatb.2016.03.035_bib0030
  publication-title: J Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.08.093
– volume: 38
  start-page: 4585
  year: 2008
  ident: 10.1016/j.apcatb.2016.03.035_bib0035
  publication-title: Chem. Commun.
  doi: 10.1039/b810388g
– volume: 205
  start-page: 46
  year: 2016
  ident: 10.1016/j.apcatb.2016.03.035_bib0120
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2015.12.002
– volume: 114
  start-page: 22032
  year: 2010
  ident: 10.1016/j.apcatb.2016.03.035_bib0055
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1074797
– volume: 53
  start-page: 844
  year: 1996
  ident: 10.1016/j.apcatb.2016.03.035_bib0105
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.8442
– volume: 3
  start-page: 2943
  year: 2011
  ident: 10.1016/j.apcatb.2016.03.035_bib0125
  publication-title: Nanoscale
  doi: 10.1039/c1nr10269a
– volume: 91
  start-page: 48
  year: 2016
  ident: 10.1016/j.apcatb.2016.03.035_bib0085
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2015.12.005
– volume: 273
  start-page: 848
  year: 2015
  ident: 10.1016/j.apcatb.2016.03.035_bib0110
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.176
– volume: 123–124
  start-page: 174
  year: 2012
  ident: 10.1016/j.apcatb.2016.03.035_bib0050
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.04.009
– volume: 9
  start-page: 1904
  year: 2014
  ident: 10.1016/j.apcatb.2016.03.035_bib0015
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201402114
– volume: 44
  start-page: 6313
  year: 2010
  ident: 10.1016/j.apcatb.2016.03.035_bib0025
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101323w
– volume: 8
  start-page: 1643
  year: 2006
  ident: 10.1016/j.apcatb.2016.03.035_bib0095
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200500975
– volume: 42
  start-page: 5068
  year: 2016
  ident: 10.1016/j.apcatb.2016.03.035_bib0140
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.12.020
SSID ssj0002328
Score 2.5234478
Snippet We firstly reported a template-oriented method to fabricate mono-dispersed SnS2@SnO2hetero-nanoflowersforCr(VI) photoreduction. [Display omitted]...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Electrospinning
Photocurrent
Photoreduction
SnO2 nanotubes
Title Template-oriented synthesis of monodispersed SnS2@SnO2 hetero-nanoflowers for Cr(VI) photoreduction
URI https://dx.doi.org/10.1016/j.apcatb.2016.03.035
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB1Cckh7KM22oWmboEMO7UFdr2RL9i1hSdi0ND1sUvZmtPogW7a2ibeHXvrbM6O18wElgYAvtjVgNOOZJ5h5D-DQzG3wmvRdcu15KoLCX6oI3IqRCs66kY4Hxe_nanKZfp1lsw0Y97Mw1FbZ5f51To_Zunsy7HZz2CwWw2lSCCUlKS9JAtYzmmBPNUX5l393bR6IGGI2xsWcVvfjc7HHyzTWrObU4KUi1WkUfftPebpXck5fw6sOK7Lj9efswIavBrA97iXaBvDyHpvgAHZP7obW0Kz7a9s3YC_872aJoJLXxGqMGJO1fytEfu2iZXVgGIm1WxBleIuvptVUHE2rH4JdUatMzStT1WEZ1dQYQlw2vv708-wza65qPK8T8yv59i1cnp5cjCe8E1fgVspixQusSioY7UWiRdCy8IjkJJ5Y5Uh4l-U25C4UIRhpUuVCor1KtJunuRPapujCXdis6sq_A5aHNCdqtJB4mWbFKM9NJpxRNGcvrLR7IPs9LW3HPE4CGMuybzH7Va49UZInykTile0Bv7Vq1swbT6zXvbvKBxFUYnF41PL9sy0_wAu6iz1n2UfYXF3_8fsIUlbzgxiFB7B1fPZtcn4Dn33nPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcKlioKE8fQIKD2ayd2MkBCbS02qUPDrtFewteP9Sttkm0SYV64U_xBxl7E1okBBJSpZziTGR7xuPP0udvAF6quXZW-vouqbQ0Zk7gksoc1WwgnNFmIMNB8ehYjE7iT7NktgE_urswnlbZ5v51Tg_Zun3Tb2ezXy0W_UmUMcG5r7zEPbCetczKA3v5Dc9t9bvxR3TyK8b296bDEW1LC1DNedbQDHOycEpaFknmJM8s4hiO5zU-YNYkqXapcZlziqtYGBdJKyJp5nFqmNQxDgD_ewtux5gufNmEt9-veCUIUUL6x95R373uvl4glalKq2buGWUiaKuGKnN_2A-v7XH792C7Bafkw3r892HDFj3YGnY14Xpw95p8YQ929q5uyaFZmybqB6Cn9rxaIoqlpZdRRlBL6ssCoWa9qEnpCIZ-aRZeo7zGpkkxYe8nxWdGTj03p6SFKkq3DOXbCGJqMly9_jJ-Q6rTsilXXmrWB9NDOLmRKd-BzaIs7CMgqYtTr8XmIsvjJBukqUqYUcJf7Gea613g3ZzmupU69xU3lnnHaTvL157IvSfyiOOT7AL9ZVWtpT7-8b3s3JX_FrI57kZ_tXz835YvYGs0PTrMD8fHB0_gjm8JhLfkKWw2qwv7DBFSM38eIpLA15teAj8Boi4iJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template-oriented+synthesis+of+monodispersed+SnS2%40SnO2+hetero-nanoflowers+for+Cr%28VI%29+photoreduction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhang%2C+Xi&rft.au=Zhang%2C+Peng&rft.au=Wang%2C+Lijie&rft.au=Gao%2C+Hongqing&rft.date=2016-09-05&rft.issn=0926-3373&rft.volume=192&rft.spage=17&rft.epage=25&rft_id=info:doi/10.1016%2Fj.apcatb.2016.03.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2016_03_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon